1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
|
/* bfd back-end for HP PA-RISC SOM objects.
Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
Contributed by the Center for Software Science at the
University of Utah (pa-gdb-bugs@cs.utah.edu).
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "bfd.h"
#include "sysdep.h"
#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD)
#include "libbfd.h"
#include "som.h"
#include "libhppa.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <signal.h>
#include <machine/reg.h>
#include <sys/user.h> /* After a.out.h */
#include <sys/file.h>
#include <errno.h>
/* Magic not defined in standard HP-UX header files until 8.0 */
#ifndef CPU_PA_RISC1_0
#define CPU_PA_RISC1_0 0x20B
#endif /* CPU_PA_RISC1_0 */
#ifndef CPU_PA_RISC1_1
#define CPU_PA_RISC1_1 0x210
#endif /* CPU_PA_RISC1_1 */
#ifndef _PA_RISC1_0_ID
#define _PA_RISC1_0_ID CPU_PA_RISC1_0
#endif /* _PA_RISC1_0_ID */
#ifndef _PA_RISC1_1_ID
#define _PA_RISC1_1_ID CPU_PA_RISC1_1
#endif /* _PA_RISC1_1_ID */
#ifndef _PA_RISC_MAXID
#define _PA_RISC_MAXID 0x2FF
#endif /* _PA_RISC_MAXID */
#ifndef _PA_RISC_ID
#define _PA_RISC_ID(__m_num) \
(((__m_num) == _PA_RISC1_0_ID) || \
((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
#endif /* _PA_RISC_ID */
/* Size (in chars) of the temporary buffers used during fixup and string
table writes. */
#define SOM_TMP_BUFSIZE 8192
/* SOM allows any one of the four previous relocations to be reused
with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
relocations are always a single byte, using a R_PREV_FIXUP instead
of some multi-byte relocation makes object files smaller.
Note one side effect of using a R_PREV_FIXUP is the relocation that
is being repeated moves to the front of the queue. */
struct reloc_queue
{
unsigned char *reloc;
unsigned int size;
} reloc_queue[4];
/* This fully describes the symbol types which may be attached to
an EXPORT or IMPORT directive. Only SOM uses this formation
(ELF has no need for it). */
typedef enum
{
SYMBOL_TYPE_UNKNOWN,
SYMBOL_TYPE_ABSOLUTE,
SYMBOL_TYPE_CODE,
SYMBOL_TYPE_DATA,
SYMBOL_TYPE_ENTRY,
SYMBOL_TYPE_MILLICODE,
SYMBOL_TYPE_PLABEL,
SYMBOL_TYPE_PRI_PROG,
SYMBOL_TYPE_SEC_PROG,
} pa_symbol_type;
/* Forward declarations */
static boolean som_mkobject PARAMS ((bfd *));
static bfd_target * som_object_setup PARAMS ((bfd *,
struct header *,
struct som_exec_auxhdr *));
static asection * make_unique_section PARAMS ((bfd *, CONST char *, int));
static boolean setup_sections PARAMS ((bfd *, struct header *));
static bfd_target * som_object_p PARAMS ((bfd *));
static boolean som_write_object_contents PARAMS ((bfd *));
static boolean som_slurp_string_table PARAMS ((bfd *));
static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
static unsigned int som_get_symtab_upper_bound PARAMS ((bfd *));
static unsigned int som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
arelent **, asymbol **));
static unsigned int som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
static unsigned int som_get_symtab PARAMS ((bfd *, asymbol **));
static asymbol * som_make_empty_symbol PARAMS ((bfd *));
static void som_print_symbol PARAMS ((bfd *, PTR,
asymbol *, bfd_print_symbol_type));
static boolean som_new_section_hook PARAMS ((bfd *, asection *));
static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
file_ptr, bfd_size_type));
static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
unsigned long));
static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
asymbol **, bfd_vma,
CONST char **,
CONST char **,
unsigned int *));
static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
static asection * som_section_from_subspace_index PARAMS ((bfd *,
unsigned int));
static int log2 PARAMS ((unsigned int));
static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
asymbol *, PTR,
asection *, bfd *));
static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
struct reloc_queue *));
static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
struct reloc_queue *));
static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
unsigned int,
struct reloc_queue *));
static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
unsigned char *, unsigned int *,
struct reloc_queue *));
static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
unsigned int *,
struct reloc_queue *));
static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
unsigned int *,
arelent *, int,
struct reloc_queue *));
static unsigned long som_count_spaces PARAMS ((bfd *));
static unsigned long som_count_subspaces PARAMS ((bfd *));
static int compare_syms PARAMS ((asymbol **, asymbol **));
static unsigned long som_compute_checksum PARAMS ((bfd *));
static boolean som_prep_headers PARAMS ((bfd *));
static int som_sizeof_headers PARAMS ((bfd *, boolean));
static boolean som_write_headers PARAMS ((bfd *));
static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
unsigned int *));
static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
asymbol **, unsigned int,
unsigned *));
static boolean som_begin_writing PARAMS ((bfd *));
static const reloc_howto_type * som_bfd_reloc_type_lookup
PARAMS ((bfd_arch_info_type *, bfd_reloc_code_real_type));
static reloc_howto_type som_hppa_howto_table[] =
{
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
{R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
{R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
{R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
{R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
{R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
{R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
{R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
{R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
{R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
{R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
{R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
{R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
{R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
{R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
{R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
{R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
{R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
{R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
{R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
{R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
{R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
{R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
{R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
{R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
{R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
{R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
{R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
{R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
{R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
{R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
{R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
{R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
{R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
{R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
{R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
{R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
{R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
{R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
{R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
{R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
{R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
/* Initialize the SOM relocation queue. By definition the queue holds
the last four multibyte fixups. */
static void
som_initialize_reloc_queue (queue)
struct reloc_queue *queue;
{
queue[0].reloc = NULL;
queue[0].size = 0;
queue[1].reloc = NULL;
queue[1].size = 0;
queue[2].reloc = NULL;
queue[2].size = 0;
queue[3].reloc = NULL;
queue[3].size = 0;
}
/* Insert a new relocation into the relocation queue. */
static void
som_reloc_queue_insert (p, size, queue)
unsigned char *p;
unsigned int size;
struct reloc_queue *queue;
{
queue[3].reloc = queue[2].reloc;
queue[3].size = queue[2].size;
queue[2].reloc = queue[1].reloc;
queue[2].size = queue[1].size;
queue[1].reloc = queue[0].reloc;
queue[1].size = queue[0].size;
queue[0].reloc = p;
queue[0].size = size;
}
/* When an entry in the relocation queue is reused, the entry moves
to the front of the queue. */
static void
som_reloc_queue_fix (queue, index)
struct reloc_queue *queue;
unsigned int index;
{
if (index == 0)
return;
if (index == 1)
{
unsigned char *tmp1 = queue[0].reloc;
unsigned int tmp2 = queue[0].size;
queue[0].reloc = queue[1].reloc;
queue[0].size = queue[1].size;
queue[1].reloc = tmp1;
queue[1].size = tmp2;
return;
}
if (index == 2)
{
unsigned char *tmp1 = queue[0].reloc;
unsigned int tmp2 = queue[0].size;
queue[0].reloc = queue[2].reloc;
queue[0].size = queue[2].size;
queue[2].reloc = queue[1].reloc;
queue[2].size = queue[1].size;
queue[1].reloc = tmp1;
queue[1].size = tmp2;
return;
}
if (index == 3)
{
unsigned char *tmp1 = queue[0].reloc;
unsigned int tmp2 = queue[0].size;
queue[0].reloc = queue[3].reloc;
queue[0].size = queue[3].size;
queue[3].reloc = queue[2].reloc;
queue[3].size = queue[2].size;
queue[2].reloc = queue[1].reloc;
queue[2].size = queue[1].size;
queue[1].reloc = tmp1;
queue[1].size = tmp2;
return;
}
abort();
}
/* Search for a particular relocation in the relocation queue. */
static int
som_reloc_queue_find (p, size, queue)
unsigned char *p;
unsigned int size;
struct reloc_queue *queue;
{
if (!bcmp (p, queue[0].reloc, size)
&& size == queue[0].size)
return 0;
if (!bcmp (p, queue[1].reloc, size)
&& size == queue[1].size)
return 1;
if (!bcmp (p, queue[2].reloc, size)
&& size == queue[2].size)
return 2;
if (!bcmp (p, queue[3].reloc, size)
&& size == queue[3].size)
return 3;
return -1;
}
static unsigned char *
try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
bfd *abfd;
int *subspace_reloc_sizep;
unsigned char *p;
unsigned int size;
struct reloc_queue *queue;
{
int queue_index = som_reloc_queue_find (p, size, queue);
if (queue_index != -1)
{
/* Found this in a previous fixup. Undo the fixup we
just built and use R_PREV_FIXUP instead. We saved
a total of size - 1 bytes in the fixup stream. */
bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
p += 1;
*subspace_reloc_sizep += 1;
som_reloc_queue_fix (queue, queue_index);
}
else
{
som_reloc_queue_insert (p, size, queue);
*subspace_reloc_sizep += size;
p += size;
}
return p;
}
/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
bytes without any relocation. Update the size of the subspace
relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
current pointer into the relocation stream. */
static unsigned char *
som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
bfd *abfd;
unsigned int skip;
unsigned char *p;
unsigned int *subspace_reloc_sizep;
struct reloc_queue *queue;
{
/* Use a 4 byte R_NO_RELOCATION entry with a maximal value
then R_PREV_FIXUPs to get the difference down to a
reasonable size. */
if (skip >= 0x1000000)
{
skip -= 0x1000000;
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
bfd_put_8 (abfd, 0xff, p + 1);
bfd_put_16 (abfd, 0xffff, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
while (skip >= 0x1000000)
{
skip -= 0x1000000;
bfd_put_8 (abfd, R_PREV_FIXUP, p);
p++;
*subspace_reloc_sizep += 1;
/* No need to adjust queue here since we are repeating the
most recent fixup. */
}
}
/* The difference must be less than 0x1000000. Use one
more R_NO_RELOCATION entry to get to the right difference. */
if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
{
/* Difference can be handled in a simple single-byte
R_NO_RELOCATION entry. */
if (skip <= 0x60)
{
bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
*subspace_reloc_sizep += 1;
p++;
}
/* Handle it with a two byte R_NO_RELOCATION entry. */
else if (skip <= 0x1000)
{
bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
}
/* Handle it with a three byte R_NO_RELOCATION entry. */
else
{
bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
}
}
/* Ugh. Punt and use a 4 byte entry. */
else if (skip > 0)
{
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
bfd_put_8 (abfd, skip >> 16, p + 1);
bfd_put_16 (abfd, skip, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
}
return p;
}
/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
from a BFD relocation. Update the size of the subspace relocation
stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
into the relocation stream. */
static unsigned char *
som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
bfd *abfd;
int addend;
unsigned char *p;
unsigned int *subspace_reloc_sizep;
struct reloc_queue *queue;
{
if ((unsigned)(addend) + 0x80 < 0x100)
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
bfd_put_8 (abfd, addend, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
}
else if ((unsigned) (addend) + 0x8000 < 0x10000)
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
bfd_put_16 (abfd, addend, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
}
else if ((unsigned) (addend) + 0x800000 < 0x1000000)
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
bfd_put_8 (abfd, addend >> 16, p + 1);
bfd_put_16 (abfd, addend, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
}
else
{
bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
bfd_put_32 (abfd, addend, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
}
return p;
}
/* Handle a single function call relocation. */
static unsigned char *
som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
bfd *abfd;
unsigned char *p;
unsigned int *subspace_reloc_sizep;
arelent *bfd_reloc;
int sym_num;
struct reloc_queue *queue;
{
int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
int rtn_bits = arg_bits & 0x3;
int type, done = 0;
/* You'll never believe all this is necessary to handle relocations
for function calls. Having to compute and pack the argument
relocation bits is the real nightmare.
