1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
|
/* atof_ieee.c - turn a Flonum into an IEEE floating point number
Copyright 1987, 1992, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2005,
2007, 2009 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
02110-1301, USA. */
#include "as.h"
/* Flonums returned here. */
extern FLONUM_TYPE generic_floating_point_number;
extern const char EXP_CHARS[];
/* Precision in LittleNums. */
/* Don't count the gap in the m68k extended precision format. */
#define MAX_PRECISION 5
#define F_PRECISION 2
#define D_PRECISION 4
#define X_PRECISION 5
#define P_PRECISION 5
/* Length in LittleNums of guard bits. */
#define GUARD 2
#ifndef TC_LARGEST_EXPONENT_IS_NORMAL
#define TC_LARGEST_EXPONENT_IS_NORMAL(PRECISION) 0
#endif
static const unsigned long mask[] =
{
0x00000000,
0x00000001,
0x00000003,
0x00000007,
0x0000000f,
0x0000001f,
0x0000003f,
0x0000007f,
0x000000ff,
0x000001ff,
0x000003ff,
0x000007ff,
0x00000fff,
0x00001fff,
0x00003fff,
0x00007fff,
0x0000ffff,
0x0001ffff,
0x0003ffff,
0x0007ffff,
0x000fffff,
0x001fffff,
0x003fffff,
0x007fffff,
0x00ffffff,
0x01ffffff,
0x03ffffff,
0x07ffffff,
0x0fffffff,
0x1fffffff,
0x3fffffff,
0x7fffffff,
0xffffffff,
};
static int bits_left_in_littlenum;
static int littlenums_left;
static LITTLENUM_TYPE *littlenum_pointer;
static int
next_bits (int number_of_bits)
{
int return_value;
if (!littlenums_left)
return 0;
if (number_of_bits >= bits_left_in_littlenum)
{
return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
number_of_bits -= bits_left_in_littlenum;
return_value <<= number_of_bits;
if (--littlenums_left)
{
bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
--littlenum_pointer;
return_value |=
(*littlenum_pointer >> bits_left_in_littlenum)
& mask[number_of_bits];
}
}
else
{
bits_left_in_littlenum -= number_of_bits;
return_value =
mask[number_of_bits] & (*littlenum_pointer >> bits_left_in_littlenum);
}
return return_value;
}
/* Num had better be less than LITTLENUM_NUMBER_OF_BITS. */
static void
unget_bits (int num)
{
if (!littlenums_left)
{
++littlenum_pointer;
++littlenums_left;
bits_left_in_littlenum = num;
}
else if (bits_left_in_littlenum + num > LITTLENUM_NUMBER_OF_BITS)
{
bits_left_in_littlenum =
num - (LITTLENUM_NUMBER_OF_BITS - bits_left_in_littlenum);
++littlenum_pointer;
++littlenums_left;
}
else
bits_left_in_littlenum += num;
}
static void
make_invalid_floating_point_number (LITTLENUM_TYPE *words)
{
as_bad (_("cannot create floating-point number"));
/* Zero the leftmost bit. */
words[0] = (LITTLENUM_TYPE) ((unsigned) -1) >> 1;
words[1] = (LITTLENUM_TYPE) -1;
words[2] = (LITTLENUM_TYPE) -1;
words[3] = (LITTLENUM_TYPE) -1;
words[4] = (LITTLENUM_TYPE) -1;
words[5] = (LITTLENUM_TYPE) -1;
}
/* Warning: This returns 16-bit LITTLENUMs. It is up to the caller to
figure out any alignment problems and to conspire for the
bytes/word to be emitted in the right order. Bigendians beware! */
/* Note that atof-ieee always has X and P precisions enabled. it is up
to md_atof to filter them out if the target machine does not support
them. */
/* Returns pointer past text consumed. */
char *
atof_ieee (char *str, /* Text to convert to binary. */
int what_kind, /* 'd', 'f', 'x', 'p'. */
LITTLENUM_TYPE *words) /* Build the binary here. */
{
/* Extra bits for zeroed low-order bits.
