aboutsummaryrefslogtreecommitdiff
path: root/bfd/som.c
blob: 2587b8438e52cc603c41dffae19ebaf23e3ee802 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
/* bfd back-end for HP PA-RISC SOM objects.
   Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995
   Free Software Foundation, Inc.

   Contributed by the Center for Software Science at the
   University of Utah (pa-gdb-bugs@cs.utah.edu).

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "bfd.h"
#include "sysdep.h"

#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF)

#include "libbfd.h"
#include "som.h"

#include <stdio.h>
#include <sys/types.h>
#include <sys/param.h>
#include <signal.h>
#include <machine/reg.h>
#include <sys/file.h>
#include <errno.h>

/* Magic not defined in standard HP-UX header files until 8.0 */

#ifndef CPU_PA_RISC1_0
#define CPU_PA_RISC1_0 0x20B
#endif /* CPU_PA_RISC1_0 */

#ifndef CPU_PA_RISC1_1
#define CPU_PA_RISC1_1 0x210
#endif /* CPU_PA_RISC1_1 */

#ifndef _PA_RISC1_0_ID
#define _PA_RISC1_0_ID CPU_PA_RISC1_0
#endif /* _PA_RISC1_0_ID */

#ifndef _PA_RISC1_1_ID
#define _PA_RISC1_1_ID CPU_PA_RISC1_1
#endif /* _PA_RISC1_1_ID */

#ifndef _PA_RISC_MAXID
#define _PA_RISC_MAXID	0x2FF
#endif /* _PA_RISC_MAXID */

#ifndef _PA_RISC_ID
#define _PA_RISC_ID(__m_num)		\
    (((__m_num) == _PA_RISC1_0_ID) ||	\
     ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
#endif /* _PA_RISC_ID */


/* HIUX in it's infinite stupidity changed the names for several "well
   known" constants.  Work around such braindamage.  Try the HPUX version
   first, then the HIUX version, and finally provide a default.  */
#ifdef HPUX_AUX_ID
#define EXEC_AUX_ID HPUX_AUX_ID
#endif

#if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
#define EXEC_AUX_ID HIUX_AUX_ID
#endif

#ifndef EXEC_AUX_ID
#define EXEC_AUX_ID 0
#endif

/* Size (in chars) of the temporary buffers used during fixup and string
   table writes.   */
   
#define SOM_TMP_BUFSIZE 8192

/* Size of the hash table in archives.  */
#define SOM_LST_HASH_SIZE 31

/* Max number of SOMs to be found in an archive.  */
#define SOM_LST_MODULE_LIMIT 1024

/* Generic alignment macro.  */
#define SOM_ALIGN(val, alignment) \
  (((val) + (alignment) - 1) & ~((alignment) - 1))

/* SOM allows any one of the four previous relocations to be reused
   with a "R_PREV_FIXUP" relocation entry.  Since R_PREV_FIXUP
   relocations are always a single byte, using a R_PREV_FIXUP instead
   of some multi-byte relocation makes object files smaller. 

   Note one side effect of using a R_PREV_FIXUP is the relocation that
   is being repeated moves to the front of the queue.  */
struct reloc_queue
  {
    unsigned char *reloc;
    unsigned int size;
  } reloc_queue[4];

/* This fully describes the symbol types which may be attached to
   an EXPORT or IMPORT directive.  Only SOM uses this formation
   (ELF has no need for it).  */
typedef enum
{
  SYMBOL_TYPE_UNKNOWN,
  SYMBOL_TYPE_ABSOLUTE,
  SYMBOL_TYPE_CODE,
  SYMBOL_TYPE_DATA,
  SYMBOL_TYPE_ENTRY,
  SYMBOL_TYPE_MILLICODE,
  SYMBOL_TYPE_PLABEL,
  SYMBOL_TYPE_PRI_PROG,
  SYMBOL_TYPE_SEC_PROG,
} pa_symbol_type;

struct section_to_type
{
  char *section;
  char type;
};

/* Assorted symbol information that needs to be derived from the BFD symbol
   and/or the BFD backend private symbol data.  */
struct som_misc_symbol_info
{
  unsigned int symbol_type;
  unsigned int symbol_scope;
  unsigned int arg_reloc;
  unsigned int symbol_info;
  unsigned int symbol_value;
};

/* Forward declarations */

static boolean som_mkobject PARAMS ((bfd *));
static const bfd_target * som_object_setup PARAMS ((bfd *,
						    struct header *,
						    struct som_exec_auxhdr *));
static boolean setup_sections PARAMS ((bfd *, struct header *));
static const bfd_target * som_object_p PARAMS ((bfd *));
static boolean som_write_object_contents PARAMS ((bfd *));
static boolean som_slurp_string_table PARAMS ((bfd *));
static unsigned int som_slurp_symbol_table PARAMS ((bfd *));
static long som_get_symtab_upper_bound PARAMS ((bfd *));
static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr,
					    arelent **, asymbol **));
static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr));
static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int,
						arelent *, asection *,
						asymbol **, boolean));
static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *,
					      asymbol **, boolean));
static long som_get_symtab PARAMS ((bfd *, asymbol **));
static asymbol * som_make_empty_symbol PARAMS ((bfd *));
static void som_print_symbol PARAMS ((bfd *, PTR,
				      asymbol *, bfd_print_symbol_type));
static boolean som_new_section_hook PARAMS ((bfd *, asection *));
static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *,
							  bfd *, asymbol *));
static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *,
							  bfd *, asection *));
static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *));
#define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
#define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
static boolean som_bfd_is_local_label PARAMS ((bfd *, asymbol *));
static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR,
						 file_ptr, bfd_size_type));
static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR,
						 file_ptr, bfd_size_type));
static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture,
					  unsigned long));
static boolean som_find_nearest_line PARAMS ((bfd *, asection *,
					      asymbol **, bfd_vma,
					      CONST char **,
					      CONST char **,
					      unsigned int *));
static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *));
static asection * bfd_section_from_som_symbol PARAMS ((bfd *, 
					struct symbol_dictionary_record *));
static int log2 PARAMS ((unsigned int));
static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *,
						     asymbol *, PTR,
						     asection *, bfd *,
						     char **));
static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *));
static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int,
					    struct reloc_queue *));
static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int));
static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int,
					 struct reloc_queue *));
static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *,
					       unsigned int,
					       struct reloc_queue *));

static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int,
					       unsigned char *, unsigned int *,
					       struct reloc_queue *));
static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *,
					         unsigned int *,
						 struct reloc_queue *));
static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *,
					       unsigned int *,
					       arelent *, int,
					       struct reloc_queue *));
static unsigned long som_count_spaces PARAMS ((bfd *));
static unsigned long som_count_subspaces PARAMS ((bfd *));
static int compare_syms PARAMS ((const void *, const void *));
static int compare_subspaces PARAMS ((const void *, const void *));
static unsigned long som_compute_checksum PARAMS ((bfd *));
static boolean som_prep_headers PARAMS ((bfd *));
static int som_sizeof_headers PARAMS ((bfd *, boolean));
static boolean som_finish_writing PARAMS ((bfd *));
static boolean som_build_and_write_symbol_table PARAMS ((bfd *));
static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long));
static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *));
static boolean som_write_space_strings PARAMS ((bfd *, unsigned long,
						unsigned int *));
static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long,
						 asymbol **, unsigned int,
						 unsigned *));
static boolean som_begin_writing PARAMS ((bfd *));
static reloc_howto_type * som_bfd_reloc_type_lookup
	PARAMS ((bfd *, bfd_reloc_code_real_type));
static char som_section_type PARAMS ((const char *));
static int som_decode_symclass PARAMS ((asymbol *));
static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *,
						 symindex *));

static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *,
						   carsym **syms));
static boolean som_slurp_armap PARAMS ((bfd *));
static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *,
					unsigned int, int));
static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *,
					     struct som_misc_symbol_info *));
static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *,
						  unsigned int *));
static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *));
static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int,
						      unsigned int,
						      struct lst_header));
static CONST char *normalize PARAMS ((CONST char *file));
static boolean som_is_space PARAMS ((asection *));
static boolean som_is_subspace PARAMS ((asection *));
static boolean som_is_container PARAMS ((asection *, asection *));
static boolean som_bfd_free_cached_info PARAMS ((bfd *));
static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *));
	
/* Map SOM section names to POSIX/BSD single-character symbol types.

   This table includes all the standard subspaces as defined in the 
   current "PRO ABI for PA-RISC Systems", $UNWIND$ which for 
   some reason was left out, and sections specific to embedded stabs.  */

static const struct section_to_type stt[] = {
  {"$TEXT$", 't'},
  {"$SHLIB_INFO$", 't'},
  {"$MILLICODE$", 't'},
  {"$LIT$", 't'},
  {"$CODE$", 't'},
  {"$UNWIND_START$", 't'},
  {"$UNWIND$", 't'},
  {"$PRIVATE$", 'd'},
  {"$PLT$", 'd'},
  {"$SHLIB_DATA$", 'd'},
  {"$DATA$", 'd'},
  {"$SHORTDATA$", 'g'},
  {"$DLT$", 'd'},
  {"$GLOBAL$", 'g'},
  {"$SHORTBSS$", 's'},
  {"$BSS$", 'b'},
  {"$GDB_STRINGS$", 'N'},
  {"$GDB_SYMBOLS$", 'N'},
  {0, 0}
};

/* About the relocation formatting table...

   There are 256 entries in the table, one for each possible
   relocation opcode available in SOM.  We index the table by
   the relocation opcode.  The names and operations are those
   defined by a.out_800 (4).

   Right now this table is only used to count and perform minimal
   processing on relocation streams so that they can be internalized
   into BFD and symbolically printed by utilities.  To make actual use 
   of them would be much more difficult, BFD's concept of relocations
   is far too simple to handle SOM relocations.  The basic assumption
   that a relocation can be completely processed independent of other
   relocations before an object file is written is invalid for SOM.

   The SOM relocations are meant to be processed as a stream, they
   specify copying of data from the input section to the output section
   while possibly modifying the data in some manner.  They also can 
   specify that a variable number of zeros or uninitialized data be
   inserted on in the output segment at the current offset.  Some
   relocations specify that some previous relocation be re-applied at
   the current location in the input/output sections.  And finally a number
   of relocations have effects on other sections (R_ENTRY, R_EXIT,
   R_UNWIND_AUX and a variety of others).  There isn't even enough room
   in the BFD relocation data structure to store enough information to
   perform all the relocations.

   Each entry in the table has three fields. 

   The first entry is an index into this "class" of relocations.  This
   index can then be used as a variable within the relocation itself.

   The second field is a format string which actually controls processing
   of the relocation.  It uses a simple postfix machine to do calculations
   based on variables/constants found in the string and the relocation
   stream.  

   The third field specifys whether or not this relocation may use 
   a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
   stored in the instruction.

   Variables:  
  
   L = input space byte count
   D = index into class of relocations
   M = output space byte count
   N = statement number (unused?)
   O = stack operation
   R = parameter relocation bits
   S = symbol index
   T = first 32 bits of stack unwind information
   U = second 32 bits of stack unwind information
   V = a literal constant (usually used in the next relocation)
   P = a previous relocation
  
   Lower case letters (starting with 'b') refer to following 
   bytes in the relocation stream.  'b' is the next 1 byte,
   c is the next 2 bytes, d is the next 3 bytes, etc...  
   This is the variable part of the relocation entries that
   makes our life a living hell.

   numerical constants are also used in the format string.  Note
   the constants are represented in decimal. 

   '+', "*" and "=" represents the obvious postfix operators.
   '<' represents a left shift. 

   Stack Operations:

   Parameter Relocation Bits:

   Unwind Entries:  
   
   Previous Relocations:  The index field represents which in the queue
   of 4 previous fixups should be re-applied.

   Literal Constants:  These are generally used to represent addend
   parts of relocations when these constants are not stored in the
   fields of the instructions themselves.  For example the instruction
   addil foo-$global$-0x1234 would use an override for "0x1234" rather
   than storing it into the addil itself.  */

struct fixup_format
{
  int D;
  char *format;
};

static const struct fixup_format som_fixup_formats[256] =
{
  /* R_NO_RELOCATION */
  0,   "LD1+4*=",       /* 0x00 */
  1,   "LD1+4*=",	/* 0x01 */
  2,   "LD1+4*=",	/* 0x02 */
  3,   "LD1+4*=",	/* 0x03 */
  4,   "LD1+4*=",	/* 0x04 */
  5,   "LD1+4*=",	/* 0x05 */
  6,   "LD1+4*=",	/* 0x06 */
  7,   "LD1+4*=",	/* 0x07 */
  8,   "LD1+4*=",	/* 0x08 */
  9,   "LD1+4*=",	/* 0x09 */
  10,  "LD1+4*=",	/* 0x0a */
  11,  "LD1+4*=",	/* 0x0b */
  12,  "LD1+4*=",	/* 0x0c */
  13,  "LD1+4*=",	/* 0x0d */
  14,  "LD1+4*=",	/* 0x0e */
  15,  "LD1+4*=",	/* 0x0f */
  16,  "LD1+4*=",	/* 0x10 */
  17,  "LD1+4*=",	/* 0x11 */
  18,  "LD1+4*=",	/* 0x12 */
  19,  "LD1+4*=",	/* 0x13 */
  20,  "LD1+4*=",	/* 0x14 */
  21,  "LD1+4*=",	/* 0x15 */
  22,  "LD1+4*=",	/* 0x16 */
  23,  "LD1+4*=",	/* 0x17 */
  0,   "LD8<b+1+4*=",	/* 0x18 */
  1,   "LD8<b+1+4*=",	/* 0x19 */
  2,   "LD8<b+1+4*=",	/* 0x1a */
  3,   "LD8<b+1+4*=",	/* 0x1b */
  0,   "LD16<c+1+4*=",	/* 0x1c */
  1,   "LD16<c+1+4*=",	/* 0x1d */
  2,   "LD16<c+1+4*=",	/* 0x1e */
  0,   "Ld1+=",         /* 0x1f */
  /* R_ZEROES */
  0,    "Lb1+4*=",	/* 0x20 */
  1,    "Ld1+=",	/* 0x21 */
  /* R_UNINIT */
  0,    "Lb1+4*=",	/* 0x22 */
  1,    "Ld1+=",	/* 0x23 */
  /* R_RELOCATION */
  0,    "L4=",          /* 0x24 */
  /* R_DATA_ONE_SYMBOL */
  0,    "L4=Sb=",	/* 0x25 */
  1,    "L4=Sd=",	/* 0x26 */
  /* R_DATA_PLEBEL */
  0,    "L4=Sb=",	/* 0x27 */
  1,    "L4=Sd=",	/* 0x28 */
  /* R_SPACE_REF */
  0,    "L4=",          /* 0x29 */
  /* R_REPEATED_INIT */
  0,    "L4=Mb1+4*=",	/* 0x2a */
  1,    "Lb4*=Mb1+L*=",	/* 0x2b */
  2,    "Lb4*=Md1+4*=",	/* 0x2c */
  3,    "Ld1+=Me1+=",	/* 0x2d */
  /* R_RESERVED */
  0,   	"",	        /* 0x2e */
  0,   	"",	        /* 0x2f */
  /* R_PCREL_CALL */
  0,    "L4=RD=Sb=",	/* 0x30 */
  1,    "L4=RD=Sb=",	/* 0x31 */
  2,    "L4=RD=Sb=",	/* 0x32 */
  3,    "L4=RD=Sb=",	/* 0x33 */
  4,    "L4=RD=Sb=",	/* 0x34 */
  5,    "L4=RD=Sb=",	/* 0x35 */
  6,    "L4=RD=Sb=",	/* 0x36 */
  7,    "L4=RD=Sb=",	/* 0x37 */
  8,    "L4=RD=Sb=",	/* 0x38 */
  9,    "L4=RD=Sb=",	/* 0x39 */
  0,    "L4=RD8<b+=Sb=",/* 0x3a */
  1,    "L4=RD8<b+=Sb=",/* 0x3b */
  0,    "L4=RD8<b+=Sd=",/* 0x3c */
  1,    "L4=RD8<b+=Sd=",/* 0x3d */
  /* R_RESERVED */
  0,    "",	        /* 0x3e */
  0,    "",	        /* 0x3f */
  /* R_ABS_CALL */
  0,    "L4=RD=Sb=",	/* 0x40 */
  1,    "L4=RD=Sb=",	/* 0x41 */
  2,    "L4=RD=Sb=",	/* 0x42 */
  3,    "L4=RD=Sb=",	/* 0x43 */
  4,    "L4=RD=Sb=",	/* 0x44 */
  5,    "L4=RD=Sb=",	/* 0x45 */
  6,    "L4=RD=Sb=",	/* 0x46 */
  7,    "L4=RD=Sb=",	/* 0x47 */
  8,    "L4=RD=Sb=",	/* 0x48 */
  9,    "L4=RD=Sb=",	/* 0x49 */
  0,    "L4=RD8<b+=Sb=",/* 0x4a */
  1,    "L4=RD8<b+=Sb=",/* 0x4b */
  0,    "L4=RD8<b+=Sd=",/* 0x4c */
  1,    "L4=RD8<b+=Sd=",/* 0x4d */
  /* R_RESERVED */
  0,     "",	        /* 0x4e */
  0,     "",	        /* 0x4f */
  /* R_DP_RELATIVE */
  0,    "L4=SD=",	/* 0x50 */
  1,    "L4=SD=",	/* 0x51 */
  2,    "L4=SD=",	/* 0x52 */
  3,    "L4=SD=",	/* 0x53 */
  4,    "L4=SD=",	/* 0x54 */
  5,    "L4=SD=",	/* 0x55 */
  6,    "L4=SD=",	/* 0x56 */
  7,    "L4=SD=",	/* 0x57 */
  8,    "L4=SD=",	/* 0x58 */
  9,    "L4=SD=",	/* 0x59 */
  10,   "L4=SD=",	/* 0x5a */
  11,   "L4=SD=",	/* 0x5b */
  12,   "L4=SD=",	/* 0x5c */
  13,   "L4=SD=",	/* 0x5d */
  14,   "L4=SD=",	/* 0x5e */
  15,   "L4=SD=",	/* 0x5f */
  16,   "L4=SD=",	/* 0x60 */
  17,   "L4=SD=",	/* 0x61 */
  18,   "L4=SD=",	/* 0x62 */
  19,   "L4=SD=",	/* 0x63 */
  20,   "L4=SD=",	/* 0x64 */
  21,   "L4=SD=",	/* 0x65 */
  22,   "L4=SD=",	/* 0x66 */
  23,   "L4=SD=",	/* 0x67 */
  24,   "L4=SD=",	/* 0x68 */
  25,   "L4=SD=",	/* 0x69 */
  26,   "L4=SD=",	/* 0x6a */
  27,   "L4=SD=",	/* 0x6b */
  28,   "L4=SD=",	/* 0x6c */
  29,   "L4=SD=",	/* 0x6d */
  30,   "L4=SD=",	/* 0x6e */
  31,   "L4=SD=",	/* 0x6f */
  32,   "L4=Sb=",	/* 0x70 */
  33,   "L4=Sd=",	/* 0x71 */
  /* R_RESERVED */
  0,    "",	        /* 0x72 */
  0,    "",	        /* 0x73 */
  0,    "",	        /* 0x74 */
  0,    "",	        /* 0x75 */
  0,    "",	        /* 0x76 */
  0,    "",      	/* 0x77 */
  /* R_DLT_REL */
  0,    "L4=Sb=",	/* 0x78 */
  1,    "L4=Sd=",	/* 0x79 */
  /* R_RESERVED */
  0,    "",        	/* 0x7a */
  0,    "",	        /* 0x7b */
  0,    "",	        /* 0x7c */
  0,    "",	        /* 0x7d */
  0,    "",	        /* 0x7e */
  0,    "",	        /* 0x7f */
  /* R_CODE_ONE_SYMBOL */
  0,    "L4=SD=",	/* 0x80 */
  1,    "L4=SD=",	/* 0x81 */
  2,    "L4=SD=",	/* 0x82 */
  3,    "L4=SD=",	/* 0x83 */
  4,    "L4=SD=",	/* 0x84 */
  5,    "L4=SD=",	/* 0x85 */
  6,    "L4=SD=",	/* 0x86 */
  7,    "L4=SD=",	/* 0x87 */
  8,    "L4=SD=",	/* 0x88 */
  9,    "L4=SD=",	/* 0x89 */
  10,   "L4=SD=",	/* 0x8q */
  11,   "L4=SD=",	/* 0x8b */
  12,   "L4=SD=",	/* 0x8c */
  13,   "L4=SD=",	/* 0x8d */
  14,   "L4=SD=",	/* 0x8e */
  15,   "L4=SD=",	/* 0x8f */
  16,   "L4=SD=",	/* 0x90 */
  17,   "L4=SD=",	/* 0x91 */
  18,   "L4=SD=",	/* 0x92 */
  19,   "L4=SD=",	/* 0x93 */
  20,   "L4=SD=",	/* 0x94 */
  21,   "L4=SD=",	/* 0x95 */
  22,   "L4=SD=",	/* 0x96 */
  23,   "L4=SD=",	/* 0x97 */
  24,   "L4=SD=",	/* 0x98 */
  25,   "L4=SD=",	/* 0x99 */
  26,   "L4=SD=",	/* 0x9a */
  27,   "L4=SD=",	/* 0x9b */
  28,   "L4=SD=",	/* 0x9c */
  29,   "L4=SD=",	/* 0x9d */
  30,   "L4=SD=",	/* 0x9e */
  31,   "L4=SD=",	/* 0x9f */
  32,   "L4=Sb=",	/* 0xa0 */
  33,   "L4=Sd=",	/* 0xa1 */
  /* R_RESERVED */
  0,    "",	        /* 0xa2 */
  0,    "",	        /* 0xa3 */
  0,    "",	        /* 0xa4 */
  0,    "",	        /* 0xa5 */
  0,    "",	        /* 0xa6 */
  0,    "",	        /* 0xa7 */
  0,    "",	        /* 0xa8 */
  0,    "",	        /* 0xa9 */
  0,    "",	        /* 0xaa */
  0,    "",	        /* 0xab */
  0,    "",	        /* 0xac */
  0,    "",	        /* 0xad */
  /* R_MILLI_REL */
  0,    "L4=Sb=",	/* 0xae */
  1,    "L4=Sd=",	/* 0xaf */
  /* R_CODE_PLABEL */
  0,    "L4=Sb=",	/* 0xb0 */
  1,    "L4=Sd=",	/* 0xb1 */
  /* R_BREAKPOINT */
  0,    "L4=",	        /* 0xb2 */
  /* R_ENTRY */
  0,    "Te=Ue=",       /* 0xb3 */
  1,    "Uf=",	        /* 0xb4 */
  /* R_ALT_ENTRY */
  0,    "",	        /* 0xb5 */
  /* R_EXIT */
  0,    "",		/* 0xb6 */
  /* R_BEGIN_TRY */
  0,    "",	        /* 0xb7 */
  /* R_END_TRY */
  0,    "R0=",	        /* 0xb8 */
  1,    "Rb4*=",	/* 0xb9 */
  2,    "Rd4*=",	/* 0xba */
  /* R_BEGIN_BRTAB */
  0,    "",	        /* 0xbb */
  /* R_END_BRTAB */
  0,    "",	        /* 0xbc */
  /* R_STATEMENT */
  0,    "Nb=",	        /* 0xbd */
  1,    "Nc=",	        /* 0xbe */
  2,    "Nd=",	        /* 0xbf */
  /* R_DATA_EXPR */
  0,    "L4=",	        /* 0xc0 */
  /* R_CODE_EXPR */
  0,    "L4=",	        /* 0xc1 */
  /* R_FSEL */
  0,    "",		/* 0xc2 */
  /* R_LSEL */
  0,    "",		/* 0xc3 */
  /* R_RSEL */
  0,    "",		/* 0xc4 */
  /* R_N_MODE */
  0,    "",		/* 0xc5 */
  /* R_S_MODE */
  0,    "",		/* 0xc6 */
  /* R_D_MODE */
  0,    "",		/* 0xc7 */
  /* R_R_MODE */
  0,    "",		/* 0xc8 */
  /* R_DATA_OVERRIDE */
  0,    "V0=",	        /* 0xc9 */
  1,    "Vb=",	        /* 0xca */
  2,    "Vc=",	        /* 0xcb */
  3,    "Vd=",	        /* 0xcc */
  4,    "Ve=",	        /* 0xcd */
  /* R_TRANSLATED */
  0,    "",	        /* 0xce */
  /* R_RESERVED */
  0,    "",	        /* 0xcf */
  /* R_COMP1 */
  0,    "Ob=",	        /* 0xd0 */
  /* R_COMP2 */
  0,    "Ob=Sd=",	/* 0xd1 */
  /* R_COMP3 */
  0,    "Ob=Ve=",	/* 0xd2 */
  /* R_PREV_FIXUP */
  0,    "P",   	        /* 0xd3 */
  1,    "P",	        /* 0xd4 */
  2,    "P",	        /* 0xd5 */
  3,    "P",	        /* 0xd6 */
  /* R_RESERVED */
  0,	"",		/* 0xd7 */
  0,	"",		/* 0xd8 */
  0,	"",		/* 0xd9 */
  0,	"",		/* 0xda */
  0,	"",		/* 0xdb */
  0,	"",		/* 0xdc */
  0,	"",		/* 0xdd */
  0,	"",		/* 0xde */
  0,	"",		/* 0xdf */
  0,	"",		/* 0xe0 */
  0,	"",		/* 0xe1 */
  0,	"",		/* 0xe2 */
  0,	"",		/* 0xe3 */
  0,	"",		/* 0xe4 */
  0,	"",		/* 0xe5 */
  0,	"",		/* 0xe6 */
  0,	"",		/* 0xe7 */
  0,	"",		/* 0xe8 */
  0,	"",		/* 0xe9 */
  0,	"",		/* 0xea */
  0,	"",		/* 0xeb */
  0,	"",		/* 0xec */
  0,	"",		/* 0xed */
  0,	"",		/* 0xee */
  0,	"",		/* 0xef */
  0,	"",		/* 0xf0 */
  0,	"",		/* 0xf1 */
  0,	"",		/* 0xf2 */
  0,	"",		/* 0xf3 */
  0,	"",		/* 0xf4 */
  0,	"",		/* 0xf5 */
  0,	"",		/* 0xf6 */
  0,	"",		/* 0xf7 */
  0,	"",		/* 0xf8 */
  0,	"",		/* 0xf9 */
  0,	"",		/* 0xfa */
  0,	"",		/* 0xfb */
  0,	"",		/* 0xfc */
  0,	"",		/* 0xfd */
  0,	"",		/* 0xfe */
  0,	"",		/* 0xff */
};