If you're interested in how this works, just forget it. You really
do not want to know about this braindamage. */
/* First see if this can be done with a "simple" relocation. Simple
relocations have a symbol number < 0x100 and have simple encodings
of argument relocations. */
if (sym_num < 0x100)
{
switch (arg_bits)
{
case 0:
case 1:
type = 0;
break;
case 1 << 8:
case 1 << 8 | 1:
type = 1;
break;
case 1 << 8 | 1 << 6:
case 1 << 8 | 1 << 6 | 1:
type = 2;
break;
case 1 << 8 | 1 << 6 | 1 << 4:
case 1 << 8 | 1 << 6 | 1 << 4 | 1:
type = 3;
break;
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
type = 4;
break;
default:
/* Not one of the easy encodings. This will have to be
handled by the more complex code below. */
type = -1;
break;
}
if (type != -1)
{
/* Account for the return value too. */
if (rtn_bits)
type += 5;
/* Emit a 2 byte relocation. Then see if it can be handled
with a relocation which is already in the relocation queue. */
bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
bfd_put_8 (abfd, sym_num, p + 1);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
done = 1;
}
}
/* If this could not be handled with a simple relocation, then do a hard
one. Hard relocations occur if the symbol number was too high or if
the encoding of argument relocation bits is too complex. */
if (! done)
{
/* Don't ask about these magic sequences. I took them straight
from gas-1.36 which took them from the a.out man page. */
type = rtn_bits;
if ((arg_bits >> 6 & 0xf) == 0xe)
type += 9 * 40;
else
type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
if ((arg_bits >> 2 & 0xf) == 0xe)
type += 9 * 4;
else
type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
/* Output the first two bytes of the relocation. These describe
the length of the relocation and encoding style. */
bfd_put_8 (abfd, bfd_reloc->howto->type + 10
+ 2 * (sym_num >= 0x100) + (type >= 0x100),
p);
bfd_put_8 (abfd, type, p + 1);
/* Now output the symbol index and see if this bizarre relocation
just happened to be in the relocation queue. */
if (sym_num < 0x100)
{
bfd_put_8 (abfd, sym_num, p + 2);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
}
else
{
bfd_put_8 (abfd, sym_num >> 16, p + 2);
bfd_put_16 (abfd, sym_num, p + 3);
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
}
}
return p;
}
/* Return the logarithm of X, base 2, considering X unsigned.
Abort if X is not a power of two -- this should never happen (FIXME:
It will happen on corrupt executables. GDB should give an error, not
a coredump, in that case). */
static int
log2 (x)
unsigned int x;
{
int log = 0;
/* Test for 0 or a power of 2. */
if (x == 0 || x != (x & -x))
abort();
while ((x >>= 1) != 0)
log++;
return log;
}
static bfd_reloc_status_type
hppa_som_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol_in;
PTR data;
asection *input_section;
bfd *output_bfd;
{
if (output_bfd)
{
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
return bfd_reloc_ok;
}
/* Given a generic HPPA relocation type, the instruction format,
and a field selector, return an appropriate SOM reloation.
FIXME. Need to handle %RR, %LR and the like as field selectors.
These will need to generate multiple SOM relocations. */
int **
hppa_som_gen_reloc_type (abfd, base_type, format, field)
bfd *abfd;
int base_type;
int format;
int field;
{
int *final_type, **final_types;
final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 2);
final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
final_types[0] = final_type;
final_types[1] = NULL;
/* Default to the basic relocation passed in. */
*final_type = base_type;
switch (base_type)
{
case R_HPPA:
/* PLABELs get their own relocation type. */
if (field == e_psel
|| field == e_lpsel
|| field == e_rpsel)
{
/* A PLABEL relocation that has a size of 32 bits must
be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
if (format == 32)
*final_type = R_DATA_PLABEL;
else
*final_type = R_CODE_PLABEL;
}
/* A relocatoin in the data space is always a full 32bits. */
else if (format == 32)
*final_type = R_DATA_ONE_SYMBOL;
break;
case R_HPPA_GOTOFF:
/* More PLABEL special cases. */
if (field == e_psel
|| field == e_lpsel
|| field == e_rpsel)
*final_type = R_DATA_PLABEL;
break;
case R_HPPA_NONE:
case R_HPPA_ABS_CALL:
case R_HPPA_PCREL_CALL:
case R_HPPA_COMPLEX:
case R_HPPA_COMPLEX_PCREL_CALL:
case R_HPPA_COMPLEX_ABS_CALL:
/* Right now we can default all these. */
break;
}
return final_types;
}
/* Return the address of the correct entry in the PA SOM relocation
howto table. */
static const reloc_howto_type *
som_bfd_reloc_type_lookup (arch, code)
bfd_arch_info_type *arch;
bfd_reloc_code_real_type code;
{
if ((int) code < (int) R_NO_RELOCATION + 255)
{
BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
return &som_hppa_howto_table[(int) code];
}
return (reloc_howto_type *) 0;
}
/* Perform some initialization for an object. Save results of this
initialization in the BFD. */
static bfd_target *
som_object_setup (abfd, file_hdrp, aux_hdrp)
bfd *abfd;
struct header *file_hdrp;
struct som_exec_auxhdr *aux_hdrp;
{
asection *text, *data, *bss;
/* som_mkobject will set bfd_error if som_mkobject fails. */
if (som_mkobject (abfd) != true)
return 0;
/* Make the standard .text, .data, and .bss sections so that tools
which assume those names work (size for example). They will have
no contents, but the sizes and such will reflect those of the
$CODE$, $DATA$, and $BSS$ subspaces respectively.
FIXME: Should check return status from bfd_make_section calls below. */
text = bfd_make_section (abfd, ".text");
data = bfd_make_section (abfd, ".data");
bss = bfd_make_section (abfd, ".bss");
text->_raw_size = aux_hdrp->exec_tsize;
data->_raw_size = aux_hdrp->exec_dsize;
bss->_raw_size = aux_hdrp->exec_bsize;
text->flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_CODE);
data->flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS);
bss->flags = (SEC_ALLOC | SEC_IS_COMMON);
/* The virtual memory addresses of the sections */
text->vma = aux_hdrp->exec_tmem;
data->vma = aux_hdrp->exec_dmem;
bss->vma = aux_hdrp->exec_bfill;
/* The file offsets of the sections */
text->filepos = aux_hdrp->exec_tfile;
data->filepos = aux_hdrp->exec_dfile;
/* The file offsets of the relocation info */
text->rel_filepos = 0;
data->rel_filepos = 0;
/* Set BFD flags based on what information is available in the SOM. */
abfd->flags = NO_FLAGS;
if (! file_hdrp->entry_offset)
abfd->flags |= HAS_RELOC;
else
abfd->flags |= EXEC_P;
if (file_hdrp->symbol_total)
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 0);
bfd_get_symcount (abfd) = file_hdrp->symbol_total;
/* Initialize the saved symbol table and string table to NULL.