The 1st MAX_PRECISION are zeroed, the last contain flonum bits. */
static LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
char *return_value;
/* Number of 16-bit words in the format. */
int precision;
long exponent_bits;
FLONUM_TYPE save_gen_flonum;
/* We have to save the generic_floating_point_number because it
contains storage allocation about the array of LITTLENUMs where
the value is actually stored. We will allocate our own array of
littlenums below, but have to restore the global one on exit. */
save_gen_flonum = generic_floating_point_number;
return_value = str;
generic_floating_point_number.low = bits + MAX_PRECISION;
generic_floating_point_number.high = NULL;
generic_floating_point_number.leader = NULL;
generic_floating_point_number.exponent = 0;
generic_floating_point_number.sign = '\0';
/* Use more LittleNums than seems necessary: the highest flonum may
have 15 leading 0 bits, so could be useless. */
memset (bits, '\0', sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
switch (what_kind)
{
case 'f':
case 'F':
case 's':
case 'S':
precision = F_PRECISION;
exponent_bits = 8;
break;
case 'd':
case 'D':
case 'r':
case 'R':
precision = D_PRECISION;
exponent_bits = 11;
break;
case 'x':
case 'X':
case 'e':
case 'E':
precision = X_PRECISION;
exponent_bits = 15;
break;
case 'p':
case 'P':
precision = P_PRECISION;
exponent_bits = -1;
break;
default:
make_invalid_floating_point_number (words);
return (NULL);
}
generic_floating_point_number.high
= generic_floating_point_number.low + precision - 1 + GUARD;
if (atof_generic (&return_value, ".", EXP_CHARS,
&generic_floating_point_number))
{
make_invalid_floating_point_number (words);
return NULL;
}
gen_to_words (words, precision, exponent_bits);
/* Restore the generic_floating_point_number's storage alloc (and
everything else). */
generic_floating_point_number = save_gen_flonum;
return return_value;
}
/* Turn generic_floating_point_number into a real float/double/extended. */
int
gen_to_words (LITTLENUM_TYPE *words, int precision, long exponent_bits)
{
int return_value = 0;
long exponent_1;
long exponent_2;
long exponent_3;
long exponent_4;
int exponent_skippage;
LITTLENUM_TYPE word1;
LITTLENUM_TYPE *lp;
LITTLENUM_TYPE *words_end;
words_end = words + precision;
#ifdef TC_M68K
if (precision == X_PRECISION)
/* On the m68k the extended precision format has a gap of 16 bits
between the exponent and the mantissa. */
words_end++;
#endif
if (generic_floating_point_number.low > generic_floating_point_number.leader)
{
/* 0.0e0 seen. */
if (generic_floating_point_number.sign == '+')
words[0] = 0x0000;
else
words[0] = 0x8000;
memset (&words[1], '\0',
(words_end - words - 1) * sizeof (LITTLENUM_TYPE));
return return_value;
}
/* NaN: Do the right thing. */
if (generic_floating_point_number.sign == 0)
{
if (TC_LARGEST_EXPONENT_IS_NORMAL (precision))
as_warn (_("NaNs are not supported by this target\n"));
if (precision == F_PRECISION)
{
words[0] = 0x7fff;
words[1] = 0xffff;
}
else if (precision == X_PRECISION)
{
#ifdef TC_M68K
words[0] = 0x7fff;
words[1] = 0;
words[2] = 0xffff;
words[3] = 0xffff;
words[4] = 0xffff;
words[5] = 0xffff;
#else /* ! TC_M68K */
#ifdef TC_I386
words[0] = 0xffff;
words[1] = 0xc000;
words[2] = 0;
words[3] = 0;
words[4] = 0;
#else /* ! TC_I386 */
abort ();
#endif /* ! TC_I386 */
#endif /* ! TC_M68K */
}
else
{
words[0] = 0x7fff;
words[1] = 0xffff;
words[2] = 0xffff;
words[3] = 0xffff;
}
return return_value;
}
else if (generic_floating_point_number.sign == 'P')
{
if (TC_LARGEST_EXPONENT_IS_NORMAL (precision))
as_warn (_("Infinities are not supported by this target\n"));