static const int comp1_opcodes[] =
{
  0x00,
  0x40,
  0x41,
  0x42,
  0x43,
  0x44,
  0x45,
  0x46,
  0x47,
  0x48,
  0x49,
  0x4a,
  0x4b,
  0x60,
  0x80,
  0xa0,
  0xc0,
  -1
};

static const int comp2_opcodes[] =
{
  0x00,
  0x80,
  0x82,
  0xc0,
  -1
};

static const int comp3_opcodes[] =
{
  0x00,
  0x02,
  -1
};

/* These apparently are not in older versions of hpux reloc.h.  */
#ifndef R_DLT_REL
#define R_DLT_REL 0x78
#endif

#ifndef R_AUX_UNWIND
#define R_AUX_UNWIND 0xcf
#endif

#ifndef R_SEC_STMT
#define R_SEC_STMT 0xd7
#endif

static reloc_howto_type som_hppa_howto_table[] =
{
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"},
  {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
  {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"},
  {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
  {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"},
  {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"},
  {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
  {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"},
  {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
  {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"},
  {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"},
  {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
  {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
  {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
  {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
  {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
  {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"},
  {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
  {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"},
  {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"},
  {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
  {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"},
  {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"},
  {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"},
  {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"},
  {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
  {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
  {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"},
  {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"},
  {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"},
  {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
  {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
  {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"},
  {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"},
  {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"},
  {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"},
  {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"},
  {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"},
  {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"},
  {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"},
  {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"},
  {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"},
  {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
  {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
  {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
  {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
  {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"},
  {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"},
  {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"},
  {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"},
  {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"},
  {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"},
  {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
  {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
  {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
  {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"},
  {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"},
  {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}};
  
/* Initialize the SOM relocation queue.  By definition the queue holds
   the last four multibyte fixups.  */
  
static void
som_initialize_reloc_queue (queue)
     struct reloc_queue *queue;
{
  queue[0].reloc = NULL;
  queue[0].size = 0;
  queue[1].reloc = NULL;
  queue[1].size = 0;
  queue[2].reloc = NULL;
  queue[2].size = 0;
  queue[3].reloc = NULL;
  queue[3].size = 0;
}

/* Insert a new relocation into the relocation queue.  */

static void
som_reloc_queue_insert (p, size, queue)
     unsigned char *p;
     unsigned int size;
     struct reloc_queue *queue;
{
  queue[3].reloc = queue[2].reloc;
  queue[3].size = queue[2].size;
  queue[2].reloc = queue[1].reloc;
  queue[2].size = queue[1].size;
  queue[1].reloc = queue[0].reloc;
  queue[1].size = queue[0].size;
  queue[0].reloc = p;
  queue[0].size = size;
}

/* When an entry in the relocation queue is reused, the entry moves
   to the front of the queue.  */

static void
som_reloc_queue_fix (queue, index)
     struct reloc_queue *queue;
     unsigned int index;
{
  if (index == 0)
    return;

  if (index == 1)
    {
      unsigned char *tmp1 = queue[0].reloc;
      unsigned int tmp2 = queue[0].size;
      queue[0].reloc = queue[1].reloc;
      queue[0].size = queue[1].size;
      queue[1].reloc = tmp1;
      queue[1].size = tmp2;
      return;
    }

  if (index == 2)
    {
      unsigned char *tmp1 = queue[0].reloc;
      unsigned int tmp2 = queue[0].size;
      queue[0].reloc = queue[2].reloc;
      queue[0].size = queue[2].size;
      queue[2].reloc = queue[1].reloc;
      queue[2].size = queue[1].size;
      queue[1].reloc = tmp1;
      queue[1].size = tmp2;
      return;
    }

  if (index == 3)
    {
      unsigned char *tmp1 = queue[0].reloc;
      unsigned int tmp2 = queue[0].size;
      queue[0].reloc = queue[3].reloc;
      queue[0].size = queue[3].size;
      queue[3].reloc = queue[2].reloc;
      queue[3].size = queue[2].size;
      queue[2].reloc = queue[1].reloc;
      queue[2].size = queue[1].size;
      queue[1].reloc = tmp1;
      queue[1].size = tmp2;
      return;
    }
  abort();
}

/* Search for a particular relocation in the relocation queue.  */

static int
som_reloc_queue_find (p, size, queue)
     unsigned char *p;
     unsigned int size;
     struct reloc_queue *queue;
{
  if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
      && size == queue[0].size)
    return 0;
  if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
      && size == queue[1].size)
    return 1;
  if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
      && size == queue[2].size)
    return 2;
  if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
      && size == queue[3].size)
    return 3;
  return -1;
}

static unsigned char *
try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue)
     bfd *abfd;
     int *subspace_reloc_sizep;
     unsigned char *p;
     unsigned int size;
     struct reloc_queue *queue;
{
  int queue_index = som_reloc_queue_find (p, size, queue);

  if (queue_index != -1)
    {
      /* Found this in a previous fixup.  Undo the fixup we
	 just built and use R_PREV_FIXUP instead.  We saved 
	 a total of size - 1 bytes in the fixup stream.  */
      bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
      p += 1;
      *subspace_reloc_sizep += 1;
      som_reloc_queue_fix (queue, queue_index);
    }
  else
    {
      som_reloc_queue_insert (p, size, queue);
      *subspace_reloc_sizep += size;
      p += size;
    }
  return p;
}

/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
   bytes without any relocation.  Update the size of the subspace
   relocation stream via SUBSPACE_RELOC_SIZE_P; also return the 
   current pointer into the relocation stream.  */

static unsigned char *
som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue)
     bfd *abfd;
     unsigned int skip;
     unsigned char *p;
     unsigned int *subspace_reloc_sizep;
     struct reloc_queue *queue;
{
  /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
     then R_PREV_FIXUPs to get the difference down to a
     reasonable size.  */
  if (skip >= 0x1000000)
    {
      skip -= 0x1000000;
      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
      bfd_put_8 (abfd, 0xff, p + 1);
      bfd_put_16 (abfd, 0xffff, p + 2);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
      while (skip >= 0x1000000)
	{
	  skip -= 0x1000000;
	  bfd_put_8 (abfd, R_PREV_FIXUP, p);
	  p++;
	  *subspace_reloc_sizep += 1;
	  /* No need to adjust queue here since we are repeating the
	     most recent fixup.  */
	}
    }
  
  /* The difference must be less than 0x1000000.  Use one 
     more R_NO_RELOCATION entry to get to the right difference.  */
  if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
    {
      /* Difference can be handled in a simple single-byte
	 R_NO_RELOCATION entry.  */
      if (skip <= 0x60)
	{
	  bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
	  *subspace_reloc_sizep += 1;
	  p++;
	}
      /* Handle it with a two byte R_NO_RELOCATION entry.  */
      else if (skip <= 0x1000)
	{
	  bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
	  bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
	}
      /* Handle it with a three byte R_NO_RELOCATION entry.  */
      else
	{
	  bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
	  bfd_put_16 (abfd, (skip >> 2) - 1, p + 1);
	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
	}
    }
  /* Ugh.  Punt and use a 4 byte entry.  */
  else if (skip > 0)
    {
      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
      bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
      bfd_put_16 (abfd, skip - 1, p + 2);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
    }
  return p;
}

/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
   from a BFD relocation.  Update the size of the subspace relocation
   stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
   into the relocation stream.  */

static unsigned char *
som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue)
     bfd *abfd;
     int addend;
     unsigned char *p;
     unsigned int *subspace_reloc_sizep;
     struct reloc_queue *queue;
{
  if ((unsigned)(addend) + 0x80 < 0x100)
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
      bfd_put_8 (abfd, addend, p + 1);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); 
    }
  else if ((unsigned) (addend) + 0x8000 < 0x10000)
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
      bfd_put_16 (abfd, addend, p + 1);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
    }
  else if ((unsigned) (addend) + 0x800000 < 0x1000000)
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
      bfd_put_8 (abfd, addend >> 16, p + 1);
      bfd_put_16 (abfd, addend, p + 2);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
    }
  else
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
      bfd_put_32 (abfd, addend, p + 1);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
    }
  return p;
}

/* Handle a single function call relocation.  */

static unsigned char *
som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue)
     bfd *abfd;
     unsigned char *p;
     unsigned int *subspace_reloc_sizep;
     arelent *bfd_reloc;
     int sym_num;
     struct reloc_queue *queue;
{
  int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
  int rtn_bits = arg_bits & 0x3;
  int type, done = 0;
  
  /* You'll never believe all this is necessary to handle relocations
     for function calls.  Having to compute and pack the argument
     relocation bits is the real nightmare.
     
     If you're interested in how this works, just forget it.  You really
     do not want to know about this braindamage.  */

  /* First see if this can be done with a "simple" relocation.  Simple
     relocations have a symbol number < 0x100 and have simple encodings
     of argument relocations.  */

  if (sym_num < 0x100)
    {
      switch (arg_bits)
	{
	case 0:
	case 1:
	  type = 0;
	  break;
	case 1 << 8:
	case 1 << 8 | 1:
	  type = 1;
	  break;
	case 1 << 8 | 1 << 6:
	case 1 << 8 | 1 << 6 | 1:
	  type = 2;
	  break;
	case 1 << 8 | 1 << 6 | 1 << 4:
	case 1 << 8 | 1 << 6 | 1 << 4 | 1:
	  type = 3;
	  break;
	case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
	case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
	  type = 4;
	  break;
	default:
	  /* Not one of the easy encodings.  This will have to be
	     handled by the more complex code below.  */
	  type = -1;
	  break;
	}
      if (type != -1)
	{
	  /* Account for the return value too.  */
	  if (rtn_bits)
	    type += 5;

	  /* Emit a 2 byte relocation.  Then see if it can be handled
	     with a relocation which is already in the relocation queue.  */
	  bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
	  bfd_put_8 (abfd, sym_num, p + 1);
	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
	  done = 1;
	}
    }
  
  /* If this could not be handled with a simple relocation, then do a hard
     one.  Hard relocations occur if the symbol number was too high or if
     the encoding of argument relocation bits is too complex.  */
  if (! done)
    {
      /* Don't ask about these magic sequences.  I took them straight
	 from gas-1.36 which took them from the a.out man page.  */
      type = rtn_bits;
      if ((arg_bits >> 6 & 0xf) == 0xe)
	type += 9 * 40;
      else
	type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
      if ((arg_bits >> 2 & 0xf) == 0xe)
	type += 9 * 4;
      else
	type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
      
      /* Output the first two bytes of the relocation.  These describe
	 the length of the relocation and encoding style.  */
      bfd_put_8 (abfd, bfd_reloc->howto->type + 10
		 + 2 * (sym_num >= 0x100) + (type >= 0x100),
		 p);
      bfd_put_8 (abfd, type, p + 1);
      
      /* Now output the symbol index and see if this bizarre relocation
	 just happened to be in the relocation queue.  */
      if (sym_num < 0x100)
	{
	  bfd_put_8 (abfd, sym_num, p + 2);
	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
	}
      else
	{
	  bfd_put_8 (abfd, sym_num >> 16, p + 2);
	  bfd_put_16 (abfd, sym_num, p + 3);
	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
	}
    }
  return p;
}


/* Return the logarithm of X, base 2, considering X unsigned. 
   Abort -1 if X is not a power or two or is zero.  */

static int
log2 (x)
     unsigned int x;
{
  int log = 0;

  /* Test for 0 or a power of 2.  */
  if (x == 0 || x != (x & -x))
    return -1;

  while ((x >>= 1) != 0)
    log++;
  return log;
}

static bfd_reloc_status_type
hppa_som_reloc (abfd, reloc_entry, symbol_in, data,
		input_section, output_bfd, error_message)
     bfd *abfd;
     arelent *reloc_entry;
     asymbol *symbol_in;
     PTR data;
     asection *input_section;
     bfd *output_bfd;
     char **error_message;
{
  if (output_bfd)
    {
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
    }
  return bfd_reloc_ok;
}

/* Given a generic HPPA relocation type, the instruction format,
   and a field selector, return one or more appropriate SOM relocations.  */

int **
hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff)
     bfd *abfd;
     int base_type;
     int format;
     enum hppa_reloc_field_selector_type_alt field;
     int sym_diff;
{
  int *final_type, **final_types;

  final_types = (int **) bfd_alloc_by_size_t (abfd, sizeof (int *) * 6);
  final_type = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
  if (!final_types || !final_type)
    {
      bfd_set_error (bfd_error_no_memory);
      return NULL;
    }

  /* The field selector may require additional relocations to be 
     generated.  It's impossible to know at this moment if additional
     relocations will be needed, so we make them.  The code to actually
     write the relocation/fixup stream is responsible for removing
     any redundant relocations.  */
  switch (field)
    {
      case e_fsel:
      case e_psel:
      case e_lpsel:
      case e_rpsel:
	final_types[0] = final_type;
	final_types[1] = NULL;
	final_types[2] = NULL;
	*final_type = base_type;
	break;

      case e_tsel:
      case e_ltsel:
      case e_rtsel:
	final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
	if (!final_types[0])
	  {
	    bfd_set_error (bfd_error_no_memory);
	    return NULL;
	  }
	if (field == e_tsel)
	  *final_types[0] = R_FSEL;
	else if (field == e_ltsel)
	  *final_types[0] = R_LSEL;
	else
	  *final_types[0] = R_RSEL;
	final_types[1] = final_type;
	final_types[2] = NULL;
	*final_type = base_type;
	break;

      case e_lssel:
      case e_rssel:
	final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
	if (!final_types[0])
	  {
	    bfd_set_error (bfd_error_no_memory);
	    return NULL;
	  }
	*final_types[0] = R_S_MODE;
	final_types[1] = final_type;
	final_types[2] = NULL;
	*final_type = base_type;
	break;

      case e_lsel:
      case e_rsel:
	final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
	if (!final_types[0])
	  {
	    bfd_set_error (bfd_error_no_memory);
	    return NULL;
	  }
	*final_types[0] = R_N_MODE;
	final_types[1] = final_type;
	final_types[2] = NULL;
	*final_type = base_type;
	break;

      case e_ldsel:
      case e_rdsel:
	final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
	if (!final_types[0])
	  {
	    bfd_set_error (bfd_error_no_memory);
	    return NULL;
	  }
	*final_types[0] = R_D_MODE;
	final_types[1] = final_type;
	final_types[2] = NULL;
	*final_type = base_type;
	break;

      case e_lrsel:
      case e_rrsel:
	final_types[0] = (int *) bfd_alloc_by_size_t (abfd, sizeof (int));
	if (!final_types[0])
	  {
	    bfd_set_error (bfd_error_no_memory);
	    return NULL;
	  }
	*final_types[0] = R_R_MODE;
	final_types[1] = final_type;
	final_types[2] = NULL;
	*final_type = base_type;
	break;
    }
  
  switch (base_type)
    {
    case R_HPPA:
      /* The difference of two symbols needs *very* special handling.  */
      if (sym_diff)
	{
	  final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  if (!final_types[0] || !final_types[1] || !final_types[2])
          {
            bfd_set_error (bfd_error_no_memory);
            return NULL;
          }
	  if (field == e_fsel)
	    *final_types[0] = R_FSEL;
	  else if (field == e_rsel)
	    *final_types[0] = R_RSEL;
	  else if (field == e_lsel)
	    *final_types[0] = R_LSEL;
	  *final_types[1] = R_COMP2;
	  *final_types[2] = R_COMP2;
	  *final_types[3] = R_COMP1;
	  final_types[4] = final_type;
	  *final_types[4] = R_CODE_EXPR;
	  final_types[5] = NULL;
	  break;
	}
      /* PLABELs get their own relocation type.  */
      else if (field == e_psel
	  || field == e_lpsel
	  || field == e_rpsel)
	{
	  /* A PLABEL relocation that has a size of 32 bits must
	     be a R_DATA_PLABEL.  All others are R_CODE_PLABELs.  */
	  if (format == 32)
	    *final_type = R_DATA_PLABEL;
	  else
	    *final_type = R_CODE_PLABEL;
	}
      /* PIC stuff.  */
      else if (field == e_tsel
	  || field == e_ltsel
	  || field == e_rtsel)
	*final_type = R_DLT_REL;
      /* A relocation in the data space is always a full 32bits.  */
      else if (format == 32)
	*final_type = R_DATA_ONE_SYMBOL;

      break;

    case R_HPPA_GOTOFF:
      /* More PLABEL special cases.  */
      if (field == e_psel
	  || field == e_lpsel
	  || field == e_rpsel)
	*final_type = R_DATA_PLABEL;
      break;

    case R_HPPA_COMPLEX:
      /* The difference of two symbols needs *very* special handling.  */
      if (sym_diff)
	{
	  final_types[0] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  final_types[1] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  final_types[2] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  final_types[3] = (int *)bfd_alloc_by_size_t (abfd, sizeof (int));
	  if (!final_types[0] || !final_types[1] || !final_types[2])
          {
            bfd_set_error (bfd_error_no_memory);
            return NULL;
          }
	  if (field == e_fsel)
	    *final_types[0] = R_FSEL;
	  else if (field == e_rsel)
	    *final_types[0] = R_RSEL;
	  else if (field == e_lsel)
	    *final_types[0] = R_LSEL;
	  *final_types[1] = R_COMP2;
	  *final_types[2] = R_COMP2;
	  *final_types[3] = R_COMP1;
	  final_types[4] = final_type;
	  *final_types[4] = R_CODE_EXPR;
	  final_types[5] = NULL;
	  break;
	}
      else
	break;

    case R_HPPA_NONE:
    case R_HPPA_ABS_CALL:
    case R_HPPA_PCREL_CALL:
      /* Right now we can default all these.  */
      break;
    }
  return final_types;
}