Save important offsets and sizes from the SOM header into
the BFD. */
obj_som_stringtab (abfd) = (char *) NULL;
obj_som_symtab (abfd) = (som_symbol_type *) NULL;
obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
return abfd->xvec;
}
/* Create a new BFD section for NAME. If NAME already exists, then create a
new unique name, with NAME as the prefix. This exists because SOM .o files
may have more than one $CODE$ subspace. */
static asection *
make_unique_section (abfd, name, num)
bfd *abfd;
CONST char *name;
int num;
{
asection *sect;
char *newname;
char altname[100];
sect = bfd_make_section (abfd, name);
while (!sect)
{
sprintf (altname, "%s-%d", name, num++);
sect = bfd_make_section (abfd, altname);
}
newname = bfd_alloc (abfd, strlen (sect->name) + 1);
strcpy (newname, sect->name);
sect->name = newname;
return sect;
}
/* Convert all of the space and subspace info into BFD sections. Each space
contains a number of subspaces, which in turn describe the mapping between
regions of the exec file, and the address space that the program runs in.
BFD sections which correspond to spaces will overlap the sections for the
associated subspaces. */
static boolean
setup_sections (abfd, file_hdr)
bfd *abfd;
struct header *file_hdr;
{
char *space_strings;
int space_index;
unsigned int total_subspaces = 0;
/* First, read in space names */
space_strings = alloca (file_hdr->space_strings_size);
if (!space_strings)
return false;
if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
return false;
if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
!= file_hdr->space_strings_size)
return false;
/* Loop over all of the space dictionaries, building up sections */
for (space_index = 0; space_index < file_hdr->space_total; space_index++)
{
struct space_dictionary_record space;
struct subspace_dictionary_record subspace, save_subspace;
int subspace_index;
asection *space_asect;
/* Read the space dictionary element */
if (bfd_seek (abfd, file_hdr->space_location
+ space_index * sizeof space, SEEK_SET) < 0)
return false;
if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
return false;
/* Setup the space name string */
space.name.n_name = space.name.n_strx + space_strings;
/* Make a section out of it */
space_asect = make_unique_section (abfd, space.name.n_name, space_index);
if (!space_asect)
return false;
/* Now, read in the first subspace for this space */
if (bfd_seek (abfd, file_hdr->subspace_location
+ space.subspace_index * sizeof subspace,
SEEK_SET) < 0)
return false;
if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
return false;
/* Seek back to the start of the subspaces for loop below */
if (bfd_seek (abfd, file_hdr->subspace_location
+ space.subspace_index * sizeof subspace,
SEEK_SET) < 0)
return false;
/* Setup the start address and file loc from the first subspace record */
space_asect->vma = subspace.subspace_start;
space_asect->filepos = subspace.file_loc_init_value;
space_asect->alignment_power = log2 (subspace.alignment);
/* Initialize save_subspace so we can reliably determine if this
loop placed any useful values into it. */
bzero (&save_subspace, sizeof (struct subspace_dictionary_record));
/* Loop over the rest of the subspaces, building up more sections */
for (subspace_index = 0; subspace_index < space.subspace_quantity;
subspace_index++)
{
asection *subspace_asect;
/* Read in the next subspace */
if (bfd_read (&subspace, 1, sizeof subspace, abfd)
!= sizeof subspace)
return false;
/* Setup the subspace name string */
subspace.name.n_name = subspace.name.n_strx + space_strings;
/* Make a section out of this subspace */
subspace_asect = make_unique_section (abfd, subspace.name.n_name,
space.subspace_index + subspace_index);
if (!subspace_asect)
return false;
/* Keep an easy mapping between subspaces and sections. */
som_section_data (subspace_asect)->subspace_index
= total_subspaces++;
/* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
by the access_control_bits in the subspace header. */
switch (subspace.access_control_bits >> 4)
{
/* Readonly data. */
case 0x0:
subspace_asect->flags |= SEC_DATA | SEC_READONLY;
break;
/* Normal data. */
case 0x1:
subspace_asect->flags |= SEC_DATA;
break;
/* Readonly code and the gateways.
Gateways have other attributes which do not map
into anything BFD knows about. */
case 0x2:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
subspace_asect->flags |= SEC_CODE | SEC_READONLY;
break;
/* dynamic (writable) code. */
case 0x3:
subspace_asect->flags |= SEC_CODE;
break;
}
if (subspace.dup_common || subspace.is_common)
subspace_asect->flags |= SEC_IS_COMMON;
else
subspace_asect->flags |= SEC_HAS_CONTENTS;
if (subspace.is_loadable)
subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
if (subspace.code_only)
subspace_asect->flags |= SEC_CODE;
/* This subspace has relocations.
The fixup_request_quantity is a byte count for the number of
entries in the relocation stream; it is not the actual number
of relocations in the subspace. */
if (subspace.fixup_request_quantity != 0)
{
subspace_asect->flags |= SEC_RELOC;
subspace_asect->rel_filepos = subspace.fixup_request_index;
som_section_data (subspace_asect)->reloc_size
= subspace.fixup_request_quantity;
/* We can not determine this yet. When we read in the
relocation table the correct value will be filled in. */
subspace_asect->reloc_count = -1;
}
/* Update save_subspace if appropriate. */
if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
save_subspace = subspace;
subspace_asect->vma = subspace.subspace_start;
subspace_asect->_cooked_size = subspace.subspace_length;
subspace_asect->_raw_size = subspace.initialization_length;
subspace_asect->alignment_power = log2 (subspace.alignment);
subspace_asect->filepos = subspace.file_loc_init_value;
}
/* Yow! there is no subspace within the space which actually
has initialized information in it; this should never happen
as far as I know. */
if (!save_subspace.file_loc_init_value)
abort ();
/* Setup the sizes for the space section based upon the info in the
last subspace of the space. */
space_asect->_cooked_size = save_subspace.subspace_start
- space_asect->vma + save_subspace.subspace_length;
space_asect->_raw_size = save_subspace.file_loc_init_value
- space_asect->filepos + save_subspace.initialization_length;
}
return true;
}
/* Read in a SOM object and make it into a BFD. */
static bfd_target *
som_object_p (abfd)
bfd *abfd;
{
struct header file_hdr;
struct som_exec_auxhdr aux_hdr;
if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
{
bfd_error = system_call_error;
return 0;
}
if (!_PA_RISC_ID (file_hdr.system_id))
{
bfd_error = wrong_format;
return 0;
}
switch (file_hdr.a_magic)
{
case RELOC_MAGIC:
case EXEC_MAGIC:
case SHARE_MAGIC:
case DEMAND_MAGIC:
#ifdef DL_MAGIC
case DL_MAGIC:
#endif
#ifdef SHL_MAGIC
case SHL_MAGIC:
#endif
#ifdef EXECLIBMAGIC
case EXECLIBMAGIC:
#endif
break;
default:
bfd_error = wrong_format;
return 0;
}
if (file_hdr.version_id != VERSION_ID
&& file_hdr.version_id != NEW_VERSION_ID)
{
bfd_error = wrong_format;
return 0;
}
/* If the aux_header_size field in the file header is zero, then this
object is an incomplete executable (a .o file). Do not try to read
a non-existant auxiliary header. */
bzero (&aux_hdr, sizeof (struct som_exec_auxhdr));
if (file_hdr.aux_header_size != 0)
{
if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
{
bfd_error = wrong_format;
return 0;
}
}
if (!setup_sections (abfd, &file_hdr))
{
/* setup_sections does not bubble up a bfd error code. */
bfd_error = bad_value;
return 0;
}
/* This appears to be a valid SOM object. Do some initialization. */
return som_object_setup (abfd, &file_hdr, &aux_hdr);
}
/* Create a SOM object. */
static boolean
som_mkobject (abfd)
bfd *abfd;
{
/* Allocate memory to hold backend information. */
abfd->tdata.som_data = (struct som_data_struct *)
bfd_zalloc (abfd, sizeof (struct som_data_struct));
if (abfd->tdata.som_data == NULL)
{
bfd_error = no_memory;
return false;
}
obj_som_file_hdr (abfd) = bfd_zalloc (abfd, sizeof (struct header));
if (obj_som_file_hdr (abfd) == NULL)
{
bfd_error = no_memory;
return false;
}
return true;
}
/* Initialize some information in the file header. This routine makes
not attempt at doing the right thing for a full executable; it
is only meant to handle relocatable objects. */
static boolean
som_prep_headers (abfd)
bfd *abfd;
{
struct header *file_hdr = obj_som_file_hdr (abfd);
asection *section;
/* FIXME. This should really be conditional based on whether or not
PA1.1 instructions/registers have been used. */
file_hdr->system_id = HP9000S800_ID;
/* FIXME. Only correct for building relocatable objects. */
if (abfd->flags & EXEC_P)
abort ();
else
file_hdr->a_magic = RELOC_MAGIC;
/* Only new format SOM is supported. */
file_hdr->version_id = NEW_VERSION_ID;
/* These fields are optional, and embedding timestamps is not always
a wise thing to do, it makes comparing objects during a multi-stage
bootstrap difficult. */
file_hdr->file_time.secs = 0;
file_hdr->file_time.nanosecs = 0;
if (abfd->flags & EXEC_P)
abort ();
else
{
file_hdr->entry_space = 0;