/* +INF: Do the right thing. */
if (precision == F_PRECISION)
{
words[0] = 0x7f80;
words[1] = 0;
}
else if (precision == X_PRECISION)
{
#ifdef TC_M68K
words[0] = 0x7fff;
words[1] = 0;
words[2] = 0;
words[3] = 0;
words[4] = 0;
words[5] = 0;
#else /* ! TC_M68K */
#ifdef TC_I386
words[0] = 0x7fff;
words[1] = 0x8000;
words[2] = 0;
words[3] = 0;
words[4] = 0;
#else /* ! TC_I386 */
abort ();
#endif /* ! TC_I386 */
#endif /* ! TC_M68K */
}
else
{
words[0] = 0x7ff0;
words[1] = 0;
words[2] = 0;
words[3] = 0;
}
return return_value;
}
else if (generic_floating_point_number.sign == 'N')
{
if (TC_LARGEST_EXPONENT_IS_NORMAL (precision))
as_warn (_("Infinities are not supported by this target\n"));
/* Negative INF. */
if (precision == F_PRECISION)
{
words[0] = 0xff80;
words[1] = 0x0;
}
else if (precision == X_PRECISION)
{
#ifdef TC_M68K
words[0] = 0xffff;
words[1] = 0;
words[2] = 0;
words[3] = 0;
words[4] = 0;
words[5] = 0;
#else /* ! TC_M68K */
#ifdef TC_I386
words[0] = 0xffff;
words[1] = 0x8000;
words[2] = 0;
words[3] = 0;
words[4] = 0;
#else /* ! TC_I386 */
abort ();
#endif /* ! TC_I386 */
#endif /* ! TC_M68K */
}
else
{
words[0] = 0xfff0;
words[1] = 0x0;
words[2] = 0x0;
words[3] = 0x0;
}
return return_value;
}
/* The floating point formats we support have:
Bit 15 is sign bit.
Bits 14:n are excess-whatever exponent.
Bits n-1:0 (if any) are most significant bits of fraction.
Bits 15:0 of the next word(s) are the next most significant bits.
So we need: number of bits of exponent, number of bits of
mantissa. */
bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
littlenum_pointer = generic_floating_point_number.leader;
littlenums_left = (1
+ generic_floating_point_number.leader
- generic_floating_point_number.low);
/* Seek (and forget) 1st significant bit. */
for (exponent_skippage = 0; !next_bits (1); ++exponent_skippage);
exponent_1 = (generic_floating_point_number.exponent
+ generic_floating_point_number.leader
+ 1
- generic_floating_point_number.low);
/* Radix LITTLENUM_RADIX, point just higher than
generic_floating_point_number.leader. */
exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
/* Radix 2. */
exponent_3 = exponent_2 - exponent_skippage;
/* Forget leading zeros, forget 1st bit. */
exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
/* Offset exponent. */
lp = words;
/* Word 1. Sign, exponent and perhaps high bits. */
word1 = ((generic_floating_point_number.sign == '+')
? 0
: (1 << (LITTLENUM_NUMBER_OF_BITS - 1)));
/* Assume 2's complement integers. */
if (exponent_4 <= 0)
{
int prec_bits;
int num_bits;
unget_bits (1);
num_bits = -exponent_4;
prec_bits =
LITTLENUM_NUMBER_OF_BITS * precision - (exponent_bits + 1 + num_bits);
#ifdef TC_I386
if (precision == X_PRECISION && exponent_bits == 15)
{
/* On the i386 a denormalized extended precision float is
shifted down by one, effectively decreasing the exponent
bias by one. */
prec_bits -= 1;
num_bits += 1;
}
#endif
if (num_bits >= LITTLENUM_NUMBER_OF_BITS - exponent_bits)
{
/* Bigger than one littlenum. */
num_bits -= (LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits;
*lp++ = word1;
if (num_bits + exponent_bits + 1
> precision * LITTLENUM_NUMBER_OF_BITS)
{
/* Exponent overflow. */
make_invalid_floating_point_number (words);
return return_value;
}
#ifdef TC_M68K
if (precision == X_PRECISION && exponent_bits == 15)
*lp++ = 0;
#endif
while (num_bits >= LITTLENUM_NUMBER_OF_BITS)
{
num_bits -= LITTLENUM_NUMBER_OF_BITS;
*lp++ = 0;
}
if (num_bits)
*lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS - (num_bits));
}
else
{
if (precision == X_PRECISION && exponent_bits == 15)