/* Return the address of the correct entry in the PA SOM relocation
   howto table.  */

/*ARGSUSED*/
static reloc_howto_type *
som_bfd_reloc_type_lookup (abfd, code)
     bfd *abfd;
     bfd_reloc_code_real_type code;
{
  if ((int) code < (int) R_NO_RELOCATION + 255)
    {
      BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
      return &som_hppa_howto_table[(int) code];
    }

  return (reloc_howto_type *) 0;
}

/* Perform some initialization for an object.  Save results of this
   initialization in the BFD.  */

static const bfd_target *
som_object_setup (abfd, file_hdrp, aux_hdrp)
     bfd *abfd;
     struct header *file_hdrp;
     struct som_exec_auxhdr *aux_hdrp;
{
  asection *section;
  int found;

  /* som_mkobject will set bfd_error if som_mkobject fails.  */
  if (som_mkobject (abfd) != true)
    return 0;

  /* Set BFD flags based on what information is available in the SOM.  */
  abfd->flags = NO_FLAGS;
  if (file_hdrp->symbol_total)
    abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;

  switch (file_hdrp->a_magic)
    {
    case DEMAND_MAGIC:
      abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
      break;
    case SHARE_MAGIC:
      abfd->flags |= (WP_TEXT | EXEC_P);
      break;
    case EXEC_MAGIC:
      abfd->flags |= (EXEC_P);
      break;
    case RELOC_MAGIC:
      abfd->flags |= HAS_RELOC;
      break;
#ifdef SHL_MAGIC
    case SHL_MAGIC:
#endif
#ifdef DL_MAGIC
    case DL_MAGIC:
#endif
      abfd->flags |= DYNAMIC;
      break;

    default:
      break;
    }

  /* Allocate space to hold the saved exec header information.  */
  obj_som_exec_data (abfd) = (struct som_exec_data *)
    bfd_zalloc (abfd, sizeof (struct som_exec_data ));
  if (obj_som_exec_data (abfd) == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return NULL;
    }

  /* The braindamaged OSF1 linker switched exec_flags and exec_entry!

     We used to identify OSF1 binaries based on NEW_VERSION_ID, but
     apparently the latest HPUX linker is using NEW_VERSION_ID now.

     It's about time, OSF has used the new id since at least 1992;
     HPUX didn't start till nearly 1995!.
    
     The new approach examines the entry field.  If it's zero or not 4
     byte aligned then it's not a proper code address and we guess it's
     really the executable flags.  */
  found = 0;
  for (section = abfd->sections; section; section = section->next)
    {
      if ((section->flags & SEC_CODE) == 0)
	continue;
      if (aux_hdrp->exec_entry >= section->vma
	  && aux_hdrp->exec_entry < section->vma + section->_cooked_size)
	found = 1;
    }
  if (aux_hdrp->exec_entry == 0
      || (aux_hdrp->exec_entry & 0x3) != 0
      || ! found)
    {
      bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
      obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
    }
  else
    {
      bfd_get_start_address (abfd) = aux_hdrp->exec_entry;
      obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
    }

  bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
  bfd_get_symcount (abfd) = file_hdrp->symbol_total;

  /* Initialize the saved symbol table and string table to NULL.  
     Save important offsets and sizes from the SOM header into
     the BFD.  */
  obj_som_stringtab (abfd) = (char  *) NULL;
  obj_som_symtab (abfd) = (som_symbol_type *) NULL;
  obj_som_sorted_syms (abfd) = NULL;
  obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
  obj_som_sym_filepos (abfd) = file_hdrp->symbol_location;
  obj_som_str_filepos (abfd) = file_hdrp->symbol_strings_location;
  obj_som_reloc_filepos (abfd) = file_hdrp->fixup_request_location;
  obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;

  return abfd->xvec;
}

/* Convert all of the space and subspace info into BFD sections.  Each space
   contains a number of subspaces, which in turn describe the mapping between
   regions of the exec file, and the address space that the program runs in.
   BFD sections which correspond to spaces will overlap the sections for the
   associated subspaces.  */

static boolean
setup_sections (abfd, file_hdr)
     bfd *abfd;
     struct header *file_hdr;
{
  char *space_strings;
  unsigned int space_index, i;
  unsigned int total_subspaces = 0;
  asection **subspace_sections, *section;

  /* First, read in space names */

  space_strings = malloc (file_hdr->space_strings_size);
  if (!space_strings && file_hdr->space_strings_size != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  if (bfd_seek (abfd, file_hdr->space_strings_location, SEEK_SET) < 0)
    goto error_return;
  if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd)
      != file_hdr->space_strings_size)
    goto error_return;

  /* Loop over all of the space dictionaries, building up sections */
  for (space_index = 0; space_index < file_hdr->space_total; space_index++)
    {
      struct space_dictionary_record space;
      struct subspace_dictionary_record subspace, save_subspace;
      int subspace_index;
      asection *space_asect;
      char *newname;

      /* Read the space dictionary element */
      if (bfd_seek (abfd, file_hdr->space_location
		    + space_index * sizeof space, SEEK_SET) < 0)
	goto error_return;
      if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space)
	goto error_return;

      /* Setup the space name string */
      space.name.n_name = space.name.n_strx + space_strings;

      /* Make a section out of it */
      newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1);
      if (!newname)
	goto error_return;
      strcpy (newname, space.name.n_name);
			   
      space_asect = bfd_make_section_anyway (abfd, newname);
      if (!space_asect)
	goto error_return;

       if (space.is_loadable == 0)
	space_asect->flags |= SEC_DEBUGGING;

      /* Set up all the attributes for the space.  */
      if (bfd_som_set_section_attributes (space_asect, space.is_defined,
					  space.is_private, space.sort_key,
					  space.space_number) == false)
	goto error_return;

      /* Now, read in the first subspace for this space */
      if (bfd_seek (abfd, file_hdr->subspace_location
		    + space.subspace_index * sizeof subspace,
		    SEEK_SET) < 0)
	goto error_return;
      if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace)
	goto error_return;
      /* Seek back to the start of the subspaces for loop below */
      if (bfd_seek (abfd, file_hdr->subspace_location
		    + space.subspace_index * sizeof subspace,
		    SEEK_SET) < 0)
	goto error_return;

      /* Setup the start address and file loc from the first subspace record */
      space_asect->vma = subspace.subspace_start;
      space_asect->filepos = subspace.file_loc_init_value;
      space_asect->alignment_power = log2 (subspace.alignment);
      if (space_asect->alignment_power == -1)
	goto error_return;

      /* Initialize save_subspace so we can reliably determine if this
	 loop placed any useful values into it.  */
      memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record));

      /* Loop over the rest of the subspaces, building up more sections */
      for (subspace_index = 0; subspace_index < space.subspace_quantity;
	   subspace_index++)
	{
	  asection *subspace_asect;

	  /* Read in the next subspace */
	  if (bfd_read (&subspace, 1, sizeof subspace, abfd)
	      != sizeof subspace)
	    goto error_return;

	  /* Setup the subspace name string */
	  subspace.name.n_name = subspace.name.n_strx + space_strings;

	  newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1);
	  if (!newname)
	    goto error_return;
	  strcpy (newname, subspace.name.n_name);

	  /* Make a section out of this subspace */
	  subspace_asect = bfd_make_section_anyway (abfd, newname);
	  if (!subspace_asect)
	    goto error_return;

	  /* Store private information about the section.  */
	  if (bfd_som_set_subsection_attributes (subspace_asect, space_asect,
						 subspace.access_control_bits,
						 subspace.sort_key,
						 subspace.quadrant) == false)
	    goto error_return;

	  /* Keep an easy mapping between subspaces and sections. 
	     Note we do not necessarily read the subspaces in the
	     same order in which they appear in the object file.

	     So to make the target index come out correctly, we
	     store the location of the subspace header in target
	     index, then sort using the location of the subspace
	     header as the key.  Then we can assign correct
	     subspace indices.  */
	  total_subspaces++;
	  subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);

	  /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
	     by the access_control_bits in the subspace header.  */
	  switch (subspace.access_control_bits >> 4)
	    {
	    /* Readonly data.  */  
	    case 0x0:
	      subspace_asect->flags |= SEC_DATA | SEC_READONLY;
	      break;

	    /* Normal data.  */  
	    case 0x1:
	      subspace_asect->flags |= SEC_DATA;
	      break;

	    /* Readonly code and the gateways.
	       Gateways have other attributes which do not map
	       into anything BFD knows about.  */
	    case 0x2:
	    case 0x4:
	    case 0x5:
	    case 0x6:
	    case 0x7:
	      subspace_asect->flags |= SEC_CODE | SEC_READONLY;
	      break;

	    /* dynamic (writable) code.  */
	    case 0x3:
	      subspace_asect->flags |= SEC_CODE;
	      break;
	    }
	  
	  if (subspace.dup_common || subspace.is_common) 
	    subspace_asect->flags |= SEC_IS_COMMON;
	  else if (subspace.subspace_length > 0)
	    subspace_asect->flags |= SEC_HAS_CONTENTS;

	  if (subspace.is_loadable)
	    subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
	  else
	    subspace_asect->flags |= SEC_DEBUGGING;

	  if (subspace.code_only)
	    subspace_asect->flags |= SEC_CODE;

	  /* Both file_loc_init_value and initialization_length will
	     be zero for a BSS like subspace.  */
	  if (subspace.file_loc_init_value == 0
	      && subspace.initialization_length == 0)
	    subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);

	  /* This subspace has relocations.
	     The fixup_request_quantity is a byte count for the number of
	     entries in the relocation stream; it is not the actual number
	     of relocations in the subspace.  */
	  if (subspace.fixup_request_quantity != 0)
	    {
	      subspace_asect->flags |= SEC_RELOC;
	      subspace_asect->rel_filepos = subspace.fixup_request_index;
	      som_section_data (subspace_asect)->reloc_size
		= subspace.fixup_request_quantity;
	      /* We can not determine this yet.  When we read in the 
		 relocation table the correct value will be filled in.  */
	      subspace_asect->reloc_count = -1;
	    }

	  /* Update save_subspace if appropriate.  */
	  if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
	    save_subspace = subspace;

	  subspace_asect->vma = subspace.subspace_start;
	  subspace_asect->_cooked_size = subspace.subspace_length;
	  subspace_asect->_raw_size = subspace.subspace_length;
	  subspace_asect->filepos = subspace.file_loc_init_value;
	  subspace_asect->alignment_power = log2 (subspace.alignment);
	  if (subspace_asect->alignment_power == -1)
	    goto error_return;
	}

      /* Yow! there is no subspace within the space which actually 
         has initialized information in it; this should never happen
         as far as I know.  */
      if (!save_subspace.file_loc_init_value)
	goto error_return;

      /* Setup the sizes for the space section based upon the info in the
         last subspace of the space.  */
      space_asect->_cooked_size = save_subspace.subspace_start
	- space_asect->vma + save_subspace.subspace_length;
      space_asect->_raw_size = save_subspace.file_loc_init_value
	- space_asect->filepos + save_subspace.initialization_length;
    }
  /* Now that we've read in all the subspace records, we need to assign
     a target index to each subspace.  */
  subspace_sections = (asection **) malloc (total_subspaces
					    * sizeof (asection *));
  if (subspace_sections == NULL)
    goto error_return;

  for (i = 0, section = abfd->sections; section; section = section->next)
    {
      if (!som_is_subspace (section))
	continue;

      subspace_sections[i] = section;
      i++;
    }
  qsort (subspace_sections, total_subspaces,
	 sizeof (asection *), compare_subspaces);
  
  /* subspace_sections is now sorted in the order in which the subspaces
     appear in the object file.  Assign an index to each one now.  */
  for (i = 0; i < total_subspaces; i++)
    subspace_sections[i]->target_index = i;

  if (space_strings != NULL)
    free (space_strings);

  if (subspace_sections != NULL)
    free (subspace_sections);

  return true;

 error_return:
  if (space_strings != NULL)
    free (space_strings);

  if (subspace_sections != NULL)
    free (subspace_sections);
  return false;
}

/* Read in a SOM object and make it into a BFD.  */

static const bfd_target *
som_object_p (abfd)
     bfd *abfd;
{
  struct header file_hdr;
  struct som_exec_auxhdr aux_hdr;

  if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE)
    {
      if (bfd_get_error () != bfd_error_system_call)
	bfd_set_error (bfd_error_wrong_format);
      return 0;
    }

  if (!_PA_RISC_ID (file_hdr.system_id))
    {
      bfd_set_error (bfd_error_wrong_format);
      return 0;
    }

  switch (file_hdr.a_magic)
    {
    case RELOC_MAGIC:
    case EXEC_MAGIC:
    case SHARE_MAGIC:
    case DEMAND_MAGIC:
#ifdef DL_MAGIC
    case DL_MAGIC:
#endif
#ifdef SHL_MAGIC
    case SHL_MAGIC:
#endif
#ifdef EXECLIBMAGIC
    case EXECLIBMAGIC:
#endif
#ifdef SHARED_MAGIC_CNX
    case SHARED_MAGIC_CNX:
#endif
      break;
    default:
      bfd_set_error (bfd_error_wrong_format);
      return 0;
    }

  if (file_hdr.version_id != VERSION_ID
      && file_hdr.version_id != NEW_VERSION_ID)
    {
      bfd_set_error (bfd_error_wrong_format);
      return 0;
    }

  /* If the aux_header_size field in the file header is zero, then this
     object is an incomplete executable (a .o file).  Do not try to read
     a non-existant auxiliary header.  */
  memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr));
  if (file_hdr.aux_header_size != 0)
    {
      if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE)
	{
	  if (bfd_get_error () != bfd_error_system_call)
	    bfd_set_error (bfd_error_wrong_format);
	  return 0;
	}
    }

  if (!setup_sections (abfd, &file_hdr))
    {
      /* setup_sections does not bubble up a bfd error code.  */
      bfd_set_error (bfd_error_bad_value);
      return 0;
    }

  /* This appears to be a valid SOM object.  Do some initialization.  */
  return som_object_setup (abfd, &file_hdr, &aux_hdr);
}

/* Create a SOM object.  */

static boolean
som_mkobject (abfd)
     bfd *abfd;
{
  /* Allocate memory to hold backend information.  */
  abfd->tdata.som_data = (struct som_data_struct *)
    bfd_zalloc (abfd, sizeof (struct som_data_struct));
  if (abfd->tdata.som_data == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }
  return true;
}

/* Initialize some information in the file header.  This routine makes
   not attempt at doing the right thing for a full executable; it
   is only meant to handle relocatable objects.  */

static boolean
som_prep_headers (abfd)
     bfd *abfd;
{
  struct header *file_hdr;
  asection *section;

  /* Make and attach a file header to the BFD.  */
  file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header));
  if (file_hdr == NULL)

    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }
  obj_som_file_hdr (abfd) = file_hdr;

  if (abfd->flags & (EXEC_P | DYNAMIC))
    {

      /* Make and attach an exec header to the BFD.  */
      obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *)
	bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr));
      if (obj_som_exec_hdr (abfd) == NULL)
	{
	  bfd_set_error (bfd_error_no_memory);
	  return false;
	}

      if (abfd->flags & D_PAGED)
	file_hdr->a_magic = DEMAND_MAGIC;
      else if (abfd->flags & WP_TEXT)
	file_hdr->a_magic = SHARE_MAGIC;
#ifdef SHL_MAGIC
      else if (abfd->flags & DYNAMIC)
	file_hdr->a_magic = SHL_MAGIC;
#endif
      else
	file_hdr->a_magic = EXEC_MAGIC;
    }
  else
    file_hdr->a_magic = RELOC_MAGIC;

  /* Only new format SOM is supported.  */
  file_hdr->version_id = NEW_VERSION_ID;

  /* These fields are optional, and embedding timestamps is not always
     a wise thing to do, it makes comparing objects during a multi-stage
     bootstrap difficult.  */
  file_hdr->file_time.secs = 0;
  file_hdr->file_time.nanosecs = 0; 

  file_hdr->entry_space = 0;
  file_hdr->entry_subspace = 0;
  file_hdr->entry_offset = 0;
  file_hdr->presumed_dp = 0;

  /* Now iterate over the sections translating information from
     BFD sections to SOM spaces/subspaces.  */

  for (section = abfd->sections; section != NULL; section = section->next)
    {
      /* Ignore anything which has not been marked as a space or
	 subspace.  */
      if (!som_is_space (section) && !som_is_subspace (section))
	continue;
      
      if (som_is_space (section))
	{
	  /* Allocate space for the space dictionary.  */
	  som_section_data (section)->space_dict
	    = (struct space_dictionary_record *)
	      bfd_zalloc (abfd, sizeof (struct space_dictionary_record));
	  if (som_section_data (section)->space_dict == NULL)
	    {
	      bfd_set_error (bfd_error_no_memory);
	      return false;
	    }
	  /* Set space attributes.  Note most attributes of SOM spaces
	     are set based on the subspaces it contains.  */
	  som_section_data (section)->space_dict->loader_fix_index = -1;
	  som_section_data (section)->space_dict->init_pointer_index = -1;

	  /* Set more attributes that were stuffed away in private data.  */
	  som_section_data (section)->space_dict->sort_key = 
	    som_section_data (section)->copy_data->sort_key;
	  som_section_data (section)->space_dict->is_defined = 
	    som_section_data (section)->copy_data->is_defined;
	  som_section_data (section)->space_dict->is_private = 
	    som_section_data (section)->copy_data->is_private;
	  som_section_data (section)->space_dict->space_number =
	    som_section_data (section)->copy_data->space_number;
	}
      else
	{
	  /* Allocate space for the subspace dictionary.  */
	  som_section_data (section)->subspace_dict
	    = (struct subspace_dictionary_record *)
	      bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record));
	  if (som_section_data (section)->subspace_dict == NULL)
	    {
	      bfd_set_error (bfd_error_no_memory);
	      return false;
	    }

	  /* Set subspace attributes.  Basic stuff is done here, additional
	     attributes are filled in later as more information becomes
	     available.  */
	  if (section->flags & SEC_IS_COMMON)
	    {
	      som_section_data (section)->subspace_dict->dup_common = 1;
	      som_section_data (section)->subspace_dict->is_common = 1;
	    }

	  if (section->flags & SEC_ALLOC)
	    som_section_data (section)->subspace_dict->is_loadable = 1;

	  if (section->flags & SEC_CODE)
	    som_section_data (section)->subspace_dict->code_only = 1;

	  som_section_data (section)->subspace_dict->subspace_start = 
	    section->vma;
	  som_section_data (section)->subspace_dict->subspace_length =
	    bfd_section_size (abfd, section);
	  som_section_data (section)->subspace_dict->initialization_length =
	    bfd_section_size (abfd, section);
	  som_section_data (section)->subspace_dict->alignment = 
	    1 << section->alignment_power;

	  /* Set more attributes that were stuffed away in private data.  */
	  som_section_data (section)->subspace_dict->sort_key =
	    som_section_data (section)->copy_data->sort_key;
	  som_section_data (section)->subspace_dict->access_control_bits =
	    som_section_data (section)->copy_data->access_control_bits;
	  som_section_data (section)->subspace_dict->quadrant =
	    som_section_data (section)->copy_data->quadrant;
	}
    }
  return true;
}

/* Return true if the given section is a SOM space, false otherwise.  */

static boolean
som_is_space (section)
     asection *section;
{
  /* If no copy data is available, then it's neither a space nor a
     subspace.  */
  if (som_section_data (section)->copy_data == NULL)
    return false;

  /* If the containing space isn't the same as the given section,
     then this isn't a space.  */
  if (som_section_data (section)->copy_data->container != section
      && (som_section_data (section)->copy_data->container->output_section
	  != section))
    return false;

  /* OK.  Must be a space.  */
  return true;
}

/* Return true if the given section is a SOM subspace, false otherwise.  */

static boolean
som_is_subspace (section)
     asection *section;
{
  /* If no copy data is available, then it's neither a space nor a
     subspace.  */
  if (som_section_data (section)->copy_data == NULL)
    return false;

  /* If the containing space is the same as the given section,
     then this isn't a subspace.  */
  if (som_section_data (section)->copy_data->container == section
      || (som_section_data (section)->copy_data->container->output_section
	  == section))
    return false;

  /* OK.  Must be a subspace.  */
  return true;
}

/* Return true if the given space containins the given subspace.  It
   is safe to assume space really is a space, and subspace really
   is a subspace.  */

static boolean
som_is_container (space, subspace)
     asection *space, *subspace;
{
  return (som_section_data (subspace)->copy_data->container == space
	  || (som_section_data (subspace)->copy_data->container->output_section
	      == space));
}

/* Count and return the number of spaces attached to the given BFD.  */

static unsigned long
som_count_spaces (abfd)
     bfd *abfd;
{
  int count = 0;
  asection *section;

  for (section = abfd->sections; section != NULL; section = section->next)
      count += som_is_space (section);

  return count;
}

/* Count the number of subspaces attached to the given BFD.  */

static unsigned long
som_count_subspaces (abfd)
     bfd *abfd;
{
  int count = 0;
  asection *section;

  for (section = abfd->sections; section != NULL; section = section->next)
    count += som_is_subspace (section);

  return count;
}

/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.