file_hdr->entry_subspace = 0;
file_hdr->entry_offset = 0;
}
/* FIXME. I do not know if we ever need to put anything other
than zero in this field. */
file_hdr->presumed_dp = 0;
/* Now iterate over the sections translating information from
BFD sections to SOM spaces/subspaces. */
for (section = abfd->sections; section != NULL; section = section->next)
{
/* Ignore anything which has not been marked as a space or
subspace. */
if (som_section_data (section)->is_space == 0
&& som_section_data (section)->is_subspace == 0)
continue;
if (som_section_data (section)->is_space)
{
/* Set space attributes. Note most attributes of SOM spaces
are set based on the subspaces it contains. */
som_section_data (section)->space_dict.loader_fix_index = -1;
som_section_data (section)->space_dict.init_pointer_index = -1;
}
else
{
/* Set subspace attributes. Basic stuff is done here, additional
attributes are filled in later as more information becomes
available. */
if (section->flags & SEC_IS_COMMON)
{
som_section_data (section)->subspace_dict.dup_common = 1;
som_section_data (section)->subspace_dict.is_common = 1;
}
if (section->flags & SEC_ALLOC)
som_section_data (section)->subspace_dict.is_loadable = 1;
if (section->flags & SEC_CODE)
som_section_data (section)->subspace_dict.code_only = 1;
som_section_data (section)->subspace_dict.subspace_start =
section->vma;
som_section_data (section)->subspace_dict.subspace_length =
bfd_section_size (abfd, section);
som_section_data (section)->subspace_dict.initialization_length =
bfd_section_size (abfd, section);
som_section_data (section)->subspace_dict.alignment =
1 << section->alignment_power;
}
}
return true;
}
/* Count and return the number of spaces attached to the given BFD. */
static unsigned long
som_count_spaces (abfd)
bfd *abfd;
{
int count = 0;
asection *section;
for (section = abfd->sections; section != NULL; section = section->next)
count += som_section_data (section)->is_space;
return count;
}
/* Count the number of subspaces attached to the given BFD. */
static unsigned long
som_count_subspaces (abfd)
bfd *abfd;
{
int count = 0;
asection *section;
for (section = abfd->sections; section != NULL; section = section->next)
count += som_section_data (section)->is_subspace;
return count;
}
/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
We desire symbols to be ordered starting with the symbol with the
highest relocation count down to the symbol with the lowest relocation
count. Doing so compacts the relocation stream. */
static int
compare_syms (sym1, sym2)
asymbol **sym1;
asymbol **sym2;
{
unsigned int count1, count2;
/* Get relocation count for each symbol. Note that the count
is stored in the udata pointer for section symbols! */
if ((*sym1)->flags & BSF_SECTION_SYM)
count1 = (int)(*sym1)->udata;
else
count1 = (*som_symbol_data ((*sym1)))->reloc_count;
if ((*sym2)->flags & BSF_SECTION_SYM)
count2 = (int)(*sym2)->udata;
else
count2 = (*som_symbol_data ((*sym2)))->reloc_count;
/* Return the appropriate value. */
if (count1 < count2)
return 1;
else if (count1 > count2)
return -1;
return 0;
}
/* Perform various work in preparation for emitting the fixup stream. */
static void
som_prep_for_fixups (abfd, syms, num_syms)
bfd *abfd;
asymbol **syms;
unsigned long num_syms;
{
int i;
asection *section;
/* Most SOM relocations involving a symbol have a length which is
dependent on the index of the symbol. So symbols which are
used often in relocations should have a small index. */
/* First initialize the counters for each symbol. */
for (i = 0; i < num_syms; i++)
{
/* Handle a section symbol; these have no pointers back to the
SOM symbol info. So we just use the pointer field (udata)
to hold the relocation count.
FIXME. While we're here set the name of any section symbol
to something which will not screw GDB. How do other formats
deal with this?!? */
if (som_symbol_data (syms[i]) == NULL)
{
syms[i]->flags |= BSF_SECTION_SYM;
syms[i]->name = "L$0\002";
syms[i]->udata = (PTR) 0;
}
else
(*som_symbol_data (syms[i]))->reloc_count = 0;
}
/* Now that the counters are initialized, make a weighted count
of how often a given symbol is used in a relocation. */
for (section = abfd->sections; section != NULL; section = section->next)
{
int i;
/* Does this section have any relocations? */
if (section->reloc_count <= 0)
continue;
/* Walk through each relocation for this section. */
for (i = 1; i < section->reloc_count; i++)
{
arelent *reloc = section->orelocation[i];
int scale;
/* If no symbol, then there is no counter to increase. */
if (reloc->sym_ptr_ptr == NULL)
continue;
/* Scaling to encourage symbols involved in R_DP_RELATIVE
and R_CODE_ONE_SYMBOL relocations to come first. These
two relocations have single byte versions if the symbol
index is very small. */
if (reloc->howto->type == R_DP_RELATIVE
|| reloc->howto->type == R_CODE_ONE_SYMBOL)
scale = 2;
else
scale = 1;
/* Handle section symbols by ramming the count in the udata
field. It will not be used and the count is very important
for these symbols. */
if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
{
(*reloc->sym_ptr_ptr)->udata =
(PTR) ((int) (*reloc->sym_ptr_ptr)->udata + scale);
continue;
}
/* A normal symbol. Increment the count. */
(*som_symbol_data ((*reloc->sym_ptr_ptr)))->reloc_count += scale;
}
}
/* Now sort the symbols. */
qsort (syms, num_syms, sizeof (asymbol *), compare_syms);
/* Compute the symbol indexes, they will be needed by the relocation
code. */
for (i = 0; i < num_syms; i++)
{
/* A section symbol. Again, there is no pointer to backend symbol
information, so we reuse (abuse) the udata field again. */
if (syms[i]->flags & BSF_SECTION_SYM)
syms[i]->udata = (PTR) i;
else
(*som_symbol_data (syms[i]))->index = i;
}
}
static boolean
som_write_fixups (abfd, current_offset, total_reloc_sizep)
bfd *abfd;
unsigned long current_offset;
unsigned int *total_reloc_sizep;
{
unsigned int i, j;
unsigned char *tmp_space, *p;
unsigned int total_reloc_size = 0;
unsigned int subspace_reloc_size = 0;
unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
asection *section = abfd->sections;
/* Get a chunk of memory that we can use as buffer space, then throw
away. */
tmp_space = alloca (SOM_TMP_BUFSIZE);
bzero (tmp_space, SOM_TMP_BUFSIZE);
p = tmp_space;
/* All the fixups for a particular subspace are emitted in a single
stream. All the subspaces for a particular space are emitted
as a single stream.
So, to get all the locations correct one must iterate through all the
spaces, for each space iterate through its subspaces and output a
fixups stream. */
for (i = 0; i < num_spaces; i++)
{
asection *subsection;
/* Find a space. */
while (som_section_data (section)->is_space == 0)
section = section->next;
/* Now iterate through each of its subspaces. */
for (subsection = abfd->sections;
subsection != NULL;
subsection = subsection->next)
{
int reloc_offset;
/* Find a subspace of this space. */
if (som_section_data (subsection)->is_subspace == 0
|| som_section_data (subsection)->containing_space != section)
continue;
/* If this subspace had no relocations, then we're finished
with it. */
if (subsection->reloc_count <= 0)
{
som_section_data (subsection)->subspace_dict.fixup_request_index
= -1;
continue;
}
/* This subspace has some relocations. Put the relocation stream
index into the subspace record. */
som_section_data (subsection)->subspace_dict.fixup_request_index
= total_reloc_size;
/* To make life easier start over with a clean slate for
each subspace. Seek to the start of the relocation stream
for this subspace in preparation for writing out its fixup
stream. */
if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
{
bfd_error = system_call_error;
return false;
}
/* Buffer space has already been allocated. Just perform some
initialization here. */
p = tmp_space;
subspace_reloc_size = 0;
reloc_offset = 0;
som_initialize_reloc_queue (reloc_queue);
/* Translate each BFD relocation into one or more SOM
relocations. */
for (j = 0; j < subsection->reloc_count; j++)
{
arelent *bfd_reloc = subsection->orelocation[j];
unsigned int skip;
int sym_num;
/* Get the symbol number. Remember it's stored in a
special place for section symbols. */
if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
sym_num = (int) (*bfd_reloc->sym_ptr_ptr)->udata;
else
sym_num = (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->index;
/* If there is not enough room for the next couple relocations,
then dump the current buffer contents now. Also reinitialize
the relocation queue.
FIXME. We assume here that no BFD relocation will expand
to more than 100 bytes of SOM relocations. This should (?!?)
be quite safe. */
if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
{
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
!= p - tmp_space)
{
bfd_error = system_call_error;
return false;
}
p = tmp_space;
som_initialize_reloc_queue (reloc_queue);
}
/* Emit R_NO_RELOCATION fixups to map any bytes which were
skipped. */
skip = bfd_reloc->address - reloc_offset;
p = som_reloc_skip (abfd, skip, p,
&subspace_reloc_size, reloc_queue);
/* Update reloc_offset for the next iteration.