{
*lp++ = word1;
#ifdef TC_M68K
*lp++ = 0;
#endif
*lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS - num_bits);
}
else
{
word1 |= next_bits ((LITTLENUM_NUMBER_OF_BITS - 1)
- (exponent_bits + num_bits));
*lp++ = word1;
}
}
while (lp < words_end)
*lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
/* Round the mantissa up, but don't change the number. */
if (next_bits (1))
{
--lp;
if (prec_bits >= LITTLENUM_NUMBER_OF_BITS)
{
int n = 0;
int tmp_bits;
n = 0;
tmp_bits = prec_bits;
while (tmp_bits > LITTLENUM_NUMBER_OF_BITS)
{
if (lp[n] != (LITTLENUM_TYPE) - 1)
break;
--n;
tmp_bits -= LITTLENUM_NUMBER_OF_BITS;
}
if (tmp_bits > LITTLENUM_NUMBER_OF_BITS
|| (lp[n] & mask[tmp_bits]) != mask[tmp_bits]
|| (prec_bits != (precision * LITTLENUM_NUMBER_OF_BITS
- exponent_bits - 1)
#ifdef TC_I386
/* An extended precision float with only the integer
bit set would be invalid. That must be converted
to the smallest normalized number. */
&& !(precision == X_PRECISION
&& prec_bits == (precision * LITTLENUM_NUMBER_OF_BITS
- exponent_bits - 2))
#endif
))
{
unsigned long carry;
for (carry = 1; carry && (lp >= words); lp--)
{
carry = *lp + carry;
*lp = carry;
carry >>= LITTLENUM_NUMBER_OF_BITS;
}
}
else
{
/* This is an overflow of the denormal numbers. We
need to forget what we have produced, and instead
generate the smallest normalized number. */
lp = words;
word1 = ((generic_floating_point_number.sign == '+')
? 0
: (1 << (LITTLENUM_NUMBER_OF_BITS - 1)));
word1 |= (1
<< ((LITTLENUM_NUMBER_OF_BITS - 1)
- exponent_bits));
*lp++ = word1;
#ifdef TC_I386
/* Set the integer bit in the extended precision format.
This cannot happen on the m68k where the mantissa
just overflows into the integer bit above. */
if (precision == X_PRECISION)
*lp++ = 1 << (LITTLENUM_NUMBER_OF_BITS - 1);
#endif
while (lp < words_end)
*lp++ = 0;
}
}
else
*lp += 1;
}
return return_value;
}
else if ((unsigned long) exponent_4 > mask[exponent_bits]
|| (! TC_LARGEST_EXPONENT_IS_NORMAL (precision)
&& (unsigned long) exponent_4 == mask[exponent_bits]))
{
/* Exponent overflow. Lose immediately. */
/* We leave return_value alone: admit we read the
number, but return a floating exception
because we can't encode the number. */
make_invalid_floating_point_number (words);
return return_value;
}
else
{
word1 |= (exponent_4 << ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits))
| next_bits ((LITTLENUM_NUMBER_OF_BITS - 1) - exponent_bits);
}
*lp++ = word1;
/* X_PRECISION is special: on the 68k, it has 16 bits of zero in the
middle. Either way, it is then followed by a 1 bit. */
if (exponent_bits == 15 && precision == X_PRECISION)
{
#ifdef TC_M68K
*lp++ = 0;
#endif
*lp++ = (1 << (LITTLENUM_NUMBER_OF_BITS - 1)
| next_bits (LITTLENUM_NUMBER_OF_BITS - 1));
}
/* The rest of the words are just mantissa bits. */
while (lp < words_end)
*lp++ = next_bits (LITTLENUM_NUMBER_OF_BITS);
if (next_bits (1))
{
unsigned long carry;
/* Since the NEXT bit is a 1, round UP the mantissa.
The cunning design of these hidden-1 floats permits
us to let the mantissa overflow into the exponent, and
it 'does the right thing'. However, we lose if the
highest-order bit of the lowest-order word flips.
Is that clear? */
/* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
Please allow at least 1 more bit in carry than is in a LITTLENUM.
We need that extra bit to hold a carry during a LITTLENUM carry
propagation. Another extra bit (kept 0) will assure us that we
don't get a sticky sign bit after shifting right, and that
permits us to propagate the carry without any masking of bits.