   We desire symbols to be ordered starting with the symbol with the
   highest relocation count down to the symbol with the lowest relocation
   count.  Doing so compacts the relocation stream.  */

static int
compare_syms (arg1, arg2)
     const PTR arg1;
     const PTR arg2;

{
  asymbol **sym1 = (asymbol **) arg1;
  asymbol **sym2 = (asymbol **) arg2;
  unsigned int count1, count2;
  
  /* Get relocation count for each symbol.  Note that the count
     is stored in the udata pointer for section symbols!  */
  if ((*sym1)->flags & BSF_SECTION_SYM)
    count1 = (*sym1)->udata.i;
  else
    count1 = som_symbol_data (*sym1)->reloc_count;

  if ((*sym2)->flags & BSF_SECTION_SYM)
    count2 = (*sym2)->udata.i;
  else
    count2 = som_symbol_data (*sym2)->reloc_count;

  /* Return the appropriate value.  */
  if (count1 < count2)
    return 1;
  else if (count1 > count2)
    return -1;
  return 0;
}

/* Return -1, 0, 1 indicating the relative ordering of subspace1
   and subspace.  */

static int
compare_subspaces (arg1, arg2)
     const PTR arg1;
     const PTR arg2;

{
  asection **subspace1 = (asection **) arg1;
  asection **subspace2 = (asection **) arg2;
  unsigned int count1, count2;
  
  if ((*subspace1)->target_index < (*subspace2)->target_index)
    return -1;
  else if ((*subspace2)->target_index < (*subspace1)->target_index)
    return 1;
  else
    return 0;
}

/* Perform various work in preparation for emitting the fixup stream.  */

static void
som_prep_for_fixups (abfd, syms, num_syms)
     bfd *abfd;
     asymbol **syms;
     unsigned long num_syms;
{
  int i;
  asection *section;
  asymbol **sorted_syms;

  /* Most SOM relocations involving a symbol have a length which is
     dependent on the index of the symbol.  So symbols which are
     used often in relocations should have a small index.  */

  /* First initialize the counters for each symbol.  */
  for (i = 0; i < num_syms; i++)
    {
      /* Handle a section symbol; these have no pointers back to the
	 SOM symbol info.  So we just use the udata field to hold the
	 relocation count.  */
      if (som_symbol_data (syms[i]) == NULL
	  || syms[i]->flags & BSF_SECTION_SYM)
	{
	  syms[i]->flags |= BSF_SECTION_SYM;
	  syms[i]->udata.i = 0;
	}
      else
	som_symbol_data (syms[i])->reloc_count = 0;
    }

  /* Now that the counters are initialized, make a weighted count
     of how often a given symbol is used in a relocation.  */
  for (section = abfd->sections; section != NULL; section = section->next)
    {
      int i;

      /* Does this section have any relocations?  */
      if (section->reloc_count <= 0)
	continue;

      /* Walk through each relocation for this section.  */
      for (i = 1; i < section->reloc_count; i++)
	{
	  arelent *reloc = section->orelocation[i];
	  int scale;

	  /* A relocation against a symbol in the *ABS* section really
	     does not have a symbol.  Likewise if the symbol isn't associated
	     with any section.  */
	  if (reloc->sym_ptr_ptr == NULL
	      || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
	    continue;

	  /* Scaling to encourage symbols involved in R_DP_RELATIVE 
	     and R_CODE_ONE_SYMBOL relocations to come first.  These
	     two relocations have single byte versions if the symbol
	     index is very small.  */
	  if (reloc->howto->type == R_DP_RELATIVE
	      || reloc->howto->type == R_CODE_ONE_SYMBOL)
	    scale = 2;
	  else
	    scale = 1;

	  /* Handle section symbols by storing the count in the udata
	     field.  It will not be used and the count is very important
	     for these symbols.  */
	  if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
	    {
	      (*reloc->sym_ptr_ptr)->udata.i =
		(*reloc->sym_ptr_ptr)->udata.i + scale;
	      continue;
	    }

	  /* A normal symbol.  Increment the count.  */
	  som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
	}
    }

  /* Sort a copy of the symbol table, rather than the canonical
     output symbol table.  */
  sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *));
  memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
  qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
  obj_som_sorted_syms (abfd) = sorted_syms;

  /* Compute the symbol indexes, they will be needed by the relocation
     code.  */
  for (i = 0; i < num_syms; i++)
    {
      /* A section symbol.  Again, there is no pointer to backend symbol
	 information, so we reuse the udata field again.  */
      if (sorted_syms[i]->flags & BSF_SECTION_SYM)
	sorted_syms[i]->udata.i = i;
      else
        som_symbol_data (sorted_syms[i])->index = i;
    }
}

static boolean
som_write_fixups (abfd, current_offset, total_reloc_sizep)
     bfd *abfd;
     unsigned long current_offset;
     unsigned int *total_reloc_sizep;
{
  unsigned int i, j;
  /* Chunk of memory that we can use as buffer space, then throw
     away.  */
  unsigned char tmp_space[SOM_TMP_BUFSIZE];
  unsigned char *p;
  unsigned int total_reloc_size = 0;
  unsigned int subspace_reloc_size = 0;
  unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
  asection *section = abfd->sections;

  memset (tmp_space, 0, SOM_TMP_BUFSIZE);
  p = tmp_space;

  /* All the fixups for a particular subspace are emitted in a single
     stream.  All the subspaces for a particular space are emitted
     as a single stream.

     So, to get all the locations correct one must iterate through all the
     spaces, for each space iterate through its subspaces and output a
     fixups stream.  */
  for (i = 0; i < num_spaces; i++)
    {
      asection *subsection;

      /* Find a space.  */
      while (!som_is_space (section))
	section = section->next;

      /* Now iterate through each of its subspaces.  */
      for (subsection = abfd->sections;
	   subsection != NULL;
	   subsection = subsection->next)
	{
	  int reloc_offset, current_rounding_mode;

	  /* Find a subspace of this space.  */
	  if (!som_is_subspace (subsection)
	      || !som_is_container (section, subsection))
	    continue;

	  /* If this subspace does not have real data, then we are
	     finised with it.  */
	  if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
	    {
	      som_section_data (subsection)->subspace_dict->fixup_request_index
		= -1;
	      continue;
	    }

	  /* This subspace has some relocations.  Put the relocation stream
	     index into the subspace record.  */
	  som_section_data (subsection)->subspace_dict->fixup_request_index
	    = total_reloc_size;

	  /* To make life easier start over with a clean slate for 
	     each subspace.  Seek to the start of the relocation stream
	     for this subspace in preparation for writing out its fixup
	     stream.  */
	  if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0)
	    return false;

	  /* Buffer space has already been allocated.  Just perform some
	     initialization here.  */
	  p = tmp_space;
	  subspace_reloc_size = 0;
	  reloc_offset = 0;
	  som_initialize_reloc_queue (reloc_queue);
	  current_rounding_mode = R_N_MODE;

	  /* Translate each BFD relocation into one or more SOM 
	     relocations.  */
	  for (j = 0; j < subsection->reloc_count; j++)
	    {
	      arelent *bfd_reloc = subsection->orelocation[j];
	      unsigned int skip;
	      int sym_num;

	      /* Get the symbol number.  Remember it's stored in a 
		 special place for section symbols.  */
	      if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
		sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
	      else
		sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
	      
	      /* If there is not enough room for the next couple relocations,
		 then dump the current buffer contents now.  Also reinitialize
		 the relocation queue. 

		 No single BFD relocation could ever translate into more
		 than 100 bytes of SOM relocations (20bytes is probably the
		 upper limit, but leave lots of space for growth).  */
	      if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
		{
		  if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
		      != p - tmp_space)
		    return false;

		  p = tmp_space;
		  som_initialize_reloc_queue (reloc_queue);
		}

	      /* Emit R_NO_RELOCATION fixups to map any bytes which were
		 skipped.  */
	      skip = bfd_reloc->address - reloc_offset;
	      p = som_reloc_skip (abfd, skip, p,
				  &subspace_reloc_size, reloc_queue);

	      /* Update reloc_offset for the next iteration.

		 Many relocations do not consume input bytes.  They
		 are markers, or set state necessary to perform some
		 later relocation.  */
	      switch (bfd_reloc->howto->type)
		{
		/* This only needs to handle relocations that may be
		   made by hppa_som_gen_reloc.  */
		case R_ENTRY:
		case R_ALT_ENTRY:
		case R_EXIT:
		case R_N_MODE:
		case R_S_MODE:
		case R_D_MODE:
		case R_R_MODE:
		case R_FSEL:
		case R_LSEL:
		case R_RSEL:
		case R_COMP1:
		case R_COMP2:
		case R_BEGIN_BRTAB:
		case R_END_BRTAB:
		  reloc_offset = bfd_reloc->address;
		  break;

		default:
		  reloc_offset = bfd_reloc->address + 4;
		  break;
		}

	      /* Now the actual relocation we care about.  */
	      switch (bfd_reloc->howto->type)
		{
		case R_PCREL_CALL:
		case R_ABS_CALL:
		  p = som_reloc_call (abfd, p, &subspace_reloc_size,
				      bfd_reloc, sym_num, reloc_queue);
		  break;

		case R_CODE_ONE_SYMBOL:
		case R_DP_RELATIVE:
		  /* Account for any addend.  */
		  if (bfd_reloc->addend)
		    p = som_reloc_addend (abfd, bfd_reloc->addend, p, 
					  &subspace_reloc_size, reloc_queue);

		  if (sym_num < 0x20)
		    {
		      bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
		      subspace_reloc_size += 1;
		      p += 1;
		    }
		  else if (sym_num < 0x100)
		    {
		      bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
		      bfd_put_8 (abfd, sym_num, p + 1);
		      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
					  2, reloc_queue);
		    }
		  else if (sym_num < 0x10000000)
		    {
		      bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
		      bfd_put_8 (abfd, sym_num >> 16, p + 1);
		      bfd_put_16 (abfd, sym_num, p + 2); 
		      p = try_prev_fixup (abfd, &subspace_reloc_size,
					  p, 4, reloc_queue);
		    }
		  else
		    abort ();
		  break;

		case R_DATA_ONE_SYMBOL:
		case R_DATA_PLABEL:
		case R_CODE_PLABEL:
		case R_DLT_REL:
		  /* Account for any addend using R_DATA_OVERRIDE.  */
		  if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
		      && bfd_reloc->addend)
		    p = som_reloc_addend (abfd, bfd_reloc->addend, p, 
					  &subspace_reloc_size, reloc_queue);

		  if (sym_num < 0x100)
		    {
		      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
		      bfd_put_8 (abfd, sym_num, p + 1);
		      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
					  2, reloc_queue);
		    }
		  else if (sym_num < 0x10000000)
		    {
		      bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
		      bfd_put_8 (abfd, sym_num >> 16, p + 1);
		      bfd_put_16 (abfd, sym_num, p + 2); 
		      p = try_prev_fixup (abfd, &subspace_reloc_size,
					  p, 4, reloc_queue);
		    }
		  else
		    abort ();
		  break;

		case R_ENTRY:
		  {
		    int tmp;
		    arelent *tmp_reloc = NULL;
		    bfd_put_8 (abfd, R_ENTRY, p);

		    /* R_ENTRY relocations have 64 bits of associated
		       data.  Unfortunately the addend field of a bfd
		       relocation is only 32 bits.  So, we split up
		       the 64bit unwind information and store part in
		       the R_ENTRY relocation, and the rest in the R_EXIT
		       relocation.  */
		    bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
		
		    /* Find the next R_EXIT relocation.  */
		    for (tmp = j; tmp < subsection->reloc_count; tmp++)
		      {
		        tmp_reloc = subsection->orelocation[tmp];
			if (tmp_reloc->howto->type == R_EXIT)
			  break;
		      }

		    if (tmp == subsection->reloc_count)
		      abort ();

		    bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
		    p = try_prev_fixup (abfd, &subspace_reloc_size,
					p, 9, reloc_queue);
		    break;
		  }
		  
		case R_N_MODE:
		case R_S_MODE:
		case R_D_MODE:
		case R_R_MODE:
		  /* If this relocation requests the current rounding
		     mode, then it is redundant.  */
		  if (bfd_reloc->howto->type != current_rounding_mode)
		    {
		      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
		      subspace_reloc_size += 1;
		      p += 1;
		      current_rounding_mode = bfd_reloc->howto->type;
		    }
		  break;

		case R_EXIT:
		case R_ALT_ENTRY:
		case R_FSEL:
		case R_LSEL:
		case R_RSEL:
		case R_BEGIN_BRTAB:
		case R_END_BRTAB:
		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
		  subspace_reloc_size += 1;
		  p += 1;
		  break;

		case R_COMP1:
		  /* The only time we generate R_COMP1, R_COMP2 and 
		     R_CODE_EXPR relocs is for the difference of two
		     symbols.  Hence we can cheat here.  */
		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
		  bfd_put_8 (abfd, 0x44, p + 1);
		  p = try_prev_fixup (abfd, &subspace_reloc_size,
				      p, 2, reloc_queue);
		  break;

		case R_COMP2:
		  /* The only time we generate R_COMP1, R_COMP2 and 
		     R_CODE_EXPR relocs is for the difference of two
		     symbols.  Hence we can cheat here.  */
		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
		  bfd_put_8 (abfd, 0x80, p + 1);
		  bfd_put_8 (abfd, sym_num >> 16, p + 2);
		  bfd_put_16 (abfd, sym_num, p + 3);
		  p = try_prev_fixup (abfd, &subspace_reloc_size,
				      p, 5, reloc_queue);
		  break;

		case R_CODE_EXPR:
		  /* The only time we generate R_COMP1, R_COMP2 and 
		     R_CODE_EXPR relocs is for the difference of two
		     symbols.  Hence we can cheat here.  */
		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
		  subspace_reloc_size += 1;
		  p += 1;
		  break;

		/* Put a "R_RESERVED" relocation in the stream if
		   we hit something we do not understand.  The linker
		   will complain loudly if this ever happens.  */
		default:
		  bfd_put_8 (abfd, 0xff, p);
		  subspace_reloc_size += 1;
		  p += 1;
		  break;
		}
	    }

	  /* Last BFD relocation for a subspace has been processed.
	     Map the rest of the subspace with R_NO_RELOCATION fixups.  */
	  p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection) 
			              - reloc_offset,
			      p, &subspace_reloc_size, reloc_queue);

	  /* Scribble out the relocations.  */
	  if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd)
	      != p - tmp_space)
	    return false;
	  p = tmp_space;

	  total_reloc_size += subspace_reloc_size;
	  som_section_data (subsection)->subspace_dict->fixup_request_quantity
	    = subspace_reloc_size;
	}
      section = section->next;
    }
  *total_reloc_sizep = total_reloc_size;
  return true;
}

/* Write out the space/subspace string table.  */

static boolean
som_write_space_strings (abfd, current_offset, string_sizep)
     bfd *abfd;
     unsigned long current_offset;
     unsigned int *string_sizep;
{
  /* Chunk of memory that we can use as buffer space, then throw
     away.  */
  unsigned char tmp_space[SOM_TMP_BUFSIZE];
  unsigned char *p;
  unsigned int strings_size = 0;
  asection *section;

  memset (tmp_space, 0, SOM_TMP_BUFSIZE);
  p = tmp_space;

  /* Seek to the start of the space strings in preparation for writing
     them out.  */
  if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
    return false;

  /* Walk through all the spaces and subspaces (order is not important)
     building up and writing string table entries for their names.  */
  for (section = abfd->sections; section != NULL; section = section->next)
    {
      int length;

      /* Only work with space/subspaces; avoid any other sections
	 which might have been made (.text for example).  */
      if (!som_is_space (section) && !som_is_subspace (section))
	continue;

      /* Get the length of the space/subspace name.  */
      length = strlen (section->name);

      /* If there is not enough room for the next entry, then dump the
	 current buffer contents now.  Each entry will take 4 bytes to
	 hold the string length + the string itself + null terminator.  */
      if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
	{
	  if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
	      != p - tmp_space) 
	    return false;
	  /* Reset to beginning of the buffer space.  */
	  p = tmp_space;
	}

      /* First element in a string table entry is the length of the
	 string.  Alignment issues are already handled.  */
      bfd_put_32 (abfd, length, p);
      p += 4;
      strings_size += 4;

      /* Record the index in the space/subspace records.  */
      if (som_is_space (section))
	som_section_data (section)->space_dict->name.n_strx = strings_size;
      else
	som_section_data (section)->subspace_dict->name.n_strx = strings_size;

      /* Next comes the string itself + a null terminator.  */
      strcpy (p, section->name);
      p += length + 1;
      strings_size += length + 1;

      /* Always align up to the next word boundary.  */
      while (strings_size % 4)
	{
	  bfd_put_8 (abfd, 0, p);
	  p++;
	  strings_size++;
	}
    }

  /* Done with the space/subspace strings.  Write out any information
     contained in a partial block.  */
  if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
    return false;
  *string_sizep = strings_size;
  return true;
}

/* Write out the symbol string table.  */

static boolean
som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep)
     bfd *abfd;
     unsigned long current_offset;
     asymbol **syms;
     unsigned int num_syms;
     unsigned int *string_sizep;
{
  unsigned int i;
  
  /* Chunk of memory that we can use as buffer space, then throw
     away.  */
  unsigned char tmp_space[SOM_TMP_BUFSIZE];
  unsigned char *p;
  unsigned int strings_size = 0;

  memset (tmp_space, 0, SOM_TMP_BUFSIZE);
  p = tmp_space;

  /* Seek to the start of the space strings in preparation for writing
     them out.  */
  if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
    return false;

  for (i = 0; i < num_syms; i++)
    {
      int length = strlen (syms[i]->name);

      /* If there is not enough room for the next entry, then dump the
	 current buffer contents now.  */
     if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE)
	{
	  if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd)
	      != p - tmp_space)
	    return false;
	  /* Reset to beginning of the buffer space.  */
	  p = tmp_space;
	}

      /* First element in a string table entry is the length of the
	 string.  This must always be 4 byte aligned.  This is also
	 an appropriate time to fill in the string index field in the
	 symbol table entry.  */
      bfd_put_32 (abfd, length, p);
      strings_size += 4;
      p += 4;

      /* Next comes the string itself + a null terminator.  */
      strcpy (p, syms[i]->name);

      som_symbol_data(syms[i])->stringtab_offset = strings_size;
      p += length + 1;
      strings_size += length + 1;

      /* Always align up to the next word boundary.  */
      while (strings_size % 4)
        {
	  bfd_put_8 (abfd, 0, p);
	  strings_size++;
	  p++;
        }
    }

  /* Scribble out any partial block.  */
  if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space)
    return false;

  *string_sizep = strings_size;
  return true;
}

/* Compute variable information to be placed in the SOM headers, 
   space/subspace dictionaries, relocation streams, etc.  Begin
   writing parts of the object file.  */

static boolean 
som_begin_writing (abfd)
     bfd *abfd;
{
  unsigned long current_offset = 0;
  int strings_size = 0;
  unsigned int total_reloc_size = 0;
  unsigned long num_spaces, num_subspaces, num_syms, i;
  asection *section;
  asymbol **syms = bfd_get_outsymbols (abfd);
  unsigned int total_subspaces = 0;
  struct som_exec_auxhdr *exec_header = NULL;

  /* The file header will always be first in an object file, 
     everything else can be in random locations.  To keep things
     "simple" BFD will lay out the object file in the manner suggested
     by the PRO ABI for PA-RISC Systems.  */

  /* Before any output can really begin offsets for all the major
     portions of the object file must be computed.  So, starting
     with the initial file header compute (and sometimes write)
     each portion of the object file.  */

  /* Make room for the file header, it's contents are not complete
     yet, so it can not be written at this time.  */
  current_offset += sizeof (struct header);  

  /* Any auxiliary headers will follow the file header.  Right now
     we support only the copyright and version headers.  */
  obj_som_file_hdr (abfd)->aux_header_location = current_offset;
  obj_som_file_hdr (abfd)->aux_header_size = 0;
  if (abfd->flags & (EXEC_P | DYNAMIC))
    {
      /* Parts of the exec header will be filled in later, so
	 delay writing the header itself.  Fill in the defaults,
	 and write it later.  */
      current_offset += sizeof (struct som_exec_auxhdr);
      obj_som_file_hdr (abfd)->aux_header_size
	+= sizeof (struct som_exec_auxhdr);
      exec_header = obj_som_exec_hdr (abfd);
      exec_header->som_auxhdr.type = EXEC_AUX_ID;
      exec_header->som_auxhdr.length = 40;
    }
  if (obj_som_version_hdr (abfd) != NULL)
    {
      unsigned int len;

      if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
	return false;

      /* Write the aux_id structure and the string length.  */
      len = sizeof (struct aux_id) + sizeof (unsigned int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len)
	return false;

      /* Write the version string.  */
      len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string,
		     len, 1, abfd) != len)
	return false;
    }

  if (obj_som_copyright_hdr (abfd) != NULL)
    {
      unsigned int len;

      if (bfd_seek (abfd, current_offset, SEEK_SET) < 0)
	return false;

      /* Write the aux_id structure and the string length.  */
      len = sizeof (struct aux_id) + sizeof (unsigned int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len)
	return false;

      /* Write the copyright string.  */
      len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright,
		     len, 1, abfd) != len)
	return false;
    }

  /* Next comes the initialization pointers; we have no initialization
     pointers, so current offset does not change.  */
  obj_som_file_hdr (abfd)->init_array_location = current_offset;
  obj_som_file_hdr (abfd)->init_array_total = 0;

  /* Next are the space records.  These are fixed length records.