Note R_ENTRY and R_EXIT relocations are just markers,
they do not consume input bytes. */
if (bfd_reloc->howto->type != R_ENTRY
&& bfd_reloc->howto->type != R_EXIT)
reloc_offset = bfd_reloc->address + 4;
else
reloc_offset = bfd_reloc->address;
/* Now the actual relocation we care about. */
switch (bfd_reloc->howto->type)
{
case R_PCREL_CALL:
case R_ABS_CALL:
p = som_reloc_call (abfd, p, &subspace_reloc_size,
bfd_reloc, sym_num, reloc_queue);
break;
case R_CODE_ONE_SYMBOL:
case R_DP_RELATIVE:
/* Account for any addend. */
if (bfd_reloc->addend)
p = som_reloc_addend (abfd, bfd_reloc->addend, p,
&subspace_reloc_size, reloc_queue);
if (sym_num < 0x20)
{
bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
subspace_reloc_size += 1;
p += 1;
}
else if (sym_num < 0x100)
{
bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
bfd_put_8 (abfd, sym_num, p + 1);
p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2, reloc_queue);
}
else if (sym_num < 0x10000000)
{
bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
bfd_put_8 (abfd, sym_num >> 16, p + 1);
bfd_put_16 (abfd, sym_num, p + 2);
p = try_prev_fixup (abfd, &subspace_reloc_size,
p, 4, reloc_queue);
}
else
abort ();
break;
case R_DATA_ONE_SYMBOL:
case R_DATA_PLABEL:
case R_CODE_PLABEL:
/* Account for any addend. */
if (bfd_reloc->addend)
p = som_reloc_addend (abfd, bfd_reloc->addend, p,
&subspace_reloc_size, reloc_queue);
if (sym_num < 0x100)
{
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
bfd_put_8 (abfd, sym_num, p + 1);
p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2, reloc_queue);
}
else if (sym_num < 0x10000000)
{
bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
bfd_put_8 (abfd, sym_num >> 16, p + 1);
bfd_put_16 (abfd, sym_num, p + 2);
p = try_prev_fixup (abfd, &subspace_reloc_size,
p, 4, reloc_queue);
}
else
abort ();
break;
case R_ENTRY:
{
int *descp
= (int *) (*som_symbol_data ((*bfd_reloc->sym_ptr_ptr)))->unwind;
bfd_put_8 (abfd, R_ENTRY, p);
bfd_put_32 (abfd, descp[0], p + 1);
bfd_put_32 (abfd, descp[1], p + 5);
p = try_prev_fixup (abfd, &subspace_reloc_size,
p, 9, reloc_queue);
break;
}
case R_EXIT:
bfd_put_8 (abfd, R_EXIT, p);
subspace_reloc_size += 1;
p += 1;
break;
/* Put a "R_RESERVED" relocation in the stream if
we hit something we do not understand. The linker
will complain loudly if this ever happens. */
default:
bfd_put_8 (abfd, 0xff, p);
subspace_reloc_size += 1;
p += 1;
}
}
/* Last BFD relocation for a subspace has been processed.
Map the rest of the subspace with R_NO_RELOCATION fixups. */
p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection)
- reloc_offset,
p, &subspace_reloc_size, reloc_queue);
/* Scribble out the relocations. */
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
!= p - tmp_space)
{
bfd_error = system_call_error;
return false;
}
p = tmp_space;
total_reloc_size += subspace_reloc_size;
som_section_data (subsection)->subspace_dict.fixup_request_quantity
= subspace_reloc_size;
}
section = section->next;
}
*total_reloc_sizep = total_reloc_size;
return true;
}
/* Write out the space/subspace string table. */
static boolean
som_write_space_strings (abfd, current_offset, string_sizep)
bfd *abfd;
unsigned long current_offset;
unsigned int *string_sizep;
{
unsigned char *tmp_space, *p;
unsigned int strings_size = 0;
asection *section;
/* Get a chunk of memory that we can use as buffer space, then throw
away. */
tmp_space = alloca (SOM_TMP_BUFSIZE);
bzero (tmp_space, SOM_TMP_BUFSIZE);
p = tmp_space;
/* Seek to the start of the space strings in preparation for writing
them out. */
if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
{
bfd_error = system_call_error;
return false;
}
/* Walk through all the spaces and subspaces (order is not important)
building up and writing string table entries for their names. */
for (section = abfd->sections; section != NULL; section = section->next)
{
int length;
/* Only work with space/subspaces; avoid any other sections
which might have been made (.text for example). */
if (som_section_data (section)->is_space == 0
&& som_section_data (section)->is_subspace == 0)
continue;
/* Get the length of the space/subspace name. */
length = strlen (section->name);
/* If there is not enough room for the next entry, then dump the
current buffer contents now. Each entry will take 4 bytes to
hold the string length + the string itself + null terminator. */
if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
{
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
!= p - tmp_space)
{
bfd_error = system_call_error;
return false;
}
/* Reset to beginning of the buffer space. */
p = tmp_space;
}
/* First element in a string table entry is the length of the
string. Alignment issues are already handled. */
bfd_put_32 (abfd, length, p);
p += 4;
strings_size += 4;
/* Record the index in the space/subspace records. */
if (som_section_data (section)->is_space)
som_section_data (section)->space_dict.name.n_strx = strings_size;
else
som_section_data (section)->subspace_dict.name.n_strx = strings_size;
/* Next comes the string itself + a null terminator. */
strcpy (p, section->name);
p += length + 1;
strings_size += length + 1;
/* Always align up to the next word boundary. */
while (strings_size % 4)
{
bfd_put_8 (abfd, 0, p);
p++;
strings_size++;
}
}
/* Done with the space/subspace strings. Write out any information
contained in a partial block. */
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
{
bfd_error = system_call_error;
return false;
}
*string_sizep = strings_size;
return true;
}
/* Write out the symbol string table. */
static boolean
som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
bfd *abfd;
unsigned long current_offset;
asymbol **syms;
unsigned int num_syms;
unsigned int *string_sizep;
{
unsigned int i;
unsigned char *tmp_space, *p;
unsigned int strings_size = 0;
/* Get a chunk of memory that we can use as buffer space, then throw
away. */
tmp_space = alloca (SOM_TMP_BUFSIZE);
bzero (tmp_space, SOM_TMP_BUFSIZE);
p = tmp_space;
/* Seek to the start of the space strings in preparation for writing
them out. */
if (bfd_seek (abfd, current_offset, SEEK_SET) != 0)
{
bfd_error = system_call_error;
return false;
}
for (i = 0; i < num_syms; i++)
{
int length = strlen (syms[i]->name);
/* If there is not enough room for the next entry, then dump the
current buffer contents now. */
if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
{
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
!= p - tmp_space)
{
bfd_error = system_call_error;
return false;
}
/* Reset to beginning of the buffer space. */
p = tmp_space;
}
/* First element in a string table entry is the length of the
string. This must always be 4 byte aligned. This is also
an appropriate time to fill in the string index field in the
symbol table entry. */
bfd_put_32 (abfd, length, p);
strings_size += 4;
p += 4;
/* Next comes the string itself + a null terminator. */
strcpy (p, syms[i]->name);
/* ACK. FIXME. */
syms[i]->name = (char *)strings_size;
p += length + 1;
strings_size += length + 1;
/* Always align up to the next word boundary. */
while (strings_size % 4)
{
bfd_put_8 (abfd, 0, p);
strings_size++;
p++;
}
}
/* Scribble out any partial block. */
if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) != p - tmp_space)
{
bfd_error = system_call_error;
return false;
}
*string_sizep = strings_size;
return true;
}
/* Compute variable information to be placed in the SOM headers,
space/subspace dictionaries, relocation streams, etc. Begin
writing parts of the object file. */
static boolean
som_begin_writing (abfd)
bfd *abfd;
{
unsigned long current_offset = 0;
int strings_size = 0;
unsigned int total_reloc_size = 0;
unsigned long num_spaces, num_subspaces, num_syms, i;
asection *section;
asymbol **syms = bfd_get_outsymbols (abfd);
unsigned int total_subspaces = 0;
/* The file header will always be first in an object file,
everything else can be in random locations. To keep things
"simple" BFD will lay out the object file in the manner suggested
by the PRO ABI for PA-RISC Systems. */
/* Before any output can really begin offsets for all the major
portions of the object file must be computed. So, starting
with the initial file header compute (and sometimes write)
each portion of the object file. */
/* Make room for the file header, it's contents are not complete
yet, so it can not be written at this time. */
current_offset += sizeof (struct header);
/* Any auxiliary headers will follow the file header. Right now
we have no auxiliary headers, so current_offset does not change. */
obj_som_file_hdr (abfd)->aux_header_location = current_offset;
obj_som_file_hdr (abfd)->aux_header_size = 0;
/* Next comes the initialization pointers; again we have no
initialization pointers, so current offset does not change. */
obj_som_file_hdr (abfd)->init_array_location = current_offset;
obj_som_file_hdr (abfd)->init_array_total = 0;
/* Next are the space records. These are fixed length records.
Count the number of spaces to determine how much room is needed
in the object file for the space records.
The names of the spaces are stored in a separate string table,
and the index for each space into the string table is computed
below. Therefore, it is not possible to write the space headers
at this time. */
num_spaces = som_count_spaces (abfd);
obj_som_file_hdr (abfd)->space_location = current_offset;
obj_som_file_hdr (abfd)->space_total = num_spaces;
current_offset += num_spaces * sizeof (struct space_dictionary_record);
/* Next are the subspace records. These are fixed length records.
Count the number of subspaes to determine how much room is needed
in the object file for the subspace records.
A variety if fields in the subspace record are still unknown at
this time (index into string table, fixup stream location/size, etc). */
num_subspaces = som_count_subspaces (abfd);
obj_som_file_hdr (abfd)->subspace_location = current_offset;
obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);
/* Next is the string table for the space/subspace names. We will
build and write the string table on the fly. At the same time
we will fill in the space/subspace name index fields. */
/* The string table needs to be aligned on a word boundary. */
if (current_offset % 4)
current_offset += (4 - (current_offset % 4));
/* Mark the offset of the space/subspace string table in the
file header. */
obj_som_file_hdr (abfd)->space_strings_location = current_offset;
/* Scribble out the space strings. */
if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
return false;
/* Record total string table size in the header and update the
current offset. */
obj_som_file_hdr (abfd)->space_strings_size = strings_size;
current_offset += strings_size;
/* Next is the symbol table. These are fixed length records.
Count the number of symbols to determine how much room is needed
in the object file for the symbol table.