#endif */
for (carry = 1, lp--; carry; lp--)
{
carry = *lp + carry;
*lp = carry;
carry >>= LITTLENUM_NUMBER_OF_BITS;
if (lp == words)
break;
}
if (precision == X_PRECISION && exponent_bits == 15)
{
/* Extended precision numbers have an explicit integer bit
that we may have to restore. */
if (lp == words)
{
#ifdef TC_M68K
/* On the m68k there is a gap of 16 bits. We must
explicitly propagate the carry into the exponent. */
words[0] += words[1];
words[1] = 0;
lp++;
#endif
/* Put back the integer bit. */
lp[1] |= 1 << (LITTLENUM_NUMBER_OF_BITS - 1);
}
}
if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
{
/* We leave return_value alone: admit we read the number,
but return a floating exception because we can't encode
the number. */
*words &= ~(1 << (LITTLENUM_NUMBER_OF_BITS - 1));
}
}
return return_value;
}
#ifdef TEST
char *
print_gen (gen)
FLONUM_TYPE *gen;
{
FLONUM_TYPE f;
LITTLENUM_TYPE arr[10];
double dv;
float fv;
static char sbuf[40];
if (gen)
{
f = generic_floating_point_number;
generic_floating_point_number = *gen;
}
gen_to_words (&arr[0], 4, 11);
memcpy (&dv, &arr[0], sizeof (double));
sprintf (sbuf, "%x %x %x %x %.14G ", arr[0], arr[1], arr[2], arr[3], dv);
gen_to_words (&arr[0], 2, 8);
memcpy (&fv, &arr[0], sizeof (float));
sprintf (sbuf + strlen (sbuf), "%x %x %.12g\n", arr[0], arr[1], fv);
if (gen)
generic_floating_point_number = f;
return (sbuf);
}
#endif
extern const char FLT_CHARS[];
#define MAX_LITTLENUMS 6
/* This is a utility function called from various tc-*.c files. It
is here in order to reduce code duplication.
Turn a string at input_line_pointer into a floating point constant
of type TYPE (a character found in the FLT_CHARS macro), and store
it as LITTLENUMS in the bytes buffer LITP. The number of chars
emitted is stored in *SIZEP. BIG_WORDIAN is TRUE if the littlenums
should be emitted most significant littlenum first.
An error message is returned, or a NULL pointer if everything went OK. */
char *
ieee_md_atof (int type,
char *litP,
int *sizeP,
bfd_boolean big_wordian)
{
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
int prec = 0;
if (strchr (FLT_CHARS, type) != NULL)
{
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = F_PRECISION;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = D_PRECISION;
break;
case 't':
case 'T':
prec = X_PRECISION;
type = 'x'; /* This is what atof_ieee() understands. */
break;
case 'x':
case 'X':
case 'p':
case 'P':
#ifdef TC_M68K
/* Note: on the m68k there is a gap of 16 bits (one littlenum)
between the exponent and mantissa. Hence the precision is
6 and not 5. */
prec = P_PRECISION + 1;
#else
prec = P_PRECISION;
#endif
break;
default:
break;
}
}
/* The 'f' and 'd' types are always recognised, even if the target has
not put them into the FLT_CHARS macro. This is because the 'f' type
can come from the .dc.s, .dcb.s, .float or .single pseudo-ops and the
'd' type from the .dc.d, .dbc.d or .double pseudo-ops.
The 'x' type is not implicitly recongised however, even though it can
be generated by the .dc.x and .dbc.x pseudo-ops because not all targets
can support floating point values that big. ie the target has to
explicitly allow them by putting them into FLT_CHARS. */
else if (type == 'f')
prec = F_PRECISION;
else if (type == 'd')
prec = D_PRECISION;
if (prec == 0)
{
*sizeP = 0;
return _("Unrecognized or unsupported floating point constant");
}
gas_assert (prec <= MAX_LITTLENUMS);
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
if (big_wordian)
{
for (wordP = words; prec --;)
{
md_number_to_chars (litP, (valueT) (* wordP ++), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
}
else
{
for (wordP = words + prec; prec --;)
{
md_number_to_chars (litP, (valueT) (* -- wordP), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
}
return NULL;
}
|