     Count the number of spaces to determine how much room is needed
     in the object file for the space records.

     The names of the spaces are stored in a separate string table,
     and the index for each space into the string table is computed
     below.  Therefore, it is not possible to write the space headers
     at this time.  */
  num_spaces = som_count_spaces (abfd);
  obj_som_file_hdr (abfd)->space_location = current_offset;
  obj_som_file_hdr (abfd)->space_total = num_spaces;
  current_offset += num_spaces * sizeof (struct space_dictionary_record);

  /* Next are the subspace records.  These are fixed length records.

     Count the number of subspaes to determine how much room is needed
     in the object file for the subspace records.

     A variety if fields in the subspace record are still unknown at
     this time (index into string table, fixup stream location/size, etc).  */
  num_subspaces = som_count_subspaces (abfd);
  obj_som_file_hdr (abfd)->subspace_location = current_offset;
  obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
  current_offset += num_subspaces * sizeof (struct subspace_dictionary_record);

  /* Next is the string table for the space/subspace names.  We will
     build and write the string table on the fly.  At the same time
     we will fill in the space/subspace name index fields.  */

  /* The string table needs to be aligned on a word boundary.  */
  if (current_offset % 4)
    current_offset += (4 - (current_offset % 4));

  /* Mark the offset of the space/subspace string table in the 
     file header.  */
  obj_som_file_hdr (abfd)->space_strings_location = current_offset;

  /* Scribble out the space strings.  */
  if (som_write_space_strings (abfd, current_offset, &strings_size) == false)
    return false;

  /* Record total string table size in the header and update the
     current offset.  */
  obj_som_file_hdr (abfd)->space_strings_size = strings_size;
  current_offset += strings_size;

  /* Next is the symbol table.  These are fixed length records.

     Count the number of symbols to determine how much room is needed
     in the object file for the symbol table.

     The names of the symbols are stored in a separate string table,
     and the index for each symbol name into the string table is computed
     below.  Therefore, it is not possible to write the symobl table
     at this time.  */
  num_syms = bfd_get_symcount (abfd);
  obj_som_file_hdr (abfd)->symbol_location = current_offset;
  obj_som_file_hdr (abfd)->symbol_total = num_syms;
  current_offset += num_syms * sizeof (struct symbol_dictionary_record);

  /* Next are the symbol strings.
     Align them to a word boundary.  */
  if (current_offset % 4)
    current_offset += (4 - (current_offset % 4));
  obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;

  /* Scribble out the symbol strings.  */
  if (som_write_symbol_strings (abfd, current_offset, syms,
				num_syms, &strings_size)
      == false)
    return false;

  /* Record total string table size in header and update the
     current offset.  */
  obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
  current_offset += strings_size;

  /* Next is the compiler records.  We do not use these.  */
  obj_som_file_hdr (abfd)->compiler_location = current_offset;
  obj_som_file_hdr (abfd)->compiler_total = 0;

  /* Now compute the file positions for the loadable subspaces, taking
     care to make sure everything stays properly aligned.  */

  section = abfd->sections;
  for (i = 0; i < num_spaces; i++)
    {
      asection *subsection;
      int first_subspace;
      unsigned int subspace_offset = 0;

      /* Find a space.  */
      while (!som_is_space (section))
	section = section->next;

      first_subspace = 1;
      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
	   subsection != NULL;
	   subsection = subsection->next)
	{

	  if (!som_is_subspace (subsection)
	      || !som_is_container (section, subsection)
	      || (subsection->flags & SEC_ALLOC) == 0)
	    continue;

	  /* If this is the first subspace in the space, and we are
	     building an executable, then take care to make sure all
	     the alignments are correct and update the exec header.  */
	  if (first_subspace
	      && (abfd->flags & (EXEC_P | DYNAMIC)))
	    {
	      /* Demand paged executables have each space aligned to a
		 page boundary.  Sharable executables (write-protected
		 text) have just the private (aka data & bss) space aligned
		 to a page boundary.  Ugh.  Not true for HPUX.

		 The HPUX kernel requires the text to always be page aligned
		 within the file regardless of the executable's type.  */
	      if (abfd->flags & (D_PAGED | DYNAMIC)
		  || (subsection->flags & SEC_CODE)
		  || ((abfd->flags & WP_TEXT)
		      && (subsection->flags & SEC_DATA)))
		current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);

	      /* Update the exec header.  */
	      if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
		{
		  exec_header->exec_tmem = section->vma;
		  exec_header->exec_tfile = current_offset;
		}
	      if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
		{
		  exec_header->exec_dmem = section->vma;
		  exec_header->exec_dfile = current_offset;
		}

	      /* Keep track of exactly where we are within a particular
		 space.  This is necessary as the braindamaged HPUX
		 loader will create holes between subspaces *and* 
		 subspace alignments are *NOT* preserved.  What a crock.  */
	      subspace_offset = subsection->vma;

	      /* Only do this for the first subspace within each space.  */
	      first_subspace = 0;
	    }
	  else if (abfd->flags & (EXEC_P | DYNAMIC))
	    {
	      /* The braindamaged HPUX loader may have created a hole
		 between two subspaces.  It is *not* sufficient to use
		 the alignment specifications within the subspaces to
		 account for these holes -- I've run into at least one
		 case where the loader left one code subspace unaligned
		 in a final executable.

		 To combat this we keep a current offset within each space,
		 and use the subspace vma fields to detect and preserve
		 holes.  What a crock!

		 ps.  This is not necessary for unloadable space/subspaces.  */
	      current_offset += subsection->vma - subspace_offset;
	      if (subsection->flags & SEC_CODE)
		exec_header->exec_tsize += subsection->vma - subspace_offset;
	      else
		exec_header->exec_dsize += subsection->vma - subspace_offset;
	      subspace_offset += subsection->vma - subspace_offset;
	    }


	  subsection->target_index = total_subspaces++;
	  /* This is real data to be loaded from the file.  */
	  if (subsection->flags & SEC_LOAD)
	    {
	      /* Update the size of the code & data.  */
	      if (abfd->flags & (EXEC_P | DYNAMIC)
		  && subsection->flags & SEC_CODE)
		exec_header->exec_tsize += subsection->_cooked_size;
	      else if (abfd->flags & (EXEC_P | DYNAMIC)
		       && subsection->flags & SEC_DATA)
		exec_header->exec_dsize += subsection->_cooked_size;
	      som_section_data (subsection)->subspace_dict->file_loc_init_value
		= current_offset;
	      subsection->filepos = current_offset;
	      current_offset += bfd_section_size (abfd, subsection); 
	      subspace_offset += bfd_section_size (abfd, subsection);
	    }
	  /* Looks like uninitialized data.  */
	  else
	    {
	      /* Update the size of the bss section.  */
	      if (abfd->flags & (EXEC_P | DYNAMIC))
		exec_header->exec_bsize += subsection->_cooked_size;

	      som_section_data (subsection)->subspace_dict->file_loc_init_value
		= 0;
	      som_section_data (subsection)->subspace_dict->
		initialization_length = 0;
	    }
	}
      /* Goto the next section.  */
      section = section->next; 
    }

  /* Finally compute the file positions for unloadable subspaces.
     If building an executable, start the unloadable stuff on its
     own page.  */

  if (abfd->flags & (EXEC_P | DYNAMIC))
    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);

  obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
  section = abfd->sections;
  for (i = 0; i < num_spaces; i++)
    {
      asection *subsection;

      /* Find a space.  */
      while (!som_is_space (section))
	section = section->next;

      if (abfd->flags & (EXEC_P | DYNAMIC))
	current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);

      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
	   subsection != NULL;
	   subsection = subsection->next)
	{
	  
	  if (!som_is_subspace (subsection)
	      || !som_is_container (section, subsection)
	      || (subsection->flags & SEC_ALLOC) != 0)
	    continue;

	  subsection->target_index = total_subspaces++;
	  /* This is real data to be loaded from the file.  */
	  if ((subsection->flags & SEC_LOAD) == 0)
	    {
	      som_section_data (subsection)->subspace_dict->file_loc_init_value
		= current_offset;
	      subsection->filepos = current_offset;
	      current_offset += bfd_section_size (abfd, subsection); 
	    }
	  /* Looks like uninitialized data.  */
	  else
	    {
	      som_section_data (subsection)->subspace_dict->file_loc_init_value
		= 0;
	      som_section_data (subsection)->subspace_dict->
		initialization_length = bfd_section_size (abfd, subsection);
	    }
	}
      /* Goto the next section.  */
      section = section->next; 
    }

  /* If building an executable, then make sure to seek to and write
     one byte at the end of the file to make sure any necessary
     zeros are filled in.  Ugh.  */
  if (abfd->flags & (EXEC_P | DYNAMIC))
    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
  if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0)
    return false;
  if (bfd_write ((PTR) "", 1, 1, abfd) != 1)
    return false;

  obj_som_file_hdr (abfd)->unloadable_sp_size
    = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;

  /* Loader fixups are not supported in any way shape or form.  */
  obj_som_file_hdr (abfd)->loader_fixup_location = 0;
  obj_som_file_hdr (abfd)->loader_fixup_total = 0;

  /* Done.  Store the total size of the SOM so far.  */
  obj_som_file_hdr (abfd)->som_length = current_offset;

  return true;
}

/* Finally, scribble out the various headers to the disk.  */

static boolean
som_finish_writing (abfd)
     bfd *abfd;
{
  int num_spaces = som_count_spaces (abfd);
  int i;
  int subspace_index = 0;
  file_ptr location;
  asection *section;
  unsigned long current_offset;
  unsigned int total_reloc_size;

  /* Do prep work before handling fixups.  */
  som_prep_for_fixups (abfd,
		       bfd_get_outsymbols (abfd),
		       bfd_get_symcount (abfd));

  current_offset = obj_som_file_hdr (abfd)->som_length;

  /* At the end of the file is the fixup stream which starts on a
     word boundary.  */
  if (current_offset % 4)
    current_offset += (4 - (current_offset % 4)); 
  obj_som_file_hdr (abfd)->fixup_request_location = current_offset;

  /* Write the fixups and update fields in subspace headers which
     relate to the fixup stream.  */
  if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false)
    return false;

  /* Record the total size of the fixup stream in the file header.  */
  obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;

  obj_som_file_hdr (abfd)->som_length += total_reloc_size;
 
  /* Now that the symbol table information is complete, build and
     write the symbol table.  */
  if (som_build_and_write_symbol_table (abfd) == false)
    return false;

  /* Subspaces are written first so that we can set up information
     about them in their containing spaces as the subspace is written.  */

  /* Seek to the start of the subspace dictionary records.  */
  location = obj_som_file_hdr (abfd)->subspace_location;
  if (bfd_seek (abfd, location, SEEK_SET) < 0)
    return false;

  section = abfd->sections;
  /* Now for each loadable space write out records for its subspaces.  */
  for (i = 0; i < num_spaces; i++)
    {
      asection *subsection;

      /* Find a space.  */
      while (!som_is_space (section))
	section = section->next;

      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
	   subsection != NULL;
	   subsection = subsection->next)
	{
	  
	  /* Skip any section which does not correspond to a space
	     or subspace.  Or does not have SEC_ALLOC set (and therefore
	     has no real bits on the disk).  */
	  if (!som_is_subspace (subsection)
	      || !som_is_container (section, subsection)
	      || (subsection->flags & SEC_ALLOC) == 0)
	    continue;

	  /* If this is the first subspace for this space, then save
	     the index of the subspace in its containing space.  Also
	     set "is_loadable" in the containing space.  */

	  if (som_section_data (section)->space_dict->subspace_quantity == 0)
	    {
	      som_section_data (section)->space_dict->is_loadable = 1;
	      som_section_data (section)->space_dict->subspace_index
		= subspace_index;
	    }

	  /* Increment the number of subspaces seen and the number of
	     subspaces contained within the current space.  */
	  subspace_index++;
	  som_section_data (section)->space_dict->subspace_quantity++;

	  /* Mark the index of the current space within the subspace's
	     dictionary record.  */
	  som_section_data (subsection)->subspace_dict->space_index = i;
	  
	  /* Dump the current subspace header.  */
	  if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
			 sizeof (struct subspace_dictionary_record), 1, abfd)
	      != sizeof (struct subspace_dictionary_record))
	    return false;
	}
      /* Goto the next section.  */
      section = section->next; 
    }

  /* Now repeat the process for unloadable subspaces.  */
  section = abfd->sections;
  /* Now for each space write out records for its subspaces.  */
  for (i = 0; i < num_spaces; i++)
    {
      asection *subsection;

      /* Find a space.  */
      while (!som_is_space (section))
	section = section->next;

      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
	   subsection != NULL;
	   subsection = subsection->next)
	{
	  
	  /* Skip any section which does not correspond to a space or
	     subspace, or which SEC_ALLOC set (and therefore handled
	     in the loadable spaces/subspaces code above).  */

	  if (!som_is_subspace (subsection)
	      || !som_is_container (section, subsection)
	      || (subsection->flags & SEC_ALLOC) != 0)
	    continue;

	  /* If this is the first subspace for this space, then save
	     the index of the subspace in its containing space.  Clear
	     "is_loadable".  */

	  if (som_section_data (section)->space_dict->subspace_quantity == 0)
	    {
	      som_section_data (section)->space_dict->is_loadable = 0;
	      som_section_data (section)->space_dict->subspace_index
		= subspace_index;
	    }

	  /* Increment the number of subspaces seen and the number of
	     subspaces contained within the current space.  */
	  som_section_data (section)->space_dict->subspace_quantity++;
	  subspace_index++; 

	  /* Mark the index of the current space within the subspace's
	     dictionary record.  */
	  som_section_data (subsection)->subspace_dict->space_index = i;
	  
	  /* Dump this subspace header.  */
	  if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict,
			 sizeof (struct subspace_dictionary_record), 1, abfd)
	      != sizeof (struct subspace_dictionary_record))
	    return false;
	}
      /* Goto the next section.  */
      section = section->next; 
    }

  /* All the subspace dictiondary records are written, and all the
     fields are set up in the space dictionary records.

     Seek to the right location and start writing the space
     dictionary records.  */
  location = obj_som_file_hdr (abfd)->space_location;
  if (bfd_seek (abfd, location, SEEK_SET) < 0)
    return false;

  section = abfd->sections;
  for (i = 0; i < num_spaces; i++)
    {

      /* Find a space.  */
      while (!som_is_space (section))
	section = section->next;

      /* Dump its header  */
      if (bfd_write ((PTR) som_section_data (section)->space_dict,
		     sizeof (struct space_dictionary_record), 1, abfd)
	  != sizeof (struct space_dictionary_record))
	return false;

      /* Goto the next section.  */
      section = section->next;
    }

  /* Setting of the system_id has to happen very late now that copying of
     BFD private data happens *after* section contents are set.  */
  if (abfd->flags & (EXEC_P | DYNAMIC))
    obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id;
  else if (bfd_get_mach (abfd) == pa11)
    obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1;
  else
    obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0;

  /* Compute the checksum for the file header just before writing
     the header to disk.  */
  obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);

  /* Only thing left to do is write out the file header.  It is always
     at location zero.  Seek there and write it.  */
  if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0)
    return false;
  if (bfd_write ((PTR) obj_som_file_hdr (abfd),
		 sizeof (struct header), 1, abfd)
      != sizeof (struct header))
    return false;

  /* Now write the exec header.  */
  if (abfd->flags & (EXEC_P | DYNAMIC))
    {
      long tmp;
      struct som_exec_auxhdr *exec_header;

      exec_header = obj_som_exec_hdr (abfd);
      exec_header->exec_entry = bfd_get_start_address (abfd);
      exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;

      /* Oh joys.  Ram some of the BSS data into the DATA section
	 to be compatable with how the hp linker makes objects
	 (saves memory space).  */
      tmp = exec_header->exec_dsize;
      tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
      exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
      if (exec_header->exec_bsize < 0)
	exec_header->exec_bsize = 0;
      exec_header->exec_dsize = tmp;

      if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
		    SEEK_SET) < 0)
	return false;

      if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd)
	  != AUX_HDR_SIZE)
	return false;
    }
  return true;
}

/* Compute and return the checksum for a SOM file header.  */

static unsigned long
som_compute_checksum (abfd)
     bfd *abfd;
{
  unsigned long checksum, count, i;
  unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);

  checksum = 0;
  count = sizeof (struct header) / sizeof (unsigned long);
  for (i = 0; i < count; i++)
    checksum ^= *(buffer + i);

  return checksum;
}

static void
som_bfd_derive_misc_symbol_info (abfd, sym, info)
     bfd *abfd;
     asymbol *sym;
     struct som_misc_symbol_info *info;
{
  /* Initialize.  */
  memset (info, 0, sizeof (struct som_misc_symbol_info));

  /* The HP SOM linker requires detailed type information about
     all symbols (including undefined symbols!).  Unfortunately,
     the type specified in an import/export statement does not
     always match what the linker wants.  Severe braindamage.  */
	 
  /* Section symbols will not have a SOM symbol type assigned to
     them yet.  Assign all section symbols type ST_DATA.  */
  if (sym->flags & BSF_SECTION_SYM)
    info->symbol_type = ST_DATA;
  else
    {
      /* Common symbols must have scope SS_UNSAT and type
	 ST_STORAGE or the linker will choke.  */
      if (bfd_is_com_section (sym->section))
	{
	  info->symbol_scope = SS_UNSAT;
	  info->symbol_type = ST_STORAGE;
	}

      /* It is possible to have a symbol without an associated
	 type.  This happens if the user imported the symbol
	 without a type and the symbol was never defined
	 locally.  If BSF_FUNCTION is set for this symbol, then
	 assign it type ST_CODE (the HP linker requires undefined
	 external functions to have type ST_CODE rather than ST_ENTRY).  */
      else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
		|| som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
	       && bfd_is_und_section (sym->section)
	       && sym->flags & BSF_FUNCTION)
	info->symbol_type = ST_CODE;

      /* Handle function symbols which were defined in this file.
	 They should have type ST_ENTRY.  Also retrieve the argument
	 relocation bits from the SOM backend information.  */
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
	       || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
		   && (sym->flags & BSF_FUNCTION))
	       || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
		   && (sym->flags & BSF_FUNCTION)))
	{
	  info->symbol_type = ST_ENTRY;
	  info->arg_reloc = som_symbol_data (sym)->tc_data.hppa_arg_reloc;
	}

      /* If the type is unknown at this point, it should be ST_DATA or
	 ST_CODE (function/ST_ENTRY symbols were handled  as special
	 cases above). */
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
	{
	  if (sym->section->flags & SEC_CODE)
	    info->symbol_type = ST_CODE;
	  else
	    info->symbol_type = ST_DATA;
	}

      /* From now on it's a very simple mapping.  */
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
	info->symbol_type = ST_ABSOLUTE;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
	info->symbol_type = ST_CODE;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
	info->symbol_type = ST_DATA;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
	info->symbol_type = ST_MILLICODE;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
	info->symbol_type = ST_PLABEL;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
	info->symbol_type = ST_PRI_PROG;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
	info->symbol_type = ST_SEC_PROG;
    }
	