The names of the symbols are stored in a separate string table,
and the index for each symbol name into the string table is computed
below. Therefore, it is not possible to write the symobl table
at this time. */
num_syms = bfd_get_symcount (abfd);
obj_som_file_hdr (abfd)->symbol_location = current_offset;
obj_som_file_hdr (abfd)->symbol_total = num_syms;
current_offset += num_syms * sizeof (struct symbol_dictionary_record);
/* Do prep work before handling fixups. */
som_prep_for_fixups (abfd, syms, num_syms);
/* Next comes the fixup stream which starts on a word boundary. */
if (current_offset % 4)
current_offset += (4 - (current_offset % 4));
obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
/* Write the fixups and update fields in subspace headers which
relate to the fixup stream. */
if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
return false;
/* Record the total size of the fixup stream in the file header. */
obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
current_offset += total_reloc_size;
/* Next are the symbol strings.
Align them to a word boundary. */
if (current_offset % 4)
current_offset += (4 - (current_offset % 4));
obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
/* Scribble out the symbol strings. */
if (som_write_symbol_strings (abfd, current_offset, syms,
num_syms, &strings_size)
== false)
return false;
/* Record total string table size in header and update the
current offset. */
obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
current_offset += strings_size;
/* Next is the compiler records. We do not use these. */
obj_som_file_hdr (abfd)->compiler_location = current_offset;
obj_som_file_hdr (abfd)->compiler_total = 0;
/* Now compute the file positions for the loadable subspaces. */
section = abfd->sections;
for (i = 0; i < num_spaces; i++)
{
asection *subsection;
/* Find a space. */
while (som_section_data (section)->is_space == 0)
section = section->next;
/* Now look for all its subspaces. */
for (subsection = abfd->sections;
subsection != NULL;
subsection = subsection->next)
{
if (som_section_data (subsection)->is_subspace == 0
|| som_section_data (subsection)->containing_space != section
|| (subsection->flags & SEC_ALLOC) == 0)
continue;
som_section_data (subsection)->subspace_index = total_subspaces++;
/* This is real data to be loaded from the file. */
if (subsection->flags & SEC_LOAD)
{
som_section_data (subsection)->subspace_dict.file_loc_init_value
= current_offset;
section->filepos = current_offset;
current_offset += bfd_section_size (abfd, subsection);
}
/* Looks like uninitialized data. */
else
{
som_section_data (subsection)->subspace_dict.file_loc_init_value
= 0;
som_section_data (subsection)->subspace_dict.
initialization_length = 0;
}
}
/* Goto the next section. */
section = section->next;
}
/* Finally compute the file positions for unloadable subspaces. */
obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
section = abfd->sections;
for (i = 0; i < num_spaces; i++)
{
asection *subsection;
/* Find a space. */
while (som_section_data (section)->is_space == 0)
section = section->next;
/* Now look for all its subspaces. */
for (subsection = abfd->sections;
subsection != NULL;
subsection = subsection->next)
{
if (som_section_data (subsection)->is_subspace == 0
|| som_section_data (subsection)->containing_space != section
|| (subsection->flags & SEC_ALLOC) != 0)
continue;
som_section_data (subsection)->subspace_index = total_subspaces++;
/* This is real data to be loaded from the file. */
if ((subsection->flags & SEC_LOAD) == 0)
{
som_section_data (subsection)->subspace_dict.file_loc_init_value
= current_offset;
section->filepos = current_offset;
current_offset += bfd_section_size (abfd, subsection);
}
/* Looks like uninitialized data. */
else
{
som_section_data (subsection)->subspace_dict.file_loc_init_value
= 0;
som_section_data (subsection)->subspace_dict.
initialization_length = bfd_section_size (abfd, subsection);
}
}
/* Goto the next section. */
section = section->next;
}
obj_som_file_hdr (abfd)->unloadable_sp_size
= current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
/* Loader fixups are not supported in any way shape or form. */
obj_som_file_hdr (abfd)->loader_fixup_location = 0;
obj_som_file_hdr (abfd)->loader_fixup_total = 0;
/* Done. Store the total size of the SOM. */
obj_som_file_hdr (abfd)->som_length = current_offset;
return true;
}
/* Finally, scribble out the various headers to the disk. */
static boolean
som_write_headers (abfd)
bfd *abfd;
{
int num_spaces = som_count_spaces (abfd);
int i;
int subspace_index = 0;
file_ptr location;
asection *section;
/* Subspaces are written first so that we can set up information
about them in their containing spaces as the subspace is written. */
/* Seek to the start of the subspace dictionary records. */
location = obj_som_file_hdr (abfd)->subspace_location;
bfd_seek (abfd, location, SEEK_SET);
section = abfd->sections;
/* Now for each loadable space write out records for its subspaces. */
for (i = 0; i < num_spaces; i++)
{
asection *subsection;
/* Find a space. */
while (som_section_data (section)->is_space == 0)
section = section->next;
/* Now look for all its subspaces. */
for (subsection = abfd->sections;
subsection != NULL;
subsection = subsection->next)
{
/* Skip any section which does not correspond to a space
or subspace. Or does not have SEC_ALLOC set (and therefore
has no real bits on the disk). */
if (som_section_data (subsection)->is_subspace == 0
|| som_section_data (subsection)->containing_space != section
|| (subsection->flags & SEC_ALLOC) == 0)
continue;
/* If this is the first subspace for this space, then save
the index of the subspace in its containing space. Also
set "is_loadable" in the containing space. */
if (som_section_data (section)->space_dict.subspace_quantity == 0)
{
som_section_data (section)->space_dict.is_loadable = 1;
som_section_data (section)->space_dict.subspace_index
= subspace_index;
}
/* Increment the number of subspaces seen and the number of
subspaces contained within the current space. */
subspace_index++;
som_section_data (section)->space_dict.subspace_quantity++;
/* Mark the index of the current space within the subspace's
dictionary record. */
som_section_data (subsection)->subspace_dict.space_index = i;
/* Dump the current subspace header. */
if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
sizeof (struct subspace_dictionary_record), 1, abfd)
!= sizeof (struct subspace_dictionary_record))
{
bfd_error = system_call_error;
return false;
}
}
/* Goto the next section. */
section = section->next;
}
/* Now repeat the process for unloadable subspaces. */
section = abfd->sections;
/* Now for each space write out records for its subspaces. */
for (i = 0; i < num_spaces; i++)
{
asection *subsection;
/* Find a space. */
while (som_section_data (section)->is_space == 0)
section = section->next;
/* Now look for all its subspaces. */
for (subsection = abfd->sections;
subsection != NULL;
subsection = subsection->next)
{
/* Skip any section which does not correspond to a space or
subspace, or which SEC_ALLOC set (and therefore handled
in the loadable spaces/subspaces code above. */
if (som_section_data (subsection)->is_subspace == 0
|| som_section_data (subsection)->containing_space != section
|| (subsection->flags & SEC_ALLOC) != 0)
continue;
/* If this is the first subspace for this space, then save
the index of the subspace in its containing space. Clear
"is_loadable". */
if (som_section_data (section)->space_dict.subspace_quantity == 0)
{
som_section_data (section)->space_dict.is_loadable = 0;
som_section_data (section)->space_dict.subspace_index
= subspace_index;
}
/* Increment the number of subspaces seen and the number of
subspaces contained within the current space. */
som_section_data (section)->space_dict.subspace_quantity++;
subspace_index++;
/* Mark the index of the current space within the subspace's
dictionary record. */
som_section_data (subsection)->subspace_dict.space_index = i;
/* Dump this subspace header. */
if (bfd_write ((PTR) &som_section_data (subsection)->subspace_dict,
sizeof (struct subspace_dictionary_record), 1, abfd)
!= sizeof (struct subspace_dictionary_record))
{
bfd_error = system_call_error;
return false;
}
}
/* Goto the next section. */
section = section->next;
}
/* All the subspace dictiondary records are written, and all the
fields are set up in the space dictionary records.
Seek to the right location and start writing the space
dictionary records. */
location = obj_som_file_hdr (abfd)->space_location;
bfd_seek (abfd, location, SEEK_SET);
section = abfd->sections;
for (i = 0; i < num_spaces; i++)
{
/* Find a space. */
while (som_section_data (section)->is_space == 0)
section = section->next;
/* Dump its header */
if (bfd_write ((PTR) &som_section_data (section)->space_dict,
sizeof (struct space_dictionary_record), 1, abfd)
!= sizeof (struct space_dictionary_record))
{
bfd_error = system_call_error;
return false;
}
/* Goto the next section. */
section = section->next;
}
/* Only thing left to do is write out the file header. It is always
at location zero. Seek there and write it. */
bfd_seek (abfd, (file_ptr) 0, SEEK_SET);
if (bfd_write ((PTR) obj_som_file_hdr (abfd),
sizeof (struct header), 1, abfd)
!= sizeof (struct header))
{
bfd_error = system_call_error;
return false;
}
return true;
}
/* Compute and return the checksum for a SOM file header. */
static unsigned long
som_compute_checksum (abfd)
bfd *abfd;
{
unsigned long checksum, count, i;
unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
checksum = 0;
count = sizeof (struct header) / sizeof (unsigned long);
for (i = 0; i < count; i++)
checksum ^= *(buffer + i);
return checksum;
}
/* Build and write, in one big chunk, the entire symbol table for
this BFD. */
static boolean
som_build_and_write_symbol_table (abfd)
bfd *abfd;
{
unsigned int num_syms = bfd_get_symcount (abfd);
file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
asymbol **bfd_syms = bfd_get_outsymbols (abfd);
struct symbol_dictionary_record *som_symtab;
int i, symtab_size;
/* Compute total symbol table size and allocate a chunk of memory
to hold the symbol table as we build it. */
symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
som_symtab = (struct symbol_dictionary_record *) alloca (symtab_size);
bzero (som_symtab, symtab_size);
/* Walk over each symbol. */
for (i = 0; i < num_syms; i++)
{
/* This is really an index into the symbol strings table.