  /* Now handle the symbol's scope.  Exported data which is not
     in the common section has scope SS_UNIVERSAL.  Note scope
     of common symbols was handled earlier!  */
  if (bfd_is_und_section (sym->section))
    info->symbol_scope = SS_UNSAT;
  else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section))
    info->symbol_scope = SS_UNIVERSAL;
  /* Anything else which is not in the common section has scope
     SS_LOCAL.  */
  else if (! bfd_is_com_section (sym->section))
    info->symbol_scope = SS_LOCAL;

  /* Now set the symbol_info field.  It has no real meaning
     for undefined or common symbols, but the HP linker will
     choke if it's not set to some "reasonable" value.  We
     use zero as a reasonable value.  */
  if (bfd_is_com_section (sym->section)
      || bfd_is_und_section (sym->section)
      || bfd_is_abs_section (sym->section))
    info->symbol_info = 0;
  /* For all other symbols, the symbol_info field contains the 
     subspace index of the space this symbol is contained in.  */
  else
    info->symbol_info = sym->section->target_index;

  /* Set the symbol's value.  */
  info->symbol_value = sym->value + sym->section->vma;
}

/* Build and write, in one big chunk, the entire symbol table for
   this BFD.  */

static boolean
som_build_and_write_symbol_table (abfd)
     bfd *abfd;
{
  unsigned int num_syms = bfd_get_symcount (abfd);
  file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
  asymbol **bfd_syms = obj_som_sorted_syms (abfd);
  struct symbol_dictionary_record *som_symtab = NULL;
  int i, symtab_size;

  /* Compute total symbol table size and allocate a chunk of memory
     to hold the symbol table as we build it.  */
  symtab_size = num_syms * sizeof (struct symbol_dictionary_record);
  som_symtab = (struct symbol_dictionary_record *) malloc (symtab_size);
  if (som_symtab == NULL && symtab_size != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }
  memset (som_symtab, 0, symtab_size);

  /* Walk over each symbol.  */
  for (i = 0; i < num_syms; i++)
    {
      struct som_misc_symbol_info info;

      /* This is really an index into the symbol strings table.  
	 By the time we get here, the index has already been 
	 computed and stored into the name field in the BFD symbol.  */
      som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;

      /* Derive SOM information from the BFD symbol.  */
      som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);

      /* Now use it.  */
      som_symtab[i].symbol_type = info.symbol_type;
      som_symtab[i].symbol_scope = info.symbol_scope;
      som_symtab[i].arg_reloc = info.arg_reloc;
      som_symtab[i].symbol_info = info.symbol_info;
      som_symtab[i].symbol_value = info.symbol_value;
    }

  /* Everything is ready, seek to the right location and
     scribble out the symbol table.  */
  if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
    return false;

  if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size)
    goto error_return;

  if (som_symtab != NULL)
    free (som_symtab);
  return true;
 error_return:
  if (som_symtab != NULL)
    free (som_symtab);
  return false;
}

/* Write an object in SOM format.  */  

static boolean
som_write_object_contents (abfd)
     bfd *abfd;
{
  if (abfd->output_has_begun == false)
    {
      /* Set up fixed parts of the file, space, and subspace headers.
	 Notify the world that output has begun.  */
      som_prep_headers (abfd);
      abfd->output_has_begun = true;
      /* Start writing the object file.  This include all the string
	 tables, fixup streams, and other portions of the object file.  */
      som_begin_writing (abfd);
    }

  return (som_finish_writing (abfd));
}


/* Read and save the string table associated with the given BFD.  */

static boolean
som_slurp_string_table (abfd)
     bfd *abfd;
{
  char *stringtab;

  /* Use the saved version if its available.  */
  if (obj_som_stringtab (abfd) != NULL)
    return true;

  /* I don't think this can currently happen, and I'm not sure it should
     really be an error, but it's better than getting unpredictable results
     from the host's malloc when passed a size of zero.  */
  if (obj_som_stringtab_size (abfd) == 0)
    {
      bfd_set_error (bfd_error_no_symbols);
      return false;
    }

  /* Allocate and read in the string table.  */
  stringtab = bfd_zalloc (abfd, obj_som_stringtab_size (abfd));
  if (stringtab == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }

  if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0)
    return false;
  
  if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd)
      != obj_som_stringtab_size (abfd))
    return false;

  /* Save our results and return success. */
  obj_som_stringtab (abfd) = stringtab;
  return true;
}

/* Return the amount of data (in bytes) required to hold the symbol
   table for this object.  */

static long
som_get_symtab_upper_bound (abfd)
     bfd *abfd;
{
  if (!som_slurp_symbol_table (abfd))
    return -1;

  return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *));
}

/* Convert from a SOM subspace index to a BFD section.  */

static asection *
bfd_section_from_som_symbol (abfd, symbol)
     bfd *abfd;
     struct symbol_dictionary_record *symbol;
{
  asection *section;

  /* The meaning of the symbol_info field changes for functions
     within executables.  So only use the quick symbol_info mapping for
     incomplete objects and non-function symbols in executables.  */
  if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
      || (symbol->symbol_type != ST_ENTRY
	  && symbol->symbol_type != ST_PRI_PROG
	  && symbol->symbol_type != ST_SEC_PROG
	  && symbol->symbol_type != ST_MILLICODE))
    {
      unsigned int index = symbol->symbol_info;
      for (section = abfd->sections; section != NULL; section = section->next)
	if (section->target_index == index && som_is_subspace (section))
	  return section;

      /* Could be a symbol from an external library (such as an OMOS
	 shared library).  Don't abort.  */
      return bfd_abs_section_ptr;

    }
  else
    {
      unsigned int value = symbol->symbol_value;

      /* For executables we will have to use the symbol's address and
	 find out what section would contain that address.   Yuk.  */
      for (section = abfd->sections; section; section = section->next)
	{
	  if (value >= section->vma
	      && value <= section->vma + section->_cooked_size
	      && som_is_subspace (section))
	    return section;
	}

      /* Could be a symbol from an external library (such as an OMOS
	 shared library).  Don't abort.  */
      return bfd_abs_section_ptr;

    }
}

/* Read and save the symbol table associated with the given BFD.  */

static unsigned int
som_slurp_symbol_table (abfd)
     bfd *abfd;
{
  int symbol_count = bfd_get_symcount (abfd);
  int symsize = sizeof (struct symbol_dictionary_record);
  char *stringtab;
  struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
  som_symbol_type *sym, *symbase;

  /* Return saved value if it exists.  */
  if (obj_som_symtab (abfd) != NULL)
    goto successful_return;

  /* Special case.  This is *not* an error.  */
  if (symbol_count == 0)
    goto successful_return;

  if (!som_slurp_string_table (abfd))
    goto error_return;

  stringtab = obj_som_stringtab (abfd);

  symbase = (som_symbol_type *)
    bfd_zalloc (abfd, symbol_count * sizeof (som_symbol_type));
  if (symbase == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  /* Read in the external SOM representation.  */
  buf = malloc (symbol_count * symsize);
  if (buf == NULL && symbol_count * symsize != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }
  if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0)
    goto error_return;
  if (bfd_read (buf, symbol_count * symsize, 1, abfd) 
      != symbol_count * symsize)
    goto error_return;

  /* Iterate over all the symbols and internalize them.  */
  endbufp = buf + symbol_count;
  for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
    {

      /* I don't think we care about these.  */
      if (bufp->symbol_type == ST_SYM_EXT
	  || bufp->symbol_type == ST_ARG_EXT)
	continue;

      /* Set some private data we care about.  */
      if (bufp->symbol_type == ST_NULL)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
      else if (bufp->symbol_type == ST_ABSOLUTE)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
      else if (bufp->symbol_type == ST_DATA)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
      else if (bufp->symbol_type == ST_CODE)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
      else if (bufp->symbol_type == ST_PRI_PROG)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
      else if (bufp->symbol_type == ST_SEC_PROG)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
      else if (bufp->symbol_type == ST_ENTRY)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
      else if (bufp->symbol_type == ST_MILLICODE)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
      else if (bufp->symbol_type == ST_PLABEL)
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
      else
	som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
      som_symbol_data (sym)->tc_data.hppa_arg_reloc = bufp->arg_reloc;

      /* Some reasonable defaults.  */
      sym->symbol.the_bfd = abfd;
      sym->symbol.name = bufp->name.n_strx + stringtab;
      sym->symbol.value = bufp->symbol_value;
      sym->symbol.section = 0;
      sym->symbol.flags = 0;

      switch (bufp->symbol_type)
	{
	case ST_ENTRY:
	case ST_MILLICODE:
	  sym->symbol.flags |= BSF_FUNCTION;
	  sym->symbol.value &= ~0x3;
	  break;

	case ST_STUB:
	case ST_CODE:
	case ST_PRI_PROG:
	case ST_SEC_PROG:
	  sym->symbol.value &= ~0x3;
	  /* If the symbol's scope is ST_UNSAT, then these are
	     undefined function symbols.  */
	  if (bufp->symbol_scope == SS_UNSAT)
	    sym->symbol.flags |= BSF_FUNCTION;
	     

	default:
	  break;
	}

      /* Handle scoping and section information.  */
      switch (bufp->symbol_scope)
	{
	/* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
	   so the section associated with this symbol can't be known.  */
	case SS_EXTERNAL:
	  if (bufp->symbol_type != ST_STORAGE)
	    sym->symbol.section = bfd_und_section_ptr;
	  else
	    sym->symbol.section = bfd_com_section_ptr;
	  sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
	  break;

	case SS_UNSAT:
	  if (bufp->symbol_type != ST_STORAGE)
	    sym->symbol.section = bfd_und_section_ptr;
	  else
	    sym->symbol.section = bfd_com_section_ptr;
	  break;

	case SS_UNIVERSAL:
	  sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
	  sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
	  sym->symbol.value -= sym->symbol.section->vma;
	  break;

#if 0
	/* SS_GLOBAL and SS_LOCAL are two names for the same thing.
	   Sound dumb?  It is.  */
	case SS_GLOBAL:
#endif
	case SS_LOCAL:
	  sym->symbol.flags |= BSF_LOCAL;
	  sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
	  sym->symbol.value -= sym->symbol.section->vma;
	  break;
	}

      /* Mark section symbols and symbols used by the debugger.
	 Note $START$ is a magic code symbol, NOT a section symbol.  */
      if (sym->symbol.name[0] == '$'
	  && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
	  && !strcmp (sym->symbol.name, sym->symbol.section->name))
	sym->symbol.flags |= BSF_SECTION_SYM;
      else if (!strncmp (sym->symbol.name, "L$0\002", 4))
	{
	  sym->symbol.flags |= BSF_SECTION_SYM;
	  sym->symbol.name = sym->symbol.section->name;
	}
      else if (!strncmp (sym->symbol.name, "L$0\001", 4))
	sym->symbol.flags |= BSF_DEBUGGING;

      /* Note increment at bottom of loop, since we skip some symbols
         we can not include it as part of the for statement.  */
      sym++;
    }

  /* Save our results and return success.  */
  obj_som_symtab (abfd) = symbase;
 successful_return:
  if (buf != NULL)
    free (buf);
  return (true);

 error_return:
  if (buf != NULL)
    free (buf);
  return false;
}

/* Canonicalize a SOM symbol table.  Return the number of entries
   in the symbol table.  */

static long
som_get_symtab (abfd, location)
     bfd *abfd;
     asymbol **location;
{
  int i;
  som_symbol_type *symbase;

  if (!som_slurp_symbol_table (abfd))
    return -1;

  i = bfd_get_symcount (abfd);
  symbase = obj_som_symtab (abfd);

  for (; i > 0; i--, location++, symbase++)
    *location = &symbase->symbol;

  /* Final null pointer.  */
  *location = 0;
  return (bfd_get_symcount (abfd));
}

/* Make a SOM symbol.  There is nothing special to do here.  */

static asymbol *
som_make_empty_symbol (abfd)
     bfd *abfd;
{
  som_symbol_type *new =
  (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type));
  if (new == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return 0;
    }
  new->symbol.the_bfd = abfd;

  return &new->symbol;
}

/* Print symbol information.  */

static void
som_print_symbol (ignore_abfd, afile, symbol, how)
     bfd *ignore_abfd;
     PTR afile;
     asymbol *symbol;
     bfd_print_symbol_type how;
{
  FILE *file = (FILE *) afile;
  switch (how)
    {
    case bfd_print_symbol_name:
      fprintf (file, "%s", symbol->name);
      break;
    case bfd_print_symbol_more:
      fprintf (file, "som ");
      fprintf_vma (file, symbol->value);
      fprintf (file, " %lx", (long) symbol->flags);
      break;
    case bfd_print_symbol_all:
      {
	CONST char *section_name;
	section_name = symbol->section ? symbol->section->name : "(*none*)";
	bfd_print_symbol_vandf ((PTR) file, symbol);
	fprintf (file, " %s\t%s", section_name, symbol->name);
	break;
      }
    }
}

static boolean
som_bfd_is_local_label (abfd, sym)
     bfd *abfd;
     asymbol *sym;
{
  return (sym->name[0] == 'L' && sym->name[1] == '$');
}

/* Count or process variable-length SOM fixup records.

   To avoid code duplication we use this code both to compute the number
   of relocations requested by a stream, and to internalize the stream.

   When computing the number of relocations requested by a stream the
   variables rptr, section, and symbols have no meaning.

   Return the number of relocations requested by the fixup stream.  When
   not just counting 

   This needs at least two or three more passes to get it cleaned up.  */

static unsigned int
som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count)
     unsigned char *fixup;
     unsigned int end;
     arelent *internal_relocs;
     asection *section;
     asymbol **symbols;
     boolean just_count;
{
  unsigned int op, varname, deallocate_contents = 0;
  unsigned char *end_fixups = &fixup[end];
  const struct fixup_format *fp;
  char *cp;
  unsigned char *save_fixup;
  int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
  const int *subop;
  arelent *rptr= internal_relocs;
  unsigned int offset = 0;

#define	var(c)		variables[(c) - 'A']
#define	push(v)		(*sp++ = (v))
#define	pop()		(*--sp)
#define	emptystack()	(sp == stack)

  som_initialize_reloc_queue (reloc_queue);
  memset (variables, 0, sizeof (variables));
  memset (stack, 0, sizeof (stack));
  count = 0;
  prev_fixup = 0;
  saved_unwind_bits = 0;
  sp = stack;

  while (fixup < end_fixups)
    {

      /* Save pointer to the start of this fixup.  We'll use
	 it later to determine if it is necessary to put this fixup
	 on the queue.  */
      save_fixup = fixup;

      /* Get the fixup code and its associated format.  */
      op = *fixup++;
      fp = &som_fixup_formats[op];

      /* Handle a request for a previous fixup.  */
      if (*fp->format == 'P')
	{
	  /* Get pointer to the beginning of the prev fixup, move
	     the repeated fixup to the head of the queue.  */
	  fixup = reloc_queue[fp->D].reloc;
	  som_reloc_queue_fix (reloc_queue, fp->D);
	  prev_fixup = 1;

	  /* Get the fixup code and its associated format.  */
	  op = *fixup++;
	  fp = &som_fixup_formats[op];
	}

      /* If this fixup will be passed to BFD, set some reasonable defaults.  */
      if (! just_count
	  && som_hppa_howto_table[op].type != R_NO_RELOCATION
	  && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
	{
	  rptr->address = offset;
	  rptr->howto = &som_hppa_howto_table[op];
	  rptr->addend = 0;
	  rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
	}

      /* Set default input length to 0.  Get the opcode class index
	 into D.  */
      var ('L') = 0;
      var ('D') = fp->D;
      var ('U') = saved_unwind_bits;

      /* Get the opcode format.  */
      cp = fp->format;

      /* Process the format string.  Parsing happens in two phases,
	 parse RHS, then assign to LHS.  Repeat until no more 
	 characters in the format string.  */
      while (*cp)
	{
	  /* The variable this pass is going to compute a value for.  */
	  varname = *cp++;

	  /* Start processing RHS.  Continue until a NULL or '=' is found.  */
	  do
	    {
	      c = *cp++;

	      /* If this is a variable, push it on the stack.  */
	      if (isupper (c))
		push (var (c));

	      /* If this is a lower case letter, then it represents
		 additional data from the fixup stream to be pushed onto
		 the stack.  */
	      else if (islower (c))
		{
		  int bits = (c - 'a') * 8;
		  for (v = 0; c > 'a'; --c)
		    v = (v << 8) | *fixup++;
		  if (varname == 'V')
		    v = sign_extend (v, bits);
		  push (v);
		}

	      /* A decimal constant.  Push it on the stack.  */
	      else if (isdigit (c))
		{
		  v = c - '0';
		  while (isdigit (*cp))
		    v = (v * 10) + (*cp++ - '0');
		  push (v);
		}
	      else

		/* An operator.  Pop two two values from the stack and
		   use them as operands to the given operation.  Push
		   the result of the operation back on the stack.  */
		switch (c)
		  {
		  case '+':
		    v = pop ();
		    v += pop ();
		    push (v);
		    break;
		  case '*':
		    v = pop ();
		    v *= pop ();
		    push (v);
		    break;
		  case '<':
		    v = pop ();
		    v = pop () << v;
		    push (v);
		    break;
		  default:
		    abort ();
		  }
	    }
	  while (*cp && *cp != '=');

	  /* Move over the equal operator.  */
	  cp++;

	  /* Pop the RHS off the stack.  */
	  c = pop ();

	  /* Perform the assignment.  */
	  var (varname) = c;

	  /* Handle side effects. and special 'O' stack cases.  */
	  switch (varname)
	    {
	    /* Consume some bytes from the input space.  */
	    case 'L':
	      offset += c;
	      break;
	    /* A symbol to use in the relocation.  Make a note
	       of this if we are not just counting.  */
	    case 'S':
	      if (! just_count)
		rptr->sym_ptr_ptr = &symbols[c];
	      break;
	    /* Argument relocation bits for a function call.  */
	    case 'R':
	      if (! just_count)
		{
		  unsigned int tmp = var ('R');
		  rptr->addend = 0;

		  if ((som_hppa_howto_table[op].type == R_PCREL_CALL
		       && R_PCREL_CALL + 10 > op)
		      || (som_hppa_howto_table[op].type == R_ABS_CALL
			  && R_ABS_CALL + 10 > op))
		    {
		      /* Simple encoding.  */
		      if (tmp > 4)
			{
			  tmp -= 5;
			  rptr->addend |= 1;
			}
		      if (tmp == 4)
			rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
		      else if (tmp == 3)
			rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
		      else if (tmp == 2)
			rptr->addend |= 1 << 8 | 1 << 6;
		      else if (tmp == 1)
			rptr->addend |= 1 << 8;
		    }
		  else
		    {
		      unsigned int tmp1, tmp2;

		      /* First part is easy -- low order two bits are
			 directly copied, then shifted away.  */
		      rptr->addend = tmp & 0x3;
		      tmp >>= 2;

		      /* Diving the result by 10 gives us the second
			 part.  If it is 9, then the first two words
			 are a double precision paramater, else it is
			 3 * the first arg bits + the 2nd arg bits.  */
		      tmp1 = tmp / 10;
		      tmp -= tmp1 * 10;
		      if (tmp1 == 9)
			rptr->addend += (0xe << 6);
		      else
			{
			  /* Get the two pieces.  */
			  tmp2 = tmp1 / 3;
			  tmp1 -= tmp2 * 3;
			  /* Put them in the addend.  */
			  rptr->addend += (tmp2 << 8) + (tmp1 << 6);
			}

		      /* What's left is the third part.  It's unpacked
			 just like the second.  */
		      if (tmp == 9)
			rptr->addend += (0xe << 2);
		      else
			{
			  tmp2 = tmp / 3;
			  tmp -= tmp2 * 3;
			  rptr->addend += (tmp2 << 4) + (tmp << 2);
			}
		    }
		  rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
		}
	      break;
	    /* Handle the linker expression stack.  */
	    case 'O':
	      switch (op)
		{
		case R_COMP1:
		  subop = comp1_opcodes;
		  break;
		case R_COMP2:
		  subop = comp2_opcodes;
		  break;
		case R_COMP3:
		  subop = comp3_opcodes;
		  break;
		default:
		  abort ();
		}
	      while (*subop <= (unsigned char) c)
		++subop;
	      --subop;
	      break;
	    /* The lower 32unwind bits must be persistent.  */
	    case 'U':
	      saved_unwind_bits = var ('U');
	      break;

	    default:
	      break;
	    }
	}

      /* If we used a previous fixup, clean up after it.  */
      if (prev_fixup)
	{
	  fixup = save_fixup + 1;
	  prev_fixup = 0;
	}
      /* Queue it.  */
      else if (fixup > save_fixup + 1)
	som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);

      /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION 
	 fixups to BFD.  */
      if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
	  && som_hppa_howto_table[op].type != R_NO_RELOCATION)
	{
	  /* Done with a single reloction. Loop back to the top.  */
	  if (! just_count)
	    {
	      if (som_hppa_howto_table[op].type == R_ENTRY)
		rptr->addend = var ('T');
	      else if (som_hppa_howto_table[op].type == R_EXIT)
		rptr->addend = var ('U');
	      else if (som_hppa_howto_table[op].type == R_PCREL_CALL
		       || som_hppa_howto_table[op].type == R_ABS_CALL)
		;
	      else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
		{
		  unsigned addend = var ('V');

		  /* Try what was specified in R_DATA_OVERRIDE first
		     (if anything).  Then the hard way using the
		     section contents.  */
		  rptr->addend = var ('V');

		  if (rptr->addend == 0 && !section->contents)
		    {
		      /* Got to read the damn contents first.  We don't
		         bother saving the contents (yet).  Add it one
			 day if the need arises.  */
		      section->contents = malloc (section->_raw_size);
		      if (section->contents == NULL)
			return -1;

		      deallocate_contents = 1;
		      bfd_get_section_contents (section->owner,
						section,
						section->contents,
						0,
						section->_raw_size);
		    }
		  else if (rptr->addend == 0)
		    rptr->addend = bfd_get_32 (section->owner,
					       (section->contents
						+ offset - var ('L')));
			
		}
	      else
		rptr->addend = var ('V');
	      rptr++;
	    }
	  count++;
	  /* Now that we've handled a "full" relocation, reset
	     some state.  */
	  memset (variables, 0, sizeof (variables));
	  memset (stack, 0, sizeof (stack));
	}
    }
  if (deallocate_contents)
    free (section->contents);

  return count;

#undef var
#undef push
#undef pop
#undef emptystack
}

/* Read in the relocs (aka fixups in SOM terms) for a section. 

   som_get_reloc_upper_bound calls this routine with JUST_COUNT 
   set to true to indicate it only needs a count of the number
   of actual relocations.  */

static boolean
som_slurp_reloc_table (abfd, section, symbols, just_count)
     bfd *abfd;
     asection *section;
     asymbol **symbols;
     boolean just_count;
{
  char *external_relocs;
  unsigned int fixup_stream_size;
  arelent *internal_relocs;
  unsigned int num_relocs;

  fixup_stream_size = som_section_data (section)->reloc_size;
  /* If there were no relocations, then there is nothing to do.  */
  if (section->reloc_count == 0)
    return true;

  /* If reloc_count is -1, then the relocation stream has not been 
     parsed.  We must do so now to know how many relocations exist.  */
  if (section->reloc_count == -1)
    {
      external_relocs = (char *) malloc (fixup_stream_size);
      if (external_relocs == (char *) NULL)
	{
	  bfd_set_error (bfd_error_no_memory);
	  return false;
	}
      /* Read in the external forms. */
      if (bfd_seek (abfd,
		    obj_som_reloc_filepos (abfd) + section->rel_filepos,
		    SEEK_SET)
	  != 0)
	return false;
      if (bfd_read (external_relocs, 1, fixup_stream_size, abfd)
	  != fixup_stream_size)
	return false;

      /* Let callers know how many relocations found.
	 also save the relocation stream as we will
	 need it again.  */
      section->reloc_count = som_set_reloc_info (external_relocs,
						 fixup_stream_size,
						 NULL, NULL, NULL, true);

      som_section_data (section)->reloc_stream = external_relocs;
    }

  /* If the caller only wanted a count, then return now.  */
  if (just_count)
    return true;

  num_relocs = section->reloc_count;
  external_relocs = som_section_data (section)->reloc_stream;
  /* Return saved information about the relocations if it is available.  */
  if (section->relocation != (arelent *) NULL)
    return true;

  internal_relocs = (arelent *) 
    bfd_zalloc (abfd, (num_relocs * sizeof (arelent)));
  if (internal_relocs == (arelent *) NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }

  /* Process and internalize the relocations.  */
  som_set_reloc_info (external_relocs, fixup_stream_size,
		      internal_relocs, section, symbols, false);

  /* We're done with the external relocations.  Free them.  */
  free (external_relocs);

  /* Save our results and return success.  */
  section->relocation = internal_relocs;
  return (true);
}

/* Return the number of bytes required to store the relocation
   information associated with the given section.  */ 

static long
som_get_reloc_upper_bound (abfd, asect)
     bfd *abfd;
     sec_ptr asect;
{
  /* If section has relocations, then read in the relocation stream
     and parse it to determine how many relocations exist.  */
  if (asect->flags & SEC_RELOC)
    {
      if (! som_slurp_reloc_table (abfd, asect, NULL, true))
	return -1;
      return (asect->reloc_count + 1) * sizeof (arelent *);
    }
  /* There are no relocations.  */
  return 0;
}

/* Convert relocations from SOM (external) form into BFD internal
   form.  Return the number of relocations.  */

static long
som_canonicalize_reloc (abfd, section, relptr, symbols)
     bfd *abfd;
     sec_ptr section;
     arelent **relptr;
     asymbol **symbols;
{
  arelent *tblptr;
  int count;

  if (som_slurp_reloc_table (abfd, section, symbols, false) == false)
    return -1;

  count = section->reloc_count;
  tblptr = section->relocation;

  while (count--)
    *relptr++ = tblptr++;

  *relptr = (arelent *) NULL;
  return section->reloc_count;
}

extern const bfd_target som_vec;

/* A hook to set up object file dependent section information.  */

static boolean
som_new_section_hook (abfd, newsect)
     bfd *abfd;
     asection *newsect;
{
  newsect->used_by_bfd =
    (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct));
  if (!newsect->used_by_bfd)
    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }
  newsect->alignment_power = 3;

  /* We allow more than three sections internally */
  return true;
}

/* Copy any private info we understand from the input symbol
   to the output symbol.  */

static boolean
som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol)
     bfd *ibfd;
     asymbol *isymbol;
     bfd *obfd;
     asymbol *osymbol;
{
  struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
  struct som_symbol *output_symbol = (struct som_symbol *) osymbol;

  /* One day we may try to grok other private data.  */
  if (ibfd->xvec->flavour != bfd_target_som_flavour
      || obfd->xvec->flavour != bfd_target_som_flavour)
    return false;

  /* The only private information we need to copy is the argument relocation
     bits.  */
  output_symbol->tc_data.hppa_arg_reloc = input_symbol->tc_data.hppa_arg_reloc;

  return true;
}

/* Copy any private info we understand from the input section
   to the output section.  */
static boolean
som_bfd_copy_private_section_data (ibfd, isection, obfd, osection)
     bfd *ibfd;
     asection *isection;
     bfd *obfd;
     asection *osection;
{
  /* One day we may try to grok other private data.  */
  if (ibfd->xvec->flavour != bfd_target_som_flavour
      || obfd->xvec->flavour != bfd_target_som_flavour
      || (!som_is_space (isection) && !som_is_subspace (isection)))
    return true;

  som_section_data (osection)->copy_data
    = (struct som_copyable_section_data_struct *)
      bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct));
  if (som_section_data (osection)->copy_data == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }

  memcpy (som_section_data (osection)->copy_data,
	  som_section_data (isection)->copy_data,
	  sizeof (struct som_copyable_section_data_struct));

  /* Reparent if necessary.  */
  if (som_section_data (osection)->copy_data->container)
    som_section_data (osection)->copy_data->container =
      som_section_data (osection)->copy_data->container->output_section;

  return true;
}

/* Copy any private info we understand from the input bfd
   to the output bfd.  */

static boolean
som_bfd_copy_private_bfd_data (ibfd, obfd)
     bfd *ibfd, *obfd;
{
  /* One day we may try to grok other private data.  */
  if (ibfd->xvec->flavour != bfd_target_som_flavour
      || obfd->xvec->flavour != bfd_target_som_flavour)
    return true;

  /* Allocate some memory to hold the data we need.  */
  obj_som_exec_data (obfd) = (struct som_exec_data *)
    bfd_zalloc (obfd, sizeof (struct som_exec_data));
  if (obj_som_exec_data (obfd) == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }

  /* Now copy the data.  */
  memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
	  sizeof (struct som_exec_data));

  return true;
}

/* Set backend info for sections which can not be described
   in the BFD data structures.  */

boolean
bfd_som_set_section_attributes (section, defined, private, sort_key, spnum)
     asection *section;
     int defined;
     int private;
     unsigned int sort_key;
     int spnum;
{
  /* Allocate memory to hold the magic information.  */
  if (som_section_data (section)->copy_data == NULL)
    {
      som_section_data (section)->copy_data
	= (struct som_copyable_section_data_struct *)
	  bfd_zalloc (section->owner,
		      sizeof (struct som_copyable_section_data_struct));
      if (som_section_data (section)->copy_data == NULL)
	{
	  bfd_set_error (bfd_error_no_memory);
	  return false;
	}
    }
  som_section_data (section)->copy_data->sort_key = sort_key;
  som_section_data (section)->copy_data->is_defined = defined;
  som_section_data (section)->copy_data->is_private = private;
  som_section_data (section)->copy_data->container = section;
  som_section_data (section)->copy_data->space_number = spnum;
  return true;
}

/* Set backend info for subsections which can not be described 
   in the BFD data structures.  */

boolean
bfd_som_set_subsection_attributes (section, container, access,
				   sort_key, quadrant)
     asection *section;
     asection *container;
     int access;
     unsigned int sort_key;
     int quadrant;
{
  /* Allocate memory to hold the magic information.  */
  if (som_section_data (section)->copy_data == NULL)
    {
      som_section_data (section)->copy_data
	= (struct som_copyable_section_data_struct *)
	  bfd_zalloc (section->owner,
		      sizeof (struct som_copyable_section_data_struct));
      if (som_section_data (section)->copy_data == NULL)
	{
	  bfd_set_error (bfd_error_no_memory);
	  return false;
	}
    }
  som_section_data (section)->copy_data->sort_key = sort_key;
  som_section_data (section)->copy_data->access_control_bits = access;
  som_section_data (section)->copy_data->quadrant = quadrant;
  som_section_data (section)->copy_data->container = container;
  return true;
}

/* Set the full SOM symbol type.  SOM needs far more symbol information
   than any other object file format I'm aware of.  It is mandatory
   to be able to know if a symbol is an entry point, millicode, data,
   code, absolute, storage request, or procedure label.  If you get
   the symbol type wrong your program will not link.  */

void
bfd_som_set_symbol_type (symbol, type)
     asymbol *symbol;
     unsigned int type;
{
  som_symbol_data (symbol)->som_type = type;
}

/* Attach an auxiliary header to the BFD backend so that it may be
   written into the object file.  */
boolean
bfd_som_attach_aux_hdr (abfd, type, string)
     bfd *abfd;
     int type;
     char *string;
{
  if (type == VERSION_AUX_ID)
    {
      int len = strlen (string);
      int pad = 0;

      if (len % 4)
	pad = (4 - (len % 4));
      obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *)
	bfd_zalloc (abfd, sizeof (struct aux_id)
			      + sizeof (unsigned int) + len + pad);
      if (!obj_som_version_hdr (abfd))
	{
	  bfd_set_error (bfd_error_no_memory);
	  return false;
	}
      obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
      obj_som_version_hdr (abfd)->header_id.length = len + pad;
      obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
      obj_som_version_hdr (abfd)->string_length = len;
      strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
    }
  else if (type == COPYRIGHT_AUX_ID)
    {
      int len = strlen (string);
      int pad = 0;

      if (len % 4)
	pad = (4 - (len % 4));
      obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *)
	bfd_zalloc (abfd, sizeof (struct aux_id)
			    + sizeof (unsigned int) + len + pad);
      if (!obj_som_copyright_hdr (abfd))
	{
	  bfd_set_error (bfd_error_no_memory);
	  return false;
	}
      obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
      obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
      obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
      obj_som_copyright_hdr (abfd)->string_length = len;
      strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
    }
  return true;
}

static boolean
som_get_section_contents (abfd, section, location, offset, count)
     bfd *abfd;
     sec_ptr section;
     PTR location;
     file_ptr offset;
     bfd_size_type count;
{
  if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
    return true;
  if ((bfd_size_type)(offset+count) > section->_raw_size
      || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1
      || bfd_read (location, (bfd_size_type)1, count, abfd) != count)
    return (false); /* on error */
  return (true);
}

static boolean
som_set_section_contents (abfd, section, location, offset, count)
     bfd *abfd;
     sec_ptr section;
     PTR location;
     file_ptr offset;
     bfd_size_type count;
{
  if (abfd->output_has_begun == false)
    {
      /* Set up fixed parts of the file, space, and subspace headers.
	 Notify the world that output has begun.  */
      som_prep_headers (abfd);
      abfd->output_has_begun = true;
      /* Start writing the object file.  This include all the string
	 tables, fixup streams, and other portions of the object file.  */
      som_begin_writing (abfd);
    }

  /* Only write subspaces which have "real" contents (eg. the contents
     are not generated at run time by the OS).  */
  if (!som_is_subspace (section)
      || ((section->flags & SEC_HAS_CONTENTS) == 0))
    return true;

  /* Seek to the proper offset within the object file and write the
     data.  */
  offset += som_section_data (section)->subspace_dict->file_loc_init_value; 
  if (bfd_seek (abfd, offset, SEEK_SET) == -1)
    return false;

  if (bfd_write ((PTR) location, 1, count, abfd) != count)
    return false;
  return true;
}

static boolean
som_set_arch_mach (abfd, arch, machine)
     bfd *abfd;
     enum bfd_architecture arch;
     unsigned long machine;
{
  /* Allow any architecture to be supported by the SOM backend */
  return bfd_default_set_arch_mach (abfd, arch, machine);
}

static boolean
som_find_nearest_line (abfd, section, symbols, offset, filename_ptr,
			functionname_ptr, line_ptr)
     bfd *abfd;
     asection *section;
     asymbol **symbols;
     bfd_vma offset;
     CONST char **filename_ptr;
     CONST char **functionname_ptr;
     unsigned int *line_ptr;
{
  return (false);
}

static int
som_sizeof_headers (abfd, reloc)
     bfd *abfd;
     boolean reloc;
{
  fprintf (stderr, "som_sizeof_headers unimplemented\n");
  fflush (stderr);
  abort ();
  return (0);
}

/* Return the single-character symbol type corresponding to
   SOM section S, or '?' for an unknown SOM section.  */

static char
som_section_type (s)
     const char *s;
{
  const struct section_to_type *t;

  for (t = &stt[0]; t->section; t++)
    if (!strcmp (s, t->section))
      return t->type;
  return '?';
}

static int
som_decode_symclass (symbol)
     asymbol *symbol;
{
  char c;

  if (bfd_is_com_section (symbol->section))
    return 'C';
  if (bfd_is_und_section (symbol->section))
    return 'U';
  if (bfd_is_ind_section (symbol->section))
    return 'I';
  if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL)))
    return '?';

  if (bfd_is_abs_section (symbol->section)
      || (som_symbol_data (symbol) != NULL
	  && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
    c = 'a';
  else if (symbol->section)
    c = som_section_type (symbol->section->name);
  else
    return '?';
  if (symbol->flags & BSF_GLOBAL)
    c = toupper (c);
  return c;
}

/* Return information about SOM symbol SYMBOL in RET.  */

static void
som_get_symbol_info (ignore_abfd, symbol, ret)
     bfd *ignore_abfd;
     asymbol *symbol;
     symbol_info *ret;
{
  ret->type = som_decode_symclass (symbol);
  if (ret->type != 'U')
    ret->value = symbol->value+symbol->section->vma;
  else
    ret->value = 0;
  ret->name = symbol->name;
}

/* Count the number of symbols in the archive symbol table.  Necessary
   so that we can allocate space for all the carsyms at once.  */

static boolean
som_bfd_count_ar_symbols (abfd, lst_header, count)
     bfd *abfd;
     struct lst_header *lst_header;
     symindex *count;
{
  unsigned int i;
  unsigned int *hash_table = NULL;
  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);

  hash_table = 
    (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
  if (hash_table == NULL && lst_header->hash_size != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  /* Don't forget to initialize the counter!  */
  *count = 0;

  /* Read in the hash table.  The has table is an array of 32bit file offsets
     which point to the hash chains.  */
  if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
      != lst_header->hash_size * 4)
    goto error_return;

  /* Walk each chain counting the number of symbols found on that particular
     chain.  */
  for (i = 0; i < lst_header->hash_size; i++)
    {
      struct lst_symbol_record lst_symbol;

      /* An empty chain has zero as it's file offset.  */
      if (hash_table[i] == 0)
	continue;

      /* Seek to the first symbol in this hash chain.  */
      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
	goto error_return;

      /* Read in this symbol and update the counter.  */
      if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
	  != sizeof (lst_symbol))
	goto error_return;

      (*count)++;

      /* Now iterate through the rest of the symbols on this chain.  */
      while (lst_symbol.next_entry)
	{

	  /* Seek to the next symbol.  */
	  if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
	      < 0)
	    goto error_return;

	  /* Read the symbol in and update the counter.  */
	  if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
	      != sizeof (lst_symbol))
	    goto error_return;

	  (*count)++;
	}
    }
  if (hash_table != NULL)
    free (hash_table);
  return true;

 error_return:
  if (hash_table != NULL)
    free (hash_table);
  return false;
}

/* Fill in the canonical archive symbols (SYMS) from the archive described
   by ABFD and LST_HEADER.  */

static boolean
som_bfd_fill_in_ar_symbols (abfd, lst_header, syms)
     bfd *abfd;
     struct lst_header *lst_header;
     carsym **syms;
{
  unsigned int i, len;
  carsym *set = syms[0];
  unsigned int *hash_table = NULL;
  struct som_entry *som_dict = NULL;
  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);

  hash_table = 
    (unsigned int *) malloc (lst_header->hash_size * sizeof (unsigned int));
  if (hash_table == NULL && lst_header->hash_size != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  som_dict =
    (struct som_entry *) malloc (lst_header->module_count
				 * sizeof (struct som_entry));
  if (som_dict == NULL && lst_header->module_count != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  /* Read in the hash table.  The has table is an array of 32bit file offsets
     which point to the hash chains.  */
  if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd)
      != lst_header->hash_size * 4)
    goto error_return;

  /* Seek to and read in the SOM dictionary.  We will need this to fill
     in the carsym's filepos field.  */
  if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0)
    goto error_return;

  if (bfd_read ((PTR) som_dict, lst_header->module_count, 
		sizeof (struct som_entry), abfd)
      != lst_header->module_count * sizeof (struct som_entry))
    goto error_return;

  /* Walk each chain filling in the carsyms as we go along.  */
  for (i = 0; i < lst_header->hash_size; i++)
    {
      struct lst_symbol_record lst_symbol;

      /* An empty chain has zero as it's file offset.  */
      if (hash_table[i] == 0)
	continue;

      /* Seek to and read the first symbol on the chain.  */
      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0)
	goto error_return;

      if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
	  != sizeof (lst_symbol))
	goto error_return;

      /* Get the name of the symbol, first get the length which is stored
	 as a 32bit integer just before the symbol.

	 One might ask why we don't just read in the entire string table
	 and index into it.  Well, according to the SOM ABI the string
	 index can point *anywhere* in the archive to save space, so just
	 using the string table would not be safe.  */
      if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
			    + lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
	goto error_return;

      if (bfd_read (&len, 1, 4, abfd) != 4)
	goto error_return;

      /* Allocate space for the name and null terminate it too.  */
      set->name = bfd_zalloc (abfd, len + 1);
      if (!set->name)
	{
	  bfd_set_error (bfd_error_no_memory);
	  goto error_return;
	}
      if (bfd_read (set->name, 1, len, abfd) != len)
	goto error_return;

      set->name[len] = 0;

      /* Fill in the file offset.  Note that the "location" field points
	 to the SOM itself, not the ar_hdr in front of it.  */
      set->file_offset = som_dict[lst_symbol.som_index].location
			  - sizeof (struct ar_hdr);

      /* Go to the next symbol.  */
      set++;

      /* Iterate through the rest of the chain.  */
      while (lst_symbol.next_entry)
	{
	  /* Seek to the next symbol and read it in.  */
	  if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0)
	    goto error_return;

	  if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd)
	      != sizeof (lst_symbol))
	    goto error_return;

	  /* Seek to the name length & string and read them in.  */
	  if (bfd_seek (abfd, lst_filepos + lst_header->string_loc 
				+ lst_symbol.name.n_strx - 4, SEEK_SET) < 0)
	    goto error_return;

	  if (bfd_read (&len, 1, 4, abfd) != 4)
	    goto error_return;

	  /* Allocate space for the name and null terminate it too.  */
	  set->name = bfd_zalloc (abfd, len + 1);
	  if (!set->name)
	    {
	      bfd_set_error (bfd_error_no_memory);
	      goto error_return;
	    }

	  if (bfd_read (set->name, 1, len, abfd) != len)
	    goto error_return;
	  set->name[len] = 0;

	  /* Fill in the file offset.  Note that the "location" field points
	     to the SOM itself, not the ar_hdr in front of it.  */
	  set->file_offset = som_dict[lst_symbol.som_index].location
			       - sizeof (struct ar_hdr);

	  /* Go on to the next symbol.  */
	  set++;
	}
    }
  /* If we haven't died by now, then we successfully read the entire 
     archive symbol table.  */
  if (hash_table != NULL)
    free (hash_table);
  if (som_dict != NULL)
    free (som_dict);
  return true;

 error_return:
  if (hash_table != NULL)
    free (hash_table);
  if (som_dict != NULL)
    free (som_dict);
  return false;
}

/* Read in the LST from the archive.  */
static boolean
som_slurp_armap (abfd)
     bfd *abfd;
{
  struct lst_header lst_header;
  struct ar_hdr ar_header;
  unsigned int parsed_size;
  struct artdata *ardata = bfd_ardata (abfd);
  char nextname[17];
  int i = bfd_read ((PTR) nextname, 1, 16, abfd);

  /* Special cases.  */
  if (i == 0)
    return true;
  if (i != 16)
    return false;

  if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0)
    return false;

  /* For archives without .o files there is no symbol table.  */
  if (strncmp (nextname, "/               ", 16))
    {
      bfd_has_map (abfd) = false;
      return true;
    }

  /* Read in and sanity check the archive header.  */
  if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd)
      != sizeof (struct ar_hdr))
    return false;

  if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
    {
      bfd_set_error (bfd_error_malformed_archive);
      return false;
    }

  /* How big is the archive symbol table entry?  */
  errno = 0;
  parsed_size = strtol (ar_header.ar_size, NULL, 10);
  if (errno != 0)
    {
      bfd_set_error (bfd_error_malformed_archive);
      return false;
    }

  /* Save off the file offset of the first real user data.  */
  ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;

  /* Read in the library symbol table.  We'll make heavy use of this
     in just a minute.  */
  if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd)
      != sizeof (struct lst_header))
    return false;

  /* Sanity check.  */
  if (lst_header.a_magic != LIBMAGIC)
    {
      bfd_set_error (bfd_error_malformed_archive);
      return false;
    }

  /* Count the number of symbols in the library symbol table.  */
  if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count)
      == false)
    return false;

  /* Get back to the start of the library symbol table.  */
  if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size 
			+ sizeof (struct lst_header), SEEK_SET) < 0)
    return false;

  /* Initializae the cache and allocate space for the library symbols.  */
  ardata->cache = 0;
  ardata->symdefs = (carsym *) bfd_alloc (abfd,
					  (ardata->symdef_count
					   * sizeof (carsym)));
  if (!ardata->symdefs)
    {
      bfd_set_error (bfd_error_no_memory);
      return false;
    }

  /* Now fill in the canonical archive symbols.  */
  if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs)
      == false)
    return false;

  /* Seek back to the "first" file in the archive.  Note the "first"
     file may be the extended name table.  */
  if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0)
    return false;

  /* Notify the generic archive code that we have a symbol map.  */
  bfd_has_map (abfd) = true;
  return true;
}

/* Begin preparing to write a SOM library symbol table.