By the time we get here, the index has already been
computed and stored into the name field in the BFD symbol. */
som_symtab[i].name.n_strx = (int) bfd_syms[i]->name;
/* The HP SOM linker requires detailed type information about
all symbols (including undefined symbols!). Unfortunately,
the type specified in an import/export statement does not
always match what the linker wants. Severe braindamage. */
/* Section symbols will not have a SOM symbol type assigned to
them yet. Assign all section symbols type ST_DATA. */
if (bfd_syms[i]->flags & BSF_SECTION_SYM)
som_symtab[i].symbol_type = ST_DATA;
else
{
/* Common symbols must have scope SS_UNSAT and type
ST_STORAGE or the linker will choke. */
if (bfd_syms[i]->section == &bfd_com_section)
{
som_symtab[i].symbol_scope = SS_UNSAT;
som_symtab[i].symbol_type = ST_STORAGE;
}
/* It is possible to have a symbol without an associated
type. This happens if the user imported the symbol
without a type and the symbol was never defined
locally. If BSF_FUNCTION is set for this symbol, then
assign it type ST_CODE (the HP linker requires undefined
external functions to have type ST_CODE rather than ST_ENTRY. */
else if (((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_UNKNOWN)
&& (bfd_syms[i]->section == &bfd_und_section)
&& (bfd_syms[i]->flags & BSF_FUNCTION))
som_symtab[i].symbol_type = ST_CODE;
/* Handle function symbols which were defined in this file.
They should have type ST_ENTRY. Also retrieve the argument
relocation bits from the SOM backend information. */
else if (((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_ENTRY)
|| (((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_CODE)
&& (bfd_syms[i]->flags & BSF_FUNCTION))
|| (((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_UNKNOWN)
&& (bfd_syms[i]->flags & BSF_FUNCTION)))
{
som_symtab[i].symbol_type = ST_ENTRY;
som_symtab[i].arg_reloc
= (*som_symbol_data (bfd_syms[i]))->tc_data.hppa_arg_reloc;
}
/* If the type is unknown at this point, it should be
ST_DATA (functions were handled as special cases above). */
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_UNKNOWN)
som_symtab[i].symbol_type = ST_DATA;
/* From now on it's a very simple mapping. */
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_ABSOLUTE)
som_symtab[i].symbol_type = ST_ABSOLUTE;
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_CODE)
som_symtab[i].symbol_type = ST_CODE;
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_DATA)
som_symtab[i].symbol_type = ST_DATA;
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_MILLICODE)
som_symtab[i].symbol_type = ST_MILLICODE;
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_PLABEL)
som_symtab[i].symbol_type = ST_PLABEL;
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_PRI_PROG)
som_symtab[i].symbol_type = ST_PRI_PROG;
else if ((*som_symbol_data (bfd_syms[i]))->som_type
== SYMBOL_TYPE_SEC_PROG)
som_symtab[i].symbol_type = ST_SEC_PROG;
}
/* Now handle the symbol's scope. Exported data which is not
in the common section has scope SS_UNIVERSAL. Note scope
of common symbols was handled earlier! */
if (bfd_syms[i]->flags & BSF_EXPORT
&& bfd_syms[i]->section != &bfd_com_section)
som_symtab[i].symbol_scope = SS_UNIVERSAL;
/* Any undefined symbol at this point has a scope SS_UNSAT. */
else if (bfd_syms[i]->section == &bfd_und_section)
som_symtab[i].symbol_scope = SS_UNSAT;
/* Anything else which is not in the common section has scope
SS_LOCAL. */
else if (bfd_syms[i]->section != &bfd_com_section)
som_symtab[i].symbol_scope = SS_LOCAL;
/* Now set the symbol_info field. It has no real meaning
for undefined or common symbols, but the HP linker will
choke if it's not set to some "reasonable" value. We
use zero as a reasonable value. */
if (bfd_syms[i]->section == &bfd_com_section
|| bfd_syms[i]->section == &bfd_und_section)
som_symtab[i].symbol_info = 0;
/* For all other symbols, the symbol_info field contains the
subspace index of the space this symbol is contained in. */
else
som_symtab[i].symbol_info
= som_section_data (bfd_syms[i]->section)->subspace_index;
/* Set the symbol's value. */
som_symtab[i].symbol_value
= bfd_syms[i]->value + bfd_syms[i]->section->vma;
}
/* Egad. Everything is ready, seek to the right location and
scribble out the symbol table. */
if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
{
bfd_error = system_call_error;
return false;
}
if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
{
bfd_error = system_call_error;
return false;
}
return true;
}
/* Write an object in SOM format. */
static boolean
som_write_object_contents (abfd)
bfd *abfd;
{
if (abfd->output_has_begun == false)
{
/* Set up fixed parts of the file, space, and subspace headers.
Notify the world that output has begun. */
som_prep_headers (abfd);
abfd->output_has_begun = true;
/* Start writing the object file. This include all the string
tables, fixup streams, and other portions of the object file. */
som_begin_writing (abfd);
}
/* Now that the symbol table information is complete, build and
write the symbol table. */
if (som_build_and_write_symbol_table (abfd) == false)
return false;
/* Compute the checksum for the file header just before writing
the header to disk. */
obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
return (som_write_headers (abfd));
}
/* Read and save the string table associated with the given BFD. */
static boolean
som_slurp_string_table (abfd)
bfd *abfd;
{
char *stringtab;
/* Use the saved version if its available. */
if (obj_som_stringtab (abfd) != NULL)
return true;
/* Allocate and read in the string table. */
stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
if (stringtab == NULL)
{
bfd_error = no_memory;
return false;
}
if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
{
bfd_error = system_call_error;
return false;
}
if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
!= obj_som_stringtab_size (abfd))
{
bfd_error = system_call_error;
return false;
}
/* Save our results and return success. */
obj_som_stringtab (abfd) = stringtab;
return true;
}
/* Return the amount of data (in bytes) required to hold the symbol
table for this object. */
static unsigned int
som_get_symtab_upper_bound (abfd)
bfd *abfd;
{
if (!som_slurp_symbol_table (abfd))
return 0;
return (bfd_get_symcount (abfd) + 1) * (sizeof (som_symbol_type *));
}
/* Convert from a SOM subspace index to a BFD section. */
static asection *
som_section_from_subspace_index (abfd, index)
bfd *abfd;
unsigned int index;
{
asection *section;
for (section = abfd->sections; section != NULL; section = section->next)
if (som_section_data (section)->subspace_index == index)
return section;
/* Should never happen. */
abort();
}
/* Read and save the symbol table associated with the given BFD. */
static unsigned int
som_slurp_symbol_table (abfd)
bfd *abfd;
{
int symbol_count = bfd_get_symcount (abfd);
int symsize = sizeof (struct symbol_dictionary_record);
char *stringtab;
struct symbol_dictionary_record *buf, *bufp, *endbufp;
som_symbol_type *sym, *symbase;
/* Return saved value if it exists. */
if (obj_som_symtab (abfd) != NULL)
return true;
/* Sanity checking. Make sure there are some symbols and that
we can read the string table too. */
if (symbol_count == 0)
{
bfd_error = no_symbols;
return false;
}
if (!som_slurp_string_table (abfd))
return false;
stringtab = obj_som_stringtab (abfd);
symbase = (som_symbol_type *)
bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
if (symbase == NULL)
{
bfd_error = no_memory;
return false;
}
/* Read in the external SOM representation. */
buf = alloca (symbol_count * symsize);
if (buf == NULL)
{
bfd_error = no_memory;
return false;
}
if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
{
bfd_error = system_call_error;
return false;
}
if (bfd_read (buf, symbol_count * symsize, 1, abfd)
!= symbol_count * symsize)
{
bfd_error = no_symbols;
return (false);
}
/* Iterate over all the symbols and internalize them. */
endbufp = buf + symbol_count;
for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
{
/* I don't think we care about these. */
if (bufp->symbol_type == ST_SYM_EXT
|| bufp->symbol_type == ST_ARG_EXT)
continue;
/* Some reasonable defaults. */
sym->symbol.the_bfd = abfd;
sym->symbol.name = bufp->name.n_strx + stringtab;
sym->symbol.value = bufp->symbol_value;
sym->symbol.section = 0;
sym->symbol.flags = 0;
switch (bufp->symbol_type)
{
case ST_ENTRY:
sym->symbol.flags |= BSF_FUNCTION;
sym->symbol.value &= ~0x3;
break;
case ST_PRI_PROG:
case ST_SEC_PROG:
case ST_STUB:
case ST_MILLICODE:
case ST_CODE:
sym->symbol.value &= ~0x3;
default:
break;
}
/* Handle scoping and section information. */
switch (bufp->symbol_scope)
{
/* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
so the section associated with this symbol can't be known. */
case SS_EXTERNAL:
case SS_UNSAT:
sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
break;
case SS_UNIVERSAL:
sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
sym->symbol.section
= som_section_from_subspace_index (abfd, bufp->symbol_info);
sym->symbol.value -= sym->symbol.section->vma;
break;
#if 0
/* SS_GLOBAL and SS_LOCAL are two names for the same thing.
Sound dumb? It is. */
case SS_GLOBAL:
#endif
case SS_LOCAL:
sym->symbol.flags |= BSF_LOCAL;
sym->symbol.section
= som_section_from_subspace_index (abfd, bufp->symbol_info);
sym->symbol.value -= sym->symbol.section->vma;
break;
}
/* Mark symbols left around by the debugger. */
if (strlen (sym->symbol.name) >= 3
&& sym->symbol.name[0] == 'L'
&& (sym->symbol.name[2] == '$' || sym->symbol.name[3] == '$'))
sym->symbol.flags |= BSF_DEBUGGING;
/* Note increment at bottom of loop, since we skip some symbols
we can not include it as part of the for statement. */
sym++;
}
/* Save our results and return success. */
obj_som_symtab (abfd) = symbase;
return (true);
}
/* Canonicalize a SOM symbol table. Return the number of entries
in the symbol table. */
static unsigned int
som_get_symtab (abfd, location)
bfd *abfd;
asymbol **location;
{
int i;
som_symbol_type *symbase;
if (!som_slurp_symbol_table (abfd))
return 0;
i = bfd_get_symcount (abfd);
symbase = obj_som_symtab (abfd);
for (; i > 0; i--, location++, symbase++)
*location = &symbase->symbol;
/* Final null pointer. */
*location = 0;
return (bfd_get_symcount (abfd));
}
/* Make a SOM symbol. There is nothing special to do here. */
static asymbol *
som_make_empty_symbol (abfd)
bfd *abfd;
{
som_symbol_type *new =
(som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
if (new == NULL)
{
bfd_error = no_memory;
return 0;
}
new->symbol.the_bfd = abfd;
return &new->symbol;
}
/* Print symbol information. */
static void
som_print_symbol (ignore_abfd, afile, symbol, how)
bfd *ignore_abfd;
PTR afile;
asymbol *symbol;
bfd_print_symbol_type how;
{
FILE *file = (FILE *) afile;
switch (how)
{
case bfd_print_symbol_name:
fprintf (file, "%s", symbol->name);
break;
case bfd_print_symbol_more:
fprintf (file, "som ");
fprintf_vma (file, symbol->value);
fprintf (file, " %lx", (long) symbol->flags);
break;
case bfd_print_symbol_all:
{
CONST char *section_name;
section_name = symbol->section ? symbol->section->name : "(*none*)";
bfd_print_symbol_vandf ((PTR) file, symbol);
fprintf (file, " %s\t%s", section_name, symbol->name);
break;
}
}
}
static unsigned int
som_get_reloc_upper_bound (abfd, asect)
bfd *abfd;
sec_ptr asect;
{
fprintf (stderr, "som_get_reloc_upper_bound unimplemented\n");
fflush (stderr);
abort ();
return (0);
}
static unsigned int
som_canonicalize_reloc (abfd, section, relptr, symbols)
bfd *abfd;
sec_ptr section;
arelent **relptr;
asymbol **symbols;
{
fprintf (stderr, "som_canonicalize_reloc unimplemented\n");
fflush (stderr);
abort ();
}
extern bfd_target som_vec;
/* A hook to set up object file dependent section information. */
static boolean
som_new_section_hook (abfd, newsect)
bfd *abfd;
asection *newsect;
{
newsect->used_by_bfd = (struct som_section_data_struct *)
bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
newsect->alignment_power = 3;
/* Initialize the subspace_index field to -1 so that it does
not match a subspace with an index of 0. */
som_section_data (newsect)->subspace_index = -1;
/* We allow more than three sections internally */
return true;
}
/* Set backend info for sections which can not be described
in the BFD data structures. */
void
bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
asection *section;
char defined;
char private;
unsigned char sort_key;
int spnum;
{
struct space_dictionary_record *space_dict;
som_section_data (section)->is_space = 1;
space_dict = &som_section_data (section)->space_dict;
space_dict->is_defined = defined;
space_dict->is_private = private;
space_dict->sort_key = sort_key;
space_dict->space_number = spnum;
}
/* Set backend info for subsections which can not be described
in the BFD data structures. */
void
bfd_som_set_subsection_attributes (section, container, access,
sort_key, quadrant)
asection *section;
asection *container;
int access;
unsigned char sort_key;
int quadrant;
{
struct subspace_dictionary_record *subspace_dict;
som_section_data (section)->is_subspace = 1;
subspace_dict = &som_section_data (section)->subspace_dict;
subspace_dict->access_control_bits = access;
subspace_dict->sort_key = sort_key;
subspace_dict->quadrant = quadrant;
som_section_data (section)->containing_space = container;
}
/* Set the full SOM symbol type. SOM needs far more symbol information
than any other object file format I'm aware of. It is mandatory
to be able to know if a symbol is an entry point, millicode, data,
code, absolute, storage request, or procedure label. If you get
the symbol type wrong your program will not link. */
void
bfd_som_set_symbol_type (symbol, type)
asymbol *symbol;
unsigned int type;
{
(*som_symbol_data (symbol))->som_type = type;
}
/* Attach 64bits of unwind information to a symbol (which hopefully
is a function of some kind!). It would be better to keep this
in the R_ENTRY relocation, but there is not enough space. */
void
bfd_som_attach_unwind_info (symbol, unwind_desc)
asymbol *symbol;
char *unwind_desc;
{
(*som_symbol_data (symbol))->unwind = unwind_desc;
}
static boolean
som_set_section_contents (abfd, section, location, offset, count)
bfd *abfd;
sec_ptr section;
PTR location;
file_ptr offset;
bfd_size_type count;
{
if (abfd->output_has_begun == false)
{
/* Set up fixed parts of the file, space, and subspace headers.
Notify the world that output has begun. */
som_prep_headers (abfd);
abfd->output_has_begun = true;
/* Start writing the object file. This include all the string
tables, fixup streams, and other portions of the object file. */
som_begin_writing (abfd);
}
/* Only write subspaces which have "real" contents (eg. the contents
are not generated at run time by the OS). */
if (som_section_data (section)->is_subspace != 1
|| ((section->flags & (SEC_LOAD | SEC_DEBUGGING)) == 0))
return true;
/* Seek to the proper offset within the object file and write the
data. */
offset += som_section_data (section)->subspace_dict.file_loc_init_value;
if (bfd_seek (abfd, offset, SEEK_SET) == -1)
{
bfd_error = system_call_error;
return false;
}
if (bfd_write ((PTR) location, 1, count, abfd) != count)
{
bfd_error = system_call_error;
return false;
}
return true;
}
static boolean
som_set_arch_mach (abfd, arch, machine)
bfd *abfd;
enum bfd_architecture arch;
unsigned long machine;
{
/* Allow any architecture to be supported by the SOM backend */
return bfd_default_set_arch_mach (abfd, arch, machine);
}
static boolean
som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
functionname_ptr, line_ptr)
bfd *abfd;
asection *section;
asymbol **symbols;
bfd_vma offset;
CONST char **filename_ptr;
CONST char **functionname_ptr;
unsigned int *line_ptr;
{
fprintf (stderr, "som_find_nearest_line unimplemented\n");
fflush (stderr);
abort ();
return (false);
}
static int
som_sizeof_headers (abfd, reloc)
bfd *abfd;
boolean reloc;
{
fprintf (stderr, "som_sizeof_headers unimplemented\n");
fflush (stderr);
abort ();
return (0);
}
/* Return information about SOM symbol SYMBOL in RET. */
static void
som_get_symbol_info (ignore_abfd, symbol, ret)
bfd *ignore_abfd; /* Ignored. */
asymbol *symbol;
symbol_info *ret;
{
bfd_symbol_info (symbol, ret);
}
/* End of miscellaneous support functions. */
#define som_bfd_debug_info_start bfd_void
#define som_bfd_debug_info_end bfd_void
#define som_bfd_debug_info_accumulate (PROTO(void,(*),(bfd*, struct sec *))) bfd_void
#define som_openr_next_archived_file bfd_generic_openr_next_archived_file
#define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
#define som_slurp_armap bfd_false
#define som_slurp_extended_name_table _bfd_slurp_extended_name_table
#define som_truncate_arname (void (*)())bfd_nullvoidptr
#define som_write_armap 0
#define som_get_lineno (struct lineno_cache_entry *(*)())bfd_nullvoidptr
#define som_close_and_cleanup bfd_generic_close_and_cleanup
#define som_get_section_contents bfd_generic_get_section_contents
#define som_bfd_get_relocated_section_contents \
bfd_generic_get_relocated_section_contents
#define som_bfd_relax_section bfd_generic_relax_section
#define som_bfd_seclet_link bfd_generic_seclet_link
#define som_bfd_make_debug_symbol \
((asymbol *(*) PARAMS ((bfd *, void *, unsigned long))) bfd_nullvoidptr)
/* Core file support is in the hpux-core backend. */
#define som_core_file_failing_command _bfd_dummy_core_file_failing_command
#define som_core_file_failing_signal _bfd_dummy_core_file_failing_signal
#define som_core_file_matches_executable_p _bfd_dummy_core_file_matches_executable_p
bfd_target som_vec =
{
"som", /* name */
bfd_target_som_flavour,
true, /* target byte order */
true, /* target headers byte order */
(HAS_RELOC | EXEC_P | /* object flags */
HAS_LINENO | HAS_DEBUG |
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
(SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
| SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
/* leading_symbol_char: is the first char of a user symbol
predictable, and if so what is it */
0,
' ', /* ar_pad_char */
16, /* ar_max_namelen */
3, /* minimum alignment */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
{_bfd_dummy_target,
som_object_p, /* bfd_check_format */
bfd_generic_archive_p,
_bfd_dummy_target
},
{
bfd_false,
som_mkobject,
_bfd_generic_mkarchive,
bfd_false
},
{
bfd_false,
som_write_object_contents,
_bfd_write_archive_contents,
bfd_false,
},
#undef som
JUMP_TABLE (som),
(PTR) 0
};
#endif /* HOST_HPPAHPUX || HOST_HPPABSD */
|