   As part of the prep work we need to determine the number of symbols
   and the size of the associated string section.  */

static boolean
som_bfd_prep_for_ar_write (abfd, num_syms, stringsize)
     bfd *abfd;
     unsigned int *num_syms, *stringsize;
{
  bfd *curr_bfd = abfd->archive_head;

  /* Some initialization.  */
  *num_syms = 0;
  *stringsize = 0;

  /* Iterate over each BFD within this archive.  */
  while (curr_bfd != NULL)
    {
      unsigned int curr_count, i;
      som_symbol_type *sym;

      /* Don't bother for non-SOM objects.  */
      if (curr_bfd->format != bfd_object
	  || curr_bfd->xvec->flavour != bfd_target_som_flavour)
	{
	  curr_bfd = curr_bfd->next;
	  continue;
	}

      /* Make sure the symbol table has been read, then snag a pointer
	 to it.  It's a little slimey to grab the symbols via obj_som_symtab,
	 but doing so avoids allocating lots of extra memory.  */
      if (som_slurp_symbol_table (curr_bfd) == false)
	return false;

      sym = obj_som_symtab (curr_bfd);
      curr_count = bfd_get_symcount (curr_bfd);

      /* Examine each symbol to determine if it belongs in the
	 library symbol table.  */
      for (i = 0; i < curr_count; i++, sym++)
	{
	  struct som_misc_symbol_info info;

	  /* Derive SOM information from the BFD symbol.  */
	  som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);

	  /* Should we include this symbol?  */
	  if (info.symbol_type == ST_NULL
	      || info.symbol_type == ST_SYM_EXT
	      || info.symbol_type == ST_ARG_EXT)
	    continue;

	  /* Only global symbols and unsatisfied commons.  */
	  if (info.symbol_scope != SS_UNIVERSAL
	      && info.symbol_type != ST_STORAGE)
	    continue;

	  /* Do no include undefined symbols.  */
	  if (bfd_is_und_section (sym->symbol.section))
	    continue;

	  /* Bump the various counters, being careful to honor
	     alignment considerations in the string table.  */
	  (*num_syms)++;
	  *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
	  while (*stringsize % 4)
	    (*stringsize)++;
	}

      curr_bfd = curr_bfd->next;
    }
  return true;
}

/* Hash a symbol name based on the hashing algorithm presented in the
   SOM ABI.  */
static unsigned int
som_bfd_ar_symbol_hash (symbol)
     asymbol *symbol;
{
  unsigned int len = strlen (symbol->name);

  /* Names with length 1 are special.  */
  if (len == 1)
    return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];

  return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
	  | (symbol->name[len-2] << 8) | symbol->name[len-1];
}

static CONST char *
normalize (file)
     CONST char *file;
{
  CONST char *filename = strrchr (file, '/');

  if (filename != NULL)
    filename++;
  else
    filename = file;
  return filename;
}

/* Do the bulk of the work required to write the SOM library
   symbol table.  */
   
static boolean
som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst)
     bfd *abfd;
     unsigned int nsyms, string_size;
     struct lst_header lst;
{
  file_ptr lst_filepos;
  char *strings = NULL, *p;
  struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
  bfd *curr_bfd;
  unsigned int *hash_table = NULL;
  struct som_entry *som_dict = NULL;
  struct lst_symbol_record **last_hash_entry = NULL;
  unsigned int curr_som_offset, som_index, extended_name_length = 0;
  unsigned int maxname = abfd->xvec->ar_max_namelen;

  hash_table =
    (unsigned int *) malloc (lst.hash_size * sizeof (unsigned int));
  if (hash_table == NULL && lst.hash_size != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }
  som_dict =
    (struct som_entry *) malloc (lst.module_count
				 * sizeof (struct som_entry));
  if (som_dict == NULL && lst.module_count != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  last_hash_entry =
    ((struct lst_symbol_record **)
     malloc (lst.hash_size * sizeof (struct lst_symbol_record *)));
  if (last_hash_entry == NULL && lst.hash_size != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  /* Lots of fields are file positions relative to the start
     of the lst record.  So save its location.  */
  lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);

  /* Some initialization.  */
  memset (hash_table, 0, 4 * lst.hash_size);
  memset (som_dict, 0, lst.module_count * sizeof (struct som_entry));
  memset (last_hash_entry, 0, 	
	  lst.hash_size * sizeof (struct lst_symbol_record *));

  /* Symbols have som_index fields, so we have to keep track of the
     index of each SOM in the archive.

     The SOM dictionary has (among other things) the absolute file
     position for the SOM which a particular dictionary entry
     describes.  We have to compute that information as we iterate
     through the SOMs/symbols.  */
  som_index = 0;
  curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;

  /* Yow!  We have to know the size of the extended name table
     too.  */
  for (curr_bfd = abfd->archive_head;
       curr_bfd != NULL;
       curr_bfd = curr_bfd->next)
    {
      CONST char *normal = normalize (curr_bfd->filename);
      unsigned int thislen;

      if (!normal)
	{
	  bfd_set_error (bfd_error_no_memory);
	  return false;
	}
      thislen = strlen (normal);
      if (thislen > maxname)
	extended_name_length += thislen + 1;
    }

  /* Make room for the archive header and the contents of the
     extended string table.  */
  if (extended_name_length)
    curr_som_offset += extended_name_length + sizeof (struct ar_hdr);

  /* Make sure we're properly aligned.  */
  curr_som_offset = (curr_som_offset + 0x1) & ~0x1;

  /* FIXME should be done with buffers just like everything else... */
  lst_syms = malloc (nsyms * sizeof (struct lst_symbol_record));
  if (lst_syms == NULL && nsyms != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }
  strings = malloc (string_size);
  if (strings == NULL && string_size != 0)
    {
      bfd_set_error (bfd_error_no_memory);
      goto error_return;
    }

  p = strings;
  curr_lst_sym = lst_syms;

  curr_bfd = abfd->archive_head;
  while (curr_bfd != NULL)
    {
      unsigned int curr_count, i;
      som_symbol_type *sym;

      /* Don't bother for non-SOM objects.  */
      if (curr_bfd->format != bfd_object
	  || curr_bfd->xvec->flavour != bfd_target_som_flavour)
	{
	  curr_bfd = curr_bfd->next;
	  continue;
	}

      /* Make sure the symbol table has been read, then snag a pointer
	 to it.  It's a little slimey to grab the symbols via obj_som_symtab,
	 but doing so avoids allocating lots of extra memory.  */
      if (som_slurp_symbol_table (curr_bfd) == false)
	goto error_return;

      sym = obj_som_symtab (curr_bfd);
      curr_count = bfd_get_symcount (curr_bfd);

      for (i = 0; i < curr_count; i++, sym++)
	{
	  struct som_misc_symbol_info info;

	  /* Derive SOM information from the BFD symbol.  */
	  som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);

	  /* Should we include this symbol?  */
	  if (info.symbol_type == ST_NULL
	      || info.symbol_type == ST_SYM_EXT
	      || info.symbol_type == ST_ARG_EXT)
	    continue;

	  /* Only global symbols and unsatisfied commons.  */
	  if (info.symbol_scope != SS_UNIVERSAL
	      && info.symbol_type != ST_STORAGE)
	    continue;

	  /* Do no include undefined symbols.  */
	  if (bfd_is_und_section (sym->symbol.section))
	    continue;

	  /* If this is the first symbol from this SOM, then update
	     the SOM dictionary too.  */
	  if (som_dict[som_index].location == 0)
	    {
	      som_dict[som_index].location = curr_som_offset;
	      som_dict[som_index].length = arelt_size (curr_bfd);
	    }

	  /* Fill in the lst symbol record.  */
	  curr_lst_sym->hidden = 0;
	  curr_lst_sym->secondary_def = 0;
	  curr_lst_sym->symbol_type = info.symbol_type;
	  curr_lst_sym->symbol_scope = info.symbol_scope;
	  curr_lst_sym->check_level = 0;
	  curr_lst_sym->must_qualify = 0;
	  curr_lst_sym->initially_frozen = 0;
	  curr_lst_sym->memory_resident = 0;
	  curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
	  curr_lst_sym->dup_common = 0;
	  curr_lst_sym->xleast = 0;
	  curr_lst_sym->arg_reloc = info.arg_reloc;
	  curr_lst_sym->name.n_strx = p - strings + 4;
	  curr_lst_sym->qualifier_name.n_strx = 0;
	  curr_lst_sym->symbol_info = info.symbol_info;
	  curr_lst_sym->symbol_value = info.symbol_value;
	  curr_lst_sym->symbol_descriptor = 0;
	  curr_lst_sym->reserved = 0;
	  curr_lst_sym->som_index = som_index;
	  curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
	  curr_lst_sym->next_entry = 0;

	  /* Insert into the hash table.  */
	  if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
	    {
	      struct lst_symbol_record *tmp;

	      /* There is already something at the head of this hash chain,
		 so tack this symbol onto the end of the chain.  */
	      tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
	      tmp->next_entry
		= (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
		  + lst.hash_size * 4 
		  + lst.module_count * sizeof (struct som_entry)
		  + sizeof (struct lst_header);
	    }
	  else
	    {
	      /* First entry in this hash chain.  */
	      hash_table[curr_lst_sym->symbol_key % lst.hash_size]
		= (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
		  + lst.hash_size * 4 
		  + lst.module_count * sizeof (struct som_entry)
		  + sizeof (struct lst_header);
	    }

	  /* Keep track of the last symbol we added to this chain so we can
	     easily update its next_entry pointer.  */
	  last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
	    = curr_lst_sym;


	  /* Update the string table.  */
	  bfd_put_32 (abfd, strlen (sym->symbol.name), p);
	  p += 4;
	  strcpy (p, sym->symbol.name);
	  p += strlen (sym->symbol.name) + 1;
	  while ((int)p % 4)
	    {
	      bfd_put_8 (abfd, 0, p);
	      p++;
	    }

	  /* Head to the next symbol.  */
	  curr_lst_sym++;
	}

      /* Keep track of where each SOM will finally reside; then look
	 at the next BFD.  */
      curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
 
      /* A particular object in the archive may have an odd length; the
	 linker requires objects begin on an even boundary.  So round
	 up the current offset as necessary.  */
      curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
      curr_bfd = curr_bfd->next;
      som_index++;
    }

  /* Now scribble out the hash table.  */
  if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd)
      != lst.hash_size * 4)
    goto error_return;

  /* Then the SOM dictionary.  */
  if (bfd_write ((PTR) som_dict, lst.module_count,
		 sizeof (struct som_entry), abfd)
      != lst.module_count * sizeof (struct som_entry))
    goto error_return;

  /* The library symbols.  */
  if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd)
      != nsyms * sizeof (struct lst_symbol_record))
    goto error_return;

  /* And finally the strings.  */
  if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size)
    goto error_return;

  if (hash_table != NULL)
    free (hash_table);
  if (som_dict != NULL)
    free (som_dict);
  if (last_hash_entry != NULL)
    free (last_hash_entry);
  if (lst_syms != NULL)
    free (lst_syms);
  if (strings != NULL)
    free (strings);
  return true;

 error_return:
  if (hash_table != NULL)
    free (hash_table);
  if (som_dict != NULL)
    free (som_dict);
  if (last_hash_entry != NULL)
    free (last_hash_entry);
  if (lst_syms != NULL)
    free (lst_syms);
  if (strings != NULL)
    free (strings);

  return false;
}

/* SOM almost uses the SVR4 style extended name support, but not
   quite.  */

static boolean
som_construct_extended_name_table (abfd, tabloc, tablen, name)
     bfd *abfd;
     char **tabloc;
     bfd_size_type *tablen;
     const char **name;
{
  *name = "//";
  return _bfd_construct_extended_name_table (abfd, false, tabloc, tablen);
}

/* Write out the LST for the archive.

   You'll never believe this is really how armaps are handled in SOM...  */

/*ARGSUSED*/
static boolean
som_write_armap (abfd, elength, map, orl_count, stridx)
     bfd *abfd;
     unsigned int elength;
     struct orl *map;
     unsigned int orl_count;
     int stridx;
{
  bfd *curr_bfd;
  struct stat statbuf;
  unsigned int i, lst_size, nsyms, stringsize;
  struct ar_hdr hdr;
  struct lst_header lst;
  int *p;
 
  /* We'll use this for the archive's date and mode later.  */
  if (stat (abfd->filename, &statbuf) != 0)
    {
      bfd_set_error (bfd_error_system_call);
      return false;
    }
  /* Fudge factor.  */
  bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;

  /* Account for the lst header first.  */
  lst_size = sizeof (struct lst_header);

  /* Start building the LST header.  */
  /* FIXME:  Do we need to examine each element to determine the
     largest id number?  */
  lst.system_id = CPU_PA_RISC1_0;
  lst.a_magic = LIBMAGIC;
  lst.version_id = VERSION_ID;
  lst.file_time.secs = 0;
  lst.file_time.nanosecs = 0;

  lst.hash_loc = lst_size;
  lst.hash_size = SOM_LST_HASH_SIZE;

  /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets.  */
  lst_size += 4 * SOM_LST_HASH_SIZE;

  /* We need to count the number of SOMs in this archive.  */
  curr_bfd = abfd->archive_head;
  lst.module_count = 0;
  while (curr_bfd != NULL)
    {
      /* Only true SOM objects count.  */
      if (curr_bfd->format == bfd_object
	  && curr_bfd->xvec->flavour == bfd_target_som_flavour)
	lst.module_count++;
      curr_bfd = curr_bfd->next;
    }
  lst.module_limit = lst.module_count;
  lst.dir_loc = lst_size;
  lst_size += sizeof (struct som_entry) * lst.module_count;

  /* We don't support import/export tables, auxiliary headers,
     or free lists yet.  Make the linker work a little harder
     to make our life easier.  */

  lst.export_loc = 0;
  lst.export_count = 0;
  lst.import_loc = 0;
  lst.aux_loc = 0;
  lst.aux_size = 0;

  /* Count how many symbols we will have on the hash chains and the
     size of the associated string table.  */
  if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false)
    return false;

  lst_size += sizeof (struct lst_symbol_record) * nsyms;

  /* For the string table.  One day we might actually use this info
     to avoid small seeks/reads when reading archives.  */
  lst.string_loc = lst_size;
  lst.string_size = stringsize;
  lst_size += stringsize;

  /* SOM ABI says this must be zero.  */
  lst.free_list = 0;
  lst.file_end = lst_size;

  /* Compute the checksum.  Must happen after the entire lst header
     has filled in.  */
  p = (int *)&lst;
  lst.checksum = 0;
  for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++)
    lst.checksum ^= *p++;

  sprintf (hdr.ar_name, "/               ");
  sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
  sprintf (hdr.ar_uid, "%ld", (long) getuid ());
  sprintf (hdr.ar_gid, "%ld", (long) getgid ());
  sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
  sprintf (hdr.ar_size, "%-10d", (int) lst_size);
  hdr.ar_fmag[0] = '`';
  hdr.ar_fmag[1] = '\012';

  /* Turn any nulls into spaces.  */
  for (i = 0; i < sizeof (struct ar_hdr); i++)
    if (((char *) (&hdr))[i] == '\0')
      (((char *) (&hdr))[i]) = ' ';

  /* Scribble out the ar header.  */
  if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd)
      != sizeof (struct ar_hdr))
    return false;

  /* Now scribble out the lst header.  */
  if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd)
      != sizeof (struct lst_header))
    return false;

  /* Build and write the armap.  */
  if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst) == false)
    return false;
  
  /* Done.  */
  return true;
}

/* Free all information we have cached for this BFD.  We can always
   read it again later if we need it.  */

static boolean
som_bfd_free_cached_info (abfd)
     bfd *abfd;
{
  asection *o;

  if (bfd_get_format (abfd) != bfd_object)
    return true;

#define FREE(x) if (x != NULL) { free (x); x = NULL; }
  /* Free the native string and symbol tables.  */
  FREE (obj_som_symtab (abfd));
  FREE (obj_som_stringtab (abfd));
  for (o = abfd->sections; o != (asection *) NULL; o = o->next)
    {
      /* Free the native relocations.  */
      o->reloc_count = -1;
      FREE (som_section_data (o)->reloc_stream);
      /* Free the generic relocations.  */
      FREE (o->relocation);
    }
#undef FREE

  return true;
}

/* End of miscellaneous support functions. */

/* Linker support functions.  */
static boolean
som_bfd_link_split_section (abfd, sec)
     bfd *abfd;
     asection *sec;
{
  return (som_is_subspace (sec) && sec->_raw_size > 240000);
}

#define	som_close_and_cleanup		som_bfd_free_cached_info

#define som_openr_next_archived_file	bfd_generic_openr_next_archived_file
#define som_generic_stat_arch_elt	bfd_generic_stat_arch_elt
#define som_truncate_arname		bfd_bsd_truncate_arname
#define som_slurp_extended_name_table	_bfd_slurp_extended_name_table
#define som_update_armap_timestamp	bfd_true
#define som_bfd_print_private_bfd_data  _bfd_generic_bfd_print_private_bfd_data

#define som_get_lineno                  _bfd_nosymbols_get_lineno
#define som_bfd_make_debug_symbol	_bfd_nosymbols_bfd_make_debug_symbol
#define som_read_minisymbols		_bfd_generic_read_minisymbols
#define som_minisymbol_to_symbol	_bfd_generic_minisymbol_to_symbol

#define som_bfd_get_relocated_section_contents \
 bfd_generic_get_relocated_section_contents
#define som_bfd_relax_section bfd_generic_relax_section
#define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
#define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
#define som_bfd_final_link _bfd_generic_final_link

const bfd_target som_vec =
{
  "som",			/* name */
  bfd_target_som_flavour,
  true,				/* target byte order */
  true,				/* target headers byte order */
  (HAS_RELOC | EXEC_P |		/* object flags */
   HAS_LINENO | HAS_DEBUG |
   HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
  (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS
   | SEC_ALLOC | SEC_LOAD | SEC_RELOC),		/* section flags */

/* leading_symbol_char: is the first char of a user symbol
   predictable, and if so what is it */
  0,
  '/',				/* ar_pad_char */
  14,				/* ar_max_namelen */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16,	/* data */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16,	/* hdrs */
  {_bfd_dummy_target,
   som_object_p,		/* bfd_check_format */
   bfd_generic_archive_p,
   _bfd_dummy_target
  },
  {
    bfd_false,
    som_mkobject,
    _bfd_generic_mkarchive,
    bfd_false
  },
  {
    bfd_false,
    som_write_object_contents,
    _bfd_write_archive_contents,
    bfd_false,
  },
#undef som

  BFD_JUMP_TABLE_GENERIC (som),
  BFD_JUMP_TABLE_COPY (som),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (som),
  BFD_JUMP_TABLE_SYMBOLS (som),
  BFD_JUMP_TABLE_RELOCS (som),
  BFD_JUMP_TABLE_WRITE (som),
  BFD_JUMP_TABLE_LINK (som),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),

  (PTR) 0
};

#endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */