aboutsummaryrefslogtreecommitdiff
path: root/bfd/elf32-xtensa.c
blob: 02effe71adb805643e809f89b28934cab172c5cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
/* Xtensa-specific support for 32-bit ELF.
   Copyright (C) 2003-2018 Free Software Foundation, Inc.

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License as
   published by the Free Software Foundation; either version 3 of the
   License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
   02110-1301, USA.  */

#include "sysdep.h"
#include "bfd.h"

#include <stdarg.h>
#include <strings.h>

#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/xtensa.h"
#include "splay-tree.h"
#include "xtensa-isa.h"
#include "xtensa-config.h"

#define XTENSA_NO_NOP_REMOVAL 0

/* Local helper functions.  */

static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
static bfd_reloc_status_type bfd_elf_xtensa_reloc
  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
static bfd_boolean do_fix_for_relocatable_link
  (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
static void do_fix_for_final_link
  (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);

/* Local functions to handle Xtensa configurability.  */

static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
static bfd_boolean is_direct_call_opcode (xtensa_opcode);
static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
static xtensa_opcode get_const16_opcode (void);
static xtensa_opcode get_l32r_opcode (void);
static bfd_vma l32r_offset (bfd_vma, bfd_vma);
static int get_relocation_opnd (xtensa_opcode, int);
static int get_relocation_slot (int);
static xtensa_opcode get_relocation_opcode
  (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
static bfd_boolean is_l32r_relocation
  (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
static bfd_boolean is_alt_relocation (int);
static bfd_boolean is_operand_relocation (int);
static bfd_size_type insn_decode_len
  (bfd_byte *, bfd_size_type, bfd_size_type);
static xtensa_opcode insn_decode_opcode
  (bfd_byte *, bfd_size_type, bfd_size_type, int);
static bfd_boolean check_branch_target_aligned
  (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
static bfd_boolean check_loop_aligned
  (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
static bfd_size_type get_asm_simplify_size
  (bfd_byte *, bfd_size_type, bfd_size_type);

/* Functions for link-time code simplifications.  */

static bfd_reloc_status_type elf_xtensa_do_asm_simplify
  (bfd_byte *, bfd_vma, bfd_vma, char **);
static bfd_reloc_status_type contract_asm_expansion
  (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);

/* Access to internal relocations, section contents and symbols.  */

static Elf_Internal_Rela *retrieve_internal_relocs
  (bfd *, asection *, bfd_boolean);
static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
static void release_internal_relocs (asection *, Elf_Internal_Rela *);
static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
static void pin_contents (asection *, bfd_byte *);
static void release_contents (asection *, bfd_byte *);
static Elf_Internal_Sym *retrieve_local_syms (bfd *);

/* Miscellaneous utility functions.  */

static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
static asection *get_elf_r_symndx_section (bfd *, unsigned long);
static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
  (bfd *, unsigned long);
static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
static bfd_boolean xtensa_is_property_section (asection *);
static bfd_boolean xtensa_is_insntable_section (asection *);
static bfd_boolean xtensa_is_littable_section (asection *);
static bfd_boolean xtensa_is_proptable_section (asection *);
static int internal_reloc_compare (const void *, const void *);
static int internal_reloc_matches (const void *, const void *);
static asection *xtensa_get_property_section (asection *, const char *);
static flagword xtensa_get_property_predef_flags (asection *);

/* Other functions called directly by the linker.  */

typedef void (*deps_callback_t)
  (asection *, bfd_vma, asection *, bfd_vma, void *);
extern bfd_boolean xtensa_callback_required_dependence
  (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);


/* Globally visible flag for choosing size optimization of NOP removal
   instead of branch-target-aware minimization for NOP removal.
   When nonzero, narrow all instructions and remove all NOPs possible
   around longcall expansions.  */

int elf32xtensa_size_opt;


/* The "new_section_hook" is used to set up a per-section
   "xtensa_relax_info" data structure with additional information used
   during relaxation.  */

typedef struct xtensa_relax_info_struct xtensa_relax_info;


/* The GNU tools do not easily allow extending interfaces to pass around
   the pointer to the Xtensa ISA information, so instead we add a global
   variable here (in BFD) that can be used by any of the tools that need
   this information. */

xtensa_isa xtensa_default_isa;


/* When this is true, relocations may have been modified to refer to
   symbols from other input files.  The per-section list of "fix"
   records needs to be checked when resolving relocations.  */

static bfd_boolean relaxing_section = FALSE;

/* When this is true, during final links, literals that cannot be
   coalesced and their relocations may be moved to other sections.  */

int elf32xtensa_no_literal_movement = 1;

/* Rename one of the generic section flags to better document how it
   is used here.  */
/* Whether relocations have been processed.  */
#define reloc_done sec_flg0

static reloc_howto_type elf_howto_table[] =
{
  HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
	 FALSE, 0, 0, FALSE),
  HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
	 bfd_elf_xtensa_reloc, "R_XTENSA_32",
	 TRUE, 0xffffffff, 0xffffffff, FALSE),

  /* Replace a 32-bit value with a value from the runtime linker (only
     used by linker-generated stub functions).  The r_addend value is
     special: 1 means to substitute a pointer to the runtime linker's
     dynamic resolver function; 2 means to substitute the link map for
     the shared object.  */
  HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
	 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),

  HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
	 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
	 FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
	 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
	 FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
	 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
	 FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
	 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
	 FALSE, 0, 0xffffffff, FALSE),

  EMPTY_HOWTO (7),

  /* Old relocations for backward compatibility.  */
  HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),

  /* Assembly auto-expansion.  */
  HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
  /* Relax assembly auto-expansion.  */
  HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),

  EMPTY_HOWTO (13),

  HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
	 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
	 FALSE, 0, 0xffffffff, TRUE),

  /* GNU extension to record C++ vtable hierarchy.  */
  HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
	 NULL, "R_XTENSA_GNU_VTINHERIT",
	 FALSE, 0, 0, FALSE),
  /* GNU extension to record C++ vtable member usage.  */
  HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
	 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
	 FALSE, 0, 0, FALSE),

  /* Relocations for supporting difference of symbols.  */
  HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
  HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
  HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),

  /* General immediate operand relocations.  */
  HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),

  /* "Alternate" relocations.  The meaning of these is opcode-specific.  */
  HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
  HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),

  /* TLS relocations.  */
  HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
	 FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
	 FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
	 FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
	 FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
	 FALSE, 0, 0, FALSE),
  HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
	 FALSE, 0, 0, FALSE),
  HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
	 FALSE, 0, 0, FALSE),
};

#if DEBUG_GEN_RELOC
#define TRACE(str) \
  fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
#else
#define TRACE(str)
#endif

static reloc_howto_type *
elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
			      bfd_reloc_code_real_type code)
{
  switch (code)
    {
    case BFD_RELOC_NONE:
      TRACE ("BFD_RELOC_NONE");
      return &elf_howto_table[(unsigned) R_XTENSA_NONE ];

    case BFD_RELOC_32:
      TRACE ("BFD_RELOC_32");
      return &elf_howto_table[(unsigned) R_XTENSA_32 ];

    case BFD_RELOC_32_PCREL:
      TRACE ("BFD_RELOC_32_PCREL");
      return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];

    case BFD_RELOC_XTENSA_DIFF8:
      TRACE ("BFD_RELOC_XTENSA_DIFF8");
      return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];

    case BFD_RELOC_XTENSA_DIFF16:
      TRACE ("BFD_RELOC_XTENSA_DIFF16");
      return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];

    case BFD_RELOC_XTENSA_DIFF32:
      TRACE ("BFD_RELOC_XTENSA_DIFF32");
      return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];

    case BFD_RELOC_XTENSA_RTLD:
      TRACE ("BFD_RELOC_XTENSA_RTLD");
      return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];

    case BFD_RELOC_XTENSA_GLOB_DAT:
      TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
      return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];

    case BFD_RELOC_XTENSA_JMP_SLOT:
      TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
      return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];

    case BFD_RELOC_XTENSA_RELATIVE:
      TRACE ("BFD_RELOC_XTENSA_RELATIVE");
      return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];

    case BFD_RELOC_XTENSA_PLT:
      TRACE ("BFD_RELOC_XTENSA_PLT");
      return &elf_howto_table[(unsigned) R_XTENSA_PLT ];

    case BFD_RELOC_XTENSA_OP0:
      TRACE ("BFD_RELOC_XTENSA_OP0");
      return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];

    case BFD_RELOC_XTENSA_OP1:
      TRACE ("BFD_RELOC_XTENSA_OP1");
      return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];

    case BFD_RELOC_XTENSA_OP2:
      TRACE ("BFD_RELOC_XTENSA_OP2");
      return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];

    case BFD_RELOC_XTENSA_ASM_EXPAND:
      TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
      return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];

    case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
      TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
      return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];

    case BFD_RELOC_VTABLE_INHERIT:
      TRACE ("BFD_RELOC_VTABLE_INHERIT");
      return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];

    case BFD_RELOC_VTABLE_ENTRY:
      TRACE ("BFD_RELOC_VTABLE_ENTRY");
      return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];

    case BFD_RELOC_XTENSA_TLSDESC_FN:
      TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
      return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];

    case BFD_RELOC_XTENSA_TLSDESC_ARG:
      TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
      return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];

    case BFD_RELOC_XTENSA_TLS_DTPOFF:
      TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
      return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];

    case BFD_RELOC_XTENSA_TLS_TPOFF:
      TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
      return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];

    case BFD_RELOC_XTENSA_TLS_FUNC:
      TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
      return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];

    case BFD_RELOC_XTENSA_TLS_ARG:
      TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
      return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];

    case BFD_RELOC_XTENSA_TLS_CALL:
      TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
      return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];

    default:
      if (code >= BFD_RELOC_XTENSA_SLOT0_OP
	  && code <= BFD_RELOC_XTENSA_SLOT14_OP)
	{
	  unsigned n = (R_XTENSA_SLOT0_OP +
			(code - BFD_RELOC_XTENSA_SLOT0_OP));
	  return &elf_howto_table[n];
	}

      if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
	  && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
	{
	  unsigned n = (R_XTENSA_SLOT0_ALT +
			(code - BFD_RELOC_XTENSA_SLOT0_ALT));
	  return &elf_howto_table[n];
	}

      break;
    }

  /* xgettext:c-format */
  _bfd_error_handler (_("%pB: invalid relocation type %d"), abfd, (int) code);
  bfd_set_error (bfd_error_bad_value);
  TRACE ("Unknown");
  return NULL;
}

static reloc_howto_type *
elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
			      const char *r_name)
{
  unsigned int i;

  for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
    if (elf_howto_table[i].name != NULL
	&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
      return &elf_howto_table[i];

  return NULL;
}


/* Given an ELF "rela" relocation, find the corresponding howto and record
   it in the BFD internal arelent representation of the relocation.  */

static bfd_boolean
elf_xtensa_info_to_howto_rela (bfd *abfd,
			       arelent *cache_ptr,
			       Elf_Internal_Rela *dst)
{
  unsigned int r_type = ELF32_R_TYPE (dst->r_info);

  if (r_type >= (unsigned int) R_XTENSA_max)
    {
      /* xgettext:c-format */
      _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
			  abfd, r_type);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
    }
  cache_ptr->howto = &elf_howto_table[r_type];
  return TRUE;
}


/* Functions for the Xtensa ELF linker.  */

/* The name of the dynamic interpreter.  This is put in the .interp
   section.  */

#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"

/* The size in bytes of an entry in the procedure linkage table.
   (This does _not_ include the space for the literals associated with
   the PLT entry.) */

#define PLT_ENTRY_SIZE 16

/* For _really_ large PLTs, we may need to alternate between literals
   and code to keep the literals within the 256K range of the L32R
   instructions in the code.  It's unlikely that anyone would ever need
   such a big PLT, but an arbitrary limit on the PLT size would be bad.
   Thus, we split the PLT into chunks.  Since there's very little
   overhead (2 extra literals) for each chunk, the chunk size is kept
   small so that the code for handling multiple chunks get used and
   tested regularly.  With 254 entries, there are 1K of literals for
   each chunk, and that seems like a nice round number.  */

#define PLT_ENTRIES_PER_CHUNK 254

/* PLT entries are actually used as stub functions for lazy symbol
   resolution.  Once the symbol is resolved, the stub function is never
   invoked.  Note: the 32-byte frame size used here cannot be changed
   without a corresponding change in the runtime linker.  */

static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
{
    {
      0x6c, 0x10, 0x04,	/* entry sp, 32 */
      0x18, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
      0x1a, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
      0x1b, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
      0x0a, 0x80, 0x00,	/* jx    a8 */
      0			/* unused */
    },
    {
      0x18, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
      0x1a, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
      0x1b, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
      0x0a, 0x80, 0x00,	/* jx    a8 */
      0			/* unused */
    }
};

static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
{
    {
      0x36, 0x41, 0x00,	/* entry sp, 32 */
      0x81, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
      0xa1, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
      0xb1, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
      0xa0, 0x08, 0x00,	/* jx    a8 */
      0			/* unused */
    },
    {
      0x81, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
      0xa1, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
      0xb1, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
      0xa0, 0x08, 0x00,	/* jx    a8 */
      0			/* unused */
    }
};

/* The size of the thread control block.  */
#define TCB_SIZE	8

struct elf_xtensa_link_hash_entry
{
  struct elf_link_hash_entry elf;

  bfd_signed_vma tlsfunc_refcount;

#define GOT_UNKNOWN	0
#define GOT_NORMAL	1
#define GOT_TLS_GD	2	/* global or local dynamic */
#define GOT_TLS_IE	4	/* initial or local exec */
#define GOT_TLS_ANY	(GOT_TLS_GD | GOT_TLS_IE)
  unsigned char tls_type;
};

#define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))

struct elf_xtensa_obj_tdata
{
  struct elf_obj_tdata root;

  /* tls_type for each local got entry.  */
  char *local_got_tls_type;

  bfd_signed_vma *local_tlsfunc_refcounts;
};

#define elf_xtensa_tdata(abfd) \
  ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)

#define elf_xtensa_local_got_tls_type(abfd) \
  (elf_xtensa_tdata (abfd)->local_got_tls_type)

#define elf_xtensa_local_tlsfunc_refcounts(abfd) \
  (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)

#define is_xtensa_elf(bfd) \
  (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
   && elf_tdata (bfd) != NULL \
   && elf_object_id (bfd) == XTENSA_ELF_DATA)

static bfd_boolean
elf_xtensa_mkobject (bfd *abfd)
{
  return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
				  XTENSA_ELF_DATA);
}

/* Xtensa ELF linker hash table.  */

struct elf_xtensa_link_hash_table
{
  struct elf_link_hash_table elf;

  /* Short-cuts to get to dynamic linker sections.  */
  asection *sgotloc;
  asection *spltlittbl;

  /* Total count of PLT relocations seen during check_relocs.
     The actual PLT code must be split into multiple sections and all
     the sections have to be created before size_dynamic_sections,
     where we figure out the exact number of PLT entries that will be
     needed.  It is OK if this count is an overestimate, e.g., some
     relocations may be removed by GC.  */
  int plt_reloc_count;

  struct elf_xtensa_link_hash_entry *tlsbase;
};

/* Get the Xtensa ELF linker hash table from a link_info structure.  */

#define elf_xtensa_hash_table(p) \
  (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
  == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)

/* Create an entry in an Xtensa ELF linker hash table.  */

static struct bfd_hash_entry *
elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
			      struct bfd_hash_table *table,
			      const char *string)
{
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (entry == NULL)
    {
      entry = bfd_hash_allocate (table,
				 sizeof (struct elf_xtensa_link_hash_entry));
      if (entry == NULL)
	return entry;
    }

  /* Call the allocation method of the superclass.  */
  entry = _bfd_elf_link_hash_newfunc (entry, table, string);
  if (entry != NULL)
    {
      struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
      eh->tlsfunc_refcount = 0;
      eh->tls_type = GOT_UNKNOWN;
    }

  return entry;
}

/* Create an Xtensa ELF linker hash table.  */

static struct bfd_link_hash_table *
elf_xtensa_link_hash_table_create (bfd *abfd)
{
  struct elf_link_hash_entry *tlsbase;
  struct elf_xtensa_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);

  ret = bfd_zmalloc (amt);
  if (ret == NULL)
    return NULL;

  if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
				      elf_xtensa_link_hash_newfunc,
				      sizeof (struct elf_xtensa_link_hash_entry),
				      XTENSA_ELF_DATA))
    {
      free (ret);
      return NULL;
    }

  /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
     for it later.  */
  tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
				  TRUE, FALSE, FALSE);
  tlsbase->root.type = bfd_link_hash_new;
  tlsbase->root.u.undef.abfd = NULL;
  tlsbase->non_elf = 0;
  ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
  ret->tlsbase->tls_type = GOT_UNKNOWN;

  return &ret->elf.root;
}

/* Copy the extra info we tack onto an elf_link_hash_entry.  */

static void
elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
				 struct elf_link_hash_entry *dir,
				 struct elf_link_hash_entry *ind)
{
  struct elf_xtensa_link_hash_entry *edir, *eind;

  edir = elf_xtensa_hash_entry (dir);
  eind = elf_xtensa_hash_entry (ind);

  if (ind->root.type == bfd_link_hash_indirect)
    {
      edir->tlsfunc_refcount += eind->tlsfunc_refcount;
      eind->tlsfunc_refcount = 0;

      if (dir->got.refcount <= 0)
	{
	  edir->tls_type = eind->tls_type;
	  eind->tls_type = GOT_UNKNOWN;
	}
    }

  _bfd_elf_link_hash_copy_indirect (info, dir, ind);
}

static inline bfd_boolean
elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
			     struct bfd_link_info *info)
{
  /* Check if we should do dynamic things to this symbol.  The
     "ignore_protected" argument need not be set, because Xtensa code
     does not require special handling of STV_PROTECTED to make function
     pointer comparisons work properly.  The PLT addresses are never
     used for function pointers.  */

  return _bfd_elf_dynamic_symbol_p (h, info, 0);
}


static int
property_table_compare (const void *ap, const void *bp)
{
  const property_table_entry *a = (const property_table_entry *) ap;
  const property_table_entry *b = (const property_table_entry *) bp;

  if (a->address == b->address)
    {
      if (a->size != b->size)
	return (a->size - b->size);

      if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
	return ((b->flags & XTENSA_PROP_ALIGN)
		- (a->flags & XTENSA_PROP_ALIGN));

      if ((a->flags & XTENSA_PROP_ALIGN)
	  && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
	      != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
	return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
		- GET_XTENSA_PROP_ALIGNMENT (b->flags));

      if ((a->flags & XTENSA_PROP_UNREACHABLE)
	  != (b->flags & XTENSA_PROP_UNREACHABLE))
	return ((b->flags & XTENSA_PROP_UNREACHABLE)
		- (a->flags & XTENSA_PROP_UNREACHABLE));

      return (a->flags - b->flags);
    }

  return (a->address - b->address);
}


static int
property_table_matches (const void *ap, const void *bp)
{
  const property_table_entry *a = (const property_table_entry *) ap;
  const property_table_entry *b = (const property_table_entry *) bp;

  /* Check if one entry overlaps with the other.  */
  if ((b->address >= a->address && b->address < (a->address + a->size))
      || (a->address >= b->address && a->address < (b->address + b->size)))
    return 0;

  return (a->address - b->address);
}


/* Get the literal table or property table entries for the given
   section.  Sets TABLE_P and returns the number of entries.  On
   error, returns a negative value.  */

static int
xtensa_read_table_entries (bfd *abfd,
			   asection *section,
			   property_table_entry **table_p,
			   const char *sec_name,
			   bfd_boolean output_addr)
{
  asection *table_section;
  bfd_size_type table_size = 0;
  bfd_byte *table_data;
  property_table_entry *blocks;
  int blk, block_count;
  bfd_size_type num_records;
  Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
  bfd_vma section_addr, off;
  flagword predef_flags;
  bfd_size_type table_entry_size, section_limit;

  if (!section
      || !(section->flags & SEC_ALLOC)
      || (section->flags & SEC_DEBUGGING))
    {
      *table_p = NULL;
      return 0;
    }

  table_section = xtensa_get_property_section (section, sec_name);
  if (table_section)
    table_size = table_section->size;

  if (table_size == 0)
    {
      *table_p = NULL;
      return 0;
    }

  predef_flags = xtensa_get_property_predef_flags (table_section);
  table_entry_size = 12;
  if (predef_flags)
    table_entry_size -= 4;

  num_records = table_size / table_entry_size;
  table_data = retrieve_contents (abfd, table_section, TRUE);
  blocks = (property_table_entry *)
    bfd_malloc (num_records * sizeof (property_table_entry));
  block_count = 0;

  if (output_addr)
    section_addr = section->output_section->vma + section->output_offset;
  else
    section_addr = section->vma;

  internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
  if (internal_relocs && !table_section->reloc_done)
    {
      qsort (internal_relocs, table_section->reloc_count,
	     sizeof (Elf_Internal_Rela), internal_reloc_compare);
      irel = internal_relocs;
    }
  else
    irel = NULL;

  section_limit = bfd_get_section_limit (abfd, section);
  rel_end = internal_relocs + table_section->reloc_count;

  for (off = 0; off < table_size; off += table_entry_size)
    {
      bfd_vma address = bfd_get_32 (abfd, table_data + off);

      /* Skip any relocations before the current offset.  This should help
	 avoid confusion caused by unexpected relocations for the preceding
	 table entry.  */
      while (irel &&
	     (irel->r_offset < off
	      || (irel->r_offset == off
		  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
	{
	  irel += 1;
	  if (irel >= rel_end)
	    irel = 0;
	}

      if (irel && irel->r_offset == off)
	{
	  bfd_vma sym_off;
	  unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
	  BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);

	  if (get_elf_r_symndx_section (abfd, r_symndx) != section)
	    continue;

	  sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
	  BFD_ASSERT (sym_off == 0);
	  address += (section_addr + sym_off + irel->r_addend);
	}
      else
	{
	  if (address < section_addr
	      || address >= section_addr + section_limit)
	    continue;
	}

      blocks[block_count].address = address;
      blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
      if (predef_flags)
	blocks[block_count].flags = predef_flags;
      else
	blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
      block_count++;
    }

  release_contents (table_section, table_data);
  release_internal_relocs (table_section, internal_relocs);

  if (block_count > 0)
    {
      /* Now sort them into address order for easy reference.  */
      qsort (blocks, block_count, sizeof (property_table_entry),
	     property_table_compare);

      /* Check that the table contents are valid.  Problems may occur,
	 for example, if an unrelocated object file is stripped.  */
      for (blk = 1; blk < block_count; blk++)
	{
	  /* The only circumstance where two entries may legitimately
	     have the same address is when one of them is a zero-size
	     placeholder to mark a place where fill can be inserted.
	     The zero-size entry should come first.  */
	  if (blocks[blk - 1].address == blocks[blk].address &&
	      blocks[blk - 1].size != 0)
	    {
	      /* xgettext:c-format */
	      _bfd_error_handler (_("%pB(%pA): invalid property table"),
				  abfd, section);
	      bfd_set_error (bfd_error_bad_value);
	      free (blocks);
	      return -1;
	    }
	}
    }

  *table_p = blocks;
  return block_count;
}


static property_table_entry *
elf_xtensa_find_property_entry (property_table_entry *property_table,
				int property_table_size,
				bfd_vma addr)
{
  property_table_entry entry;
  property_table_entry *rv;

  if (property_table_size == 0)
    return NULL;

  entry.address = addr;
  entry.size = 1;
  entry.flags = 0;

  rv = bsearch (&entry, property_table, property_table_size,
		sizeof (property_table_entry), property_table_matches);
  return rv;
}


static bfd_boolean
elf_xtensa_in_literal_pool (property_table_entry *lit_table,
			    int lit_table_size,
			    bfd_vma addr)
{
  if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
    return TRUE;

  return FALSE;
}


/* Look through the relocs for a section during the first phase, and
   calculate needed space in the dynamic reloc sections.  */

static bfd_boolean
elf_xtensa_check_relocs (bfd *abfd,
			 struct bfd_link_info *info,
			 asection *sec,
			 const Elf_Internal_Rela *relocs)
{
  struct elf_xtensa_link_hash_table *htab;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  const Elf_Internal_Rela *rel;
  const Elf_Internal_Rela *rel_end;

  if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
    return TRUE;

  BFD_ASSERT (is_xtensa_elf (abfd));

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return FALSE;

  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);

  rel_end = relocs + sec->reloc_count;
  for (rel = relocs; rel < rel_end; rel++)
    {
      unsigned int r_type;
      unsigned r_symndx;
      struct elf_link_hash_entry *h = NULL;
      struct elf_xtensa_link_hash_entry *eh;
      int tls_type, old_tls_type;
      bfd_boolean is_got = FALSE;
      bfd_boolean is_plt = FALSE;
      bfd_boolean is_tlsfunc = FALSE;

      r_symndx = ELF32_R_SYM (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);

      if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
	{
	  /* xgettext:c-format */
	  _bfd_error_handler (_("%pB: bad symbol index: %d"),
			      abfd, r_symndx);
	  return FALSE;
	}

      if (r_symndx >= symtab_hdr->sh_info)
	{
	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
	  while (h->root.type == bfd_link_hash_indirect
		 || h->root.type == bfd_link_hash_warning)
	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
	}
      eh = elf_xtensa_hash_entry (h);

      switch (r_type)
	{
	case R_XTENSA_TLSDESC_FN:
	  if (bfd_link_pic (info))
	    {
	      tls_type = GOT_TLS_GD;
	      is_got = TRUE;
	      is_tlsfunc = TRUE;
	    }
	  else
	    tls_type = GOT_TLS_IE;
	  break;

	case R_XTENSA_TLSDESC_ARG:
	  if (bfd_link_pic (info))
	    {
	      tls_type = GOT_TLS_GD;
	      is_got = TRUE;
	    }
	  else
	    {
	      tls_type = GOT_TLS_IE;
	      if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
		is_got = TRUE;
	    }
	  break;

	case R_XTENSA_TLS_DTPOFF:
	  if (bfd_link_pic (info))
	    tls_type = GOT_TLS_GD;
	  else
	    tls_type = GOT_TLS_IE;
	  break;

	case R_XTENSA_TLS_TPOFF:
	  tls_type = GOT_TLS_IE;
	  if (bfd_link_pic (info))
	    info->flags |= DF_STATIC_TLS;
	  if (bfd_link_pic (info) || h)
	    is_got = TRUE;
	  break;

	case R_XTENSA_32:
	  tls_type = GOT_NORMAL;
	  is_got = TRUE;
	  break;

	case R_XTENSA_PLT:
	  tls_type = GOT_NORMAL;
	  is_plt = TRUE;
	  break;

	case R_XTENSA_GNU_VTINHERIT:
	  /* This relocation describes the C++ object vtable hierarchy.
	     Reconstruct it for later use during GC.  */
	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
	    return FALSE;
	  continue;

	case R_XTENSA_GNU_VTENTRY:
	  /* This relocation describes which C++ vtable entries are actually
	     used.  Record for later use during GC.  */
	  BFD_ASSERT (h != NULL);
	  if (h != NULL
	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
	    return FALSE;
	  continue;

	default:
	  /* Nothing to do for any other relocations.  */
	  continue;
	}

      if (h)
	{
	  if (is_plt)
	    {
	      if (h->plt.refcount <= 0)
		{
		  h->needs_plt = 1;
		  h->plt.refcount = 1;
		}
	      else
		h->plt.refcount += 1;

	      /* Keep track of the total PLT relocation count even if we
		 don't yet know whether the dynamic sections will be
		 created.  */
	      htab->plt_reloc_count += 1;

	      if (elf_hash_table (info)->dynamic_sections_created)
		{
		  if (! add_extra_plt_sections (info, htab->plt_reloc_count))
		    return FALSE;
		}
	    }
	  else if (is_got)
	    {
	      if (h->got.refcount <= 0)
		h->got.refcount = 1;
	      else
		h->got.refcount += 1;
	    }

	  if (is_tlsfunc)
	    eh->tlsfunc_refcount += 1;

	  old_tls_type = eh->tls_type;
	}
      else
	{
	  /* Allocate storage the first time.  */
	  if (elf_local_got_refcounts (abfd) == NULL)
	    {
	      bfd_size_type size = symtab_hdr->sh_info;
	      void *mem;

	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
	      if (mem == NULL)
		return FALSE;
	      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;

	      mem = bfd_zalloc (abfd, size);
	      if (mem == NULL)
		return FALSE;
	      elf_xtensa_local_got_tls_type (abfd) = (char *) mem;

	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
	      if (mem == NULL)
		return FALSE;
	      elf_xtensa_local_tlsfunc_refcounts (abfd)
		= (bfd_signed_vma *) mem;
	    }

	  /* This is a global offset table entry for a local symbol.  */
	  if (is_got || is_plt)
	    elf_local_got_refcounts (abfd) [r_symndx] += 1;

	  if (is_tlsfunc)
	    elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;

	  old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
	}

      if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
	tls_type |= old_tls_type;
      /* If a TLS symbol is accessed using IE at least once,
	 there is no point to use a dynamic model for it.  */
      else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
	       && ((old_tls_type & GOT_TLS_GD) == 0
		   || (tls_type & GOT_TLS_IE) == 0))
	{
	  if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
	    tls_type = old_tls_type;
	  else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
	    tls_type |= old_tls_type;
	  else
	    {
	      _bfd_error_handler
		/* xgettext:c-format */
		(_("%pB: `%s' accessed both as normal and thread local symbol"),
		 abfd,
		 h ? h->root.root.string : "<local>");
	      return FALSE;
	    }
	}

      if (old_tls_type != tls_type)
	{
	  if (eh)
	    eh->tls_type = tls_type;
	  else
	    elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
	}
    }

  return TRUE;
}


static void
elf_xtensa_make_sym_local (struct bfd_link_info *info,
			   struct elf_link_hash_entry *h)
{
  if (bfd_link_pic (info))
    {
      if (h->plt.refcount > 0)
	{
	  /* For shared objects, there's no need for PLT entries for local
	     symbols (use RELATIVE relocs instead of JMP_SLOT relocs).  */
	  if (h->got.refcount < 0)
	    h->got.refcount = 0;
	  h->got.refcount += h->plt.refcount;
	  h->plt.refcount = 0;
	}
    }
  else
    {
      /* Don't need any dynamic relocations at all.  */
      h->plt.refcount = 0;
      h->got.refcount = 0;
    }
}


static void
elf_xtensa_hide_symbol (struct bfd_link_info *info,
			struct elf_link_hash_entry *h,
			bfd_boolean force_local)
{
  /* For a shared link, move the plt refcount to the got refcount to leave
     space for RELATIVE relocs.  */
  elf_xtensa_make_sym_local (info, h);

  _bfd_elf_link_hash_hide_symbol (info, h, force_local);
}


/* Return the section that should be marked against GC for a given
   relocation.  */

static asection *
elf_xtensa_gc_mark_hook (asection *sec,
			 struct bfd_link_info *info,
			 Elf_Internal_Rela *rel,
			 struct elf_link_hash_entry *h,
			 Elf_Internal_Sym *sym)
{
  /* Property sections are marked "KEEP" in the linker scripts, but they
     should not cause other sections to be marked.  (This approach relies
     on elf_xtensa_discard_info to remove property table entries that
     describe discarded sections.  Alternatively, it might be more
     efficient to avoid using "KEEP" in the linker scripts and instead use
     the gc_mark_extra_sections hook to mark only the property sections
     that describe marked sections.  That alternative does not work well
     with the current property table sections, which do not correspond
     one-to-one with the sections they describe, but that should be fixed
     someday.) */
  if (xtensa_is_property_section (sec))
    return NULL;

  if (h != NULL)
    switch (ELF32_R_TYPE (rel->r_info))
      {
      case R_XTENSA_GNU_VTINHERIT:
      case R_XTENSA_GNU_VTENTRY:
	return NULL;
      }

  return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}


/* Create all the dynamic sections.  */

static bfd_boolean
elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
{
  struct elf_xtensa_link_hash_table *htab;
  flagword flags, noalloc_flags;

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return FALSE;

  /* First do all the standard stuff.  */
  if (! _bfd_elf_create_dynamic_sections (dynobj, info))
    return FALSE;

  /* Create any extra PLT sections in case check_relocs has already
     been called on all the non-dynamic input files.  */
  if (! add_extra_plt_sections (info, htab->plt_reloc_count))
    return FALSE;

  noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
		   | SEC_LINKER_CREATED | SEC_READONLY);
  flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;

  /* Mark the ".got.plt" section READONLY.  */
  if (htab->elf.sgotplt == NULL
      || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
    return FALSE;

  /* Create ".got.loc" (literal tables for use by dynamic linker).  */
  htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
						      flags);
  if (htab->sgotloc == NULL
      || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
    return FALSE;

  /* Create ".xt.lit.plt" (literal table for ".got.plt*").  */
  htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
							 noalloc_flags);
  if (htab->spltlittbl == NULL
      || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
    return FALSE;

  return TRUE;
}


static bfd_boolean
add_extra_plt_sections (struct bfd_link_info *info, int count)
{
  bfd *dynobj = elf_hash_table (info)->dynobj;
  int chunk;

  /* Iterate over all chunks except 0 which uses the standard ".plt" and
     ".got.plt" sections.  */
  for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
    {
      char *sname;
      flagword flags;
      asection *s;

      /* Stop when we find a section has already been created.  */
      if (elf_xtensa_get_plt_section (info, chunk))
	break;

      flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
	       | SEC_LINKER_CREATED | SEC_READONLY);

      sname = (char *) bfd_malloc (10);
      sprintf (sname, ".plt.%u", chunk);
      s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
      if (s == NULL
	  || ! bfd_set_section_alignment (dynobj, s, 2))
	return FALSE;

      sname = (char *) bfd_malloc (14);
      sprintf (sname, ".got.plt.%u", chunk);
      s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
      if (s == NULL
	  || ! bfd_set_section_alignment (dynobj, s, 2))
	return FALSE;
    }

  return TRUE;
}


/* Adjust a symbol defined by a dynamic object and referenced by a
   regular object.  The current definition is in some section of the
   dynamic object, but we're not including those sections.  We have to
   change the definition to something the rest of the link can
   understand.  */

static bfd_boolean
elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
				  struct elf_link_hash_entry *h)
{
  /* If this is a weak symbol, and there is a real definition, the
     processor independent code will have arranged for us to see the
     real definition first, and we can just use the same value.  */
  if (h->is_weakalias)
    {
      struct elf_link_hash_entry *def = weakdef (h);
      BFD_ASSERT (def->root.type == bfd_link_hash_defined);
      h->root.u.def.section = def->root.u.def.section;
      h->root.u.def.value = def->root.u.def.value;
      return TRUE;
    }

  /* This is a reference to a symbol defined by a dynamic object.  The
     reference must go through the GOT, so there's no need for COPY relocs,
     .dynbss, etc.  */

  return TRUE;
}


static bfd_boolean
elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
{
  struct bfd_link_info *info;
  struct elf_xtensa_link_hash_table *htab;
  struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);

  if (h->root.type == bfd_link_hash_indirect)
    return TRUE;

  info = (struct bfd_link_info *) arg;
  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return FALSE;

  /* If we saw any use of an IE model for this symbol, we can then optimize
     away GOT entries for any TLSDESC_FN relocs.  */
  if ((eh->tls_type & GOT_TLS_IE) != 0)
    {
      BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
      h->got.refcount -= eh->tlsfunc_refcount;
    }

  if (! elf_xtensa_dynamic_symbol_p (h, info))
    elf_xtensa_make_sym_local (info, h);

  if (h->plt.refcount > 0)
    htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));

  if (h->got.refcount > 0)
    htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));

  return TRUE;
}


static void
elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
{
  struct elf_xtensa_link_hash_table *htab;
  bfd *i;

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return;

  for (i = info->input_bfds; i; i = i->link.next)
    {
      bfd_signed_vma *local_got_refcounts;
      bfd_size_type j, cnt;
      Elf_Internal_Shdr *symtab_hdr;

      local_got_refcounts = elf_local_got_refcounts (i);
      if (!local_got_refcounts)
	continue;

      symtab_hdr = &elf_tdata (i)->symtab_hdr;
      cnt = symtab_hdr->sh_info;

      for (j = 0; j < cnt; ++j)
	{
	  /* If we saw any use of an IE model for this symbol, we can
	     then optimize away GOT entries for any TLSDESC_FN relocs.  */
	  if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
	    {
	      bfd_signed_vma *tlsfunc_refcount
		= &elf_xtensa_local_tlsfunc_refcounts (i) [j];
	      BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
	      local_got_refcounts[j] -= *tlsfunc_refcount;
	    }

	  if (local_got_refcounts[j] > 0)
	    htab->elf.srelgot->size += (local_got_refcounts[j]
					* sizeof (Elf32_External_Rela));
	}
    }
}


/* Set the sizes of the dynamic sections.  */

static bfd_boolean
elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
				  struct bfd_link_info *info)
{
  struct elf_xtensa_link_hash_table *htab;
  bfd *dynobj, *abfd;
  asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
  bfd_boolean relplt, relgot;
  int plt_entries, plt_chunks, chunk;

  plt_entries = 0;
  plt_chunks = 0;

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return FALSE;

  dynobj = elf_hash_table (info)->dynobj;
  if (dynobj == NULL)
    abort ();
  srelgot = htab->elf.srelgot;
  srelplt = htab->elf.srelplt;

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      BFD_ASSERT (htab->elf.srelgot != NULL
		  && htab->elf.srelplt != NULL
		  && htab->elf.sgot != NULL
		  && htab->spltlittbl != NULL
		  && htab->sgotloc != NULL);

      /* Set the contents of the .interp section to the interpreter.  */
      if (bfd_link_executable (info) && !info->nointerp)
	{
	  s = bfd_get_linker_section (dynobj, ".interp");
	  if (s == NULL)
	    abort ();
	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
	}

      /* Allocate room for one word in ".got".  */
      htab->elf.sgot->size = 4;

      /* Allocate space in ".rela.got" for literals that reference global
	 symbols and space in ".rela.plt" for literals that have PLT
	 entries.  */
      elf_link_hash_traverse (elf_hash_table (info),
			      elf_xtensa_allocate_dynrelocs,
			      (void *) info);

      /* If we are generating a shared object, we also need space in
	 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
	 reference local symbols.  */
      if (bfd_link_pic (info))
	elf_xtensa_allocate_local_got_size (info);

      /* Allocate space in ".plt" to match the size of ".rela.plt".  For
	 each PLT entry, we need the PLT code plus a 4-byte literal.
	 For each chunk of ".plt", we also need two more 4-byte
	 literals, two corresponding entries in ".rela.got", and an
	 8-byte entry in ".xt.lit.plt".  */
      spltlittbl = htab->spltlittbl;
      plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
      plt_chunks =
	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;

      /* Iterate over all the PLT chunks, including any extra sections
	 created earlier because the initial count of PLT relocations
	 was an overestimate.  */
      for (chunk = 0;
	   (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
	   chunk++)
	{
	  int chunk_entries;

	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
	  BFD_ASSERT (sgotplt != NULL);

	  if (chunk < plt_chunks - 1)
	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
	  else if (chunk == plt_chunks - 1)
	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
	  else
	    chunk_entries = 0;

	  if (chunk_entries != 0)
	    {
	      sgotplt->size = 4 * (chunk_entries + 2);
	      splt->size = PLT_ENTRY_SIZE * chunk_entries;
	      srelgot->size += 2 * sizeof (Elf32_External_Rela);
	      spltlittbl->size += 8;
	    }
	  else
	    {
	      sgotplt->size = 0;
	      splt->size = 0;
	    }
	}

      /* Allocate space in ".got.loc" to match the total size of all the
	 literal tables.  */
      sgotloc = htab->sgotloc;
      sgotloc->size = spltlittbl->size;
      for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
	{
	  if (abfd->flags & DYNAMIC)
	    continue;
	  for (s = abfd->sections; s != NULL; s = s->next)
	    {
	      if (! discarded_section (s)
		  && xtensa_is_littable_section (s)
		  && s != spltlittbl)
		sgotloc->size += s->size;
	    }
	}
    }

  /* Allocate memory for dynamic sections.  */
  relplt = FALSE;
  relgot = FALSE;
  for (s = dynobj->sections; s != NULL; s = s->next)
    {
      const char *name;

      if ((s->flags & SEC_LINKER_CREATED) == 0)
	continue;

      /* It's OK to base decisions on the section name, because none
	 of the dynobj section names depend upon the input files.  */
      name = bfd_get_section_name (dynobj, s);

      if (CONST_STRNEQ (name, ".rela"))
	{
	  if (s->size != 0)
	    {
	      if (strcmp (name, ".rela.plt") == 0)
		relplt = TRUE;
	      else if (strcmp (name, ".rela.got") == 0)
		relgot = TRUE;

	      /* We use the reloc_count field as a counter if we need
		 to copy relocs into the output file.  */
	      s->reloc_count = 0;
	    }
	}
      else if (! CONST_STRNEQ (name, ".plt.")
	       && ! CONST_STRNEQ (name, ".got.plt.")
	       && strcmp (name, ".got") != 0
	       && strcmp (name, ".plt") != 0
	       && strcmp (name, ".got.plt") != 0
	       && strcmp (name, ".xt.lit.plt") != 0
	       && strcmp (name, ".got.loc") != 0)
	{
	  /* It's not one of our sections, so don't allocate space.  */
	  continue;
	}

      if (s->size == 0)
	{
	  /* If we don't need this section, strip it from the output
	     file.  We must create the ".plt*" and ".got.plt*"
	     sections in create_dynamic_sections and/or check_relocs
	     based on a conservative estimate of the PLT relocation
	     count, because the sections must be created before the
	     linker maps input sections to output sections.  The
	     linker does that before size_dynamic_sections, where we
	     compute the exact size of the PLT, so there may be more
	     of these sections than are actually needed.  */
	  s->flags |= SEC_EXCLUDE;
	}
      else if ((s->flags & SEC_HAS_CONTENTS) != 0)
	{
	  /* Allocate memory for the section contents.  */
	  s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
	  if (s->contents == NULL)
	    return FALSE;
	}
    }

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      /* Add the special XTENSA_RTLD relocations now.  The offsets won't be
	 known until finish_dynamic_sections, but we need to get the relocs
	 in place before they are sorted.  */
      for (chunk = 0; chunk < plt_chunks; chunk++)
	{
	  Elf_Internal_Rela irela;
	  bfd_byte *loc;

	  irela.r_offset = 0;
	  irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
	  irela.r_addend = 0;

	  loc = (srelgot->contents
		 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
	  bfd_elf32_swap_reloca_out (output_bfd, &irela,
				     loc + sizeof (Elf32_External_Rela));
	  srelgot->reloc_count += 2;
	}

      /* Add some entries to the .dynamic section.  We fill in the
	 values later, in elf_xtensa_finish_dynamic_sections, but we
	 must add the entries now so that we get the correct size for
	 the .dynamic section.  The DT_DEBUG entry is filled in by the
	 dynamic linker and used by the debugger.  */
#define add_dynamic_entry(TAG, VAL) \
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)

      if (bfd_link_executable (info))
	{
	  if (!add_dynamic_entry (DT_DEBUG, 0))
	    return FALSE;
	}

      if (relplt)
	{
	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
	      || !add_dynamic_entry (DT_JMPREL, 0))
	    return FALSE;
	}

      if (relgot)
	{
	  if (!add_dynamic_entry (DT_RELA, 0)
	      || !add_dynamic_entry (DT_RELASZ, 0)
	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
	    return FALSE;
	}

      if (!add_dynamic_entry (DT_PLTGOT, 0)
	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
	return FALSE;
    }
#undef add_dynamic_entry

  return TRUE;
}

static bfd_boolean
elf_xtensa_always_size_sections (bfd *output_bfd,
				 struct bfd_link_info *info)
{
  struct elf_xtensa_link_hash_table *htab;
  asection *tls_sec;

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return FALSE;

  tls_sec = htab->elf.tls_sec;

  if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
    {
      struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
      struct bfd_link_hash_entry *bh = &tlsbase->root;
      const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);

      tlsbase->type = STT_TLS;
      if (!(_bfd_generic_link_add_one_symbol
	    (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
	     tls_sec, 0, NULL, FALSE,
	     bed->collect, &bh)))
	return FALSE;
      tlsbase->def_regular = 1;
      tlsbase->other = STV_HIDDEN;
      (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
    }

  return TRUE;
}


/* Return the base VMA address which should be subtracted from real addresses
   when resolving @dtpoff relocation.
   This is PT_TLS segment p_vaddr.  */

static bfd_vma
dtpoff_base (struct bfd_link_info *info)
{
  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (elf_hash_table (info)->tls_sec == NULL)
    return 0;
  return elf_hash_table (info)->tls_sec->vma;
}

/* Return the relocation value for @tpoff relocation
   if STT_TLS virtual address is ADDRESS.  */

static bfd_vma
tpoff (struct bfd_link_info *info, bfd_vma address)
{
  struct elf_link_hash_table *htab = elf_hash_table (info);
  bfd_vma base;

  /* If tls_sec is NULL, we should have signalled an error already.  */
  if (htab->tls_sec == NULL)
    return 0;
  base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
  return address - htab->tls_sec->vma + base;
}

/* Perform the specified relocation.  The instruction at (contents + address)
   is modified to set one operand to represent the value in "relocation".  The
   operand position is determined by the relocation type recorded in the
   howto.  */

#define CALL_SEGMENT_BITS (30)
#define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)

static bfd_reloc_status_type
elf_xtensa_do_reloc (reloc_howto_type *howto,
		     bfd *abfd,
		     asection *input_section,
		     bfd_vma relocation,
		     bfd_byte *contents,
		     bfd_vma address,
		     bfd_boolean is_weak_undef,
		     char **error_message)
{
  xtensa_format fmt;
  xtensa_opcode opcode;
  xtensa_isa isa = xtensa_default_isa;
  static xtensa_insnbuf ibuff = NULL;
  static xtensa_insnbuf sbuff = NULL;
  bfd_vma self_address;
  bfd_size_type input_size;
  int opnd, slot;
  uint32 newval;

  if (!ibuff)
    {
      ibuff = xtensa_insnbuf_alloc (isa);
      sbuff = xtensa_insnbuf_alloc (isa);
    }

  input_size = bfd_get_section_limit (abfd, input_section);

  /* Calculate the PC address for this instruction.  */
  self_address = (input_section->output_section->vma
		  + input_section->output_offset
		  + address);

  switch (howto->type)
    {
    case R_XTENSA_NONE:
    case R_XTENSA_DIFF8:
    case R_XTENSA_DIFF16:
    case R_XTENSA_DIFF32:
    case R_XTENSA_TLS_FUNC:
    case R_XTENSA_TLS_ARG:
    case R_XTENSA_TLS_CALL:
      return bfd_reloc_ok;

    case R_XTENSA_ASM_EXPAND:
      if (!is_weak_undef)
	{
	  /* Check for windowed CALL across a 1GB boundary.  */
	  opcode = get_expanded_call_opcode (contents + address,
					     input_size - address, 0);
	  if (is_windowed_call_opcode (opcode))
	    {
	      if ((self_address >> CALL_SEGMENT_BITS)
		  != (relocation >> CALL_SEGMENT_BITS))
		{
		  *error_message = "windowed longcall crosses 1GB boundary; "
		    "return may fail";
		  return bfd_reloc_dangerous;
		}
	    }
	}
      return bfd_reloc_ok;

    case R_XTENSA_ASM_SIMPLIFY:
      {
	/* Convert the L32R/CALLX to CALL.  */
	bfd_reloc_status_type retval =
	  elf_xtensa_do_asm_simplify (contents, address, input_size,
				      error_message);
	if (retval != bfd_reloc_ok)
	  return bfd_reloc_dangerous;

	/* The CALL needs to be relocated.  Continue below for that part.  */
	address += 3;
	self_address += 3;
	howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
      }
      break;

    case R_XTENSA_32:
      {
	bfd_vma x;
	x = bfd_get_32 (abfd, contents + address);
	x = x + relocation;
	bfd_put_32 (abfd, x, contents + address);
      }
      return bfd_reloc_ok;

    case R_XTENSA_32_PCREL:
      bfd_put_32 (abfd, relocation - self_address, contents + address);
      return bfd_reloc_ok;

    case R_XTENSA_PLT:
    case R_XTENSA_TLSDESC_FN:
    case R_XTENSA_TLSDESC_ARG:
    case R_XTENSA_TLS_DTPOFF:
    case R_XTENSA_TLS_TPOFF:
      bfd_put_32 (abfd, relocation, contents + address);
      return bfd_reloc_ok;
    }

  /* Only instruction slot-specific relocations handled below.... */
  slot = get_relocation_slot (howto->type);
  if (slot == XTENSA_UNDEFINED)
    {
      *error_message = "unexpected relocation";
      return bfd_reloc_dangerous;
    }

  /* Read the instruction into a buffer and decode the opcode.  */
  xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
			     input_size - address);
  fmt = xtensa_format_decode (isa, ibuff);
  if (fmt == XTENSA_UNDEFINED)
    {
      *error_message = "cannot decode instruction format";
      return bfd_reloc_dangerous;
    }

  xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);

  opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
  if (opcode == XTENSA_UNDEFINED)
    {
      *error_message = "cannot decode instruction opcode";
      return bfd_reloc_dangerous;
    }

  /* Check for opcode-specific "alternate" relocations.  */
  if (is_alt_relocation (howto->type))
    {
      if (opcode == get_l32r_opcode ())
	{
	  /* Handle the special-case of non-PC-relative L32R instructions.  */
	  bfd *output_bfd = input_section->output_section->owner;
	  asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
	  if (!lit4_sec)
	    {
	      *error_message = "relocation references missing .lit4 section";
	      return bfd_reloc_dangerous;
	    }
	  self_address = ((lit4_sec->vma & ~0xfff)
			  + 0x40000 - 3); /* -3 to compensate for do_reloc */
	  newval = relocation;
	  opnd = 1;
	}
      else if (opcode == get_const16_opcode ())
	{
	  /* ALT used for high 16 bits.  */
	  newval = relocation >> 16;
	  opnd = 1;
	}
      else
	{
	  /* No other "alternate" relocations currently defined.  */
	  *error_message = "unexpected relocation";
	  return bfd_reloc_dangerous;
	}
    }
  else /* Not an "alternate" relocation.... */
    {
      if (opcode == get_const16_opcode ())
	{
	  newval = relocation & 0xffff;
	  opnd = 1;
	}
      else
	{
	  /* ...normal PC-relative relocation.... */

	  /* Determine which operand is being relocated.  */
	  opnd = get_relocation_opnd (opcode, howto->type);
	  if (opnd == XTENSA_UNDEFINED)
	    {
	      *error_message = "unexpected relocation";
	      return bfd_reloc_dangerous;
	    }

	  if (!howto->pc_relative)
	    {
	      *error_message = "expected PC-relative relocation";
	      return bfd_reloc_dangerous;
	    }

	  newval = relocation;
	}
    }

  /* Apply the relocation.  */
  if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
      || xtensa_operand_encode (isa, opcode, opnd, &newval)
      || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
				   sbuff, newval))
    {
      const char *opname = xtensa_opcode_name (isa, opcode);
      const char *msg;

      msg = "cannot encode";
      if (is_direct_call_opcode (opcode))
	{
	  if ((relocation & 0x3) != 0)
	    msg = "misaligned call target";
	  else
	    msg = "call target out of range";
	}
      else if (opcode == get_l32r_opcode ())
	{
	  if ((relocation & 0x3) != 0)
	    msg = "misaligned literal target";
	  else if (is_alt_relocation (howto->type))
	    msg = "literal target out of range (too many literals)";
	  else if (self_address > relocation)
	    msg = "literal target out of range (try using text-section-literals)";
	  else
	    msg = "literal placed after use";
	}

      *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
      return bfd_reloc_dangerous;
    }

  /* Check for calls across 1GB boundaries.  */
  if (is_direct_call_opcode (opcode)
      && is_windowed_call_opcode (opcode))
    {
      if ((self_address >> CALL_SEGMENT_BITS)
	  != (relocation >> CALL_SEGMENT_BITS))
	{
	  *error_message =
	    "windowed call crosses 1GB boundary; return may fail";
	  return bfd_reloc_dangerous;
	}
    }

  /* Write the modified instruction back out of the buffer.  */
  xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
  xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
			   input_size - address);
  return bfd_reloc_ok;
}


static char *
vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
{
  /* To reduce the size of the memory leak,
     we only use a single message buffer.  */
  static bfd_size_type alloc_size = 0;
  static char *message = NULL;
  bfd_size_type orig_len, len = 0;
  bfd_boolean is_append;
  va_list ap;

  va_start (ap, arglen);

  is_append = (origmsg == message);

  orig_len = strlen (origmsg);
  len = orig_len + strlen (fmt) + arglen + 20;
  if (len > alloc_size)
    {
      message = (char *) bfd_realloc_or_free (message, len);
      alloc_size = len;
    }
  if (message != NULL)
    {
      if (!is_append)
	memcpy (message, origmsg, orig_len);
      vsprintf (message + orig_len, fmt, ap);
    }
  va_end (ap);
  return message;
}


/* This function is registered as the "special_function" in the
   Xtensa howto for handling simplify operations.
   bfd_perform_relocation / bfd_install_relocation use it to
   perform (install) the specified relocation.  Since this replaces the code
   in bfd_perform_relocation, it is basically an Xtensa-specific,
   stripped-down version of bfd_perform_relocation.  */

static bfd_reloc_status_type
bfd_elf_xtensa_reloc (bfd *abfd,
		      arelent *reloc_entry,
		      asymbol *symbol,
		      void *data,
		      asection *input_section,
		      bfd *output_bfd,
		      char **error_message)
{
  bfd_vma relocation;
  bfd_reloc_status_type flag;
  bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
  bfd_vma output_base = 0;
  reloc_howto_type *howto = reloc_entry->howto;
  asection *reloc_target_output_section;
  bfd_boolean is_weak_undef;

  if (!xtensa_default_isa)
    xtensa_default_isa = xtensa_isa_init (0, 0);

  /* ELF relocs are against symbols.  If we are producing relocatable
     output, and the reloc is against an external symbol, the resulting
     reloc will also be against the same symbol.  In such a case, we
     don't want to change anything about the way the reloc is handled,
     since it will all be done at final link time.  This test is similar
     to what bfd_elf_generic_reloc does except that it lets relocs with
     howto->partial_inplace go through even if the addend is non-zero.
     (The real problem is that partial_inplace is set for XTENSA_32
     relocs to begin with, but that's a long story and there's little we
     can do about it now....)  */

  if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
    {
      reloc_entry->address += input_section->output_offset;
      return bfd_reloc_ok;
    }

  /* Is the address of the relocation really within the section?  */
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    return bfd_reloc_outofrange;

  /* Work out which section the relocation is targeted at and the
     initial relocation command value.  */

  /* Get symbol value.  (Common symbols are special.)  */
  if (bfd_is_com_section (symbol->section))
    relocation = 0;
  else
    relocation = symbol->value;

  reloc_target_output_section = symbol->section->output_section;

  /* Convert input-section-relative symbol value to absolute.  */
  if ((output_bfd && !howto->partial_inplace)
      || reloc_target_output_section == NULL)
    output_base = 0;
  else
    output_base = reloc_target_output_section->vma;

  relocation += output_base + symbol->section->output_offset;

  /* Add in supplied addend.  */
  relocation += reloc_entry->addend;

  /* Here the variable relocation holds the final address of the
     symbol we are relocating against, plus any addend.  */
  if (output_bfd)
    {
      if (!howto->partial_inplace)
	{
	  /* This is a partial relocation, and we want to apply the relocation
	     to the reloc entry rather than the raw data.  Everything except
	     relocations against section symbols has already been handled
	     above.  */

	  BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
	  reloc_entry->addend = relocation;
	  reloc_entry->address += input_section->output_offset;
	  return bfd_reloc_ok;
	}
      else
	{
	  reloc_entry->address += input_section->output_offset;
	  reloc_entry->addend = 0;
	}
    }

  is_weak_undef = (bfd_is_und_section (symbol->section)
		   && (symbol->flags & BSF_WEAK) != 0);
  flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
			      (bfd_byte *) data, (bfd_vma) octets,
			      is_weak_undef, error_message);

  if (flag == bfd_reloc_dangerous)
    {
      /* Add the symbol name to the error message.  */
      if (! *error_message)
	*error_message = "";
      *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
				    strlen (symbol->name) + 17,
				    symbol->name,
				    (unsigned long) reloc_entry->addend);
    }

  return flag;
}


/* Set up an entry in the procedure linkage table.  */

static bfd_vma
elf_xtensa_create_plt_entry (struct bfd_link_info *info,
			     bfd *output_bfd,
			     unsigned reloc_index)
{
  asection *splt, *sgotplt;
  bfd_vma plt_base, got_base;
  bfd_vma code_offset, lit_offset, abi_offset;
  int chunk;

  chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
  splt = elf_xtensa_get_plt_section (info, chunk);
  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
  BFD_ASSERT (splt != NULL && sgotplt != NULL);

  plt_base = splt->output_section->vma + splt->output_offset;
  got_base = sgotplt->output_section->vma + sgotplt->output_offset;

  lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
  code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;

  /* Fill in the literal entry.  This is the offset of the dynamic
     relocation entry.  */
  bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
	      sgotplt->contents + lit_offset);

  /* Fill in the entry in the procedure linkage table.  */
  memcpy (splt->contents + code_offset,
	  (bfd_big_endian (output_bfd)
	   ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
	   : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
	  PLT_ENTRY_SIZE);
  abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
  bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
				       plt_base + code_offset + abi_offset),
	      splt->contents + code_offset + abi_offset + 1);
  bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
				       plt_base + code_offset + abi_offset + 3),
	      splt->contents + code_offset + abi_offset + 4);
  bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
				       plt_base + code_offset + abi_offset + 6),
	      splt->contents + code_offset + abi_offset + 7);

  return plt_base + code_offset;
}


static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);

static bfd_boolean
replace_tls_insn (Elf_Internal_Rela *rel,
		  bfd *abfd,
		  asection *input_section,
		  bfd_byte *contents,
		  bfd_boolean is_ld_model,
		  char **error_message)
{
  static xtensa_insnbuf ibuff = NULL;
  static xtensa_insnbuf sbuff = NULL;
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format fmt;
  xtensa_opcode old_op, new_op;
  bfd_size_type input_size;
  int r_type;
  unsigned dest_reg, src_reg;

  if (ibuff == NULL)
    {
      ibuff = xtensa_insnbuf_alloc (isa);
      sbuff = xtensa_insnbuf_alloc (isa);
    }

  input_size = bfd_get_section_limit (abfd, input_section);

  /* Read the instruction into a buffer and decode the opcode.  */
  xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
			     input_size - rel->r_offset);
  fmt = xtensa_format_decode (isa, ibuff);
  if (fmt == XTENSA_UNDEFINED)
    {
      *error_message = "cannot decode instruction format";
      return FALSE;
    }

  BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
  xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);

  old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
  if (old_op == XTENSA_UNDEFINED)
    {
      *error_message = "cannot decode instruction opcode";
      return FALSE;
    }

  r_type = ELF32_R_TYPE (rel->r_info);
  switch (r_type)
    {
    case R_XTENSA_TLS_FUNC:
    case R_XTENSA_TLS_ARG:
      if (old_op != get_l32r_opcode ()
	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
				       sbuff, &dest_reg) != 0)
	{
	  *error_message = "cannot extract L32R destination for TLS access";
	  return FALSE;
	}
      break;

    case R_XTENSA_TLS_CALL:
      if (! get_indirect_call_dest_reg (old_op, &dest_reg)
	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
				       sbuff, &src_reg) != 0)
	{
	  *error_message = "cannot extract CALLXn operands for TLS access";
	  return FALSE;
	}
      break;

    default:
      abort ();
    }

  if (is_ld_model)
    {
      switch (r_type)
	{
	case R_XTENSA_TLS_FUNC:
	case R_XTENSA_TLS_ARG:
	  /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
	     versions of Xtensa).  */
	  new_op = xtensa_opcode_lookup (isa, "nop");
	  if (new_op == XTENSA_UNDEFINED)
	    {
	      new_op = xtensa_opcode_lookup (isa, "or");
	      if (new_op == XTENSA_UNDEFINED
		  || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
		  || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
					       sbuff, 1) != 0
		  || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
					       sbuff, 1) != 0
		  || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
					       sbuff, 1) != 0)
		{
		  *error_message = "cannot encode OR for TLS access";
		  return FALSE;
		}
	    }
	  else
	    {
	      if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
		{
		  *error_message = "cannot encode NOP for TLS access";
		  return FALSE;
		}
	    }
	  break;

	case R_XTENSA_TLS_CALL:
	  /* Read THREADPTR into the CALLX's return value register.  */
	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
	  if (new_op == XTENSA_UNDEFINED
	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
					   sbuff, dest_reg + 2) != 0)
	    {
	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
	      return FALSE;
	    }
	  break;
	}
    }
  else
    {
      switch (r_type)
	{
	case R_XTENSA_TLS_FUNC:
	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
	  if (new_op == XTENSA_UNDEFINED
	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
					   sbuff, dest_reg) != 0)
	    {
	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
	      return FALSE;
	    }
	  break;

	case R_XTENSA_TLS_ARG:
	  /* Nothing to do.  Keep the original L32R instruction.  */
	  return TRUE;

	case R_XTENSA_TLS_CALL:
	  /* Add the CALLX's src register (holding the THREADPTR value)
	     to the first argument register (holding the offset) and put
	     the result in the CALLX's return value register.  */
	  new_op = xtensa_opcode_lookup (isa, "add");
	  if (new_op == XTENSA_UNDEFINED
	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
					   sbuff, dest_reg + 2) != 0
	      || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
					   sbuff, dest_reg + 2) != 0
	      || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
					   sbuff, src_reg) != 0)
	    {
	      *error_message = "cannot encode ADD for TLS access";
	      return FALSE;
	    }
	  break;
	}
    }

  xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
  xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
			   input_size - rel->r_offset);

  return TRUE;
}


#define IS_XTENSA_TLS_RELOC(R_TYPE) \
  ((R_TYPE) == R_XTENSA_TLSDESC_FN \
   || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
   || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
   || (R_TYPE) == R_XTENSA_TLS_TPOFF \
   || (R_TYPE) == R_XTENSA_TLS_FUNC \
   || (R_TYPE) == R_XTENSA_TLS_ARG \
   || (R_TYPE) == R_XTENSA_TLS_CALL)

/* Relocate an Xtensa ELF section.  This is invoked by the linker for
   both relocatable and final links.  */

static bfd_boolean
elf_xtensa_relocate_section (bfd *output_bfd,
			     struct bfd_link_info *info,
			     bfd *input_bfd,
			     asection *input_section,
			     bfd_byte *contents,
			     Elf_Internal_Rela *relocs,
			     Elf_Internal_Sym *local_syms,
			     asection **local_sections)
{
  struct elf_xtensa_link_hash_table *htab;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;
  struct elf_link_hash_entry **sym_hashes;
  property_table_entry *lit_table = 0;
  int ltblsize = 0;
  char *local_got_tls_types;
  char *error_message = NULL;
  bfd_size_type input_size;
  int tls_type;

  if (!xtensa_default_isa)
    xtensa_default_isa = xtensa_isa_init (0, 0);

  BFD_ASSERT (is_xtensa_elf (input_bfd));

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return FALSE;

  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (input_bfd);
  local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);

  if (elf_hash_table (info)->dynamic_sections_created)
    {
      ltblsize = xtensa_read_table_entries (input_bfd, input_section,
					    &lit_table, XTENSA_LIT_SEC_NAME,
					    TRUE);
      if (ltblsize < 0)
	return FALSE;
    }

  input_size = bfd_get_section_limit (input_bfd, input_section);

  rel = relocs;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
    {
      int r_type;
      reloc_howto_type *howto;
      unsigned long r_symndx;
      struct elf_link_hash_entry *h;
      Elf_Internal_Sym *sym;
      char sym_type;
      const char *name;
      asection *sec;
      bfd_vma relocation;
      bfd_reloc_status_type r;
      bfd_boolean is_weak_undef;
      bfd_boolean unresolved_reloc;
      bfd_boolean warned;
      bfd_boolean dynamic_symbol;

      r_type = ELF32_R_TYPE (rel->r_info);
      if (r_type == (int) R_XTENSA_GNU_VTINHERIT
	  || r_type == (int) R_XTENSA_GNU_VTENTRY)
	continue;

      if (r_type < 0 || r_type >= (int) R_XTENSA_max)
	{
	  bfd_set_error (bfd_error_bad_value);
	  return FALSE;
	}
      howto = &elf_howto_table[r_type];

      r_symndx = ELF32_R_SYM (rel->r_info);

      h = NULL;
      sym = NULL;
      sec = NULL;
      is_weak_undef = FALSE;
      unresolved_reloc = FALSE;
      warned = FALSE;

      if (howto->partial_inplace && !bfd_link_relocatable (info))
	{
	  /* Because R_XTENSA_32 was made partial_inplace to fix some
	     problems with DWARF info in partial links, there may be
	     an addend stored in the contents.  Take it out of there
	     and move it back into the addend field of the reloc.  */
	  rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
	  bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
	}

      if (r_symndx < symtab_hdr->sh_info)
	{
	  sym = local_syms + r_symndx;
	  sym_type = ELF32_ST_TYPE (sym->st_info);
	  sec = local_sections[r_symndx];
	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
	}
      else
	{
	  bfd_boolean ignored;

	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
				   r_symndx, symtab_hdr, sym_hashes,
				   h, sec, relocation,
				   unresolved_reloc, warned, ignored);

	  if (relocation == 0
	      && !unresolved_reloc
	      && h->root.type == bfd_link_hash_undefweak)
	    is_weak_undef = TRUE;

	  sym_type = h->type;
	}

      if (sec != NULL && discarded_section (sec))
	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
					 rel, 1, relend, howto, 0, contents);

      if (bfd_link_relocatable (info))
	{
	  bfd_vma dest_addr;
	  asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);

	  /* This is a relocatable link.
	     1) If the reloc is against a section symbol, adjust
	     according to the output section.
	     2) If there is a new target for this relocation,
	     the new target will be in the same output section.
	     We adjust the relocation by the output section
	     difference.  */

	  if (relaxing_section)
	    {
	      /* Check if this references a section in another input file.  */
	      if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
						contents))
		return FALSE;
	    }

	  dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
	    + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;

	  if (r_type == R_XTENSA_ASM_SIMPLIFY)
	    {
	      error_message = NULL;
	      /* Convert ASM_SIMPLIFY into the simpler relocation
		 so that they never escape a relaxing link.  */
	      r = contract_asm_expansion (contents, input_size, rel,
					  &error_message);
	      if (r != bfd_reloc_ok)
		(*info->callbacks->reloc_dangerous)
		  (info, error_message,
		   input_bfd, input_section, rel->r_offset);

	      r_type = ELF32_R_TYPE (rel->r_info);
	    }

	  /* This is a relocatable link, so we don't have to change
	     anything unless the reloc is against a section symbol,
	     in which case we have to adjust according to where the
	     section symbol winds up in the output section.  */
	  if (r_symndx < symtab_hdr->sh_info)
	    {
	      sym = local_syms + r_symndx;
	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
		{
		  sec = local_sections[r_symndx];
		  rel->r_addend += sec->output_offset + sym->st_value;
		}
	    }

	  /* If there is an addend with a partial_inplace howto,
	     then move the addend to the contents.  This is a hack
	     to work around problems with DWARF in relocatable links
	     with some previous version of BFD.  Now we can't easily get
	     rid of the hack without breaking backward compatibility.... */
	  r = bfd_reloc_ok;
	  howto = &elf_howto_table[r_type];
	  if (howto->partial_inplace && rel->r_addend)
	    {
	      r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
				       rel->r_addend, contents,
				       rel->r_offset, FALSE,
				       &error_message);
	      rel->r_addend = 0;
	    }
	  else
	    {
	      /* Put the correct bits in the target instruction, even
		 though the relocation will still be present in the output
		 file.  This makes disassembly clearer, as well as
		 allowing loadable kernel modules to work without needing
		 relocations on anything other than calls and l32r's.  */

	      /* If it is not in the same section, there is nothing we can do.  */
	      if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
		  sym_sec->output_section == input_section->output_section)
		{
		  r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
					   dest_addr, contents,
					   rel->r_offset, FALSE,
					   &error_message);
		}
	    }
	  if (r != bfd_reloc_ok)
	    (*info->callbacks->reloc_dangerous)
	      (info, error_message,
	       input_bfd, input_section, rel->r_offset);

	  /* Done with work for relocatable link; continue with next reloc.  */
	  continue;
	}

      /* This is a final link.  */

      if (relaxing_section)
	{
	  /* Check if this references a section in another input file.  */
	  do_fix_for_final_link (rel, input_bfd, input_section, contents,
				 &relocation);
	}

      /* Sanity check the address.  */
      if (rel->r_offset >= input_size
	  && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
	{
	  _bfd_error_handler
	    /* xgettext:c-format */
	    (_("%pB(%pA+%#" PRIx64 "): "
	       "relocation offset out of range (size=%#" PRIx64 ")"),
	     input_bfd, input_section, (uint64_t) rel->r_offset,
	     (uint64_t) input_size);
	  bfd_set_error (bfd_error_bad_value);
	  return FALSE;
	}

      if (h != NULL)
	name = h->root.root.string;
      else
	{
	  name = (bfd_elf_string_from_elf_section
		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
	  if (name == NULL || *name == '\0')
	    name = bfd_section_name (input_bfd, sec);
	}

      if (r_symndx != STN_UNDEF
	  && r_type != R_XTENSA_NONE
	  && (h == NULL
	      || h->root.type == bfd_link_hash_defined
	      || h->root.type == bfd_link_hash_defweak)
	  && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
	{
	  _bfd_error_handler
	    ((sym_type == STT_TLS
	      /* xgettext:c-format */
	      ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
	      /* xgettext:c-format */
	      : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
	     input_bfd,
	     input_section,
	     (uint64_t) rel->r_offset,
	     howto->name,
	     name);
	}

      dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);

      tls_type = GOT_UNKNOWN;
      if (h)
	tls_type = elf_xtensa_hash_entry (h)->tls_type;
      else if (local_got_tls_types)
	tls_type = local_got_tls_types [r_symndx];

      switch (r_type)
	{
	case R_XTENSA_32:
	case R_XTENSA_PLT:
	  if (elf_hash_table (info)->dynamic_sections_created
	      && (input_section->flags & SEC_ALLOC) != 0
	      && (dynamic_symbol || bfd_link_pic (info)))
	    {
	      Elf_Internal_Rela outrel;
	      bfd_byte *loc;
	      asection *srel;

	      if (dynamic_symbol && r_type == R_XTENSA_PLT)
		srel = htab->elf.srelplt;
	      else
		srel = htab->elf.srelgot;

	      BFD_ASSERT (srel != NULL);

	      outrel.r_offset =
		_bfd_elf_section_offset (output_bfd, info,
					 input_section, rel->r_offset);

	      if ((outrel.r_offset | 1) == (bfd_vma) -1)
		memset (&outrel, 0, sizeof outrel);
	      else
		{
		  outrel.r_offset += (input_section->output_section->vma
				      + input_section->output_offset);

		  /* Complain if the relocation is in a read-only section
		     and not in a literal pool.  */
		  if ((input_section->flags & SEC_READONLY) != 0
		      && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
						      outrel.r_offset))
		    {
		      error_message =
			_("dynamic relocation in read-only section");
		      (*info->callbacks->reloc_dangerous)
			(info, error_message,
			 input_bfd, input_section, rel->r_offset);
		    }

		  if (dynamic_symbol)
		    {
		      outrel.r_addend = rel->r_addend;
		      rel->r_addend = 0;

		      if (r_type == R_XTENSA_32)
			{
			  outrel.r_info =
			    ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
			  relocation = 0;
			}
		      else /* r_type == R_XTENSA_PLT */
			{
			  outrel.r_info =
			    ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);

			  /* Create the PLT entry and set the initial
			     contents of the literal entry to the address of
			     the PLT entry.  */
			  relocation =
			    elf_xtensa_create_plt_entry (info, output_bfd,
							 srel->reloc_count);
			}
		      unresolved_reloc = FALSE;
		    }
		  else
		    {
		      /* Generate a RELATIVE relocation.  */
		      outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
		      outrel.r_addend = 0;
		    }
		}

	      loc = (srel->contents
		     + srel->reloc_count++ * sizeof (Elf32_External_Rela));
	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
	      BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
			  <= srel->size);
	    }
	  else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
	    {
	      /* This should only happen for non-PIC code, which is not
		 supposed to be used on systems with dynamic linking.
		 Just ignore these relocations.  */
	      continue;
	    }
	  break;

	case R_XTENSA_TLS_TPOFF:
	  /* Switch to LE model for local symbols in an executable.  */
	  if (! bfd_link_pic (info) && ! dynamic_symbol)
	    {
	      relocation = tpoff (info, relocation);
	      break;
	    }
	  /* fall through */

	case R_XTENSA_TLSDESC_FN:
	case R_XTENSA_TLSDESC_ARG:
	  {
	    if (r_type == R_XTENSA_TLSDESC_FN)
	      {
		if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
		  r_type = R_XTENSA_NONE;
	      }
	    else if (r_type == R_XTENSA_TLSDESC_ARG)
	      {
		if (bfd_link_pic (info))
		  {
		    if ((tls_type & GOT_TLS_IE) != 0)
		      r_type = R_XTENSA_TLS_TPOFF;
		  }
		else
		  {
		    r_type = R_XTENSA_TLS_TPOFF;
		    if (! dynamic_symbol)
		      {
			relocation = tpoff (info, relocation);
			break;
		      }
		  }
	      }

	    if (r_type == R_XTENSA_NONE)
	      /* Nothing to do here; skip to the next reloc.  */
	      continue;

	    if (! elf_hash_table (info)->dynamic_sections_created)
	      {
		error_message =
		  _("TLS relocation invalid without dynamic sections");
		(*info->callbacks->reloc_dangerous)
		  (info, error_message,
		   input_bfd, input_section, rel->r_offset);
	      }
	    else
	      {
		Elf_Internal_Rela outrel;
		bfd_byte *loc;
		asection *srel = htab->elf.srelgot;
		int indx;

		outrel.r_offset = (input_section->output_section->vma
				   + input_section->output_offset
				   + rel->r_offset);

		/* Complain if the relocation is in a read-only section
		   and not in a literal pool.  */
		if ((input_section->flags & SEC_READONLY) != 0
		    && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
						     outrel.r_offset))
		  {
		    error_message =
		      _("dynamic relocation in read-only section");
		    (*info->callbacks->reloc_dangerous)
		      (info, error_message,
		       input_bfd, input_section, rel->r_offset);
		  }

		indx = h && h->dynindx != -1 ? h->dynindx : 0;
		if (indx == 0)
		  outrel.r_addend = relocation - dtpoff_base (info);
		else
		  outrel.r_addend = 0;
		rel->r_addend = 0;

		outrel.r_info = ELF32_R_INFO (indx, r_type);
		relocation = 0;
		unresolved_reloc = FALSE;

		BFD_ASSERT (srel);
		loc = (srel->contents
		       + srel->reloc_count++ * sizeof (Elf32_External_Rela));
		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
		BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
			    <= srel->size);
	      }
	  }
	  break;

	case R_XTENSA_TLS_DTPOFF:
	  if (! bfd_link_pic (info))
	    /* Switch from LD model to LE model.  */
	    relocation = tpoff (info, relocation);
	  else
	    relocation -= dtpoff_base (info);
	  break;

	case R_XTENSA_TLS_FUNC:
	case R_XTENSA_TLS_ARG:
	case R_XTENSA_TLS_CALL:
	  /* Check if optimizing to IE or LE model.  */
	  if ((tls_type & GOT_TLS_IE) != 0)
	    {
	      bfd_boolean is_ld_model =
		(h && elf_xtensa_hash_entry (h) == htab->tlsbase);
	      if (! replace_tls_insn (rel, input_bfd, input_section, contents,
				      is_ld_model, &error_message))
		(*info->callbacks->reloc_dangerous)
		  (info, error_message,
		   input_bfd, input_section, rel->r_offset);

	      if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
		{
		  /* Skip subsequent relocations on the same instruction.  */
		  while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
		    rel++;
		}
	    }
	  continue;

	default:
	  if (elf_hash_table (info)->dynamic_sections_created
	      && dynamic_symbol && (is_operand_relocation (r_type)
				    || r_type == R_XTENSA_32_PCREL))
	    {
	      error_message =
		vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
			     strlen (name) + 2, name);
	      (*info->callbacks->reloc_dangerous)
		(info, error_message, input_bfd, input_section, rel->r_offset);
	      continue;
	    }
	  break;
	}

      /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
	 because such sections are not SEC_ALLOC and thus ld.so will
	 not process them.  */
      if (unresolved_reloc
	  && !((input_section->flags & SEC_DEBUGGING) != 0
	       && h->def_dynamic)
	  && _bfd_elf_section_offset (output_bfd, info, input_section,
				      rel->r_offset) != (bfd_vma) -1)
	{
	  _bfd_error_handler
	    /* xgettext:c-format */
	    (_("%pB(%pA+%#" PRIx64 "): "
	       "unresolvable %s relocation against symbol `%s'"),
	     input_bfd,
	     input_section,
	     (uint64_t) rel->r_offset,
	     howto->name,
	     name);
	  return FALSE;
	}

      /* TLS optimizations may have changed r_type; update "howto".  */
      howto = &elf_howto_table[r_type];

      /* There's no point in calling bfd_perform_relocation here.
	 Just go directly to our "special function".  */
      r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
			       relocation + rel->r_addend,
			       contents, rel->r_offset, is_weak_undef,
			       &error_message);

      if (r != bfd_reloc_ok && !warned)
	{
	  BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
	  BFD_ASSERT (error_message != NULL);

	  if (rel->r_addend == 0)
	    error_message = vsprint_msg (error_message, ": %s",
					 strlen (name) + 2, name);
	  else
	    error_message = vsprint_msg (error_message, ": (%s+0x%x)",
					 strlen (name) + 22,
					 name, (int) rel->r_addend);

	  (*info->callbacks->reloc_dangerous)
	    (info, error_message, input_bfd, input_section, rel->r_offset);
	}
    }

  if (lit_table)
    free (lit_table);

  input_section->reloc_done = TRUE;

  return TRUE;
}


/* Finish up dynamic symbol handling.  There's not much to do here since
   the PLT and GOT entries are all set up by relocate_section.  */

static bfd_boolean
elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
				  struct elf_link_hash_entry *h,
				  Elf_Internal_Sym *sym)
{
  if (h->needs_plt && !h->def_regular)
    {
      /* Mark the symbol as undefined, rather than as defined in
	 the .plt section.  Leave the value alone.  */
      sym->st_shndx = SHN_UNDEF;
      /* If the symbol is weak, we do need to clear the value.
	 Otherwise, the PLT entry would provide a definition for
	 the symbol even if the symbol wasn't defined anywhere,
	 and so the symbol would never be NULL.  */
      if (!h->ref_regular_nonweak)
	sym->st_value = 0;
    }

  /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
  if (h == elf_hash_table (info)->hdynamic
      || h == elf_hash_table (info)->hgot)
    sym->st_shndx = SHN_ABS;

  return TRUE;
}


/* Combine adjacent literal table entries in the output.  Adjacent
   entries within each input section may have been removed during
   relaxation, but we repeat the process here, even though it's too late
   to shrink the output section, because it's important to minimize the
   number of literal table entries to reduce the start-up work for the
   runtime linker.  Returns the number of remaining table entries or -1
   on error.  */

static int
elf_xtensa_combine_prop_entries (bfd *output_bfd,
				 asection *sxtlit,
				 asection *sgotloc)
{
  bfd_byte *contents;
  property_table_entry *table;
  bfd_size_type section_size, sgotloc_size;
  bfd_vma offset;
  int n, m, num;

  section_size = sxtlit->size;
  BFD_ASSERT (section_size % 8 == 0);
  num = section_size / 8;

  sgotloc_size = sgotloc->size;
  if (sgotloc_size != section_size)
    {
      _bfd_error_handler
	(_("internal inconsistency in size of .got.loc section"));
      return -1;
    }

  table = bfd_malloc (num * sizeof (property_table_entry));
  if (table == 0)
    return -1;

  /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
     propagates to the output section, where it doesn't really apply and
     where it breaks the following call to bfd_malloc_and_get_section.  */
  sxtlit->flags &= ~SEC_IN_MEMORY;

  if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
    {
      if (contents != 0)
	free (contents);
      free (table);
      return -1;
    }

  /* There should never be any relocations left at this point, so this
     is quite a bit easier than what is done during relaxation.  */

  /* Copy the raw contents into a property table array and sort it.  */
  offset = 0;
  for (n = 0; n < num; n++)
    {
      table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
      table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
      offset += 8;
    }
  qsort (table, num, sizeof (property_table_entry), property_table_compare);

  for (n = 0; n < num; n++)
    {
      bfd_boolean remove_entry = FALSE;

      if (table[n].size == 0)
	remove_entry = TRUE;
      else if (n > 0
	       && (table[n-1].address + table[n-1].size == table[n].address))
	{
	  table[n-1].size += table[n].size;
	  remove_entry = TRUE;
	}

      if (remove_entry)
	{
	  for (m = n; m < num - 1; m++)
	    {
	      table[m].address = table[m+1].address;
	      table[m].size = table[m+1].size;
	    }

	  n--;
	  num--;
	}
    }

  /* Copy the data back to the raw contents.  */
  offset = 0;
  for (n = 0; n < num; n++)
    {
      bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
      bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
      offset += 8;
    }

  /* Clear the removed bytes.  */
  if ((bfd_size_type) (num * 8) < section_size)
    memset (&contents[num * 8], 0, section_size - num * 8);

  if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
				  section_size))
    return -1;

  /* Copy the contents to ".got.loc".  */
  memcpy (sgotloc->contents, contents, section_size);

  free (contents);
  free (table);
  return num;
}


/* Finish up the dynamic sections.  */

static bfd_boolean
elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
				    struct bfd_link_info *info)
{
  struct elf_xtensa_link_hash_table *htab;
  bfd *dynobj;
  asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
  Elf32_External_Dyn *dyncon, *dynconend;
  int num_xtlit_entries = 0;

  if (! elf_hash_table (info)->dynamic_sections_created)
    return TRUE;

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return FALSE;

  dynobj = elf_hash_table (info)->dynobj;
  sdyn = bfd_get_linker_section (dynobj, ".dynamic");
  BFD_ASSERT (sdyn != NULL);

  /* Set the first entry in the global offset table to the address of
     the dynamic section.  */
  sgot = htab->elf.sgot;
  if (sgot)
    {
      BFD_ASSERT (sgot->size == 4);
      if (sdyn == NULL)
	bfd_put_32 (output_bfd, 0, sgot->contents);
      else
	bfd_put_32 (output_bfd,
		    sdyn->output_section->vma + sdyn->output_offset,
		    sgot->contents);
    }

  srelplt = htab->elf.srelplt;
  if (srelplt && srelplt->size != 0)
    {
      asection *sgotplt, *srelgot, *spltlittbl;
      int chunk, plt_chunks, plt_entries;
      Elf_Internal_Rela irela;
      bfd_byte *loc;
      unsigned rtld_reloc;

      srelgot = htab->elf.srelgot;
      spltlittbl = htab->spltlittbl;
      BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);

      /* Find the first XTENSA_RTLD relocation.  Presumably the rest
	 of them follow immediately after....  */
      for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
	{
	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
	  if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
	    break;
	}
      BFD_ASSERT (rtld_reloc < srelgot->reloc_count);

      plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
      plt_chunks =
	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;

      for (chunk = 0; chunk < plt_chunks; chunk++)
	{
	  int chunk_entries = 0;

	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
	  BFD_ASSERT (sgotplt != NULL);

	  /* Emit special RTLD relocations for the first two entries in
	     each chunk of the .got.plt section.  */

	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
	  irela.r_offset = (sgotplt->output_section->vma
			    + sgotplt->output_offset);
	  irela.r_addend = 1; /* tell rtld to set value to resolver function */
	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
	  rtld_reloc += 1;
	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);

	  /* Next literal immediately follows the first.  */
	  loc += sizeof (Elf32_External_Rela);
	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
	  irela.r_offset = (sgotplt->output_section->vma
			    + sgotplt->output_offset + 4);
	  /* Tell rtld to set value to object's link map.  */
	  irela.r_addend = 2;
	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
	  rtld_reloc += 1;
	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);

	  /* Fill in the literal table.  */
	  if (chunk < plt_chunks - 1)
	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
	  else
	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);

	  BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
	  bfd_put_32 (output_bfd,
		      sgotplt->output_section->vma + sgotplt->output_offset,
		      spltlittbl->contents + (chunk * 8) + 0);
	  bfd_put_32 (output_bfd,
		      8 + (chunk_entries * 4),
		      spltlittbl->contents + (chunk * 8) + 4);
	}

      /* All the dynamic relocations have been emitted at this point.
	 Make sure the relocation sections are the correct size.  */
      if (srelgot->size != (sizeof (Elf32_External_Rela)
			    * srelgot->reloc_count)
	  || srelplt->size != (sizeof (Elf32_External_Rela)
			       * srelplt->reloc_count))
	abort ();

     /* The .xt.lit.plt section has just been modified.  This must
	happen before the code below which combines adjacent literal
	table entries, and the .xt.lit.plt contents have to be forced to
	the output here.  */
      if (! bfd_set_section_contents (output_bfd,
				      spltlittbl->output_section,
				      spltlittbl->contents,
				      spltlittbl->output_offset,
				      spltlittbl->size))
	return FALSE;
      /* Clear SEC_HAS_CONTENTS so the contents won't be output again.  */
      spltlittbl->flags &= ~SEC_HAS_CONTENTS;
    }

  /* Combine adjacent literal table entries.  */
  BFD_ASSERT (! bfd_link_relocatable (info));
  sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
  sgotloc = htab->sgotloc;
  BFD_ASSERT (sgotloc);
  if (sxtlit)
    {
      num_xtlit_entries =
	elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
      if (num_xtlit_entries < 0)
	return FALSE;
    }

  dyncon = (Elf32_External_Dyn *) sdyn->contents;
  dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
  for (; dyncon < dynconend; dyncon++)
    {
      Elf_Internal_Dyn dyn;

      bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);

      switch (dyn.d_tag)
	{
	default:
	  break;

	case DT_XTENSA_GOT_LOC_SZ:
	  dyn.d_un.d_val = num_xtlit_entries;
	  break;

	case DT_XTENSA_GOT_LOC_OFF:
	  dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
			    + htab->sgotloc->output_offset);
	  break;

	case DT_PLTGOT:
	  dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
			    + htab->elf.sgot->output_offset);
	  break;

	case DT_JMPREL:
	  dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
			    + htab->elf.srelplt->output_offset);
	  break;

	case DT_PLTRELSZ:
	  dyn.d_un.d_val = htab->elf.srelplt->size;
	  break;
	}

      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
    }

  return TRUE;
}


/* Functions for dealing with the e_flags field.  */

/* Merge backend specific data from an object file to the output
   object file when linking.  */

static bfd_boolean
elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
{
  bfd *obfd = info->output_bfd;
  unsigned out_mach, in_mach;
  flagword out_flag, in_flag;

  /* Check if we have the same endianness.  */
  if (!_bfd_generic_verify_endian_match (ibfd, info))
    return FALSE;

  /* Don't even pretend to support mixed-format linking.  */
  if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
      || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
    return FALSE;

  out_flag = elf_elfheader (obfd)->e_flags;
  in_flag = elf_elfheader (ibfd)->e_flags;

  out_mach = out_flag & EF_XTENSA_MACH;
  in_mach = in_flag & EF_XTENSA_MACH;
  if (out_mach != in_mach)
    {
      _bfd_error_handler
	/* xgettext:c-format */
	(_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
	 ibfd, out_mach, in_mach);
      bfd_set_error (bfd_error_wrong_format);
      return FALSE;
    }

  if (! elf_flags_init (obfd))
    {
      elf_flags_init (obfd) = TRUE;
      elf_elfheader (obfd)->e_flags = in_flag;

      if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
	  && bfd_get_arch_info (obfd)->the_default)
	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
				  bfd_get_mach (ibfd));

      return TRUE;
    }

  if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
    elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);

  if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
    elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);

  return TRUE;
}


static bfd_boolean
elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
{
  BFD_ASSERT (!elf_flags_init (abfd)
	      || elf_elfheader (abfd)->e_flags == flags);

  elf_elfheader (abfd)->e_flags |= flags;
  elf_flags_init (abfd) = TRUE;

  return TRUE;
}


static bfd_boolean
elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
{
  FILE *f = (FILE *) farg;
  flagword e_flags = elf_elfheader (abfd)->e_flags;

  fprintf (f, "\nXtensa header:\n");
  if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
    fprintf (f, "\nMachine     = Base\n");
  else
    fprintf (f, "\nMachine Id  = 0x%x\n", e_flags & EF_XTENSA_MACH);

  fprintf (f, "Insn tables = %s\n",
	   (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");

  fprintf (f, "Literal tables = %s\n",
	   (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");

  return _bfd_elf_print_private_bfd_data (abfd, farg);
}


/* Set the right machine number for an Xtensa ELF file.  */

static bfd_boolean
elf_xtensa_object_p (bfd *abfd)
{
  int mach;
  unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;

  switch (arch)
    {
    case E_XTENSA_MACH:
      mach = bfd_mach_xtensa;
      break;
    default:
      return FALSE;
    }

  (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
  return TRUE;
}


/* The final processing done just before writing out an Xtensa ELF object
   file.  This gets the Xtensa architecture right based on the machine
   number.  */

static void
elf_xtensa_final_write_processing (bfd *abfd,
				   bfd_boolean linker ATTRIBUTE_UNUSED)
{
  int mach;
  unsigned long val;

  switch (mach = bfd_get_mach (abfd))
    {
    case bfd_mach_xtensa:
      val = E_XTENSA_MACH;
      break;
    default:
      return;
    }

  elf_elfheader (abfd)->e_flags &=  (~ EF_XTENSA_MACH);
  elf_elfheader (abfd)->e_flags |= val;
}


static enum elf_reloc_type_class
elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
			     const asection *rel_sec ATTRIBUTE_UNUSED,
			     const Elf_Internal_Rela *rela)
{
  switch ((int) ELF32_R_TYPE (rela->r_info))
    {
    case R_XTENSA_RELATIVE:
      return reloc_class_relative;
    case R_XTENSA_JMP_SLOT:
      return reloc_class_plt;
    default:
      return reloc_class_normal;
    }
}


static bfd_boolean
elf_xtensa_discard_info_for_section (bfd *abfd,
				     struct elf_reloc_cookie *cookie,
				     struct bfd_link_info *info,
				     asection *sec)
{
  bfd_byte *contents;
  bfd_vma offset, actual_offset;
  bfd_size_type removed_bytes = 0;
  bfd_size_type entry_size;

  if (sec->output_section
      && bfd_is_abs_section (sec->output_section))
    return FALSE;

  if (xtensa_is_proptable_section (sec))
    entry_size = 12;
  else
    entry_size = 8;

  if (sec->size == 0 || sec->size % entry_size != 0)
    return FALSE;

  contents = retrieve_contents (abfd, sec, info->keep_memory);
  if (!contents)
    return FALSE;

  cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
  if (!cookie->rels)
    {
      release_contents (sec, contents);
      return FALSE;
    }

  /* Sort the relocations.  They should already be in order when
     relaxation is enabled, but it might not be.  */
  qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
	 internal_reloc_compare);

  cookie->rel = cookie->rels;
  cookie->relend = cookie->rels + sec->reloc_count;

  for (offset = 0; offset < sec->size; offset += entry_size)
    {
      actual_offset = offset - removed_bytes;

      /* The ...symbol_deleted_p function will skip over relocs but it
	 won't adjust their offsets, so do that here.  */
      while (cookie->rel < cookie->relend
	     && cookie->rel->r_offset < offset)
	{
	  cookie->rel->r_offset -= removed_bytes;
	  cookie->rel++;
	}

      while (cookie->rel < cookie->relend
	     && cookie->rel->r_offset == offset)
	{
	  if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
	    {
	      /* Remove the table entry.  (If the reloc type is NONE, then
		 the entry has already been merged with another and deleted
		 during relaxation.)  */
	      if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
		{
		  /* Shift the contents up.  */
		  if (offset + entry_size < sec->size)
		    memmove (&contents[actual_offset],
			     &contents[actual_offset + entry_size],
			     sec->size - offset - entry_size);
		  removed_bytes += entry_size;
		}

	      /* Remove this relocation.  */
	      cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
	    }

	  /* Adjust the relocation offset for previous removals.  This
	     should not be done before calling ...symbol_deleted_p
	     because it might mess up the offset comparisons there.
	     Make sure the offset doesn't underflow in the case where
	     the first entry is removed.  */
	  if (cookie->rel->r_offset >= removed_bytes)
	    cookie->rel->r_offset -= removed_bytes;
	  else
	    cookie->rel->r_offset = 0;

	  cookie->rel++;
	}
    }

  if (removed_bytes != 0)
    {
      /* Adjust any remaining relocs (shouldn't be any).  */
      for (; cookie->rel < cookie->relend; cookie->rel++)
	{
	  if (cookie->rel->r_offset >= removed_bytes)
	    cookie->rel->r_offset -= removed_bytes;
	  else
	    cookie->rel->r_offset = 0;
	}

      /* Clear the removed bytes.  */
      memset (&contents[sec->size - removed_bytes], 0, removed_bytes);

      pin_contents (sec, contents);
      pin_internal_relocs (sec, cookie->rels);

      /* Shrink size.  */
      if (sec->rawsize == 0)
	sec->rawsize = sec->size;
      sec->size -= removed_bytes;

      if (xtensa_is_littable_section (sec))
	{
	  asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
	  if (sgotloc)
	    sgotloc->size -= removed_bytes;
	}
    }
  else
    {
      release_contents (sec, contents);
      release_internal_relocs (sec, cookie->rels);
    }

  return (removed_bytes != 0);
}


static bfd_boolean
elf_xtensa_discard_info (bfd *abfd,
			 struct elf_reloc_cookie *cookie,
			 struct bfd_link_info *info)
{
  asection *sec;
  bfd_boolean changed = FALSE;

  for (sec = abfd->sections; sec != NULL; sec = sec->next)
    {
      if (xtensa_is_property_section (sec))
	{
	  if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
	    changed = TRUE;
	}
    }

  return changed;
}


static bfd_boolean
elf_xtensa_ignore_discarded_relocs (asection *sec)
{
  return xtensa_is_property_section (sec);
}


static unsigned int
elf_xtensa_action_discarded (asection *sec)
{
  if (strcmp (".xt_except_table", sec->name) == 0)
    return 0;

  if (strcmp (".xt_except_desc", sec->name) == 0)
    return 0;

  return _bfd_elf_default_action_discarded (sec);
}


/* Support for core dump NOTE sections.  */

static bfd_boolean
elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
  int offset;
  unsigned int size;

  /* The size for Xtensa is variable, so don't try to recognize the format
     based on the size.  Just assume this is GNU/Linux.  */

  /* pr_cursig */
  elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);

  /* pr_pid */
  elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);

  /* pr_reg */
  offset = 72;
  size = note->descsz - offset - 4;

  /* Make a ".reg/999" section.  */
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
					  size, note->descpos + offset);
}


static bfd_boolean
elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
  switch (note->descsz)
    {
      default:
	return FALSE;

      case 128:		/* GNU/Linux elf_prpsinfo */
	elf_tdata (abfd)->core->program
	 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
	elf_tdata (abfd)->core->command
	 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
    }

  /* Note that for some reason, a spurious space is tacked
     onto the end of the args in some (at least one anyway)
     implementations, so strip it off if it exists.  */

  {
    char *command = elf_tdata (abfd)->core->command;
    int n = strlen (command);

    if (0 < n && command[n - 1] == ' ')
      command[n - 1] = '\0';
  }

  return TRUE;
}


/* Generic Xtensa configurability stuff.  */

static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
static xtensa_opcode call0_op = XTENSA_UNDEFINED;
static xtensa_opcode call4_op = XTENSA_UNDEFINED;
static xtensa_opcode call8_op = XTENSA_UNDEFINED;
static xtensa_opcode call12_op = XTENSA_UNDEFINED;

static void
init_call_opcodes (void)
{
  if (callx0_op == XTENSA_UNDEFINED)
    {
      callx0_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
      callx4_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
      callx8_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
      callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
      call0_op   = xtensa_opcode_lookup (xtensa_default_isa, "call0");
      call4_op   = xtensa_opcode_lookup (xtensa_default_isa, "call4");
      call8_op   = xtensa_opcode_lookup (xtensa_default_isa, "call8");
      call12_op  = xtensa_opcode_lookup (xtensa_default_isa, "call12");
    }
}


static bfd_boolean
is_indirect_call_opcode (xtensa_opcode opcode)
{
  init_call_opcodes ();
  return (opcode == callx0_op
	  || opcode == callx4_op
	  || opcode == callx8_op
	  || opcode == callx12_op);
}


static bfd_boolean
is_direct_call_opcode (xtensa_opcode opcode)
{
  init_call_opcodes ();
  return (opcode == call0_op
	  || opcode == call4_op
	  || opcode == call8_op
	  || opcode == call12_op);
}


static bfd_boolean
is_windowed_call_opcode (xtensa_opcode opcode)
{
  init_call_opcodes ();
  return (opcode == call4_op
	  || opcode == call8_op
	  || opcode == call12_op
	  || opcode == callx4_op
	  || opcode == callx8_op
	  || opcode == callx12_op);
}


static bfd_boolean
get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
{
  unsigned dst = (unsigned) -1;

  init_call_opcodes ();
  if (opcode == callx0_op)
    dst = 0;
  else if (opcode == callx4_op)
    dst = 4;
  else if (opcode == callx8_op)
    dst = 8;
  else if (opcode == callx12_op)
    dst = 12;

  if (dst == (unsigned) -1)
    return FALSE;

  *pdst = dst;
  return TRUE;
}


static xtensa_opcode
get_const16_opcode (void)
{
  static bfd_boolean done_lookup = FALSE;
  static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
  if (!done_lookup)
    {
      const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
      done_lookup = TRUE;
    }
  return const16_opcode;
}


static xtensa_opcode
get_l32r_opcode (void)
{
  static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
  static bfd_boolean done_lookup = FALSE;

  if (!done_lookup)
    {
      l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
      done_lookup = TRUE;
    }
  return l32r_opcode;
}


static bfd_vma
l32r_offset (bfd_vma addr, bfd_vma pc)
{
  bfd_vma offset;

  offset = addr - ((pc+3) & -4);
  BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
  offset = (signed int) offset >> 2;
  BFD_ASSERT ((signed int) offset >> 16 == -1);
  return offset;
}


static int
get_relocation_opnd (xtensa_opcode opcode, int r_type)
{
  xtensa_isa isa = xtensa_default_isa;
  int last_immed, last_opnd, opi;

  if (opcode == XTENSA_UNDEFINED)
    return XTENSA_UNDEFINED;

  /* Find the last visible PC-relative immediate operand for the opcode.
     If there are no PC-relative immediates, then choose the last visible
     immediate; otherwise, fail and return XTENSA_UNDEFINED.  */
  last_immed = XTENSA_UNDEFINED;
  last_opnd = xtensa_opcode_num_operands (isa, opcode);
  for (opi = last_opnd - 1; opi >= 0; opi--)
    {
      if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
	continue;
      if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
	{
	  last_immed = opi;
	  break;
	}
      if (last_immed == XTENSA_UNDEFINED
	  && xtensa_operand_is_register (isa, opcode, opi) == 0)
	last_immed = opi;
    }
  if (last_immed < 0)
    return XTENSA_UNDEFINED;

  /* If the operand number was specified in an old-style relocation,
     check for consistency with the operand computed above.  */
  if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
    {
      int reloc_opnd = r_type - R_XTENSA_OP0;
      if (reloc_opnd != last_immed)
	return XTENSA_UNDEFINED;
    }

  return last_immed;
}


int
get_relocation_slot (int r_type)
{
  switch (r_type)
    {
    case R_XTENSA_OP0:
    case R_XTENSA_OP1:
    case R_XTENSA_OP2:
      return 0;

    default:
      if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
	return r_type - R_XTENSA_SLOT0_OP;
      if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
	return r_type - R_XTENSA_SLOT0_ALT;
      break;
    }

  return XTENSA_UNDEFINED;
}


/* Get the opcode for a relocation.  */

static xtensa_opcode
get_relocation_opcode (bfd *abfd,
		       asection *sec,
		       bfd_byte *contents,
		       Elf_Internal_Rela *irel)
{
  static xtensa_insnbuf ibuff = NULL;
  static xtensa_insnbuf sbuff = NULL;
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format fmt;
  int slot;

  if (contents == NULL)
    return XTENSA_UNDEFINED;

  if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
    return XTENSA_UNDEFINED;

  if (ibuff == NULL)
    {
      ibuff = xtensa_insnbuf_alloc (isa);
      sbuff = xtensa_insnbuf_alloc (isa);
    }

  /* Decode the instruction.  */
  xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
			     sec->size - irel->r_offset);
  fmt = xtensa_format_decode (isa, ibuff);
  slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
  if (slot == XTENSA_UNDEFINED)
    return XTENSA_UNDEFINED;
  xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
  return xtensa_opcode_decode (isa, fmt, slot, sbuff);
}


bfd_boolean
is_l32r_relocation (bfd *abfd,
		    asection *sec,
		    bfd_byte *contents,
		    Elf_Internal_Rela *irel)
{
  xtensa_opcode opcode;
  if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
    return FALSE;
  opcode = get_relocation_opcode (abfd, sec, contents, irel);
  return (opcode == get_l32r_opcode ());
}


static bfd_size_type
get_asm_simplify_size (bfd_byte *contents,
		       bfd_size_type content_len,
		       bfd_size_type offset)
{
  bfd_size_type insnlen, size = 0;

  /* Decode the size of the next two instructions.  */
  insnlen = insn_decode_len (contents, content_len, offset);
  if (insnlen == 0)
    return 0;

  size += insnlen;

  insnlen = insn_decode_len (contents, content_len, offset + size);
  if (insnlen == 0)
    return 0;

  size += insnlen;
  return size;
}


bfd_boolean
is_alt_relocation (int r_type)
{
  return (r_type >= R_XTENSA_SLOT0_ALT
	  && r_type <= R_XTENSA_SLOT14_ALT);
}


bfd_boolean
is_operand_relocation (int r_type)
{
  switch (r_type)
    {
    case R_XTENSA_OP0:
    case R_XTENSA_OP1:
    case R_XTENSA_OP2:
      return TRUE;

    default:
      if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
	return TRUE;
      if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
	return TRUE;
      break;
    }

  return FALSE;
}


#define MIN_INSN_LENGTH 2

/* Return 0 if it fails to decode.  */

bfd_size_type
insn_decode_len (bfd_byte *contents,
		 bfd_size_type content_len,
		 bfd_size_type offset)
{
  int insn_len;
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format fmt;
  static xtensa_insnbuf ibuff = NULL;

  if (offset + MIN_INSN_LENGTH > content_len)
    return 0;

  if (ibuff == NULL)
    ibuff = xtensa_insnbuf_alloc (isa);
  xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
			     content_len - offset);
  fmt = xtensa_format_decode (isa, ibuff);
  if (fmt == XTENSA_UNDEFINED)
    return 0;
  insn_len = xtensa_format_length (isa, fmt);
  if (insn_len ==  XTENSA_UNDEFINED)
    return 0;
  return insn_len;
}


/* Decode the opcode for a single slot instruction.
   Return 0 if it fails to decode or the instruction is multi-slot.  */

xtensa_opcode
insn_decode_opcode (bfd_byte *contents,
		    bfd_size_type content_len,
		    bfd_size_type offset,
		    int slot)
{
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format fmt;
  static xtensa_insnbuf insnbuf = NULL;
  static xtensa_insnbuf slotbuf = NULL;

  if (offset + MIN_INSN_LENGTH > content_len)
    return XTENSA_UNDEFINED;

  if (insnbuf == NULL)
    {
      insnbuf = xtensa_insnbuf_alloc (isa);
      slotbuf = xtensa_insnbuf_alloc (isa);
    }

  xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
			     content_len - offset);
  fmt = xtensa_format_decode (isa, insnbuf);
  if (fmt == XTENSA_UNDEFINED)
    return XTENSA_UNDEFINED;

  if (slot >= xtensa_format_num_slots (isa, fmt))
    return XTENSA_UNDEFINED;

  xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
  return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
}


/* The offset is the offset in the contents.
   The address is the address of that offset.  */

static bfd_boolean
check_branch_target_aligned (bfd_byte *contents,
			     bfd_size_type content_length,
			     bfd_vma offset,
			     bfd_vma address)
{
  bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
  if (insn_len == 0)
    return FALSE;
  return check_branch_target_aligned_address (address, insn_len);
}


static bfd_boolean
check_loop_aligned (bfd_byte *contents,
		    bfd_size_type content_length,
		    bfd_vma offset,
		    bfd_vma address)
{
  bfd_size_type loop_len, insn_len;
  xtensa_opcode opcode;

  opcode = insn_decode_opcode (contents, content_length, offset, 0);
  if (opcode == XTENSA_UNDEFINED
      || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
    {
      BFD_ASSERT (FALSE);
      return FALSE;
    }

  loop_len = insn_decode_len (contents, content_length, offset);
  insn_len = insn_decode_len (contents, content_length, offset + loop_len);
  if (loop_len == 0 || insn_len == 0)
    {
      BFD_ASSERT (FALSE);
      return FALSE;
    }

  return check_branch_target_aligned_address (address + loop_len, insn_len);
}


static bfd_boolean
check_branch_target_aligned_address (bfd_vma addr, int len)
{
  if (len == 8)
    return (addr % 8 == 0);
  return ((addr >> 2) == ((addr + len - 1) >> 2));
}


/* Instruction widening and narrowing.  */

/* When FLIX is available we need to access certain instructions only
   when they are 16-bit or 24-bit instructions.  This table caches
   information about such instructions by walking through all the
   opcodes and finding the smallest single-slot format into which each
   can be encoded.  */

static xtensa_format *op_single_fmt_table = NULL;


static void
init_op_single_format_table (void)
{
  xtensa_isa isa = xtensa_default_isa;
  xtensa_insnbuf ibuf;
  xtensa_opcode opcode;
  xtensa_format fmt;
  int num_opcodes;

  if (op_single_fmt_table)
    return;

  ibuf = xtensa_insnbuf_alloc (isa);
  num_opcodes = xtensa_isa_num_opcodes (isa);

  op_single_fmt_table = (xtensa_format *)
    bfd_malloc (sizeof (xtensa_format) * num_opcodes);
  for (opcode = 0; opcode < num_opcodes; opcode++)
    {
      op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
      for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
	{
	  if (xtensa_format_num_slots (isa, fmt) == 1
	      && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
	    {
	      xtensa_opcode old_fmt = op_single_fmt_table[opcode];
	      int fmt_length = xtensa_format_length (isa, fmt);
	      if (old_fmt == XTENSA_UNDEFINED
		  || fmt_length < xtensa_format_length (isa, old_fmt))
		op_single_fmt_table[opcode] = fmt;
	    }
	}
    }
  xtensa_insnbuf_free (isa, ibuf);
}


static xtensa_format
get_single_format (xtensa_opcode opcode)
{
  init_op_single_format_table ();
  return op_single_fmt_table[opcode];
}


/* For the set of narrowable instructions we do NOT include the
   narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
   involved during linker relaxation that may require these to
   re-expand in some conditions.  Also, the narrowing "or" -> mov.n
   requires special case code to ensure it only works when op1 == op2.  */

struct string_pair
{
  const char *wide;
  const char *narrow;
};

struct string_pair narrowable[] =
{
  { "add", "add.n" },
  { "addi", "addi.n" },
  { "addmi", "addi.n" },
  { "l32i", "l32i.n" },
  { "movi", "movi.n" },
  { "ret", "ret.n" },
  { "retw", "retw.n" },
  { "s32i", "s32i.n" },
  { "or", "mov.n" } /* special case only when op1 == op2 */
};

struct string_pair widenable[] =
{
  { "add", "add.n" },
  { "addi", "addi.n" },
  { "addmi", "addi.n" },
  { "beqz", "beqz.n" },
  { "bnez", "bnez.n" },
  { "l32i", "l32i.n" },
  { "movi", "movi.n" },
  { "ret", "ret.n" },
  { "retw", "retw.n" },
  { "s32i", "s32i.n" },
  { "or", "mov.n" } /* special case only when op1 == op2 */
};


/* Check if an instruction can be "narrowed", i.e., changed from a standard
   3-byte instruction to a 2-byte "density" instruction.  If it is valid,
   return the instruction buffer holding the narrow instruction.  Otherwise,
   return 0.  The set of valid narrowing are specified by a string table
   but require some special case operand checks in some cases.  */

static xtensa_insnbuf
can_narrow_instruction (xtensa_insnbuf slotbuf,
			xtensa_format fmt,
			xtensa_opcode opcode)
{
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format o_fmt;
  unsigned opi;

  static xtensa_insnbuf o_insnbuf = NULL;
  static xtensa_insnbuf o_slotbuf = NULL;

  if (o_insnbuf == NULL)
    {
      o_insnbuf = xtensa_insnbuf_alloc (isa);
      o_slotbuf = xtensa_insnbuf_alloc (isa);
    }

  for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
    {
      bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);

      if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
	{
	  uint32 value, newval;
	  int i, operand_count, o_operand_count;
	  xtensa_opcode o_opcode;

	  /* Address does not matter in this case.  We might need to
	     fix it to handle branches/jumps.  */
	  bfd_vma self_address = 0;

	  o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
	  if (o_opcode == XTENSA_UNDEFINED)
	    return 0;
	  o_fmt = get_single_format (o_opcode);
	  if (o_fmt == XTENSA_UNDEFINED)
	    return 0;

	  if (xtensa_format_length (isa, fmt) != 3
	      || xtensa_format_length (isa, o_fmt) != 2)
	    return 0;

	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
	  operand_count = xtensa_opcode_num_operands (isa, opcode);
	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);

	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
	    return 0;

	  if (!is_or)
	    {
	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
		return 0;
	    }
	  else
	    {
	      uint32 rawval0, rawval1, rawval2;

	      if (o_operand_count + 1 != operand_count
		  || xtensa_operand_get_field (isa, opcode, 0,
					       fmt, 0, slotbuf, &rawval0) != 0
		  || xtensa_operand_get_field (isa, opcode, 1,
					       fmt, 0, slotbuf, &rawval1) != 0
		  || xtensa_operand_get_field (isa, opcode, 2,
					       fmt, 0, slotbuf, &rawval2) != 0
		  || rawval1 != rawval2
		  || rawval0 == rawval1 /* it is a nop */)
		return 0;
	    }

	  for (i = 0; i < o_operand_count; ++i)
	    {
	      if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
					    slotbuf, &value)
		  || xtensa_operand_decode (isa, opcode, i, &value))
		return 0;

	      /* PC-relative branches need adjustment, but
		 the PC-rel operand will always have a relocation.  */
	      newval = value;
	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
					   self_address)
		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
					       o_slotbuf, newval))
		return 0;
	    }

	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
	    return 0;

	  return o_insnbuf;
	}
    }
  return 0;
}


/* Attempt to narrow an instruction.  If the narrowing is valid, perform
   the action in-place directly into the contents and return TRUE.  Otherwise,
   the return value is FALSE and the contents are not modified.  */

static bfd_boolean
narrow_instruction (bfd_byte *contents,
		    bfd_size_type content_length,
		    bfd_size_type offset)
{
  xtensa_opcode opcode;
  bfd_size_type insn_len;
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format fmt;
  xtensa_insnbuf o_insnbuf;

  static xtensa_insnbuf insnbuf = NULL;
  static xtensa_insnbuf slotbuf = NULL;

  if (insnbuf == NULL)
    {
      insnbuf = xtensa_insnbuf_alloc (isa);
      slotbuf = xtensa_insnbuf_alloc (isa);
    }

  BFD_ASSERT (offset < content_length);

  if (content_length < 2)
    return FALSE;

  /* We will hand-code a few of these for a little while.
     These have all been specified in the assembler aleady.  */
  xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
			     content_length - offset);
  fmt = xtensa_format_decode (isa, insnbuf);
  if (xtensa_format_num_slots (isa, fmt) != 1)
    return FALSE;

  if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
    return FALSE;

  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
  if (opcode == XTENSA_UNDEFINED)
    return FALSE;
  insn_len = xtensa_format_length (isa, fmt);
  if (insn_len > content_length)
    return FALSE;

  o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
  if (o_insnbuf)
    {
      xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
			       content_length - offset);
      return TRUE;
    }

  return FALSE;
}


/* Check if an instruction can be "widened", i.e., changed from a 2-byte
   "density" instruction to a standard 3-byte instruction.  If it is valid,
   return the instruction buffer holding the wide instruction.  Otherwise,
   return 0.  The set of valid widenings are specified by a string table
   but require some special case operand checks in some cases.  */

static xtensa_insnbuf
can_widen_instruction (xtensa_insnbuf slotbuf,
		       xtensa_format fmt,
		       xtensa_opcode opcode)
{
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format o_fmt;
  unsigned opi;

  static xtensa_insnbuf o_insnbuf = NULL;
  static xtensa_insnbuf o_slotbuf = NULL;

  if (o_insnbuf == NULL)
    {
      o_insnbuf = xtensa_insnbuf_alloc (isa);
      o_slotbuf = xtensa_insnbuf_alloc (isa);
    }

  for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
    {
      bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
      bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
			       || strcmp ("bnez", widenable[opi].wide) == 0);

      if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
	{
	  uint32 value, newval;
	  int i, operand_count, o_operand_count, check_operand_count;
	  xtensa_opcode o_opcode;

	  /* Address does not matter in this case.  We might need to fix it
	     to handle branches/jumps.  */
	  bfd_vma self_address = 0;

	  o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
	  if (o_opcode == XTENSA_UNDEFINED)
	    return 0;
	  o_fmt = get_single_format (o_opcode);
	  if (o_fmt == XTENSA_UNDEFINED)
	    return 0;

	  if (xtensa_format_length (isa, fmt) != 2
	      || xtensa_format_length (isa, o_fmt) != 3)
	    return 0;

	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
	  operand_count = xtensa_opcode_num_operands (isa, opcode);
	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
	  check_operand_count = o_operand_count;

	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
	    return 0;

	  if (!is_or)
	    {
	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
		return 0;
	    }
	  else
	    {
	      uint32 rawval0, rawval1;

	      if (o_operand_count != operand_count + 1
		  || xtensa_operand_get_field (isa, opcode, 0,
					       fmt, 0, slotbuf, &rawval0) != 0
		  || xtensa_operand_get_field (isa, opcode, 1,
					       fmt, 0, slotbuf, &rawval1) != 0
		  || rawval0 == rawval1 /* it is a nop */)
		return 0;
	    }
	  if (is_branch)
	    check_operand_count--;

	  for (i = 0; i < check_operand_count; i++)
	    {
	      int new_i = i;
	      if (is_or && i == o_operand_count - 1)
		new_i = i - 1;
	      if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
					    slotbuf, &value)
		  || xtensa_operand_decode (isa, opcode, new_i, &value))
		return 0;

	      /* PC-relative branches need adjustment, but
		 the PC-rel operand will always have a relocation.  */
	      newval = value;
	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
					   self_address)
		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
					       o_slotbuf, newval))
		return 0;
	    }

	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
	    return 0;

	  return o_insnbuf;
	}
    }
  return 0;
}


/* Attempt to widen an instruction.  If the widening is valid, perform
   the action in-place directly into the contents and return TRUE.  Otherwise,
   the return value is FALSE and the contents are not modified.  */

static bfd_boolean
widen_instruction (bfd_byte *contents,
		   bfd_size_type content_length,
		   bfd_size_type offset)
{
  xtensa_opcode opcode;
  bfd_size_type insn_len;
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format fmt;
  xtensa_insnbuf o_insnbuf;

  static xtensa_insnbuf insnbuf = NULL;
  static xtensa_insnbuf slotbuf = NULL;

  if (insnbuf == NULL)
    {
      insnbuf = xtensa_insnbuf_alloc (isa);
      slotbuf = xtensa_insnbuf_alloc (isa);
    }

  BFD_ASSERT (offset < content_length);

  if (content_length < 2)
    return FALSE;

  /* We will hand-code a few of these for a little while.
     These have all been specified in the assembler aleady.  */
  xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
			     content_length - offset);
  fmt = xtensa_format_decode (isa, insnbuf);
  if (xtensa_format_num_slots (isa, fmt) != 1)
    return FALSE;

  if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
    return FALSE;

  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
  if (opcode == XTENSA_UNDEFINED)
    return FALSE;
  insn_len = xtensa_format_length (isa, fmt);
  if (insn_len > content_length)
    return FALSE;

  o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
  if (o_insnbuf)
    {
      xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
			       content_length - offset);
      return TRUE;
    }
  return FALSE;
}


/* Code for transforming CALLs at link-time.  */

static bfd_reloc_status_type
elf_xtensa_do_asm_simplify (bfd_byte *contents,
			    bfd_vma address,
			    bfd_vma content_length,
			    char **error_message)
{
  static xtensa_insnbuf insnbuf = NULL;
  static xtensa_insnbuf slotbuf = NULL;
  xtensa_format core_format = XTENSA_UNDEFINED;
  xtensa_opcode opcode;
  xtensa_opcode direct_call_opcode;
  xtensa_isa isa = xtensa_default_isa;
  bfd_byte *chbuf = contents + address;
  int opn;

  if (insnbuf == NULL)
    {
      insnbuf = xtensa_insnbuf_alloc (isa);
      slotbuf = xtensa_insnbuf_alloc (isa);
    }

  if (content_length < address)
    {
      *error_message = _("attempt to convert L32R/CALLX to CALL failed");
      return bfd_reloc_other;
    }

  opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
  direct_call_opcode = swap_callx_for_call_opcode (opcode);
  if (direct_call_opcode == XTENSA_UNDEFINED)
    {
      *error_message = _("attempt to convert L32R/CALLX to CALL failed");
      return bfd_reloc_other;
    }

  /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset.  */
  core_format = xtensa_format_lookup (isa, "x24");
  opcode = xtensa_opcode_lookup (isa, "or");
  xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
  for (opn = 0; opn < 3; opn++)
    {
      uint32 regno = 1;
      xtensa_operand_encode (isa, opcode, opn, &regno);
      xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
				slotbuf, regno);
    }
  xtensa_format_encode (isa, core_format, insnbuf);
  xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
  xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);

  /* Assemble a CALL ("callN 0") into the 3 byte offset.  */
  xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
  xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);

  xtensa_format_encode (isa, core_format, insnbuf);
  xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
  xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
			   content_length - address - 3);

  return bfd_reloc_ok;
}


static bfd_reloc_status_type
contract_asm_expansion (bfd_byte *contents,
			bfd_vma content_length,
			Elf_Internal_Rela *irel,
			char **error_message)
{
  bfd_reloc_status_type retval =
    elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
				error_message);

  if (retval != bfd_reloc_ok)
    return bfd_reloc_dangerous;

  /* Update the irel->r_offset field so that the right immediate and
     the right instruction are modified during the relocation.  */
  irel->r_offset += 3;
  irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
  return bfd_reloc_ok;
}


static xtensa_opcode
swap_callx_for_call_opcode (xtensa_opcode opcode)
{
  init_call_opcodes ();

  if (opcode == callx0_op) return call0_op;
  if (opcode == callx4_op) return call4_op;
  if (opcode == callx8_op) return call8_op;
  if (opcode == callx12_op) return call12_op;

  /* Return XTENSA_UNDEFINED if the opcode is not an indirect call.  */
  return XTENSA_UNDEFINED;
}


/* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
   CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
   If not, return XTENSA_UNDEFINED.  */

#define L32R_TARGET_REG_OPERAND 0
#define CONST16_TARGET_REG_OPERAND 0
#define CALLN_SOURCE_OPERAND 0

static xtensa_opcode
get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
{
  static xtensa_insnbuf insnbuf = NULL;
  static xtensa_insnbuf slotbuf = NULL;
  xtensa_format fmt;
  xtensa_opcode opcode;
  xtensa_isa isa = xtensa_default_isa;
  uint32 regno, const16_regno, call_regno;
  int offset = 0;

  if (insnbuf == NULL)
    {
      insnbuf = xtensa_insnbuf_alloc (isa);
      slotbuf = xtensa_insnbuf_alloc (isa);
    }

  xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
  fmt = xtensa_format_decode (isa, insnbuf);
  if (fmt == XTENSA_UNDEFINED
      || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
    return XTENSA_UNDEFINED;

  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
  if (opcode == XTENSA_UNDEFINED)
    return XTENSA_UNDEFINED;

  if (opcode == get_l32r_opcode ())
    {
      if (p_uses_l32r)
	*p_uses_l32r = TRUE;
      if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
				    fmt, 0, slotbuf, &regno)
	  || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
				    &regno))
	return XTENSA_UNDEFINED;
    }
  else if (opcode == get_const16_opcode ())
    {
      if (p_uses_l32r)
	*p_uses_l32r = FALSE;
      if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
				    fmt, 0, slotbuf, &regno)
	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
				    &regno))
	return XTENSA_UNDEFINED;

      /* Check that the next instruction is also CONST16.  */
      offset += xtensa_format_length (isa, fmt);
      xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
      fmt = xtensa_format_decode (isa, insnbuf);
      if (fmt == XTENSA_UNDEFINED
	  || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
	return XTENSA_UNDEFINED;
      opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
      if (opcode != get_const16_opcode ())
	return XTENSA_UNDEFINED;

      if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
				    fmt, 0, slotbuf, &const16_regno)
	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
				    &const16_regno)
	  || const16_regno != regno)
	return XTENSA_UNDEFINED;
    }
  else
    return XTENSA_UNDEFINED;

  /* Next instruction should be an CALLXn with operand 0 == regno.  */
  offset += xtensa_format_length (isa, fmt);
  xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
  fmt = xtensa_format_decode (isa, insnbuf);
  if (fmt == XTENSA_UNDEFINED
      || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
    return XTENSA_UNDEFINED;
  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
  if (opcode == XTENSA_UNDEFINED
      || !is_indirect_call_opcode (opcode))
    return XTENSA_UNDEFINED;

  if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
				fmt, 0, slotbuf, &call_regno)
      || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
				&call_regno))
    return XTENSA_UNDEFINED;

  if (call_regno != regno)
    return XTENSA_UNDEFINED;

  return opcode;
}


/* Data structures used during relaxation.  */

/* r_reloc: relocation values.  */

/* Through the relaxation process, we need to keep track of the values
   that will result from evaluating relocations.  The standard ELF
   relocation structure is not sufficient for this purpose because we're
   operating on multiple input files at once, so we need to know which
   input file a relocation refers to.  The r_reloc structure thus
   records both the input file (bfd) and ELF relocation.

   For efficiency, an r_reloc also contains a "target_offset" field to
   cache the target-section-relative offset value that is represented by
   the relocation.

   The r_reloc also contains a virtual offset that allows multiple
   inserted literals to be placed at the same "address" with
   different offsets.  */

typedef struct r_reloc_struct r_reloc;

struct r_reloc_struct
{
  bfd *abfd;
  Elf_Internal_Rela rela;
  bfd_vma target_offset;
  bfd_vma virtual_offset;
};


/* The r_reloc structure is included by value in literal_value, but not
   every literal_value has an associated relocation -- some are simple
   constants.  In such cases, we set all the fields in the r_reloc
   struct to zero.  The r_reloc_is_const function should be used to
   detect this case.  */

static bfd_boolean
r_reloc_is_const (const r_reloc *r_rel)
{
  return (r_rel->abfd == NULL);
}


static bfd_vma
r_reloc_get_target_offset (const r_reloc *r_rel)
{
  bfd_vma target_offset;
  unsigned long r_symndx;

  BFD_ASSERT (!r_reloc_is_const (r_rel));
  r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
  target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
  return (target_offset + r_rel->rela.r_addend);
}


static struct elf_link_hash_entry *
r_reloc_get_hash_entry (const r_reloc *r_rel)
{
  unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
  return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
}


static asection *
r_reloc_get_section (const r_reloc *r_rel)
{
  unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
  return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
}


static bfd_boolean
r_reloc_is_defined (const r_reloc *r_rel)
{
  asection *sec;
  if (r_rel == NULL)
    return FALSE;

  sec = r_reloc_get_section (r_rel);
  if (sec == bfd_abs_section_ptr
      || sec == bfd_com_section_ptr
      || sec == bfd_und_section_ptr)
    return FALSE;
  return TRUE;
}


static void
r_reloc_init (r_reloc *r_rel,
	      bfd *abfd,
	      Elf_Internal_Rela *irel,
	      bfd_byte *contents,
	      bfd_size_type content_length)
{
  int r_type;
  reloc_howto_type *howto;

  if (irel)
    {
      r_rel->rela = *irel;
      r_rel->abfd = abfd;
      r_rel->target_offset = r_reloc_get_target_offset (r_rel);
      r_rel->virtual_offset = 0;
      r_type = ELF32_R_TYPE (r_rel->rela.r_info);
      howto = &elf_howto_table[r_type];
      if (howto->partial_inplace)
	{
	  bfd_vma inplace_val;
	  BFD_ASSERT (r_rel->rela.r_offset < content_length);

	  inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
	  r_rel->target_offset += inplace_val;
	}
    }
  else
    memset (r_rel, 0, sizeof (r_reloc));
}


#if DEBUG

static void
print_r_reloc (FILE *fp, const r_reloc *r_rel)
{
  if (r_reloc_is_defined (r_rel))
    {
      asection *sec = r_reloc_get_section (r_rel);
      fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
    }
  else if (r_reloc_get_hash_entry (r_rel))
    fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
  else
    fprintf (fp, " ?? + ");

  fprintf_vma (fp, r_rel->target_offset);
  if (r_rel->virtual_offset)
    {
      fprintf (fp, " + ");
      fprintf_vma (fp, r_rel->virtual_offset);
    }

  fprintf (fp, ")");
}

#endif /* DEBUG */


/* source_reloc: relocations that reference literals.  */

/* To determine whether literals can be coalesced, we need to first
   record all the relocations that reference the literals.  The
   source_reloc structure below is used for this purpose.  The
   source_reloc entries are kept in a per-literal-section array, sorted
   by offset within the literal section (i.e., target offset).

   The source_sec and r_rel.rela.r_offset fields identify the source of
   the relocation.  The r_rel field records the relocation value, i.e.,
   the offset of the literal being referenced.  The opnd field is needed
   to determine the range of the immediate field to which the relocation
   applies, so we can determine whether another literal with the same
   value is within range.  The is_null field is true when the relocation
   is being removed (e.g., when an L32R is being removed due to a CALLX
   that is converted to a direct CALL).  */

typedef struct source_reloc_struct source_reloc;

struct source_reloc_struct
{
  asection *source_sec;
  r_reloc r_rel;
  xtensa_opcode opcode;
  int opnd;
  bfd_boolean is_null;
  bfd_boolean is_abs_literal;
};


static void
init_source_reloc (source_reloc *reloc,
		   asection *source_sec,
		   const r_reloc *r_rel,
		   xtensa_opcode opcode,
		   int opnd,
		   bfd_boolean is_abs_literal)
{
  reloc->source_sec = source_sec;
  reloc->r_rel = *r_rel;
  reloc->opcode = opcode;
  reloc->opnd = opnd;
  reloc->is_null = FALSE;
  reloc->is_abs_literal = is_abs_literal;
}


/* Find the source_reloc for a particular source offset and relocation
   type.  Note that the array is sorted by _target_ offset, so this is
   just a linear search.  */

static source_reloc *
find_source_reloc (source_reloc *src_relocs,
		   int src_count,
		   asection *sec,
		   Elf_Internal_Rela *irel)
{
  int i;

  for (i = 0; i < src_count; i++)
    {
      if (src_relocs[i].source_sec == sec
	  && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
	  && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
	      == ELF32_R_TYPE (irel->r_info)))
	return &src_relocs[i];
    }

  return NULL;
}


static int
source_reloc_compare (const void *ap, const void *bp)
{
  const source_reloc *a = (const source_reloc *) ap;
  const source_reloc *b = (const source_reloc *) bp;

  if (a->r_rel.target_offset != b->r_rel.target_offset)
    return (a->r_rel.target_offset - b->r_rel.target_offset);

  /* We don't need to sort on these criteria for correctness,
     but enforcing a more strict ordering prevents unstable qsort
     from behaving differently with different implementations.
     Without the code below we get correct but different results
     on Solaris 2.7 and 2.8.  We would like to always produce the
     same results no matter the host. */

  if ((!a->is_null) - (!b->is_null))
    return ((!a->is_null) - (!b->is_null));
  return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
}


/* Literal values and value hash tables.  */

/* Literals with the same value can be coalesced.  The literal_value
   structure records the value of a literal: the "r_rel" field holds the
   information from the relocation on the literal (if there is one) and
   the "value" field holds the contents of the literal word itself.

   The value_map structure records a literal value along with the
   location of a literal holding that value.  The value_map hash table
   is indexed by the literal value, so that we can quickly check if a
   particular literal value has been seen before and is thus a candidate
   for coalescing.  */

typedef struct literal_value_struct literal_value;
typedef struct value_map_struct value_map;
typedef struct value_map_hash_table_struct value_map_hash_table;

struct literal_value_struct
{
  r_reloc r_rel;
  unsigned long value;
  bfd_boolean is_abs_literal;
};

struct value_map_struct
{
  literal_value val;			/* The literal value.  */
  r_reloc loc;				/* Location of the literal.  */
  value_map *next;
};

struct value_map_hash_table_struct
{
  unsigned bucket_count;
  value_map **buckets;
  unsigned count;
  bfd_boolean has_last_loc;
  r_reloc last_loc;
};


static void
init_literal_value (literal_value *lit,
		    const r_reloc *r_rel,
		    unsigned long value,
		    bfd_boolean is_abs_literal)
{
  lit->r_rel = *r_rel;
  lit->value = value;
  lit->is_abs_literal = is_abs_literal;
}


static bfd_boolean
literal_value_equal (const literal_value *src1,
		     const literal_value *src2,
		     bfd_boolean final_static_link)
{
  struct elf_link_hash_entry *h1, *h2;

  if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
    return FALSE;

  if (r_reloc_is_const (&src1->r_rel))
    return (src1->value == src2->value);

  if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
      != ELF32_R_TYPE (src2->r_rel.rela.r_info))
    return FALSE;

  if (src1->r_rel.target_offset != src2->r_rel.target_offset)
    return FALSE;

  if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
    return FALSE;

  if (src1->value != src2->value)
    return FALSE;

  /* Now check for the same section (if defined) or the same elf_hash
     (if undefined or weak).  */
  h1 = r_reloc_get_hash_entry (&src1->r_rel);
  h2 = r_reloc_get_hash_entry (&src2->r_rel);
  if (r_reloc_is_defined (&src1->r_rel)
      && (final_static_link
	  || ((!h1 || h1->root.type != bfd_link_hash_defweak)
	      && (!h2 || h2->root.type != bfd_link_hash_defweak))))
    {
      if (r_reloc_get_section (&src1->r_rel)
	  != r_reloc_get_section (&src2->r_rel))
	return FALSE;
    }
  else
    {
      /* Require that the hash entries (i.e., symbols) be identical.  */
      if (h1 != h2 || h1 == 0)
	return FALSE;
    }

  if (src1->is_abs_literal != src2->is_abs_literal)
    return FALSE;

  return TRUE;
}


/* Must be power of 2.  */
#define INITIAL_HASH_RELOC_BUCKET_COUNT 1024

static value_map_hash_table *
value_map_hash_table_init (void)
{
  value_map_hash_table *values;

  values = (value_map_hash_table *)
    bfd_zmalloc (sizeof (value_map_hash_table));
  values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
  values->count = 0;
  values->buckets = (value_map **)
    bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
  if (values->buckets == NULL)
    {
      free (values);
      return NULL;
    }
  values->has_last_loc = FALSE;

  return values;
}


static void
value_map_hash_table_delete (value_map_hash_table *table)
{
  free (table->buckets);
  free (table);
}


static unsigned
hash_bfd_vma (bfd_vma val)
{
  return (val >> 2) + (val >> 10);
}


static unsigned
literal_value_hash (const literal_value *src)
{
  unsigned hash_val;

  hash_val = hash_bfd_vma (src->value);
  if (!r_reloc_is_const (&src->r_rel))
    {
      void *sec_or_hash;

      hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
      hash_val += hash_bfd_vma (src->r_rel.target_offset);
      hash_val += hash_bfd_vma (src->r_rel.virtual_offset);

      /* Now check for the same section and the same elf_hash.  */
      if (r_reloc_is_defined (&src->r_rel))
	sec_or_hash = r_reloc_get_section (&src->r_rel);
      else
	sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
      hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
    }
  return hash_val;
}


/* Check if the specified literal_value has been seen before.  */

static value_map *
value_map_get_cached_value (value_map_hash_table *map,
			    const literal_value *val,
			    bfd_boolean final_static_link)
{
  value_map *map_e;
  value_map *bucket;
  unsigned idx;

  idx = literal_value_hash (val);
  idx = idx & (map->bucket_count - 1);
  bucket = map->buckets[idx];
  for (map_e = bucket; map_e; map_e = map_e->next)
    {
      if (literal_value_equal (&map_e->val, val, final_static_link))
	return map_e;
    }
  return NULL;
}


/* Record a new literal value.  It is illegal to call this if VALUE
   already has an entry here.  */

static value_map *
add_value_map (value_map_hash_table *map,
	       const literal_value *val,
	       const r_reloc *loc,
	       bfd_boolean final_static_link)
{
  value_map **bucket_p;
  unsigned idx;

  value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
  if (val_e == NULL)
    {
      bfd_set_error (bfd_error_no_memory);
      return NULL;
    }

  BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
  val_e->val = *val;
  val_e->loc = *loc;

  idx = literal_value_hash (val);
  idx = idx & (map->bucket_count - 1);
  bucket_p = &map->buckets[idx];

  val_e->next = *bucket_p;
  *bucket_p = val_e;
  map->count++;
  /* FIXME: Consider resizing the hash table if we get too many entries.  */

  return val_e;
}


/* Lists of text actions (ta_) for narrowing, widening, longcall
   conversion, space fill, code & literal removal, etc.  */

/* The following text actions are generated:

   "ta_remove_insn"	    remove an instruction or instructions
   "ta_remove_longcall"	    convert longcall to call
   "ta_convert_longcall"    convert longcall to nop/call
   "ta_narrow_insn"	    narrow a wide instruction
   "ta_widen"		    widen a narrow instruction
   "ta_fill"		    add fill or remove fill
      removed < 0 is a fill; branches to the fill address will be
	changed to address + fill size (e.g., address - removed)
      removed >= 0 branches to the fill address will stay unchanged
   "ta_remove_literal"	    remove a literal; this action is
			    indicated when a literal is removed
			    or replaced.
   "ta_add_literal"	    insert a new literal; this action is
			    indicated when a literal has been moved.
			    It may use a virtual_offset because
			    multiple literals can be placed at the
			    same location.

   For each of these text actions, we also record the number of bytes
   removed by performing the text action.  In the case of a "ta_widen"
   or a "ta_fill" that adds space, the removed_bytes will be negative.  */

typedef struct text_action_struct text_action;
typedef struct text_action_list_struct text_action_list;
typedef enum text_action_enum_t text_action_t;

enum text_action_enum_t
{
  ta_none,
  ta_remove_insn,	 /* removed = -size */
  ta_remove_longcall,	 /* removed = -size */
  ta_convert_longcall,	 /* removed = 0 */
  ta_narrow_insn,	 /* removed = -1 */
  ta_widen_insn,	 /* removed = +1 */
  ta_fill,		 /* removed = +size */
  ta_remove_literal,
  ta_add_literal
};


/* Structure for a text action record.  */
struct text_action_struct
{
  text_action_t action;
  asection *sec;	/* Optional */
  bfd_vma offset;
  bfd_vma virtual_offset;  /* Zero except for adding literals.  */
  int removed_bytes;
  literal_value value;	/* Only valid when adding literals.  */
};

struct removal_by_action_entry_struct
{
  bfd_vma offset;
  int removed;
  int eq_removed;
  int eq_removed_before_fill;
};
typedef struct removal_by_action_entry_struct removal_by_action_entry;

struct removal_by_action_map_struct
{
  unsigned n_entries;
  removal_by_action_entry *entry;
};
typedef struct removal_by_action_map_struct removal_by_action_map;


/* List of all of the actions taken on a text section.  */
struct text_action_list_struct
{
  unsigned count;
  splay_tree tree;
  removal_by_action_map map;
};


static text_action *
find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
{
  text_action a;

  /* It is not necessary to fill at the end of a section.  */
  if (sec->size == offset)
    return NULL;

  a.offset = offset;
  a.action = ta_fill;

  splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
  if (node)
    return (text_action *)node->value;
  return NULL;
}


static int
compute_removed_action_diff (const text_action *ta,
			     asection *sec,
			     bfd_vma offset,
			     int removed,
			     int removable_space)
{
  int new_removed;
  int current_removed = 0;

  if (ta)
    current_removed = ta->removed_bytes;

  BFD_ASSERT (ta == NULL || ta->offset == offset);
  BFD_ASSERT (ta == NULL || ta->action == ta_fill);

  /* It is not necessary to fill at the end of a section.  Clean this up.  */
  if (sec->size == offset)
    new_removed = removable_space - 0;
  else
    {
      int space;
      int added = -removed - current_removed;
      /* Ignore multiples of the section alignment.  */
      added = ((1 << sec->alignment_power) - 1) & added;
      new_removed = (-added);

      /* Modify for removable.  */
      space = removable_space - new_removed;
      new_removed = (removable_space
		     - (((1 << sec->alignment_power) - 1) & space));
    }
  return (new_removed - current_removed);
}


static void
adjust_fill_action (text_action *ta, int fill_diff)
{
  ta->removed_bytes += fill_diff;
}


static int
text_action_compare (splay_tree_key a, splay_tree_key b)
{
  text_action *pa = (text_action *)a;
  text_action *pb = (text_action *)b;
  static const int action_priority[] =
    {
      [ta_fill] = 0,
      [ta_none] = 1,
      [ta_convert_longcall] = 2,
      [ta_narrow_insn] = 3,
      [ta_remove_insn] = 4,
      [ta_remove_longcall] = 5,
      [ta_remove_literal] = 6,
      [ta_widen_insn] = 7,
      [ta_add_literal] = 8,
    };

  if (pa->offset == pb->offset)
    {
      if (pa->action == pb->action)
	  return 0;
      return action_priority[pa->action] - action_priority[pb->action];
    }
  else
    return pa->offset < pb->offset ? -1 : 1;
}

static text_action *
action_first (text_action_list *action_list)
{
  splay_tree_node node = splay_tree_min (action_list->tree);
  return node ? (text_action *)node->value : NULL;
}

static text_action *
action_next (text_action_list *action_list, text_action *action)
{
  splay_tree_node node = splay_tree_successor (action_list->tree,
					       (splay_tree_key)action);
  return node ? (text_action *)node->value : NULL;
}

/* Add a modification action to the text.  For the case of adding or
   removing space, modify any current fill and assume that
   "unreachable_space" bytes can be freely contracted.  Note that a
   negative removed value is a fill.  */

static void
text_action_add (text_action_list *l,
		 text_action_t action,
		 asection *sec,
		 bfd_vma offset,
		 int removed)
{
  text_action *ta;
  text_action a;

  /* It is not necessary to fill at the end of a section.  */
  if (action == ta_fill && sec->size == offset)
    return;

  /* It is not necessary to fill 0 bytes.  */
  if (action == ta_fill && removed == 0)
    return;

  a.action = action;
  a.offset = offset;

  if (action == ta_fill)
    {
      splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);

      if (node)
	{
	  ta = (text_action *)node->value;
	  ta->removed_bytes += removed;
	  return;
	}
    }
  else
    BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);

  ta = (text_action *) bfd_zmalloc (sizeof (text_action));
  ta->action = action;
  ta->sec = sec;
  ta->offset = offset;
  ta->removed_bytes = removed;
  splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
  ++l->count;
}


static void
text_action_add_literal (text_action_list *l,
			 text_action_t action,
			 const r_reloc *loc,
			 const literal_value *value,
			 int removed)
{
  text_action *ta;
  asection *sec = r_reloc_get_section (loc);
  bfd_vma offset = loc->target_offset;
  bfd_vma virtual_offset = loc->virtual_offset;

  BFD_ASSERT (action == ta_add_literal);

  /* Create a new record and fill it up.  */
  ta = (text_action *) bfd_zmalloc (sizeof (text_action));
  ta->action = action;
  ta->sec = sec;
  ta->offset = offset;
  ta->virtual_offset = virtual_offset;
  ta->value = *value;
  ta->removed_bytes = removed;

  BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
  splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
  ++l->count;
}


/* Find the total offset adjustment for the relaxations specified by
   text_actions, beginning from a particular starting action.  This is
   typically used from offset_with_removed_text to search an entire list of
   actions, but it may also be called directly when adjusting adjacent offsets
   so that each search may begin where the previous one left off.  */

static int
removed_by_actions (text_action_list *action_list,
		    text_action **p_start_action,
		    bfd_vma offset,
		    bfd_boolean before_fill)
{
  text_action *r;
  int removed = 0;

  r = *p_start_action;
  if (r)
    {
      splay_tree_node node = splay_tree_lookup (action_list->tree,
						(splay_tree_key)r);
      BFD_ASSERT (node != NULL && r == (text_action *)node->value);
    }

  while (r)
    {
      if (r->offset > offset)
	break;

      if (r->offset == offset
	  && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
	break;

      removed += r->removed_bytes;

      r = action_next (action_list, r);
    }

  *p_start_action = r;
  return removed;
}


static bfd_vma
offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
{
  text_action *r = action_first (action_list);

  return offset - removed_by_actions (action_list, &r, offset, FALSE);
}


static unsigned
action_list_count (text_action_list *action_list)
{
  return action_list->count;
}

typedef struct map_action_fn_context_struct map_action_fn_context;
struct map_action_fn_context_struct
{
  int removed;
  removal_by_action_map map;
  bfd_boolean eq_complete;
};

static int
map_action_fn (splay_tree_node node, void *p)
{
  map_action_fn_context *ctx = p;
  text_action *r = (text_action *)node->value;
  removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;

  if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
    {
      --ientry;
    }
  else
    {
      ++ctx->map.n_entries;
      ctx->eq_complete = FALSE;
      ientry->offset = r->offset;
      ientry->eq_removed_before_fill = ctx->removed;
    }

  if (!ctx->eq_complete)
    {
      if (r->action != ta_fill || r->removed_bytes >= 0)
	{
	  ientry->eq_removed = ctx->removed;
	  ctx->eq_complete = TRUE;
	}
      else
	ientry->eq_removed = ctx->removed + r->removed_bytes;
    }

  ctx->removed += r->removed_bytes;
  ientry->removed = ctx->removed;
  return 0;
}

static void
map_removal_by_action (text_action_list *action_list)
{
  map_action_fn_context ctx;

  ctx.removed = 0;
  ctx.map.n_entries = 0;
  ctx.map.entry = bfd_malloc (action_list_count (action_list) *
			      sizeof (removal_by_action_entry));
  ctx.eq_complete = FALSE;

  splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
  action_list->map = ctx.map;
}

static int
removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
			bfd_boolean before_fill)
{
  unsigned a, b;

  if (!action_list->map.entry)
    map_removal_by_action (action_list);

  if (!action_list->map.n_entries)
    return 0;

  a = 0;
  b = action_list->map.n_entries;

  while (b - a > 1)
    {
      unsigned c = (a + b) / 2;

      if (action_list->map.entry[c].offset <= offset)
	a = c;
      else
	b = c;
    }

  if (action_list->map.entry[a].offset < offset)
    {
      return action_list->map.entry[a].removed;
    }
  else if (action_list->map.entry[a].offset == offset)
    {
      return before_fill ?
	action_list->map.entry[a].eq_removed_before_fill :
	action_list->map.entry[a].eq_removed;
    }
  else
    {
      return 0;
    }
}

static bfd_vma
offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
{
  int removed = removed_by_actions_map (action_list, offset, FALSE);
  return offset - removed;
}


/* The find_insn_action routine will only find non-fill actions.  */

static text_action *
find_insn_action (text_action_list *action_list, bfd_vma offset)
{
  static const text_action_t action[] =
    {
      ta_convert_longcall,
      ta_remove_longcall,
      ta_widen_insn,
      ta_narrow_insn,
      ta_remove_insn,
    };
  text_action a;
  unsigned i;

  a.offset = offset;
  for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
    {
      splay_tree_node node;

      a.action = action[i];
      node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
      if (node)
	return (text_action *)node->value;
    }
  return NULL;
}


#if DEBUG

static void
print_action (FILE *fp, text_action *r)
{
  const char *t = "unknown";
  switch (r->action)
    {
    case ta_remove_insn:
      t = "remove_insn"; break;
    case ta_remove_longcall:
      t = "remove_longcall"; break;
    case ta_convert_longcall:
      t = "convert_longcall"; break;
    case ta_narrow_insn:
      t = "narrow_insn"; break;
    case ta_widen_insn:
      t = "widen_insn"; break;
    case ta_fill:
      t = "fill"; break;
    case ta_none:
      t = "none"; break;
    case ta_remove_literal:
      t = "remove_literal"; break;
    case ta_add_literal:
      t = "add_literal"; break;
    }

  fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
	   r->sec->owner->filename,
	   r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
}

static int
print_action_list_fn (splay_tree_node node, void *p)
{
  text_action *r = (text_action *)node->value;

  print_action (p, r);
  return 0;
}

static void
print_action_list (FILE *fp, text_action_list *action_list)
{
  fprintf (fp, "Text Action\n");
  splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
}

#endif /* DEBUG */


/* Lists of literals being coalesced or removed.  */

/* In the usual case, the literal identified by "from" is being
   coalesced with another literal identified by "to".  If the literal is
   unused and is being removed altogether, "to.abfd" will be NULL.
   The removed_literal entries are kept on a per-section list, sorted
   by the "from" offset field.  */

typedef struct removed_literal_struct removed_literal;
typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
typedef struct removed_literal_list_struct removed_literal_list;

struct removed_literal_struct
{
  r_reloc from;
  r_reloc to;
  removed_literal *next;
};

struct removed_literal_map_entry_struct
{
  bfd_vma addr;
  removed_literal *literal;
};

struct removed_literal_list_struct
{
  removed_literal *head;
  removed_literal *tail;

  unsigned n_map;
  removed_literal_map_entry *map;
};


/* Record that the literal at "from" is being removed.  If "to" is not
   NULL, the "from" literal is being coalesced with the "to" literal.  */

static void
add_removed_literal (removed_literal_list *removed_list,
		     const r_reloc *from,
		     const r_reloc *to)
{
  removed_literal *r, *new_r, *next_r;

  new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));

  new_r->from = *from;
  if (to)
    new_r->to = *to;
  else
    new_r->to.abfd = NULL;
  new_r->next = NULL;

  r = removed_list->head;
  if (r == NULL)
    {
      removed_list->head = new_r;
      removed_list->tail = new_r;
    }
  /* Special check for common case of append.  */
  else if (removed_list->tail->from.target_offset < from->target_offset)
    {
      removed_list->tail->next = new_r;
      removed_list->tail = new_r;
    }
  else
    {
      while (r->from.target_offset < from->target_offset && r->next)
	{
	  r = r->next;
	}
      next_r = r->next;
      r->next = new_r;
      new_r->next = next_r;
      if (next_r == NULL)
	removed_list->tail = new_r;
    }
}

static void
map_removed_literal (removed_literal_list *removed_list)
{
  unsigned n_map = 0;
  unsigned i;
  removed_literal_map_entry *map = NULL;
  removed_literal *r = removed_list->head;

  for (i = 0; r; ++i, r = r->next)
    {
      if (i == n_map)
	{
	  n_map = (n_map * 2) + 2;
	  map = bfd_realloc (map, n_map * sizeof (*map));
	}
      map[i].addr = r->from.target_offset;
      map[i].literal = r;
    }
  removed_list->map = map;
  removed_list->n_map = i;
}

static int
removed_literal_compare (const void *a, const void *b)
{
  const removed_literal_map_entry *pa = a;
  const removed_literal_map_entry *pb = b;

  if (pa->addr == pb->addr)
    return 0;
  else
    return pa->addr < pb->addr ? -1 : 1;
}

/* Check if the list of removed literals contains an entry for the
   given address.  Return the entry if found.  */

static removed_literal *
find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
{
  removed_literal_map_entry *p;
  removed_literal *r = NULL;

  if (removed_list->map == NULL)
    map_removed_literal (removed_list);

  p = bsearch (&addr, removed_list->map, removed_list->n_map,
	       sizeof (*removed_list->map), removed_literal_compare);
  if (p)
    {
      while (p != removed_list->map && (p - 1)->addr == addr)
	--p;
      r = p->literal;
    }
  return r;
}


#if DEBUG

static void
print_removed_literals (FILE *fp, removed_literal_list *removed_list)
{
  removed_literal *r;
  r = removed_list->head;
  if (r)
    fprintf (fp, "Removed Literals\n");
  for (; r != NULL; r = r->next)
    {
      print_r_reloc (fp, &r->from);
      fprintf (fp, " => ");
      if (r->to.abfd == NULL)
	fprintf (fp, "REMOVED");
      else
	print_r_reloc (fp, &r->to);
      fprintf (fp, "\n");
    }
}

#endif /* DEBUG */


/* Per-section data for relaxation.  */

typedef struct reloc_bfd_fix_struct reloc_bfd_fix;

struct xtensa_relax_info_struct
{
  bfd_boolean is_relaxable_literal_section;
  bfd_boolean is_relaxable_asm_section;
  int visited;				/* Number of times visited.  */

  source_reloc *src_relocs;		/* Array[src_count].  */
  int src_count;
  int src_next;				/* Next src_relocs entry to assign.  */

  removed_literal_list removed_list;
  text_action_list action_list;

  reloc_bfd_fix *fix_list;
  reloc_bfd_fix *fix_array;
  unsigned fix_array_count;

  /* Support for expanding the reloc array that is stored
     in the section structure.  If the relocations have been
     reallocated, the newly allocated relocations will be referenced
     here along with the actual size allocated.  The relocation
     count will always be found in the section structure.  */
  Elf_Internal_Rela *allocated_relocs;
  unsigned relocs_count;
  unsigned allocated_relocs_count;
};

struct elf_xtensa_section_data
{
  struct bfd_elf_section_data elf;
  xtensa_relax_info relax_info;
};


static bfd_boolean
elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
{
  if (!sec->used_by_bfd)
    {
      struct elf_xtensa_section_data *sdata;
      bfd_size_type amt = sizeof (*sdata);

      sdata = bfd_zalloc (abfd, amt);
      if (sdata == NULL)
	return FALSE;
      sec->used_by_bfd = sdata;
    }

  return _bfd_elf_new_section_hook (abfd, sec);
}


static xtensa_relax_info *
get_xtensa_relax_info (asection *sec)
{
  struct elf_xtensa_section_data *section_data;

  /* No info available if no section or if it is an output section.  */
  if (!sec || sec == sec->output_section)
    return NULL;

  section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
  return &section_data->relax_info;
}


static void
init_xtensa_relax_info (asection *sec)
{
  xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);

  relax_info->is_relaxable_literal_section = FALSE;
  relax_info->is_relaxable_asm_section = FALSE;
  relax_info->visited = 0;

  relax_info->src_relocs = NULL;
  relax_info->src_count = 0;
  relax_info->src_next = 0;

  relax_info->removed_list.head = NULL;
  relax_info->removed_list.tail = NULL;

  relax_info->action_list.tree = splay_tree_new (text_action_compare,
						 NULL, NULL);
  relax_info->action_list.map.n_entries = 0;
  relax_info->action_list.map.entry = NULL;

  relax_info->fix_list = NULL;
  relax_info->fix_array = NULL;
  relax_info->fix_array_count = 0;

  relax_info->allocated_relocs = NULL;
  relax_info->relocs_count = 0;
  relax_info->allocated_relocs_count = 0;
}


/* Coalescing literals may require a relocation to refer to a section in
   a different input file, but the standard relocation information
   cannot express that.  Instead, the reloc_bfd_fix structures are used
   to "fix" the relocations that refer to sections in other input files.
   These structures are kept on per-section lists.  The "src_type" field
   records the relocation type in case there are multiple relocations on
   the same location.  FIXME: This is ugly; an alternative might be to
   add new symbols with the "owner" field to some other input file.  */

struct reloc_bfd_fix_struct
{
  asection *src_sec;
  bfd_vma src_offset;
  unsigned src_type;			/* Relocation type.  */

  asection *target_sec;
  bfd_vma target_offset;
  bfd_boolean translated;

  reloc_bfd_fix *next;
};


static reloc_bfd_fix *
reloc_bfd_fix_init (asection *src_sec,
		    bfd_vma src_offset,
		    unsigned src_type,
		    asection *target_sec,
		    bfd_vma target_offset,
		    bfd_boolean translated)
{
  reloc_bfd_fix *fix;

  fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
  fix->src_sec = src_sec;
  fix->src_offset = src_offset;
  fix->src_type = src_type;
  fix->target_sec = target_sec;
  fix->target_offset = target_offset;
  fix->translated = translated;

  return fix;
}


static void
add_fix (asection *src_sec, reloc_bfd_fix *fix)
{
  xtensa_relax_info *relax_info;

  relax_info = get_xtensa_relax_info (src_sec);
  fix->next = relax_info->fix_list;
  relax_info->fix_list = fix;
}


static int
fix_compare (const void *ap, const void *bp)
{
  const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
  const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;

  if (a->src_offset != b->src_offset)
    return (a->src_offset - b->src_offset);
  return (a->src_type - b->src_type);
}


static void
cache_fix_array (asection *sec)
{
  unsigned i, count = 0;
  reloc_bfd_fix *r;
  xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);

  if (relax_info == NULL)
    return;
  if (relax_info->fix_list == NULL)
    return;

  for (r = relax_info->fix_list; r != NULL; r = r->next)
    count++;

  relax_info->fix_array =
    (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
  relax_info->fix_array_count = count;

  r = relax_info->fix_list;
  for (i = 0; i < count; i++, r = r->next)
    {
      relax_info->fix_array[count - 1 - i] = *r;
      relax_info->fix_array[count - 1 - i].next = NULL;
    }

  qsort (relax_info->fix_array, relax_info->fix_array_count,
	 sizeof (reloc_bfd_fix), fix_compare);
}


static reloc_bfd_fix *
get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
{
  xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
  reloc_bfd_fix *rv;
  reloc_bfd_fix key;

  if (relax_info == NULL)
    return NULL;
  if (relax_info->fix_list == NULL)
    return NULL;

  if (relax_info->fix_array == NULL)
    cache_fix_array (sec);

  key.src_offset = offset;
  key.src_type = type;
  rv = bsearch (&key, relax_info->fix_array,  relax_info->fix_array_count,
		sizeof (reloc_bfd_fix), fix_compare);
  return rv;
}


/* Section caching.  */

typedef struct section_cache_struct section_cache_t;

struct section_cache_struct
{
  asection *sec;

  bfd_byte *contents;		/* Cache of the section contents.  */
  bfd_size_type content_length;

  property_table_entry *ptbl;	/* Cache of the section property table.  */
  unsigned pte_count;

  Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
  unsigned reloc_count;
};


static void
init_section_cache (section_cache_t *sec_cache)
{
  memset (sec_cache, 0, sizeof (*sec_cache));
}


static void
free_section_cache (section_cache_t *sec_cache)
{
  if (sec_cache->sec)
    {
      release_contents (sec_cache->sec, sec_cache->contents);
      release_internal_relocs (sec_cache->sec, sec_cache->relocs);
      if (sec_cache->ptbl)
	free (sec_cache->ptbl);
    }
}


static bfd_boolean
section_cache_section (section_cache_t *sec_cache,
		       asection *sec,
		       struct bfd_link_info *link_info)
{
  bfd *abfd;
  property_table_entry *prop_table = NULL;
  int ptblsize = 0;
  bfd_byte *contents = NULL;
  Elf_Internal_Rela *internal_relocs = NULL;
  bfd_size_type sec_size;

  if (sec == NULL)
    return FALSE;
  if (sec == sec_cache->sec)
    return TRUE;

  abfd = sec->owner;
  sec_size = bfd_get_section_limit (abfd, sec);

  /* Get the contents.  */
  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec_size != 0)
    goto err;

  /* Get the relocations.  */
  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);

  /* Get the entry table.  */
  ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
					XTENSA_PROP_SEC_NAME, FALSE);
  if (ptblsize < 0)
    goto err;

  /* Fill in the new section cache.  */
  free_section_cache (sec_cache);
  init_section_cache (sec_cache);

  sec_cache->sec = sec;
  sec_cache->contents = contents;
  sec_cache->content_length = sec_size;
  sec_cache->relocs = internal_relocs;
  sec_cache->reloc_count = sec->reloc_count;
  sec_cache->pte_count = ptblsize;
  sec_cache->ptbl = prop_table;

  return TRUE;

 err:
  release_contents (sec, contents);
  release_internal_relocs (sec, internal_relocs);
  if (prop_table)
    free (prop_table);
  return FALSE;
}


/* Extended basic blocks.  */

/* An ebb_struct represents an Extended Basic Block.  Within this
   range, we guarantee that all instructions are decodable, the
   property table entries are contiguous, and no property table
   specifies a segment that cannot have instructions moved.  This
   structure contains caches of the contents, property table and
   relocations for the specified section for easy use.  The range is
   specified by ranges of indices for the byte offset, property table
   offsets and relocation offsets.  These must be consistent.  */

typedef struct ebb_struct ebb_t;

struct ebb_struct
{
  asection *sec;

  bfd_byte *contents;		/* Cache of the section contents.  */
  bfd_size_type content_length;

  property_table_entry *ptbl;	/* Cache of the section property table.  */
  unsigned pte_count;

  Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
  unsigned reloc_count;

  bfd_vma start_offset;		/* Offset in section.  */
  unsigned start_ptbl_idx;	/* Offset in the property table.  */
  unsigned start_reloc_idx;	/* Offset in the relocations.  */

  bfd_vma end_offset;
  unsigned end_ptbl_idx;
  unsigned end_reloc_idx;

  bfd_boolean ends_section;	/* Is this the last ebb in a section?  */

  /* The unreachable property table at the end of this set of blocks;
     NULL if the end is not an unreachable block.  */
  property_table_entry *ends_unreachable;
};


enum ebb_target_enum
{
  EBB_NO_ALIGN = 0,
  EBB_DESIRE_TGT_ALIGN,
  EBB_REQUIRE_TGT_ALIGN,
  EBB_REQUIRE_LOOP_ALIGN,
  EBB_REQUIRE_ALIGN
};


/* proposed_action_struct is similar to the text_action_struct except
   that is represents a potential transformation, not one that will
   occur.  We build a list of these for an extended basic block
   and use them to compute the actual actions desired.  We must be
   careful that the entire set of actual actions we perform do not
   break any relocations that would fit if the actions were not
   performed.  */

typedef struct proposed_action_struct proposed_action;

struct proposed_action_struct
{
  enum ebb_target_enum align_type; /* for the target alignment */
  bfd_vma alignment_pow;
  text_action_t action;
  bfd_vma offset;
  int removed_bytes;
  bfd_boolean do_action; /* If false, then we will not perform the action.  */
};


/* The ebb_constraint_struct keeps a set of proposed actions for an
   extended basic block.   */

typedef struct ebb_constraint_struct ebb_constraint;

struct ebb_constraint_struct
{
  ebb_t ebb;
  bfd_boolean start_movable;

  /* Bytes of extra space at the beginning if movable.  */
  int start_extra_space;

  enum ebb_target_enum start_align;

  bfd_boolean end_movable;

  /* Bytes of extra space at the end if movable.  */
  int end_extra_space;

  unsigned action_count;
  unsigned action_allocated;

  /* Array of proposed actions.  */
  proposed_action *actions;

  /* Action alignments -- one for each proposed action.  */
  enum ebb_target_enum *action_aligns;
};


static void
init_ebb_constraint (ebb_constraint *c)
{
  memset (c, 0, sizeof (ebb_constraint));
}


static void
free_ebb_constraint (ebb_constraint *c)
{
  if (c->actions)
    free (c->actions);
}


static void
init_ebb (ebb_t *ebb,
	  asection *sec,
	  bfd_byte *contents,
	  bfd_size_type content_length,
	  property_table_entry *prop_table,
	  unsigned ptblsize,
	  Elf_Internal_Rela *internal_relocs,
	  unsigned reloc_count)
{
  memset (ebb, 0, sizeof (ebb_t));
  ebb->sec = sec;
  ebb->contents = contents;
  ebb->content_length = content_length;
  ebb->ptbl = prop_table;
  ebb->pte_count = ptblsize;
  ebb->relocs = internal_relocs;
  ebb->reloc_count = reloc_count;
  ebb->start_offset = 0;
  ebb->end_offset = ebb->content_length - 1;
  ebb->start_ptbl_idx = 0;
  ebb->end_ptbl_idx = ptblsize;
  ebb->start_reloc_idx = 0;
  ebb->end_reloc_idx = reloc_count;
}


/* Extend the ebb to all decodable contiguous sections.  The algorithm
   for building a basic block around an instruction is to push it
   forward until we hit the end of a section, an unreachable block or
   a block that cannot be transformed.  Then we push it backwards
   searching for similar conditions.  */

static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
static bfd_size_type insn_block_decodable_len
  (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);

static bfd_boolean
extend_ebb_bounds (ebb_t *ebb)
{
  if (!extend_ebb_bounds_forward (ebb))
    return FALSE;
  if (!extend_ebb_bounds_backward (ebb))
    return FALSE;
  return TRUE;
}


static bfd_boolean
extend_ebb_bounds_forward (ebb_t *ebb)
{
  property_table_entry *the_entry, *new_entry;

  the_entry = &ebb->ptbl[ebb->end_ptbl_idx];

  /* Stop when (1) we cannot decode an instruction, (2) we are at
     the end of the property tables, (3) we hit a non-contiguous property
     table entry, (4) we hit a NO_TRANSFORM region.  */

  while (1)
    {
      bfd_vma entry_end;
      bfd_size_type insn_block_len;

      entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
      insn_block_len =
	insn_block_decodable_len (ebb->contents, ebb->content_length,
				  ebb->end_offset,
				  entry_end - ebb->end_offset);
      if (insn_block_len != (entry_end - ebb->end_offset))
	{
	  _bfd_error_handler
	    /* xgettext:c-format */
	    (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
	       "possible configuration mismatch"),
	     ebb->sec->owner, ebb->sec,
	     (uint64_t) (ebb->end_offset + insn_block_len));
	  return FALSE;
	}
      ebb->end_offset += insn_block_len;

      if (ebb->end_offset == ebb->sec->size)
	ebb->ends_section = TRUE;

      /* Update the reloc counter.  */
      while (ebb->end_reloc_idx + 1 < ebb->reloc_count
	     && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
		 < ebb->end_offset))
	{
	  ebb->end_reloc_idx++;
	}

      if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
	return TRUE;

      new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
      if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
	  || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
	break;

      if (the_entry->address + the_entry->size != new_entry->address)
	break;

      the_entry = new_entry;
      ebb->end_ptbl_idx++;
    }

  /* Quick check for an unreachable or end of file just at the end.  */
  if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
    {
      if (ebb->end_offset == ebb->content_length)
	ebb->ends_section = TRUE;
    }
  else
    {
      new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
      if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
	  && the_entry->address + the_entry->size == new_entry->address)
	ebb->ends_unreachable = new_entry;
    }

  /* Any other ending requires exact alignment.  */
  return TRUE;
}


static bfd_boolean
extend_ebb_bounds_backward (ebb_t *ebb)
{
  property_table_entry *the_entry, *new_entry;

  the_entry = &ebb->ptbl[ebb->start_ptbl_idx];

  /* Stop when (1) we cannot decode the instructions in the current entry.
     (2) we are at the beginning of the property tables, (3) we hit a
     non-contiguous property table entry, (4) we hit a NO_TRANSFORM region.  */

  while (1)
    {
      bfd_vma block_begin;
      bfd_size_type insn_block_len;

      block_begin = the_entry->address - ebb->sec->vma;
      insn_block_len =
	insn_block_decodable_len (ebb->contents, ebb->content_length,
				  block_begin,
				  ebb->start_offset - block_begin);
      if (insn_block_len != ebb->start_offset - block_begin)
	{
	  _bfd_error_handler
	    /* xgettext:c-format */
	    (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
	       "possible configuration mismatch"),
	     ebb->sec->owner, ebb->sec,
	     (uint64_t) (ebb->end_offset + insn_block_len));
	  return FALSE;
	}
      ebb->start_offset -= insn_block_len;

      /* Update the reloc counter.  */
      while (ebb->start_reloc_idx > 0
	     && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
		 >= ebb->start_offset))
	{
	  ebb->start_reloc_idx--;
	}

      if (ebb->start_ptbl_idx == 0)
	return TRUE;

      new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
      if ((new_entry->flags & XTENSA_PROP_INSN) == 0
	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
	  || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
	return TRUE;
      if (new_entry->address + new_entry->size != the_entry->address)
	return TRUE;

      the_entry = new_entry;
      ebb->start_ptbl_idx--;
    }
  return TRUE;
}


static bfd_size_type
insn_block_decodable_len (bfd_byte *contents,
			  bfd_size_type content_len,
			  bfd_vma block_offset,
			  bfd_size_type block_len)
{
  bfd_vma offset = block_offset;

  while (offset < block_offset + block_len)
    {
      bfd_size_type insn_len = 0;

      insn_len = insn_decode_len (contents, content_len, offset);
      if (insn_len == 0)
	return (offset - block_offset);
      offset += insn_len;
    }
  return (offset - block_offset);
}


static void
ebb_propose_action (ebb_constraint *c,
		    enum ebb_target_enum align_type,
		    bfd_vma alignment_pow,
		    text_action_t action,
		    bfd_vma offset,
		    int removed_bytes,
		    bfd_boolean do_action)
{
  proposed_action *act;

  if (c->action_allocated <= c->action_count)
    {
      unsigned new_allocated, i;
      proposed_action *new_actions;

      new_allocated = (c->action_count + 2) * 2;
      new_actions = (proposed_action *)
	bfd_zmalloc (sizeof (proposed_action) * new_allocated);

      for (i = 0; i < c->action_count; i++)
	new_actions[i] = c->actions[i];
      if (c->actions)
	free (c->actions);
      c->actions = new_actions;
      c->action_allocated = new_allocated;
    }

  act = &c->actions[c->action_count];
  act->align_type = align_type;
  act->alignment_pow = alignment_pow;
  act->action = action;
  act->offset = offset;
  act->removed_bytes = removed_bytes;
  act->do_action = do_action;

  c->action_count++;
}


/* Access to internal relocations, section contents and symbols.  */

/* During relaxation, we need to modify relocations, section contents,
   and symbol definitions, and we need to keep the original values from
   being reloaded from the input files, i.e., we need to "pin" the
   modified values in memory.  We also want to continue to observe the
   setting of the "keep-memory" flag.  The following functions wrap the
   standard BFD functions to take care of this for us.  */

static Elf_Internal_Rela *
retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
{
  Elf_Internal_Rela *internal_relocs;

  if ((sec->flags & SEC_LINKER_CREATED) != 0)
    return NULL;

  internal_relocs = elf_section_data (sec)->relocs;
  if (internal_relocs == NULL)
    internal_relocs = (_bfd_elf_link_read_relocs
		       (abfd, sec, NULL, NULL, keep_memory));
  return internal_relocs;
}


static void
pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
{
  elf_section_data (sec)->relocs = internal_relocs;
}


static void
release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
{
  if (internal_relocs
      && elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
}


static bfd_byte *
retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
{
  bfd_byte *contents;
  bfd_size_type sec_size;

  sec_size = bfd_get_section_limit (abfd, sec);
  contents = elf_section_data (sec)->this_hdr.contents;

  if (contents == NULL && sec_size != 0)
    {
      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
	{
	  if (contents)
	    free (contents);
	  return NULL;
	}
      if (keep_memory)
	elf_section_data (sec)->this_hdr.contents = contents;
    }
  return contents;
}


static void
pin_contents (asection *sec, bfd_byte *contents)
{
  elf_section_data (sec)->this_hdr.contents = contents;
}


static void
release_contents (asection *sec, bfd_byte *contents)
{
  if (contents && elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
}


static Elf_Internal_Sym *
retrieve_local_syms (bfd *input_bfd)
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Sym *isymbuf;
  size_t locsymcount;

  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  locsymcount = symtab_hdr->sh_info;

  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
  if (isymbuf == NULL && locsymcount != 0)
    isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
				    NULL, NULL, NULL);

  /* Save the symbols for this input file so they won't be read again.  */
  if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
    symtab_hdr->contents = (unsigned char *) isymbuf;

  return isymbuf;
}


/* Code for link-time relaxation.  */

/* Initialization for relaxation: */
static bfd_boolean analyze_relocations (struct bfd_link_info *);
static bfd_boolean find_relaxable_sections
  (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
static bfd_boolean collect_source_relocs
  (bfd *, asection *, struct bfd_link_info *);
static bfd_boolean is_resolvable_asm_expansion
  (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
   bfd_boolean *);
static Elf_Internal_Rela *find_associated_l32r_irel
  (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
static bfd_boolean compute_text_actions
  (bfd *, asection *, struct bfd_link_info *);
static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
static bfd_boolean compute_ebb_actions (ebb_constraint *);
typedef struct reloc_range_list_struct reloc_range_list;
static bfd_boolean check_section_ebb_pcrels_fit
  (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
   reloc_range_list *, const ebb_constraint *,
   const xtensa_opcode *);
static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
static void text_action_add_proposed
  (text_action_list *, const ebb_constraint *, asection *);
static int compute_fill_extra_space (property_table_entry *);

/* First pass: */
static bfd_boolean compute_removed_literals
  (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
static Elf_Internal_Rela *get_irel_at_offset
  (asection *, Elf_Internal_Rela *, bfd_vma);
static bfd_boolean is_removable_literal
  (const source_reloc *, int, const source_reloc *, int, asection *,
   property_table_entry *, int);
static bfd_boolean remove_dead_literal
  (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
   Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
static bfd_boolean identify_literal_placement
  (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
   value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
   source_reloc *, property_table_entry *, int, section_cache_t *,
   bfd_boolean);
static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
static bfd_boolean coalesce_shared_literal
  (asection *, source_reloc *, property_table_entry *, int, value_map *);
static bfd_boolean move_shared_literal
  (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
   int, const r_reloc *, const literal_value *, section_cache_t *);

/* Second pass: */
static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
static bfd_boolean translate_section_fixes (asection *);
static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
static void shrink_dynamic_reloc_sections
  (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
static bfd_boolean move_literal
  (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
   xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
static bfd_boolean relax_property_section
  (bfd *, asection *, struct bfd_link_info *);

/* Third pass: */
static bfd_boolean relax_section_symbols (bfd *, asection *);


static bfd_boolean
elf_xtensa_relax_section (bfd *abfd,
			  asection *sec,
			  struct bfd_link_info *link_info,
			  bfd_boolean *again)
{
  static value_map_hash_table *values = NULL;
  static bfd_boolean relocations_analyzed = FALSE;
  xtensa_relax_info *relax_info;

  if (!relocations_analyzed)
    {
      /* Do some overall initialization for relaxation.  */
      values = value_map_hash_table_init ();
      if (values == NULL)
	return FALSE;
      relaxing_section = TRUE;
      if (!analyze_relocations (link_info))
	return FALSE;
      relocations_analyzed = TRUE;
    }
  *again = FALSE;

  /* Don't mess with linker-created sections.  */
  if ((sec->flags & SEC_LINKER_CREATED) != 0)
    return TRUE;

  relax_info = get_xtensa_relax_info (sec);
  BFD_ASSERT (relax_info != NULL);

  switch (relax_info->visited)
    {
    case 0:
      /* Note: It would be nice to fold this pass into
	 analyze_relocations, but it is important for this step that the
	 sections be examined in link order.  */
      if (!compute_removed_literals (abfd, sec, link_info, values))
	return FALSE;
      *again = TRUE;
      break;

    case 1:
      if (values)
	value_map_hash_table_delete (values);
      values = NULL;
      if (!relax_section (abfd, sec, link_info))
	return FALSE;
      *again = TRUE;
      break;

    case 2:
      if (!relax_section_symbols (abfd, sec))
	return FALSE;
      break;
    }

  relax_info->visited++;
  return TRUE;
}


/* Initialization for relaxation.  */

/* This function is called once at the start of relaxation.  It scans
   all the input sections and marks the ones that are relaxable (i.e.,
   literal sections with L32R relocations against them), and then
   collects source_reloc information for all the relocations against
   those relaxable sections.  During this process, it also detects
   longcalls, i.e., calls relaxed by the assembler into indirect
   calls, that can be optimized back into direct calls.  Within each
   extended basic block (ebb) containing an optimized longcall, it
   computes a set of "text actions" that can be performed to remove
   the L32R associated with the longcall while optionally preserving
   branch target alignments.  */

static bfd_boolean
analyze_relocations (struct bfd_link_info *link_info)
{
  bfd *abfd;
  asection *sec;
  bfd_boolean is_relaxable = FALSE;

  /* Initialize the per-section relaxation info.  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    for (sec = abfd->sections; sec != NULL; sec = sec->next)
      {
	init_xtensa_relax_info (sec);
      }

  /* Mark relaxable sections (and count relocations against each one).  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    for (sec = abfd->sections; sec != NULL; sec = sec->next)
      {
	if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
	  return FALSE;
      }

  /* Bail out if there are no relaxable sections.  */
  if (!is_relaxable)
    return TRUE;

  /* Allocate space for source_relocs.  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    for (sec = abfd->sections; sec != NULL; sec = sec->next)
      {
	xtensa_relax_info *relax_info;

	relax_info = get_xtensa_relax_info (sec);
	if (relax_info->is_relaxable_literal_section
	    || relax_info->is_relaxable_asm_section)
	  {
	    relax_info->src_relocs = (source_reloc *)
	      bfd_malloc (relax_info->src_count * sizeof (source_reloc));
	  }
	else
	  relax_info->src_count = 0;
      }

  /* Collect info on relocations against each relaxable section.  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    for (sec = abfd->sections; sec != NULL; sec = sec->next)
      {
	if (!collect_source_relocs (abfd, sec, link_info))
	  return FALSE;
      }

  /* Compute the text actions.  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    for (sec = abfd->sections; sec != NULL; sec = sec->next)
      {
	if (!compute_text_actions (abfd, sec, link_info))
	  return FALSE;
      }

  return TRUE;
}


/* Find all the sections that might be relaxed.  The motivation for
   this pass is that collect_source_relocs() needs to record _all_ the
   relocations that target each relaxable section.  That is expensive
   and unnecessary unless the target section is actually going to be
   relaxed.  This pass identifies all such sections by checking if
   they have L32Rs pointing to them.  In the process, the total number
   of relocations targeting each section is also counted so that we
   know how much space to allocate for source_relocs against each
   relaxable literal section.  */

static bfd_boolean
find_relaxable_sections (bfd *abfd,
			 asection *sec,
			 struct bfd_link_info *link_info,
			 bfd_boolean *is_relaxable_p)
{
  Elf_Internal_Rela *internal_relocs;
  bfd_byte *contents;
  bfd_boolean ok = TRUE;
  unsigned i;
  xtensa_relax_info *source_relax_info;
  bfd_boolean is_l32r_reloc;

  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);
  if (internal_relocs == NULL)
    return ok;

  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec->size != 0)
    {
      ok = FALSE;
      goto error_return;
    }

  source_relax_info = get_xtensa_relax_info (sec);
  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];
      r_reloc r_rel;
      asection *target_sec;
      xtensa_relax_info *target_relax_info;

      /* If this section has not already been marked as "relaxable", and
	 if it contains any ASM_EXPAND relocations (marking expanded
	 longcalls) that can be optimized into direct calls, then mark
	 the section as "relaxable".  */
      if (source_relax_info
	  && !source_relax_info->is_relaxable_asm_section
	  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
	{
	  bfd_boolean is_reachable = FALSE;
	  if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
					   link_info, &is_reachable)
	      && is_reachable)
	    {
	      source_relax_info->is_relaxable_asm_section = TRUE;
	      *is_relaxable_p = TRUE;
	    }
	}

      r_reloc_init (&r_rel, abfd, irel, contents,
		    bfd_get_section_limit (abfd, sec));

      target_sec = r_reloc_get_section (&r_rel);
      target_relax_info = get_xtensa_relax_info (target_sec);
      if (!target_relax_info)
	continue;

      /* Count PC-relative operand relocations against the target section.
	 Note: The conditions tested here must match the conditions under
	 which init_source_reloc is called in collect_source_relocs().  */
      is_l32r_reloc = FALSE;
      if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
	{
	  xtensa_opcode opcode =
	    get_relocation_opcode (abfd, sec, contents, irel);
	  if (opcode != XTENSA_UNDEFINED)
	    {
	      is_l32r_reloc = (opcode == get_l32r_opcode ());
	      if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
		  || is_l32r_reloc)
		target_relax_info->src_count++;
	    }
	}

      if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
	{
	  /* Mark the target section as relaxable.  */
	  target_relax_info->is_relaxable_literal_section = TRUE;
	  *is_relaxable_p = TRUE;
	}
    }

 error_return:
  release_contents (sec, contents);
  release_internal_relocs (sec, internal_relocs);
  return ok;
}


/* Record _all_ the relocations that point to relaxable sections, and
   get rid of ASM_EXPAND relocs by either converting them to
   ASM_SIMPLIFY or by removing them.  */

static bfd_boolean
collect_source_relocs (bfd *abfd,
		       asection *sec,
		       struct bfd_link_info *link_info)
{
  Elf_Internal_Rela *internal_relocs;
  bfd_byte *contents;
  bfd_boolean ok = TRUE;
  unsigned i;
  bfd_size_type sec_size;

  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);
  if (internal_relocs == NULL)
    return ok;

  sec_size = bfd_get_section_limit (abfd, sec);
  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec_size != 0)
    {
      ok = FALSE;
      goto error_return;
    }

  /* Record relocations against relaxable literal sections.  */
  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];
      r_reloc r_rel;
      asection *target_sec;
      xtensa_relax_info *target_relax_info;

      r_reloc_init (&r_rel, abfd, irel, contents, sec_size);

      target_sec = r_reloc_get_section (&r_rel);
      target_relax_info = get_xtensa_relax_info (target_sec);

      if (target_relax_info
	  && (target_relax_info->is_relaxable_literal_section
	      || target_relax_info->is_relaxable_asm_section))
	{
	  xtensa_opcode opcode = XTENSA_UNDEFINED;
	  int opnd = -1;
	  bfd_boolean is_abs_literal = FALSE;

	  if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
	    {
	      /* None of the current alternate relocs are PC-relative,
		 and only PC-relative relocs matter here.  However, we
		 still need to record the opcode for literal
		 coalescing.  */
	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
	      if (opcode == get_l32r_opcode ())
		{
		  is_abs_literal = TRUE;
		  opnd = 1;
		}
	      else
		opcode = XTENSA_UNDEFINED;
	    }
	  else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
	    {
	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
	      opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
	    }

	  if (opcode != XTENSA_UNDEFINED)
	    {
	      int src_next = target_relax_info->src_next++;
	      source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];

	      init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
				 is_abs_literal);
	    }
	}
    }

  /* Now get rid of ASM_EXPAND relocations.  At this point, the
     src_relocs array for the target literal section may still be
     incomplete, but it must at least contain the entries for the L32R
     relocations associated with ASM_EXPANDs because they were just
     added in the preceding loop over the relocations.  */

  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];
      bfd_boolean is_reachable;

      if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
					&is_reachable))
	continue;

      if (is_reachable)
	{
	  Elf_Internal_Rela *l32r_irel;
	  r_reloc r_rel;
	  asection *target_sec;
	  xtensa_relax_info *target_relax_info;

	  /* Mark the source_reloc for the L32R so that it will be
	     removed in compute_removed_literals(), along with the
	     associated literal.  */
	  l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
						 irel, internal_relocs);
	  if (l32r_irel == NULL)
	    continue;

	  r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);

	  target_sec = r_reloc_get_section (&r_rel);
	  target_relax_info = get_xtensa_relax_info (target_sec);

	  if (target_relax_info
	      && (target_relax_info->is_relaxable_literal_section
		  || target_relax_info->is_relaxable_asm_section))
	    {
	      source_reloc *s_reloc;

	      /* Search the source_relocs for the entry corresponding to
		 the l32r_irel.  Note: The src_relocs array is not yet
		 sorted, but it wouldn't matter anyway because we're
		 searching by source offset instead of target offset.  */
	      s_reloc = find_source_reloc (target_relax_info->src_relocs,
					   target_relax_info->src_next,
					   sec, l32r_irel);
	      BFD_ASSERT (s_reloc);
	      s_reloc->is_null = TRUE;
	    }

	  /* Convert this reloc to ASM_SIMPLIFY.  */
	  irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
				       R_XTENSA_ASM_SIMPLIFY);
	  l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);

	  pin_internal_relocs (sec, internal_relocs);
	}
      else
	{
	  /* It is resolvable but doesn't reach.  We resolve now
	     by eliminating the relocation -- the call will remain
	     expanded into L32R/CALLX.  */
	  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
	  pin_internal_relocs (sec, internal_relocs);
	}
    }

 error_return:
  release_contents (sec, contents);
  release_internal_relocs (sec, internal_relocs);
  return ok;
}


/* Return TRUE if the asm expansion can be resolved.  Generally it can
   be resolved on a final link or when a partial link locates it in the
   same section as the target.  Set "is_reachable" flag if the target of
   the call is within the range of a direct call, given the current VMA
   for this section and the target section.  */

bfd_boolean
is_resolvable_asm_expansion (bfd *abfd,
			     asection *sec,
			     bfd_byte *contents,
			     Elf_Internal_Rela *irel,
			     struct bfd_link_info *link_info,
			     bfd_boolean *is_reachable_p)
{
  asection *target_sec;
  bfd_vma target_offset;
  r_reloc r_rel;
  xtensa_opcode opcode, direct_call_opcode;
  bfd_vma self_address;
  bfd_vma dest_address;
  bfd_boolean uses_l32r;
  bfd_size_type sec_size;

  *is_reachable_p = FALSE;

  if (contents == NULL)
    return FALSE;

  if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
    return FALSE;

  sec_size = bfd_get_section_limit (abfd, sec);
  opcode = get_expanded_call_opcode (contents + irel->r_offset,
				     sec_size - irel->r_offset, &uses_l32r);
  /* Optimization of longcalls that use CONST16 is not yet implemented.  */
  if (!uses_l32r)
    return FALSE;

  direct_call_opcode = swap_callx_for_call_opcode (opcode);
  if (direct_call_opcode == XTENSA_UNDEFINED)
    return FALSE;

  /* Check and see that the target resolves.  */
  r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
  if (!r_reloc_is_defined (&r_rel))
    return FALSE;

  target_sec = r_reloc_get_section (&r_rel);
  target_offset = r_rel.target_offset;

  /* If the target is in a shared library, then it doesn't reach.  This
     isn't supposed to come up because the compiler should never generate
     non-PIC calls on systems that use shared libraries, but the linker
     shouldn't crash regardless.  */
  if (!target_sec->output_section)
    return FALSE;

  /* For relocatable sections, we can only simplify when the output
     section of the target is the same as the output section of the
     source.  */
  if (bfd_link_relocatable (link_info)
      && (target_sec->output_section != sec->output_section
	  || is_reloc_sym_weak (abfd, irel)))
    return FALSE;

  if (target_sec->output_section != sec->output_section)
    {
      /* If the two sections are sufficiently far away that relaxation
	 might take the call out of range, we can't simplify.  For
	 example, a positive displacement call into another memory
	 could get moved to a lower address due to literal removal,
	 but the destination won't move, and so the displacment might
	 get larger.

	 If the displacement is negative, assume the destination could
	 move as far back as the start of the output section.  The
	 self_address will be at least as far into the output section
	 as it is prior to relaxation.

	 If the displacement is postive, assume the destination will be in
	 it's pre-relaxed location (because relaxation only makes sections
	 smaller).  The self_address could go all the way to the beginning
	 of the output section.  */

      dest_address = target_sec->output_section->vma;
      self_address = sec->output_section->vma;

      if (sec->output_section->vma > target_sec->output_section->vma)
	self_address += sec->output_offset + irel->r_offset + 3;
      else
	dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
      /* Call targets should be four-byte aligned.  */
      dest_address = (dest_address + 3) & ~3;
    }
  else
    {

      self_address = (sec->output_section->vma
		      + sec->output_offset + irel->r_offset + 3);
      dest_address = (target_sec->output_section->vma
		      + target_sec->output_offset + target_offset);
    }

  *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
				      self_address, dest_address);

  if ((self_address >> CALL_SEGMENT_BITS) !=
      (dest_address >> CALL_SEGMENT_BITS))
    return FALSE;

  return TRUE;
}


static Elf_Internal_Rela *
find_associated_l32r_irel (bfd *abfd,
			   asection *sec,
			   bfd_byte *contents,
			   Elf_Internal_Rela *other_irel,
			   Elf_Internal_Rela *internal_relocs)
{
  unsigned i;

  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];

      if (irel == other_irel)
	continue;
      if (irel->r_offset != other_irel->r_offset)
	continue;
      if (is_l32r_relocation (abfd, sec, contents, irel))
	return irel;
    }

  return NULL;
}


static xtensa_opcode *
build_reloc_opcodes (bfd *abfd,
		     asection *sec,
		     bfd_byte *contents,
		     Elf_Internal_Rela *internal_relocs)
{
  unsigned i;
  xtensa_opcode *reloc_opcodes =
    (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];
      reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
    }
  return reloc_opcodes;
}

struct reloc_range_struct
{
  bfd_vma addr;
  bfd_boolean add; /* TRUE if start of a range, FALSE otherwise.  */
  /* Original irel index in the array of relocations for a section.  */
  unsigned irel_index;
};
typedef struct reloc_range_struct reloc_range;

typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
struct reloc_range_list_entry_struct
{
  reloc_range_list_entry *next;
  reloc_range_list_entry *prev;
  Elf_Internal_Rela *irel;
  xtensa_opcode opcode;
  int opnum;
};

struct reloc_range_list_struct
{
  /* The rest of the structure is only meaningful when ok is TRUE.  */
  bfd_boolean ok;

  unsigned n_range; /* Number of range markers.  */
  reloc_range *range; /* Sorted range markers.  */

  unsigned first; /* Index of a first range element in the list.  */
  unsigned last; /* One past index of a last range element in the list.  */

  unsigned n_list; /* Number of list elements.  */
  reloc_range_list_entry *reloc; /*  */
  reloc_range_list_entry list_root;
};

static int
reloc_range_compare (const void *a, const void *b)
{
  const reloc_range *ra = a;
  const reloc_range *rb = b;

  if (ra->addr != rb->addr)
    return ra->addr < rb->addr ? -1 : 1;
  if (ra->add != rb->add)
    return ra->add ? -1 : 1;
  return 0;
}

static void
build_reloc_ranges (bfd *abfd, asection *sec,
		    bfd_byte *contents,
		    Elf_Internal_Rela *internal_relocs,
		    xtensa_opcode *reloc_opcodes,
		    reloc_range_list *list)
{
  unsigned i;
  size_t n = 0;
  size_t max_n = 0;
  reloc_range *ranges = NULL;
  reloc_range_list_entry *reloc =
    bfd_malloc (sec->reloc_count * sizeof (*reloc));

  memset (list, 0, sizeof (*list));
  list->ok = TRUE;

  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];
      int r_type = ELF32_R_TYPE (irel->r_info);
      reloc_howto_type *howto = &elf_howto_table[r_type];
      r_reloc r_rel;

      if (r_type == R_XTENSA_ASM_SIMPLIFY
	  || r_type == R_XTENSA_32_PCREL
	  || !howto->pc_relative)
	continue;

      r_reloc_init (&r_rel, abfd, irel, contents,
		    bfd_get_section_limit (abfd, sec));

      if (r_reloc_get_section (&r_rel) != sec)
	continue;

      if (n + 2 > max_n)
	{
	  max_n = (max_n + 2) * 2;
	  ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
	}

      ranges[n].addr = irel->r_offset;
      ranges[n + 1].addr = r_rel.target_offset;

      ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
      ranges[n + 1].add = !ranges[n].add;

      ranges[n].irel_index = i;
      ranges[n + 1].irel_index = i;

      n += 2;

      reloc[i].irel = irel;

      /* Every relocation won't possibly be checked in the optimized version of
	 check_section_ebb_pcrels_fit, so this needs to be done here.  */
      if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
	{
	  /* None of the current alternate relocs are PC-relative,
	     and only PC-relative relocs matter here.  */
	}
      else
	{
	  xtensa_opcode opcode;
	  int opnum;

	  if (reloc_opcodes)
	    opcode = reloc_opcodes[i];
	  else
	    opcode = get_relocation_opcode (abfd, sec, contents, irel);

	  if (opcode == XTENSA_UNDEFINED)
	    {
	      list->ok = FALSE;
	      break;
	    }

	  opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
	  if (opnum == XTENSA_UNDEFINED)
	    {
	      list->ok = FALSE;
	      break;
	    }

	  /* Record relocation opcode and opnum as we've calculated them
	     anyway and they won't change.  */
	  reloc[i].opcode = opcode;
	  reloc[i].opnum = opnum;
	}
    }

  if (list->ok)
    {
      ranges = bfd_realloc (ranges, n * sizeof (*ranges));
      qsort (ranges, n, sizeof (*ranges), reloc_range_compare);

      list->n_range = n;
      list->range = ranges;
      list->reloc = reloc;
      list->list_root.prev = &list->list_root;
      list->list_root.next = &list->list_root;
    }
  else
    {
      free (ranges);
      free (reloc);
    }
}

static void reloc_range_list_append (reloc_range_list *list,
				     unsigned irel_index)
{
  reloc_range_list_entry *entry = list->reloc + irel_index;

  entry->prev = list->list_root.prev;
  entry->next = &list->list_root;
  entry->prev->next = entry;
  entry->next->prev = entry;
  ++list->n_list;
}

static void reloc_range_list_remove (reloc_range_list *list,
				     unsigned irel_index)
{
  reloc_range_list_entry *entry = list->reloc + irel_index;

  entry->next->prev = entry->prev;
  entry->prev->next = entry->next;
  --list->n_list;
}

/* Update relocation list object so that it lists all relocations that cross
   [first; last] range.  Range bounds should not decrease with successive
   invocations.  */
static void reloc_range_list_update_range (reloc_range_list *list,
					   bfd_vma first, bfd_vma last)
{
  /* This should not happen: EBBs are iterated from lower addresses to higher.
     But even if that happens there's no need to break: just flush current list
     and start from scratch.  */
  if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
      (list->first > 0 && list->range[list->first - 1].addr >= first))
    {
      list->first = 0;
      list->last = 0;
      list->n_list = 0;
      list->list_root.next = &list->list_root;
      list->list_root.prev = &list->list_root;
      fprintf (stderr, "%s: move backwards requested\n", __func__);
    }

  for (; list->last < list->n_range &&
       list->range[list->last].addr <= last; ++list->last)
    if (list->range[list->last].add)
      reloc_range_list_append (list, list->range[list->last].irel_index);

  for (; list->first < list->n_range &&
       list->range[list->first].addr < first; ++list->first)
    if (!list->range[list->first].add)
      reloc_range_list_remove (list, list->range[list->first].irel_index);
}

static void free_reloc_range_list (reloc_range_list *list)
{
  free (list->range);
  free (list->reloc);
}

/* The compute_text_actions function will build a list of potential
   transformation actions for code in the extended basic block of each
   longcall that is optimized to a direct call.  From this list we
   generate a set of actions to actually perform that optimizes for
   space and, if not using size_opt, maintains branch target
   alignments.

   These actions to be performed are placed on a per-section list.
   The actual changes are performed by relax_section() in the second
   pass.  */

bfd_boolean
compute_text_actions (bfd *abfd,
		      asection *sec,
		      struct bfd_link_info *link_info)
{
  xtensa_opcode *reloc_opcodes = NULL;
  xtensa_relax_info *relax_info;
  bfd_byte *contents;
  Elf_Internal_Rela *internal_relocs;
  bfd_boolean ok = TRUE;
  unsigned i;
  property_table_entry *prop_table = 0;
  int ptblsize = 0;
  bfd_size_type sec_size;
  reloc_range_list relevant_relocs;

  relax_info = get_xtensa_relax_info (sec);
  BFD_ASSERT (relax_info);
  BFD_ASSERT (relax_info->src_next == relax_info->src_count);

  /* Do nothing if the section contains no optimized longcalls.  */
  if (!relax_info->is_relaxable_asm_section)
    return ok;

  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);

  if (internal_relocs)
    qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
	   internal_reloc_compare);

  sec_size = bfd_get_section_limit (abfd, sec);
  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec_size != 0)
    {
      ok = FALSE;
      goto error_return;
    }

  ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
					XTENSA_PROP_SEC_NAME, FALSE);
  if (ptblsize < 0)
    {
      ok = FALSE;
      goto error_return;
    }

  /* Precompute the opcode for each relocation.  */
  reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);

  build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
		      &relevant_relocs);

  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];
      bfd_vma r_offset;
      property_table_entry *the_entry;
      int ptbl_idx;
      ebb_t *ebb;
      ebb_constraint ebb_table;
      bfd_size_type simplify_size;

      if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
	continue;
      r_offset = irel->r_offset;

      simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
      if (simplify_size == 0)
	{
	  _bfd_error_handler
	    /* xgettext:c-format */
	    (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
	       "XTENSA_ASM_SIMPLIFY relocation; "
	       "possible configuration mismatch"),
	     sec->owner, sec, (uint64_t) r_offset);
	  continue;
	}

      /* If the instruction table is not around, then don't do this
	 relaxation.  */
      the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
						  sec->vma + irel->r_offset);
      if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
	{
	  text_action_add (&relax_info->action_list,
			   ta_convert_longcall, sec, r_offset,
			   0);
	  continue;
	}

      /* If the next longcall happens to be at the same address as an
	 unreachable section of size 0, then skip forward.  */
      ptbl_idx = the_entry - prop_table;
      while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
	     && the_entry->size == 0
	     && ptbl_idx + 1 < ptblsize
	     && (prop_table[ptbl_idx + 1].address
		 == prop_table[ptbl_idx].address))
	{
	  ptbl_idx++;
	  the_entry++;
	}

      if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
	  /* NO_REORDER is OK */
	continue;

      init_ebb_constraint (&ebb_table);
      ebb = &ebb_table.ebb;
      init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
		internal_relocs, sec->reloc_count);
      ebb->start_offset = r_offset + simplify_size;
      ebb->end_offset = r_offset + simplify_size;
      ebb->start_ptbl_idx = ptbl_idx;
      ebb->end_ptbl_idx = ptbl_idx;
      ebb->start_reloc_idx = i;
      ebb->end_reloc_idx = i;

      if (!extend_ebb_bounds (ebb)
	  || !compute_ebb_proposed_actions (&ebb_table)
	  || !compute_ebb_actions (&ebb_table)
	  || !check_section_ebb_pcrels_fit (abfd, sec, contents,
					    internal_relocs,
					    &relevant_relocs,
					    &ebb_table, reloc_opcodes)
	  || !check_section_ebb_reduces (&ebb_table))
	{
	  /* If anything goes wrong or we get unlucky and something does
	     not fit, with our plan because of expansion between
	     critical branches, just convert to a NOP.  */

	  text_action_add (&relax_info->action_list,
			   ta_convert_longcall, sec, r_offset, 0);
	  i = ebb_table.ebb.end_reloc_idx;
	  free_ebb_constraint (&ebb_table);
	  continue;
	}

      text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);

      /* Update the index so we do not go looking at the relocations
	 we have already processed.  */
      i = ebb_table.ebb.end_reloc_idx;
      free_ebb_constraint (&ebb_table);
    }

  free_reloc_range_list (&relevant_relocs);

#if DEBUG
  if (action_list_count (&relax_info->action_list))
    print_action_list (stderr, &relax_info->action_list);
#endif

error_return:
  release_contents (sec, contents);
  release_internal_relocs (sec, internal_relocs);
  if (prop_table)
    free (prop_table);
  if (reloc_opcodes)
    free (reloc_opcodes);

  return ok;
}


/* Do not widen an instruction if it is preceeded by a
   loop opcode.  It might cause misalignment.  */

static bfd_boolean
prev_instr_is_a_loop (bfd_byte *contents,
		      bfd_size_type content_length,
		      bfd_size_type offset)
{
  xtensa_opcode prev_opcode;

  if (offset < 3)
    return FALSE;
  prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
  return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
}


/* Find all of the possible actions for an extended basic block.  */

bfd_boolean
compute_ebb_proposed_actions (ebb_constraint *ebb_table)
{
  const ebb_t *ebb = &ebb_table->ebb;
  unsigned rel_idx = ebb->start_reloc_idx;
  property_table_entry *entry, *start_entry, *end_entry;
  bfd_vma offset = 0;
  xtensa_isa isa = xtensa_default_isa;
  xtensa_format fmt;
  static xtensa_insnbuf insnbuf = NULL;
  static xtensa_insnbuf slotbuf = NULL;

  if (insnbuf == NULL)
    {
      insnbuf = xtensa_insnbuf_alloc (isa);
      slotbuf = xtensa_insnbuf_alloc (isa);
    }

  start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
  end_entry = &ebb->ptbl[ebb->end_ptbl_idx];

  for (entry = start_entry; entry <= end_entry; entry++)
    {
      bfd_vma start_offset, end_offset;
      bfd_size_type insn_len;

      start_offset = entry->address - ebb->sec->vma;
      end_offset = entry->address + entry->size - ebb->sec->vma;

      if (entry == start_entry)
	start_offset = ebb->start_offset;
      if (entry == end_entry)
	end_offset = ebb->end_offset;
      offset = start_offset;

      if (offset == entry->address - ebb->sec->vma
	  && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
	{
	  enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
	  BFD_ASSERT (offset != end_offset);
	  if (offset == end_offset)
	    return FALSE;

	  insn_len = insn_decode_len (ebb->contents, ebb->content_length,
				      offset);
	  if (insn_len == 0)
	    goto decode_error;

	  if (check_branch_target_aligned_address (offset, insn_len))
	    align_type = EBB_REQUIRE_TGT_ALIGN;

	  ebb_propose_action (ebb_table, align_type, 0,
			      ta_none, offset, 0, TRUE);
	}

      while (offset != end_offset)
	{
	  Elf_Internal_Rela *irel;
	  xtensa_opcode opcode;

	  while (rel_idx < ebb->end_reloc_idx
		 && (ebb->relocs[rel_idx].r_offset < offset
		     || (ebb->relocs[rel_idx].r_offset == offset
			 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
			     != R_XTENSA_ASM_SIMPLIFY))))
	    rel_idx++;

	  /* Check for longcall.  */
	  irel = &ebb->relocs[rel_idx];
	  if (irel->r_offset == offset
	      && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
	    {
	      bfd_size_type simplify_size;

	      simplify_size = get_asm_simplify_size (ebb->contents,
						     ebb->content_length,
						     irel->r_offset);
	      if (simplify_size == 0)
		goto decode_error;

	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
				  ta_convert_longcall, offset, 0, TRUE);

	      offset += simplify_size;
	      continue;
	    }

	  if (offset + MIN_INSN_LENGTH > ebb->content_length)
	    goto decode_error;
	  xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
				     ebb->content_length - offset);
	  fmt = xtensa_format_decode (isa, insnbuf);
	  if (fmt == XTENSA_UNDEFINED)
	    goto decode_error;
	  insn_len = xtensa_format_length (isa, fmt);
	  if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
	    goto decode_error;

	  if (xtensa_format_num_slots (isa, fmt) != 1)
	    {
	      offset += insn_len;
	      continue;
	    }

	  xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
	  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
	  if (opcode == XTENSA_UNDEFINED)
	    goto decode_error;

	  if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
	      && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
	      && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
	    {
	      /* Add an instruction narrow action.  */
	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
				  ta_narrow_insn, offset, 0, FALSE);
	    }
	  else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
		   && can_widen_instruction (slotbuf, fmt, opcode) != 0
		   && ! prev_instr_is_a_loop (ebb->contents,
					      ebb->content_length, offset))
	    {
	      /* Add an instruction widen action.  */
	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
				  ta_widen_insn, offset, 0, FALSE);
	    }
	  else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
	    {
	      /* Check for branch targets.  */
	      ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
				  ta_none, offset, 0, TRUE);
	    }

	  offset += insn_len;
	}
    }

  if (ebb->ends_unreachable)
    {
      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
			  ta_fill, ebb->end_offset, 0, TRUE);
    }

  return TRUE;

 decode_error:
  _bfd_error_handler
    /* xgettext:c-format */
    (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
       "possible configuration mismatch"),
     ebb->sec->owner, ebb->sec, (uint64_t) offset);
  return FALSE;
}


/* After all of the information has collected about the
   transformations possible in an EBB, compute the appropriate actions
   here in compute_ebb_actions.  We still must check later to make
   sure that the actions do not break any relocations.  The algorithm
   used here is pretty greedy.  Basically, it removes as many no-ops
   as possible so that the end of the EBB has the same alignment
   characteristics as the original.  First, it uses narrowing, then
   fill space at the end of the EBB, and finally widenings.  If that
   does not work, it tries again with one fewer no-op removed.  The
   optimization will only be performed if all of the branch targets
   that were aligned before transformation are also aligned after the
   transformation.

   When the size_opt flag is set, ignore the branch target alignments,
   narrow all wide instructions, and remove all no-ops unless the end
   of the EBB prevents it.  */

bfd_boolean
compute_ebb_actions (ebb_constraint *ebb_table)
{
  unsigned i = 0;
  unsigned j;
  int removed_bytes = 0;
  ebb_t *ebb = &ebb_table->ebb;
  unsigned seg_idx_start = 0;
  unsigned seg_idx_end = 0;

  /* We perform this like the assembler relaxation algorithm: Start by
     assuming all instructions are narrow and all no-ops removed; then
     walk through....  */

  /* For each segment of this that has a solid constraint, check to
     see if there are any combinations that will keep the constraint.
     If so, use it.  */
  for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
    {
      bfd_boolean requires_text_end_align = FALSE;
      unsigned longcall_count = 0;
      unsigned longcall_convert_count = 0;
      unsigned narrowable_count = 0;
      unsigned narrowable_convert_count = 0;
      unsigned widenable_count = 0;
      unsigned widenable_convert_count = 0;

      proposed_action *action = NULL;
      int align = (1 << ebb_table->ebb.sec->alignment_power);

      seg_idx_start = seg_idx_end;

      for (i = seg_idx_start; i < ebb_table->action_count; i++)
	{
	  action = &ebb_table->actions[i];
	  if (action->action == ta_convert_longcall)
	    longcall_count++;
	  if (action->action == ta_narrow_insn)
	    narrowable_count++;
	  if (action->action == ta_widen_insn)
	    widenable_count++;
	  if (action->action == ta_fill)
	    break;
	  if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
	    break;
	  if (action->align_type == EBB_REQUIRE_TGT_ALIGN
	      && !elf32xtensa_size_opt)
	    break;
	}
      seg_idx_end = i;

      if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
	requires_text_end_align = TRUE;

      if (elf32xtensa_size_opt && !requires_text_end_align
	  && action->align_type != EBB_REQUIRE_LOOP_ALIGN
	  && action->align_type != EBB_REQUIRE_TGT_ALIGN)
	{
	  longcall_convert_count = longcall_count;
	  narrowable_convert_count = narrowable_count;
	  widenable_convert_count = 0;
	}
      else
	{
	  /* There is a constraint.  Convert the max number of longcalls.  */
	  narrowable_convert_count = 0;
	  longcall_convert_count = 0;
	  widenable_convert_count = 0;

	  for (j = 0; j < longcall_count; j++)
	    {
	      int removed = (longcall_count - j) * 3 & (align - 1);
	      unsigned desire_narrow = (align - removed) & (align - 1);
	      unsigned desire_widen = removed;
	      if (desire_narrow <= narrowable_count)
		{
		  narrowable_convert_count = desire_narrow;
		  narrowable_convert_count +=
		    (align * ((narrowable_count - narrowable_convert_count)
			      / align));
		  longcall_convert_count = (longcall_count - j);
		  widenable_convert_count = 0;
		  break;
		}
	      if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
		{
		  narrowable_convert_count = 0;
		  longcall_convert_count = longcall_count - j;
		  widenable_convert_count = desire_widen;
		  break;
		}
	    }
	}

      /* Now the number of conversions are saved.  Do them.  */
      for (i = seg_idx_start; i < seg_idx_end; i++)
	{
	  action = &ebb_table->actions[i];
	  switch (action->action)
	    {
	    case ta_convert_longcall:
	      if (longcall_convert_count != 0)
		{
		  action->action = ta_remove_longcall;
		  action->do_action = TRUE;
		  action->removed_bytes += 3;
		  longcall_convert_count--;
		}
	      break;
	    case ta_narrow_insn:
	      if (narrowable_convert_count != 0)
		{
		  action->do_action = TRUE;
		  action->removed_bytes += 1;
		  narrowable_convert_count--;
		}
	      break;
	    case ta_widen_insn:
	      if (widenable_convert_count != 0)
		{
		  action->do_action = TRUE;
		  action->removed_bytes -= 1;
		  widenable_convert_count--;
		}
	      break;
	    default:
	      break;
	    }
	}
    }

  /* Now we move on to some local opts.  Try to remove each of the
     remaining longcalls.  */

  if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
    {
      removed_bytes = 0;
      for (i = 0; i < ebb_table->action_count; i++)
	{
	  int old_removed_bytes = removed_bytes;
	  proposed_action *action = &ebb_table->actions[i];

	  if (action->do_action && action->action == ta_convert_longcall)
	    {
	      bfd_boolean bad_alignment = FALSE;
	      removed_bytes += 3;
	      for (j = i + 1; j < ebb_table->action_count; j++)
		{
		  proposed_action *new_action = &ebb_table->actions[j];
		  bfd_vma offset = new_action->offset;
		  if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
		    {
		      if (!check_branch_target_aligned
			  (ebb_table->ebb.contents,
			   ebb_table->ebb.content_length,
			   offset, offset - removed_bytes))
			{
			  bad_alignment = TRUE;
			  break;
			}
		    }
		  if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
		    {
		      if (!check_loop_aligned (ebb_table->ebb.contents,
					       ebb_table->ebb.content_length,
					       offset,
					       offset - removed_bytes))
			{
			  bad_alignment = TRUE;
			  break;
			}
		    }
		  if (new_action->action == ta_narrow_insn
		      && !new_action->do_action
		      && ebb_table->ebb.sec->alignment_power == 2)
		    {
		      /* Narrow an instruction and we are done.  */
		      new_action->do_action = TRUE;
		      new_action->removed_bytes += 1;
		      bad_alignment = FALSE;
		      break;
		    }
		  if (new_action->action == ta_widen_insn
		      && new_action->do_action
		      && ebb_table->ebb.sec->alignment_power == 2)
		    {
		      /* Narrow an instruction and we are done.  */
		      new_action->do_action = FALSE;
		      new_action->removed_bytes += 1;
		      bad_alignment = FALSE;
		      break;
		    }
		  if (new_action->do_action)
		    removed_bytes += new_action->removed_bytes;
		}
	      if (!bad_alignment)
		{
		  action->removed_bytes += 3;
		  action->action = ta_remove_longcall;
		  action->do_action = TRUE;
		}
	    }
	  removed_bytes = old_removed_bytes;
	  if (action->do_action)
	    removed_bytes += action->removed_bytes;
	}
    }

  removed_bytes = 0;
  for (i = 0; i < ebb_table->action_count; ++i)
    {
      proposed_action *action = &ebb_table->actions[i];
      if (action->do_action)
	removed_bytes += action->removed_bytes;
    }

  if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
      && ebb->ends_unreachable)
    {
      proposed_action *action;
      int br;
      int extra_space;

      BFD_ASSERT (ebb_table->action_count != 0);
      action = &ebb_table->actions[ebb_table->action_count - 1];
      BFD_ASSERT (action->action == ta_fill);
      BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);

      extra_space = compute_fill_extra_space (ebb->ends_unreachable);
      br = action->removed_bytes + removed_bytes + extra_space;
      br = br & ((1 << ebb->sec->alignment_power ) - 1);

      action->removed_bytes = extra_space - br;
    }
  return TRUE;
}


/* The xlate_map is a sorted array of address mappings designed to
   answer the offset_with_removed_text() query with a binary search instead
   of a linear search through the section's action_list.  */

typedef struct xlate_map_entry xlate_map_entry_t;
typedef struct xlate_map xlate_map_t;

struct xlate_map_entry
{
  unsigned orig_address;
  unsigned new_address;
  unsigned size;
};

struct xlate_map
{
  unsigned entry_count;
  xlate_map_entry_t *entry;
};


static int
xlate_compare (const void *a_v, const void *b_v)
{
  const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
  const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
  if (a->orig_address < b->orig_address)
    return -1;
  if (a->orig_address > (b->orig_address + b->size - 1))
    return 1;
  return 0;
}


static bfd_vma
xlate_offset_with_removed_text (const xlate_map_t *map,
				text_action_list *action_list,
				bfd_vma offset)
{
  void *r;
  xlate_map_entry_t *e;

  if (map == NULL)
    return offset_with_removed_text (action_list, offset);

  if (map->entry_count == 0)
    return offset;

  r = bsearch (&offset, map->entry, map->entry_count,
	       sizeof (xlate_map_entry_t), &xlate_compare);
  e = (xlate_map_entry_t *) r;

  BFD_ASSERT (e != NULL);
  if (e == NULL)
    return offset;
  return e->new_address - e->orig_address + offset;
}

typedef struct xlate_map_context_struct xlate_map_context;
struct xlate_map_context_struct
{
  xlate_map_t *map;
  xlate_map_entry_t *current_entry;
  int removed;
};

static int
xlate_map_fn (splay_tree_node node, void *p)
{
  text_action *r = (text_action *)node->value;
  xlate_map_context *ctx = p;
  unsigned orig_size = 0;

  switch (r->action)
    {
    case ta_none:
    case ta_remove_insn:
    case ta_convert_longcall:
    case ta_remove_literal:
    case ta_add_literal:
      break;
    case ta_remove_longcall:
      orig_size = 6;
      break;
    case ta_narrow_insn:
      orig_size = 3;
      break;
    case ta_widen_insn:
      orig_size = 2;
      break;
    case ta_fill:
      break;
    }
  ctx->current_entry->size =
    r->offset + orig_size - ctx->current_entry->orig_address;
  if (ctx->current_entry->size != 0)
    {
      ctx->current_entry++;
      ctx->map->entry_count++;
    }
  ctx->current_entry->orig_address = r->offset + orig_size;
  ctx->removed += r->removed_bytes;
  ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
  ctx->current_entry->size = 0;
  return 0;
}

/* Build a binary searchable offset translation map from a section's
   action list.  */

static xlate_map_t *
build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
{
  text_action_list *action_list = &relax_info->action_list;
  unsigned num_actions = 0;
  xlate_map_context ctx;

  ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));

  if (ctx.map == NULL)
    return NULL;

  num_actions = action_list_count (action_list);
  ctx.map->entry = (xlate_map_entry_t *)
    bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
  if (ctx.map->entry == NULL)
    {
      free (ctx.map);
      return NULL;
    }
  ctx.map->entry_count = 0;

  ctx.removed = 0;
  ctx.current_entry = &ctx.map->entry[0];

  ctx.current_entry->orig_address = 0;
  ctx.current_entry->new_address = 0;
  ctx.current_entry->size = 0;

  splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);

  ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
			     - ctx.current_entry->orig_address);
  if (ctx.current_entry->size != 0)
    ctx.map->entry_count++;

  return ctx.map;
}


/* Free an offset translation map.  */

static void
free_xlate_map (xlate_map_t *map)
{
  if (map && map->entry)
    free (map->entry);
  if (map)
    free (map);
}


/* Use check_section_ebb_pcrels_fit to make sure that all of the
   relocations in a section will fit if a proposed set of actions
   are performed.  */

static bfd_boolean
check_section_ebb_pcrels_fit (bfd *abfd,
			      asection *sec,
			      bfd_byte *contents,
			      Elf_Internal_Rela *internal_relocs,
			      reloc_range_list *relevant_relocs,
			      const ebb_constraint *constraint,
			      const xtensa_opcode *reloc_opcodes)
{
  unsigned i, j;
  unsigned n = sec->reloc_count;
  Elf_Internal_Rela *irel;
  xlate_map_t *xmap = NULL;
  bfd_boolean ok = TRUE;
  xtensa_relax_info *relax_info;
  reloc_range_list_entry *entry = NULL;

  relax_info = get_xtensa_relax_info (sec);

  if (relax_info && sec->reloc_count > 100)
    {
      xmap = build_xlate_map (sec, relax_info);
      /* NULL indicates out of memory, but the slow version
	 can still be used.  */
    }

  if (relevant_relocs && constraint->action_count)
    {
      if (!relevant_relocs->ok)
	{
	  ok = FALSE;
	  n = 0;
	}
      else
	{
	  bfd_vma min_offset, max_offset;
	  min_offset = max_offset = constraint->actions[0].offset;

	  for (i = 1; i < constraint->action_count; ++i)
	    {
	      proposed_action *action = &constraint->actions[i];
	      bfd_vma offset = action->offset;

	      if (offset < min_offset)
		min_offset = offset;
	      if (offset > max_offset)
		max_offset = offset;
	    }
	  reloc_range_list_update_range (relevant_relocs, min_offset,
					 max_offset);
	  n = relevant_relocs->n_list;
	  entry = &relevant_relocs->list_root;
	}
    }
  else
    {
      relevant_relocs = NULL;
    }

  for (i = 0; i < n; i++)
    {
      r_reloc r_rel;
      bfd_vma orig_self_offset, orig_target_offset;
      bfd_vma self_offset, target_offset;
      int r_type;
      reloc_howto_type *howto;
      int self_removed_bytes, target_removed_bytes;

      if (relevant_relocs)
	{
	  entry = entry->next;
	  irel = entry->irel;
	}
      else
	{
	  irel = internal_relocs + i;
	}
      r_type = ELF32_R_TYPE (irel->r_info);

      howto = &elf_howto_table[r_type];
      /* We maintain the required invariant: PC-relative relocations
	 that fit before linking must fit after linking.  Thus we only
	 need to deal with relocations to the same section that are
	 PC-relative.  */
      if (r_type == R_XTENSA_ASM_SIMPLIFY
	  || r_type == R_XTENSA_32_PCREL
	  || !howto->pc_relative)
	continue;

      r_reloc_init (&r_rel, abfd, irel, contents,
		    bfd_get_section_limit (abfd, sec));

      if (r_reloc_get_section (&r_rel) != sec)
	continue;

      orig_self_offset = irel->r_offset;
      orig_target_offset = r_rel.target_offset;

      self_offset = orig_self_offset;
      target_offset = orig_target_offset;

      if (relax_info)
	{
	  self_offset =
	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
					    orig_self_offset);
	  target_offset =
	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
					    orig_target_offset);
	}

      self_removed_bytes = 0;
      target_removed_bytes = 0;

      for (j = 0; j < constraint->action_count; ++j)
	{
	  proposed_action *action = &constraint->actions[j];
	  bfd_vma offset = action->offset;
	  int removed_bytes = action->removed_bytes;
	  if (offset < orig_self_offset
	      || (offset == orig_self_offset && action->action == ta_fill
		  && action->removed_bytes < 0))
	    self_removed_bytes += removed_bytes;
	  if (offset < orig_target_offset
	      || (offset == orig_target_offset && action->action == ta_fill
		  && action->removed_bytes < 0))
	    target_removed_bytes += removed_bytes;
	}
      self_offset -= self_removed_bytes;
      target_offset -= target_removed_bytes;

      /* Try to encode it.  Get the operand and check.  */
      if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
	{
	  /* None of the current alternate relocs are PC-relative,
	     and only PC-relative relocs matter here.  */
	}
      else
	{
	  xtensa_opcode opcode;
	  int opnum;

	  if (relevant_relocs)
	    {
	      opcode = entry->opcode;
	      opnum = entry->opnum;
	    }
	  else
	    {
	      if (reloc_opcodes)
		opcode = reloc_opcodes[relevant_relocs ?
		  (unsigned)(entry - relevant_relocs->reloc) : i];
	      else
		opcode = get_relocation_opcode (abfd, sec, contents, irel);
	      if (opcode == XTENSA_UNDEFINED)
		{
		  ok = FALSE;
		  break;
		}

	      opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
	      if (opnum == XTENSA_UNDEFINED)
		{
		  ok = FALSE;
		  break;
		}
	    }

	  if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
	    {
	      ok = FALSE;
	      break;
	    }
	}
    }

  if (xmap)
    free_xlate_map (xmap);

  return ok;
}


static bfd_boolean
check_section_ebb_reduces (const ebb_constraint *constraint)
{
  int removed = 0;
  unsigned i;

  for (i = 0; i < constraint->action_count; i++)
    {
      const proposed_action *action = &constraint->actions[i];
      if (action->do_action)
	removed += action->removed_bytes;
    }
  if (removed < 0)
    return FALSE;

  return TRUE;
}


void
text_action_add_proposed (text_action_list *l,
			  const ebb_constraint *ebb_table,
			  asection *sec)
{
  unsigned i;

  for (i = 0; i < ebb_table->action_count; i++)
    {
      proposed_action *action = &ebb_table->actions[i];

      if (!action->do_action)
	continue;
      switch (action->action)
	{
	case ta_remove_insn:
	case ta_remove_longcall:
	case ta_convert_longcall:
	case ta_narrow_insn:
	case ta_widen_insn:
	case ta_fill:
	case ta_remove_literal:
	  text_action_add (l, action->action, sec, action->offset,
			   action->removed_bytes);
	  break;
	case ta_none:
	  break;
	default:
	  BFD_ASSERT (0);
	  break;
	}
    }
}


int
compute_fill_extra_space (property_table_entry *entry)
{
  int fill_extra_space;

  if (!entry)
    return 0;

  if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
    return 0;

  fill_extra_space = entry->size;
  if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
    {
      /* Fill bytes for alignment:
	 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
      int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
      int nsm = (1 << pow) - 1;
      bfd_vma addr = entry->address + entry->size;
      bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
      fill_extra_space += align_fill;
    }
  return fill_extra_space;
}


/* First relaxation pass.  */

/* If the section contains relaxable literals, check each literal to
   see if it has the same value as another literal that has already
   been seen, either in the current section or a previous one.  If so,
   add an entry to the per-section list of removed literals.  The
   actual changes are deferred until the next pass.  */

static bfd_boolean
compute_removed_literals (bfd *abfd,
			  asection *sec,
			  struct bfd_link_info *link_info,
			  value_map_hash_table *values)
{
  xtensa_relax_info *relax_info;
  bfd_byte *contents;
  Elf_Internal_Rela *internal_relocs;
  source_reloc *src_relocs, *rel;
  bfd_boolean ok = TRUE;
  property_table_entry *prop_table = NULL;
  int ptblsize;
  int i, prev_i;
  bfd_boolean last_loc_is_prev = FALSE;
  bfd_vma last_target_offset = 0;
  section_cache_t target_sec_cache;
  bfd_size_type sec_size;

  init_section_cache (&target_sec_cache);

  /* Do nothing if it is not a relaxable literal section.  */
  relax_info = get_xtensa_relax_info (sec);
  BFD_ASSERT (relax_info);
  if (!relax_info->is_relaxable_literal_section)
    return ok;

  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);

  sec_size = bfd_get_section_limit (abfd, sec);
  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec_size != 0)
    {
      ok = FALSE;
      goto error_return;
    }

  /* Sort the source_relocs by target offset.  */
  src_relocs = relax_info->src_relocs;
  qsort (src_relocs, relax_info->src_count,
	 sizeof (source_reloc), source_reloc_compare);
  qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
	 internal_reloc_compare);

  ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
					XTENSA_PROP_SEC_NAME, FALSE);
  if (ptblsize < 0)
    {
      ok = FALSE;
      goto error_return;
    }

  prev_i = -1;
  for (i = 0; i < relax_info->src_count; i++)
    {
      Elf_Internal_Rela *irel = NULL;

      rel = &src_relocs[i];
      if (get_l32r_opcode () != rel->opcode)
	continue;
      irel = get_irel_at_offset (sec, internal_relocs,
				 rel->r_rel.target_offset);

      /* If the relocation on this is not a simple R_XTENSA_32 or
	 R_XTENSA_PLT then do not consider it.  This may happen when
	 the difference of two symbols is used in a literal.  */
      if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
		   && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
	continue;

      /* If the target_offset for this relocation is the same as the
	 previous relocation, then we've already considered whether the
	 literal can be coalesced.  Skip to the next one....  */
      if (i != 0 && prev_i != -1
	  && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
	continue;
      prev_i = i;

      if (last_loc_is_prev &&
	  last_target_offset + 4 != rel->r_rel.target_offset)
	last_loc_is_prev = FALSE;

      /* Check if the relocation was from an L32R that is being removed
	 because a CALLX was converted to a direct CALL, and check if
	 there are no other relocations to the literal.  */
      if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
				sec, prop_table, ptblsize))
	{
	  if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
				    irel, rel, prop_table, ptblsize))
	    {
	      ok = FALSE;
	      goto error_return;
	    }
	  last_target_offset = rel->r_rel.target_offset;
	  continue;
	}

      if (!identify_literal_placement (abfd, sec, contents, link_info,
				       values,
				       &last_loc_is_prev, irel,
				       relax_info->src_count - i, rel,
				       prop_table, ptblsize,
				       &target_sec_cache, rel->is_abs_literal))
	{
	  ok = FALSE;
	  goto error_return;
	}
      last_target_offset = rel->r_rel.target_offset;
    }

#if DEBUG
  print_removed_literals (stderr, &relax_info->removed_list);
  print_action_list (stderr, &relax_info->action_list);
#endif /* DEBUG */

error_return:
  if (prop_table)
    free (prop_table);
  free_section_cache (&target_sec_cache);

  release_contents (sec, contents);
  release_internal_relocs (sec, internal_relocs);
  return ok;
}


static Elf_Internal_Rela *
get_irel_at_offset (asection *sec,
		    Elf_Internal_Rela *internal_relocs,
		    bfd_vma offset)
{
  unsigned i;
  Elf_Internal_Rela *irel;
  unsigned r_type;
  Elf_Internal_Rela key;

  if (!internal_relocs)
    return NULL;

  key.r_offset = offset;
  irel = bsearch (&key, internal_relocs, sec->reloc_count,
		  sizeof (Elf_Internal_Rela), internal_reloc_matches);
  if (!irel)
    return NULL;

  /* bsearch does not guarantee which will be returned if there are
     multiple matches.  We need the first that is not an alignment.  */
  i = irel - internal_relocs;
  while (i > 0)
    {
      if (internal_relocs[i-1].r_offset != offset)
	break;
      i--;
    }
  for ( ; i < sec->reloc_count; i++)
    {
      irel = &internal_relocs[i];
      r_type = ELF32_R_TYPE (irel->r_info);
      if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
	return irel;
    }

  return NULL;
}


bfd_boolean
is_removable_literal (const source_reloc *rel,
		      int i,
		      const source_reloc *src_relocs,
		      int src_count,
		      asection *sec,
		      property_table_entry *prop_table,
		      int ptblsize)
{
  const source_reloc *curr_rel;
  property_table_entry *entry;

  if (!rel->is_null)
    return FALSE;

  entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
					  sec->vma + rel->r_rel.target_offset);
  if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
    return FALSE;

  for (++i; i < src_count; ++i)
    {
      curr_rel = &src_relocs[i];
      /* If all others have the same target offset....  */
      if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
	return TRUE;

      if (!curr_rel->is_null
	  && !xtensa_is_property_section (curr_rel->source_sec)
	  && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
	return FALSE;
    }
  return TRUE;
}


bfd_boolean
remove_dead_literal (bfd *abfd,
		     asection *sec,
		     struct bfd_link_info *link_info,
		     Elf_Internal_Rela *internal_relocs,
		     Elf_Internal_Rela *irel,
		     source_reloc *rel,
		     property_table_entry *prop_table,
		     int ptblsize)
{
  property_table_entry *entry;
  xtensa_relax_info *relax_info;

  relax_info = get_xtensa_relax_info (sec);
  if (!relax_info)
    return FALSE;

  entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
					  sec->vma + rel->r_rel.target_offset);

  /* Mark the unused literal so that it will be removed.  */
  add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);

  text_action_add (&relax_info->action_list,
		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);

  /* If the section is 4-byte aligned, do not add fill.  */
  if (sec->alignment_power > 2)
    {
      int fill_extra_space;
      bfd_vma entry_sec_offset;
      text_action *fa;
      property_table_entry *the_add_entry;
      int removed_diff;

      if (entry)
	entry_sec_offset = entry->address - sec->vma + entry->size;
      else
	entry_sec_offset = rel->r_rel.target_offset + 4;

      /* If the literal range is at the end of the section,
	 do not add fill.  */
      the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
						      entry_sec_offset);
      fill_extra_space = compute_fill_extra_space (the_add_entry);

      fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
      removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
						  -4, fill_extra_space);
      if (fa)
	adjust_fill_action (fa, removed_diff);
      else
	text_action_add (&relax_info->action_list,
			 ta_fill, sec, entry_sec_offset, removed_diff);
    }

  /* Zero out the relocation on this literal location.  */
  if (irel)
    {
      if (elf_hash_table (link_info)->dynamic_sections_created)
	shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);

      irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
      pin_internal_relocs (sec, internal_relocs);
    }

  /* Do not modify "last_loc_is_prev".  */
  return TRUE;
}


bfd_boolean
identify_literal_placement (bfd *abfd,
			    asection *sec,
			    bfd_byte *contents,
			    struct bfd_link_info *link_info,
			    value_map_hash_table *values,
			    bfd_boolean *last_loc_is_prev_p,
			    Elf_Internal_Rela *irel,
			    int remaining_src_rels,
			    source_reloc *rel,
			    property_table_entry *prop_table,
			    int ptblsize,
			    section_cache_t *target_sec_cache,
			    bfd_boolean is_abs_literal)
{
  literal_value val;
  value_map *val_map;
  xtensa_relax_info *relax_info;
  bfd_boolean literal_placed = FALSE;
  r_reloc r_rel;
  unsigned long value;
  bfd_boolean final_static_link;
  bfd_size_type sec_size;

  relax_info = get_xtensa_relax_info (sec);
  if (!relax_info)
    return FALSE;

  sec_size = bfd_get_section_limit (abfd, sec);

  final_static_link =
    (!bfd_link_relocatable (link_info)
     && !elf_hash_table (link_info)->dynamic_sections_created);

  /* The placement algorithm first checks to see if the literal is
     already in the value map.  If so and the value map is reachable
     from all uses, then the literal is moved to that location.  If
     not, then we identify the last location where a fresh literal was
     placed.  If the literal can be safely moved there, then we do so.
     If not, then we assume that the literal is not to move and leave
     the literal where it is, marking it as the last literal
     location.  */

  /* Find the literal value.  */
  value = 0;
  r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
  if (!irel)
    {
      BFD_ASSERT (rel->r_rel.target_offset < sec_size);
      value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
    }
  init_literal_value (&val, &r_rel, value, is_abs_literal);

  /* Check if we've seen another literal with the same value that
     is in the same output section.  */
  val_map = value_map_get_cached_value (values, &val, final_static_link);

  if (val_map
      && (r_reloc_get_section (&val_map->loc)->output_section
	  == sec->output_section)
      && relocations_reach (rel, remaining_src_rels, &val_map->loc)
      && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
    {
      /* No change to last_loc_is_prev.  */
      literal_placed = TRUE;
    }

  /* For relocatable links, do not try to move literals.  To do it
     correctly might increase the number of relocations in an input
     section making the default relocatable linking fail.  */
  if (!bfd_link_relocatable (link_info) && !literal_placed
      && values->has_last_loc && !(*last_loc_is_prev_p))
    {
      asection *target_sec = r_reloc_get_section (&values->last_loc);
      if (target_sec && target_sec->output_section == sec->output_section)
	{
	  /* Increment the virtual offset.  */
	  r_reloc try_loc = values->last_loc;
	  try_loc.virtual_offset += 4;

	  /* There is a last loc that was in the same output section.  */
	  if (relocations_reach (rel, remaining_src_rels, &try_loc)
	      && move_shared_literal (sec, link_info, rel,
				      prop_table, ptblsize,
				      &try_loc, &val, target_sec_cache))
	    {
	      values->last_loc.virtual_offset += 4;
	      literal_placed = TRUE;
	      if (!val_map)
		val_map = add_value_map (values, &val, &try_loc,
					 final_static_link);
	      else
		val_map->loc = try_loc;
	    }
	}
    }

  if (!literal_placed)
    {
      /* Nothing worked, leave the literal alone but update the last loc.  */
      values->has_last_loc = TRUE;
      values->last_loc = rel->r_rel;
      if (!val_map)
	val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
      else
	val_map->loc = rel->r_rel;
      *last_loc_is_prev_p = TRUE;
    }

  return TRUE;
}


/* Check if the original relocations (presumably on L32R instructions)
   identified by reloc[0..N] can be changed to reference the literal
   identified by r_rel.  If r_rel is out of range for any of the
   original relocations, then we don't want to coalesce the original
   literal with the one at r_rel.  We only check reloc[0..N], where the
   offsets are all the same as for reloc[0] (i.e., they're all
   referencing the same literal) and where N is also bounded by the
   number of remaining entries in the "reloc" array.  The "reloc" array
   is sorted by target offset so we know all the entries for the same
   literal will be contiguous.  */

static bfd_boolean
relocations_reach (source_reloc *reloc,
		   int remaining_relocs,
		   const r_reloc *r_rel)
{
  bfd_vma from_offset, source_address, dest_address;
  asection *sec;
  int i;

  if (!r_reloc_is_defined (r_rel))
    return FALSE;

  sec = r_reloc_get_section (r_rel);
  from_offset = reloc[0].r_rel.target_offset;

  for (i = 0; i < remaining_relocs; i++)
    {
      if (reloc[i].r_rel.target_offset != from_offset)
	break;

      /* Ignore relocations that have been removed.  */
      if (reloc[i].is_null)
	continue;

      /* The original and new output section for these must be the same
	 in order to coalesce.  */
      if (r_reloc_get_section (&reloc[i].r_rel)->output_section
	  != sec->output_section)
	return FALSE;

      /* Absolute literals in the same output section can always be
	 combined.  */
      if (reloc[i].is_abs_literal)
	continue;

      /* A literal with no PC-relative relocations can be moved anywhere.  */
      if (reloc[i].opnd != -1)
	{
	  /* Otherwise, check to see that it fits.  */
	  source_address = (reloc[i].source_sec->output_section->vma
			    + reloc[i].source_sec->output_offset
			    + reloc[i].r_rel.rela.r_offset);
	  dest_address = (sec->output_section->vma
			  + sec->output_offset
			  + r_rel->target_offset);

	  if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
				 source_address, dest_address))
	    return FALSE;
	}
    }

  return TRUE;
}


/* Move a literal to another literal location because it is
   the same as the other literal value.  */

static bfd_boolean
coalesce_shared_literal (asection *sec,
			 source_reloc *rel,
			 property_table_entry *prop_table,
			 int ptblsize,
			 value_map *val_map)
{
  property_table_entry *entry;
  text_action *fa;
  property_table_entry *the_add_entry;
  int removed_diff;
  xtensa_relax_info *relax_info;

  relax_info = get_xtensa_relax_info (sec);
  if (!relax_info)
    return FALSE;

  entry = elf_xtensa_find_property_entry
    (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
  if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
    return TRUE;

  /* Mark that the literal will be coalesced.  */
  add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);

  text_action_add (&relax_info->action_list,
		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);

  /* If the section is 4-byte aligned, do not add fill.  */
  if (sec->alignment_power > 2)
    {
      int fill_extra_space;
      bfd_vma entry_sec_offset;

      if (entry)
	entry_sec_offset = entry->address - sec->vma + entry->size;
      else
	entry_sec_offset = rel->r_rel.target_offset + 4;

      /* If the literal range is at the end of the section,
	 do not add fill.  */
      fill_extra_space = 0;
      the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
						      entry_sec_offset);
      if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
	fill_extra_space = the_add_entry->size;

      fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
      removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
						  -4, fill_extra_space);
      if (fa)
	adjust_fill_action (fa, removed_diff);
      else
	text_action_add (&relax_info->action_list,
			 ta_fill, sec, entry_sec_offset, removed_diff);
    }

  return TRUE;
}


/* Move a literal to another location.  This may actually increase the
   total amount of space used because of alignments so we need to do
   this carefully.  Also, it may make a branch go out of range.  */

static bfd_boolean
move_shared_literal (asection *sec,
		     struct bfd_link_info *link_info,
		     source_reloc *rel,
		     property_table_entry *prop_table,
		     int ptblsize,
		     const r_reloc *target_loc,
		     const literal_value *lit_value,
		     section_cache_t *target_sec_cache)
{
  property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
  text_action *fa, *target_fa;
  int removed_diff;
  xtensa_relax_info *relax_info, *target_relax_info;
  asection *target_sec;
  ebb_t *ebb;
  ebb_constraint ebb_table;
  bfd_boolean relocs_fit;

  /* If this routine always returns FALSE, the literals that cannot be
     coalesced will not be moved.  */
  if (elf32xtensa_no_literal_movement)
    return FALSE;

  relax_info = get_xtensa_relax_info (sec);
  if (!relax_info)
    return FALSE;

  target_sec = r_reloc_get_section (target_loc);
  target_relax_info = get_xtensa_relax_info (target_sec);

  /* Literals to undefined sections may not be moved because they
     must report an error.  */
  if (bfd_is_und_section (target_sec))
    return FALSE;

  src_entry = elf_xtensa_find_property_entry
    (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);

  if (!section_cache_section (target_sec_cache, target_sec, link_info))
    return FALSE;

  target_entry = elf_xtensa_find_property_entry
    (target_sec_cache->ptbl, target_sec_cache->pte_count,
     target_sec->vma + target_loc->target_offset);

  if (!target_entry)
    return FALSE;

  /* Make sure that we have not broken any branches.  */
  relocs_fit = FALSE;

  init_ebb_constraint (&ebb_table);
  ebb = &ebb_table.ebb;
  init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
	    target_sec_cache->content_length,
	    target_sec_cache->ptbl, target_sec_cache->pte_count,
	    target_sec_cache->relocs, target_sec_cache->reloc_count);

  /* Propose to add 4 bytes + worst-case alignment size increase to
     destination.  */
  ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
		      ta_fill, target_loc->target_offset,
		      -4 - (1 << target_sec->alignment_power), TRUE);

  /* Check all of the PC-relative relocations to make sure they still fit.  */
  relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
					     target_sec_cache->contents,
					     target_sec_cache->relocs, NULL,
					     &ebb_table, NULL);

  if (!relocs_fit)
    return FALSE;

  text_action_add_literal (&target_relax_info->action_list,
			   ta_add_literal, target_loc, lit_value, -4);

  if (target_sec->alignment_power > 2 && target_entry != src_entry)
    {
      /* May need to add or remove some fill to maintain alignment.  */
      int fill_extra_space;
      bfd_vma entry_sec_offset;

      entry_sec_offset =
	target_entry->address - target_sec->vma + target_entry->size;

      /* If the literal range is at the end of the section,
	 do not add fill.  */
      fill_extra_space = 0;
      the_add_entry =
	elf_xtensa_find_property_entry (target_sec_cache->ptbl,
					target_sec_cache->pte_count,
					entry_sec_offset);
      if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
	fill_extra_space = the_add_entry->size;

      target_fa = find_fill_action (&target_relax_info->action_list,
				    target_sec, entry_sec_offset);
      removed_diff = compute_removed_action_diff (target_fa, target_sec,
						  entry_sec_offset, 4,
						  fill_extra_space);
      if (target_fa)
	adjust_fill_action (target_fa, removed_diff);
      else
	text_action_add (&target_relax_info->action_list,
			 ta_fill, target_sec, entry_sec_offset, removed_diff);
    }

  /* Mark that the literal will be moved to the new location.  */
  add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);

  /* Remove the literal.  */
  text_action_add (&relax_info->action_list,
		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);

  /* If the section is 4-byte aligned, do not add fill.  */
  if (sec->alignment_power > 2 && target_entry != src_entry)
    {
      int fill_extra_space;
      bfd_vma entry_sec_offset;

      if (src_entry)
	entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
      else
	entry_sec_offset = rel->r_rel.target_offset+4;

      /* If the literal range is at the end of the section,
	 do not add fill.  */
      fill_extra_space = 0;
      the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
						      entry_sec_offset);
      if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
	fill_extra_space = the_add_entry->size;

      fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
      removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
						  -4, fill_extra_space);
      if (fa)
	adjust_fill_action (fa, removed_diff);
      else
	text_action_add (&relax_info->action_list,
			 ta_fill, sec, entry_sec_offset, removed_diff);
    }

  return TRUE;
}


/* Second relaxation pass.  */

static int
action_remove_bytes_fn (splay_tree_node node, void *p)
{
  bfd_size_type *final_size = p;
  text_action *action = (text_action *)node->value;

  *final_size -= action->removed_bytes;
  return 0;
}

/* Modify all of the relocations to point to the right spot, and if this
   is a relaxable section, delete the unwanted literals and fix the
   section size.  */

bfd_boolean
relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
{
  Elf_Internal_Rela *internal_relocs;
  xtensa_relax_info *relax_info;
  bfd_byte *contents;
  bfd_boolean ok = TRUE;
  unsigned i;
  bfd_boolean rv = FALSE;
  bfd_boolean virtual_action;
  bfd_size_type sec_size;

  sec_size = bfd_get_section_limit (abfd, sec);
  relax_info = get_xtensa_relax_info (sec);
  BFD_ASSERT (relax_info);

  /* First translate any of the fixes that have been added already.  */
  translate_section_fixes (sec);

  /* Handle property sections (e.g., literal tables) specially.  */
  if (xtensa_is_property_section (sec))
    {
      BFD_ASSERT (!relax_info->is_relaxable_literal_section);
      return relax_property_section (abfd, sec, link_info);
    }

  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);
  if (!internal_relocs && !action_list_count (&relax_info->action_list))
    return TRUE;

  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec_size != 0)
    {
      ok = FALSE;
      goto error_return;
    }

  if (internal_relocs)
    {
      for (i = 0; i < sec->reloc_count; i++)
	{
	  Elf_Internal_Rela *irel;
	  xtensa_relax_info *target_relax_info;
	  bfd_vma source_offset, old_source_offset;
	  r_reloc r_rel;
	  unsigned r_type;
	  asection *target_sec;

	  /* Locally change the source address.
	     Translate the target to the new target address.
	     If it points to this section and has been removed,
	     NULLify it.
	     Write it back.  */

	  irel = &internal_relocs[i];
	  source_offset = irel->r_offset;
	  old_source_offset = source_offset;

	  r_type = ELF32_R_TYPE (irel->r_info);
	  r_reloc_init (&r_rel, abfd, irel, contents,
			bfd_get_section_limit (abfd, sec));

	  /* If this section could have changed then we may need to
	     change the relocation's offset.  */

	  if (relax_info->is_relaxable_literal_section
	      || relax_info->is_relaxable_asm_section)
	    {
	      pin_internal_relocs (sec, internal_relocs);

	      if (r_type != R_XTENSA_NONE
		  && find_removed_literal (&relax_info->removed_list,
					   irel->r_offset))
		{
		  /* Remove this relocation.  */
		  if (elf_hash_table (link_info)->dynamic_sections_created)
		    shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
		  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
		  irel->r_offset = offset_with_removed_text_map
		    (&relax_info->action_list, irel->r_offset);
		  continue;
		}

	      if (r_type == R_XTENSA_ASM_SIMPLIFY)
		{
		  text_action *action =
		    find_insn_action (&relax_info->action_list,
				      irel->r_offset);
		  if (action && (action->action == ta_convert_longcall
				 || action->action == ta_remove_longcall))
		    {
		      bfd_reloc_status_type retval;
		      char *error_message = NULL;

		      retval = contract_asm_expansion (contents, sec_size,
						       irel, &error_message);
		      if (retval != bfd_reloc_ok)
			{
			  (*link_info->callbacks->reloc_dangerous)
			    (link_info, error_message, abfd, sec,
			     irel->r_offset);
			  goto error_return;
			}
		      /* Update the action so that the code that moves
			 the contents will do the right thing.  */
		      /* ta_remove_longcall and ta_remove_insn actions are
			 grouped together in the tree as well as
			 ta_convert_longcall and ta_none, so that changes below
			 can be done w/o removing and reinserting action into
			 the tree.  */

		      if (action->action == ta_remove_longcall)
			action->action = ta_remove_insn;
		      else
			action->action = ta_none;
		      /* Refresh the info in the r_rel.  */
		      r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
		      r_type = ELF32_R_TYPE (irel->r_info);
		    }
		}

	      source_offset = offset_with_removed_text_map
		(&relax_info->action_list, irel->r_offset);
	      irel->r_offset = source_offset;
	    }

	  /* If the target section could have changed then
	     we may need to change the relocation's target offset.  */

	  target_sec = r_reloc_get_section (&r_rel);

	  /* For a reference to a discarded section from a DWARF section,
	     i.e., where action_discarded is PRETEND, the symbol will
	     eventually be modified to refer to the kept section (at least if
	     the kept and discarded sections are the same size).  Anticipate
	     that here and adjust things accordingly.  */
	  if (! elf_xtensa_ignore_discarded_relocs (sec)
	      && elf_xtensa_action_discarded (sec) == PRETEND
	      && sec->sec_info_type != SEC_INFO_TYPE_STABS
	      && target_sec != NULL
	      && discarded_section (target_sec))
	    {
	      /* It would be natural to call _bfd_elf_check_kept_section
		 here, but it's not exported from elflink.c.  It's also a
		 fairly expensive check.  Adjusting the relocations to the
		 discarded section is fairly harmless; it will only adjust
		 some addends and difference values.  If it turns out that
		 _bfd_elf_check_kept_section fails later, it won't matter,
		 so just compare the section names to find the right group
		 member.  */
	      asection *kept = target_sec->kept_section;
	      if (kept != NULL)
		{
		  if ((kept->flags & SEC_GROUP) != 0)
		    {
		      asection *first = elf_next_in_group (kept);
		      asection *s = first;

		      kept = NULL;
		      while (s != NULL)
			{
			  if (strcmp (s->name, target_sec->name) == 0)
			    {
			      kept = s;
			      break;
			    }
			  s = elf_next_in_group (s);
			  if (s == first)
			    break;
			}
		    }
		}
	      if (kept != NULL
		  && ((target_sec->rawsize != 0
		       ? target_sec->rawsize : target_sec->size)
		      == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
		target_sec = kept;
	    }

	  target_relax_info = get_xtensa_relax_info (target_sec);
	  if (target_relax_info
	      && (target_relax_info->is_relaxable_literal_section
		  || target_relax_info->is_relaxable_asm_section))
	    {
	      r_reloc new_reloc;
	      target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);

	      if (r_type == R_XTENSA_DIFF8
		  || r_type == R_XTENSA_DIFF16
		  || r_type == R_XTENSA_DIFF32)
		{
		  bfd_signed_vma diff_value = 0;
		  bfd_vma new_end_offset, diff_mask = 0;

		  if (bfd_get_section_limit (abfd, sec) < old_source_offset)
		    {
		      (*link_info->callbacks->reloc_dangerous)
			(link_info, _("invalid relocation address"),
			 abfd, sec, old_source_offset);
		      goto error_return;
		    }

		  switch (r_type)
		    {
		    case R_XTENSA_DIFF8:
		      diff_value =
			bfd_get_signed_8 (abfd, &contents[old_source_offset]);
		      break;
		    case R_XTENSA_DIFF16:
		      diff_value =
			bfd_get_signed_16 (abfd, &contents[old_source_offset]);
		      break;
		    case R_XTENSA_DIFF32:
		      diff_value =
			bfd_get_signed_32 (abfd, &contents[old_source_offset]);
		      break;
		    }

		  new_end_offset = offset_with_removed_text_map
		    (&target_relax_info->action_list,
		     r_rel.target_offset + diff_value);
		  diff_value = new_end_offset - new_reloc.target_offset;

		  switch (r_type)
		    {
		    case R_XTENSA_DIFF8:
		      diff_mask = 0x7f;
		      bfd_put_signed_8 (abfd, diff_value,
				 &contents[old_source_offset]);
		      break;
		    case R_XTENSA_DIFF16:
		      diff_mask = 0x7fff;
		      bfd_put_signed_16 (abfd, diff_value,
				  &contents[old_source_offset]);
		      break;
		    case R_XTENSA_DIFF32:
		      diff_mask = 0x7fffffff;
		      bfd_put_signed_32 (abfd, diff_value,
				  &contents[old_source_offset]);
		      break;
		    }

		  /* Check for overflow. Sign bits must be all zeroes or all ones */
		  if ((diff_value & ~diff_mask) != 0 &&
		      (diff_value & ~diff_mask) != (-1 & ~diff_mask))
		    {
		      (*link_info->callbacks->reloc_dangerous)
			(link_info, _("overflow after relaxation"),
			 abfd, sec, old_source_offset);
		      goto error_return;
		    }

		  pin_contents (sec, contents);
		}

	      /* If the relocation still references a section in the same
		 input file, modify the relocation directly instead of
		 adding a "fix" record.  */
	      if (target_sec->owner == abfd)
		{
		  unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
		  irel->r_info = ELF32_R_INFO (r_symndx, r_type);
		  irel->r_addend = new_reloc.rela.r_addend;
		  pin_internal_relocs (sec, internal_relocs);
		}
	      else
		{
		  bfd_vma addend_displacement;
		  reloc_bfd_fix *fix;

		  addend_displacement =
		    new_reloc.target_offset + new_reloc.virtual_offset;
		  fix = reloc_bfd_fix_init (sec, source_offset, r_type,
					    target_sec,
					    addend_displacement, TRUE);
		  add_fix (sec, fix);
		}
	    }
	}
    }

  if ((relax_info->is_relaxable_literal_section
       || relax_info->is_relaxable_asm_section)
      && action_list_count (&relax_info->action_list))
    {
      /* Walk through the planned actions and build up a table
	 of move, copy and fill records.  Use the move, copy and
	 fill records to perform the actions once.  */

      bfd_size_type final_size, copy_size, orig_insn_size;
      bfd_byte *scratch = NULL;
      bfd_byte *dup_contents = NULL;
      bfd_size_type orig_size = sec->size;
      bfd_vma orig_dot = 0;
      bfd_vma orig_dot_copied = 0; /* Byte copied already from
					    orig dot in physical memory.  */
      bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot.  */
      bfd_vma dup_dot = 0;

      text_action *action;

      final_size = sec->size;

      splay_tree_foreach (relax_info->action_list.tree,
			  action_remove_bytes_fn, &final_size);
      scratch = (bfd_byte *) bfd_zmalloc (final_size);
      dup_contents = (bfd_byte *) bfd_zmalloc (final_size);

      /* The dot is the current fill location.  */
#if DEBUG
      print_action_list (stderr, &relax_info->action_list);
#endif

      for (action = action_first (&relax_info->action_list); action;
	   action = action_next (&relax_info->action_list, action))
	{
	  virtual_action = FALSE;
	  if (action->offset > orig_dot)
	    {
	      orig_dot += orig_dot_copied;
	      orig_dot_copied = 0;
	      orig_dot_vo = 0;
	      /* Out of the virtual world.  */
	    }

	  if (action->offset > orig_dot)
	    {
	      copy_size = action->offset - orig_dot;
	      memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
	      orig_dot += copy_size;
	      dup_dot += copy_size;
	      BFD_ASSERT (action->offset == orig_dot);
	    }
	  else if (action->offset < orig_dot)
	    {
	      if (action->action == ta_fill
		  && action->offset - action->removed_bytes == orig_dot)
		{
		  /* This is OK because the fill only effects the dup_dot.  */
		}
	      else if (action->action == ta_add_literal)
		{
		  /* TBD.  Might need to handle this.  */
		}
	    }
	  if (action->offset == orig_dot)
	    {
	      if (action->virtual_offset > orig_dot_vo)
		{
		  if (orig_dot_vo == 0)
		    {
		      /* Need to copy virtual_offset bytes.  Probably four.  */
		      copy_size = action->virtual_offset - orig_dot_vo;
		      memmove (&dup_contents[dup_dot],
			       &contents[orig_dot], copy_size);
		      orig_dot_copied = copy_size;
		      dup_dot += copy_size;
		    }
		  virtual_action = TRUE;
		}
	      else
		BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
	    }
	  switch (action->action)
	    {
	    case ta_remove_literal:
	    case ta_remove_insn:
	      BFD_ASSERT (action->removed_bytes >= 0);
	      orig_dot += action->removed_bytes;
	      break;

	    case ta_narrow_insn:
	      orig_insn_size = 3;
	      copy_size = 2;
	      memmove (scratch, &contents[orig_dot], orig_insn_size);
	      BFD_ASSERT (action->removed_bytes == 1);
	      rv = narrow_instruction (scratch, final_size, 0);
	      BFD_ASSERT (rv);
	      memmove (&dup_contents[dup_dot], scratch, copy_size);
	      orig_dot += orig_insn_size;
	      dup_dot += copy_size;
	      break;

	    case ta_fill:
	      if (action->removed_bytes >= 0)
		orig_dot += action->removed_bytes;
	      else
		{
		  /* Already zeroed in dup_contents.  Just bump the
		     counters.  */
		  dup_dot += (-action->removed_bytes);
		}
	      break;

	    case ta_none:
	      BFD_ASSERT (action->removed_bytes == 0);
	      break;

	    case ta_convert_longcall:
	    case ta_remove_longcall:
	      /* These will be removed or converted before we get here.  */
	      BFD_ASSERT (0);
	      break;

	    case ta_widen_insn:
	      orig_insn_size = 2;
	      copy_size = 3;
	      memmove (scratch, &contents[orig_dot], orig_insn_size);
	      BFD_ASSERT (action->removed_bytes == -1);
	      rv = widen_instruction (scratch, final_size, 0);
	      BFD_ASSERT (rv);
	      memmove (&dup_contents[dup_dot], scratch, copy_size);
	      orig_dot += orig_insn_size;
	      dup_dot += copy_size;
	      break;

	    case ta_add_literal:
	      orig_insn_size = 0;
	      copy_size = 4;
	      BFD_ASSERT (action->removed_bytes == -4);
	      /* TBD -- place the literal value here and insert
		 into the table.  */
	      memset (&dup_contents[dup_dot], 0, 4);
	      pin_internal_relocs (sec, internal_relocs);
	      pin_contents (sec, contents);

	      if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
				 relax_info, &internal_relocs, &action->value))
		goto error_return;

	      if (virtual_action)
		orig_dot_vo += copy_size;

	      orig_dot += orig_insn_size;
	      dup_dot += copy_size;
	      break;

	    default:
	      /* Not implemented yet.  */
	      BFD_ASSERT (0);
	      break;
	    }

	  BFD_ASSERT (dup_dot <= final_size);
	  BFD_ASSERT (orig_dot <= orig_size);
	}

      orig_dot += orig_dot_copied;
      orig_dot_copied = 0;

      if (orig_dot != orig_size)
	{
	  copy_size = orig_size - orig_dot;
	  BFD_ASSERT (orig_size > orig_dot);
	  BFD_ASSERT (dup_dot + copy_size == final_size);
	  memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
	  orig_dot += copy_size;
	  dup_dot += copy_size;
	}
      BFD_ASSERT (orig_size == orig_dot);
      BFD_ASSERT (final_size == dup_dot);

      /* Move the dup_contents back.  */
      if (final_size > orig_size)
	{
	  /* Contents need to be reallocated.  Swap the dup_contents into
	     contents.  */
	  sec->contents = dup_contents;
	  free (contents);
	  contents = dup_contents;
	  pin_contents (sec, contents);
	}
      else
	{
	  BFD_ASSERT (final_size <= orig_size);
	  memset (contents, 0, orig_size);
	  memcpy (contents, dup_contents, final_size);
	  free (dup_contents);
	}
      free (scratch);
      pin_contents (sec, contents);

      if (sec->rawsize == 0)
	sec->rawsize = sec->size;
      sec->size = final_size;
    }

 error_return:
  release_internal_relocs (sec, internal_relocs);
  release_contents (sec, contents);
  return ok;
}


static bfd_boolean
translate_section_fixes (asection *sec)
{
  xtensa_relax_info *relax_info;
  reloc_bfd_fix *r;

  relax_info = get_xtensa_relax_info (sec);
  if (!relax_info)
    return TRUE;

  for (r = relax_info->fix_list; r != NULL; r = r->next)
    if (!translate_reloc_bfd_fix (r))
      return FALSE;

  return TRUE;
}


/* Translate a fix given the mapping in the relax info for the target
   section.  If it has already been translated, no work is required.  */

static bfd_boolean
translate_reloc_bfd_fix (reloc_bfd_fix *fix)
{
  reloc_bfd_fix new_fix;
  asection *sec;
  xtensa_relax_info *relax_info;
  removed_literal *removed;
  bfd_vma new_offset, target_offset;

  if (fix->translated)
    return TRUE;

  sec = fix->target_sec;
  target_offset = fix->target_offset;

  relax_info = get_xtensa_relax_info (sec);
  if (!relax_info)
    {
      fix->translated = TRUE;
      return TRUE;
    }

  new_fix = *fix;

  /* The fix does not need to be translated if the section cannot change.  */
  if (!relax_info->is_relaxable_literal_section
      && !relax_info->is_relaxable_asm_section)
    {
      fix->translated = TRUE;
      return TRUE;
    }

  /* If the literal has been moved and this relocation was on an
     opcode, then the relocation should move to the new literal
     location.  Otherwise, the relocation should move within the
     section.  */

  removed = FALSE;
  if (is_operand_relocation (fix->src_type))
    {
      /* Check if the original relocation is against a literal being
	 removed.  */
      removed = find_removed_literal (&relax_info->removed_list,
				      target_offset);
    }

  if (removed)
    {
      asection *new_sec;

      /* The fact that there is still a relocation to this literal indicates
	 that the literal is being coalesced, not simply removed.  */
      BFD_ASSERT (removed->to.abfd != NULL);

      /* This was moved to some other address (possibly another section).  */
      new_sec = r_reloc_get_section (&removed->to);
      if (new_sec != sec)
	{
	  sec = new_sec;
	  relax_info = get_xtensa_relax_info (sec);
	  if (!relax_info ||
	      (!relax_info->is_relaxable_literal_section
	       && !relax_info->is_relaxable_asm_section))
	    {
	      target_offset = removed->to.target_offset;
	      new_fix.target_sec = new_sec;
	      new_fix.target_offset = target_offset;
	      new_fix.translated = TRUE;
	      *fix = new_fix;
	      return TRUE;
	    }
	}
      target_offset = removed->to.target_offset;
      new_fix.target_sec = new_sec;
    }

  /* The target address may have been moved within its section.  */
  new_offset = offset_with_removed_text (&relax_info->action_list,
					 target_offset);

  new_fix.target_offset = new_offset;
  new_fix.target_offset = new_offset;
  new_fix.translated = TRUE;
  *fix = new_fix;
  return TRUE;
}


/* Fix up a relocation to take account of removed literals.  */

static asection *
translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
{
  xtensa_relax_info *relax_info;
  removed_literal *removed;
  bfd_vma target_offset, base_offset;

  *new_rel = *orig_rel;

  if (!r_reloc_is_defined (orig_rel))
    return sec ;

  relax_info = get_xtensa_relax_info (sec);
  BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
			     || relax_info->is_relaxable_asm_section));

  target_offset = orig_rel->target_offset;

  removed = FALSE;
  if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
    {
      /* Check if the original relocation is against a literal being
	 removed.  */
      removed = find_removed_literal (&relax_info->removed_list,
				      target_offset);
    }
  if (removed && removed->to.abfd)
    {
      asection *new_sec;

      /* The fact that there is still a relocation to this literal indicates
	 that the literal is being coalesced, not simply removed.  */
      BFD_ASSERT (removed->to.abfd != NULL);

      /* This was moved to some other address
	 (possibly in another section).  */
      *new_rel = removed->to;
      new_sec = r_reloc_get_section (new_rel);
      if (new_sec != sec)
	{
	  sec = new_sec;
	  relax_info = get_xtensa_relax_info (sec);
	  if (!relax_info
	      || (!relax_info->is_relaxable_literal_section
		  && !relax_info->is_relaxable_asm_section))
	    return sec;
	}
      target_offset = new_rel->target_offset;
    }

  /* Find the base offset of the reloc symbol, excluding any addend from the
     reloc or from the section contents (for a partial_inplace reloc).  Then
     find the adjusted values of the offsets due to relaxation.  The base
     offset is needed to determine the change to the reloc's addend; the reloc
     addend should not be adjusted due to relaxations located before the base
     offset.  */

  base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
  if (base_offset <= target_offset)
    {
      int base_removed = removed_by_actions_map (&relax_info->action_list,
						 base_offset, FALSE);
      int addend_removed = removed_by_actions_map (&relax_info->action_list,
						   target_offset, FALSE) -
	base_removed;

      new_rel->target_offset = target_offset - base_removed - addend_removed;
      new_rel->rela.r_addend -= addend_removed;
    }
  else
    {
      /* Handle a negative addend.  The base offset comes first.  */
      int tgt_removed = removed_by_actions_map (&relax_info->action_list,
						target_offset, FALSE);
      int addend_removed = removed_by_actions_map (&relax_info->action_list,
						   base_offset, FALSE) -
	tgt_removed;

      new_rel->target_offset = target_offset - tgt_removed;
      new_rel->rela.r_addend += addend_removed;
    }

  return sec;
}


/* For dynamic links, there may be a dynamic relocation for each
   literal.  The number of dynamic relocations must be computed in
   size_dynamic_sections, which occurs before relaxation.  When a
   literal is removed, this function checks if there is a corresponding
   dynamic relocation and shrinks the size of the appropriate dynamic
   relocation section accordingly.  At this point, the contents of the
   dynamic relocation sections have not yet been filled in, so there's
   nothing else that needs to be done.  */

static void
shrink_dynamic_reloc_sections (struct bfd_link_info *info,
			       bfd *abfd,
			       asection *input_section,
			       Elf_Internal_Rela *rel)
{
  struct elf_xtensa_link_hash_table *htab;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  unsigned long r_symndx;
  int r_type;
  struct elf_link_hash_entry *h;
  bfd_boolean dynamic_symbol;

  htab = elf_xtensa_hash_table (info);
  if (htab == NULL)
    return;

  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (abfd);

  r_type = ELF32_R_TYPE (rel->r_info);
  r_symndx = ELF32_R_SYM (rel->r_info);

  if (r_symndx < symtab_hdr->sh_info)
    h = NULL;
  else
    h = sym_hashes[r_symndx - symtab_hdr->sh_info];

  dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);

  if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
      && (input_section->flags & SEC_ALLOC) != 0
      && (dynamic_symbol || bfd_link_pic (info)))
    {
      asection *srel;
      bfd_boolean is_plt = FALSE;

      if (dynamic_symbol && r_type == R_XTENSA_PLT)
	{
	  srel = htab->elf.srelplt;
	  is_plt = TRUE;
	}
      else
	srel = htab->elf.srelgot;

      /* Reduce size of the .rela.* section by one reloc.  */
      BFD_ASSERT (srel != NULL);
      BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
      srel->size -= sizeof (Elf32_External_Rela);

      if (is_plt)
	{
	  asection *splt, *sgotplt, *srelgot;
	  int reloc_index, chunk;

	  /* Find the PLT reloc index of the entry being removed.  This
	     is computed from the size of ".rela.plt".  It is needed to
	     figure out which PLT chunk to resize.  Usually "last index
	     = size - 1" since the index starts at zero, but in this
	     context, the size has just been decremented so there's no
	     need to subtract one.  */
	  reloc_index = srel->size / sizeof (Elf32_External_Rela);

	  chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
	  splt = elf_xtensa_get_plt_section (info, chunk);
	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
	  BFD_ASSERT (splt != NULL && sgotplt != NULL);

	  /* Check if an entire PLT chunk has just been eliminated.  */
	  if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
	    {
	      /* The two magic GOT entries for that chunk can go away.  */
	      srelgot = htab->elf.srelgot;
	      BFD_ASSERT (srelgot != NULL);
	      srelgot->reloc_count -= 2;
	      srelgot->size -= 2 * sizeof (Elf32_External_Rela);
	      sgotplt->size -= 8;

	      /* There should be only one entry left (and it will be
		 removed below).  */
	      BFD_ASSERT (sgotplt->size == 4);
	      BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
	    }

	  BFD_ASSERT (sgotplt->size >= 4);
	  BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);

	  sgotplt->size -= 4;
	  splt->size -= PLT_ENTRY_SIZE;
	}
    }
}


/* Take an r_rel and move it to another section.  This usually
   requires extending the interal_relocation array and pinning it.  If
   the original r_rel is from the same BFD, we can complete this here.
   Otherwise, we add a fix record to let the final link fix the
   appropriate address.  Contents and internal relocations for the
   section must be pinned after calling this routine.  */

static bfd_boolean
move_literal (bfd *abfd,
	      struct bfd_link_info *link_info,
	      asection *sec,
	      bfd_vma offset,
	      bfd_byte *contents,
	      xtensa_relax_info *relax_info,
	      Elf_Internal_Rela **internal_relocs_p,
	      const literal_value *lit)
{
  Elf_Internal_Rela *new_relocs = NULL;
  size_t new_relocs_count = 0;
  Elf_Internal_Rela this_rela;
  const r_reloc *r_rel;

  r_rel = &lit->r_rel;
  BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);

  if (r_reloc_is_const (r_rel))
    bfd_put_32 (abfd, lit->value, contents + offset);
  else
    {
      int r_type;
      unsigned i;
      reloc_bfd_fix *fix;
      unsigned insert_at;

      r_type = ELF32_R_TYPE (r_rel->rela.r_info);

      /* This is the difficult case.  We have to create a fix up.  */
      this_rela.r_offset = offset;
      this_rela.r_info = ELF32_R_INFO (0, r_type);
      this_rela.r_addend =
	r_rel->target_offset - r_reloc_get_target_offset (r_rel);
      bfd_put_32 (abfd, lit->value, contents + offset);

      /* Currently, we cannot move relocations during a relocatable link.  */
      BFD_ASSERT (!bfd_link_relocatable (link_info));
      fix = reloc_bfd_fix_init (sec, offset, r_type,
				r_reloc_get_section (r_rel),
				r_rel->target_offset + r_rel->virtual_offset,
				FALSE);
      /* We also need to mark that relocations are needed here.  */
      sec->flags |= SEC_RELOC;

      translate_reloc_bfd_fix (fix);
      /* This fix has not yet been translated.  */
      add_fix (sec, fix);

      /* Add the relocation.  If we have already allocated our own
	 space for the relocations and we have room for more, then use
	 it.  Otherwise, allocate new space and move the literals.  */
      insert_at = sec->reloc_count;
      for (i = 0; i < sec->reloc_count; ++i)
	{
	  if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
	    {
	      insert_at = i;
	      break;
	    }
	}

      if (*internal_relocs_p != relax_info->allocated_relocs
	  || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
	{
	  BFD_ASSERT (relax_info->allocated_relocs == NULL
		      || sec->reloc_count == relax_info->relocs_count);

	  if (relax_info->allocated_relocs_count == 0)
	    new_relocs_count = (sec->reloc_count + 2) * 2;
	  else
	    new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;

	  new_relocs = (Elf_Internal_Rela *)
	    bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
	  if (!new_relocs)
	    return FALSE;

	  /* We could handle this more quickly by finding the split point.  */
	  if (insert_at != 0)
	    memcpy (new_relocs, *internal_relocs_p,
		    insert_at * sizeof (Elf_Internal_Rela));

	  new_relocs[insert_at] = this_rela;

	  if (insert_at != sec->reloc_count)
	    memcpy (new_relocs + insert_at + 1,
		    (*internal_relocs_p) + insert_at,
		    (sec->reloc_count - insert_at)
		    * sizeof (Elf_Internal_Rela));

	  if (*internal_relocs_p != relax_info->allocated_relocs)
	    {
	      /* The first time we re-allocate, we can only free the
		 old relocs if they were allocated with bfd_malloc.
		 This is not true when keep_memory is in effect.  */
	      if (!link_info->keep_memory)
		free (*internal_relocs_p);
	    }
	  else
	    free (*internal_relocs_p);
	  relax_info->allocated_relocs = new_relocs;
	  relax_info->allocated_relocs_count = new_relocs_count;
	  elf_section_data (sec)->relocs = new_relocs;
	  sec->reloc_count++;
	  relax_info->relocs_count = sec->reloc_count;
	  *internal_relocs_p = new_relocs;
	}
      else
	{
	  if (insert_at != sec->reloc_count)
	    {
	      unsigned idx;
	      for (idx = sec->reloc_count; idx > insert_at; idx--)
		(*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
	    }
	  (*internal_relocs_p)[insert_at] = this_rela;
	  sec->reloc_count++;
	  if (relax_info->allocated_relocs)
	    relax_info->relocs_count = sec->reloc_count;
	}
    }
  return TRUE;
}


/* This is similar to relax_section except that when a target is moved,
   we shift addresses up.  We also need to modify the size.  This
   algorithm does NOT allow for relocations into the middle of the
   property sections.  */

static bfd_boolean
relax_property_section (bfd *abfd,
			asection *sec,
			struct bfd_link_info *link_info)
{
  Elf_Internal_Rela *internal_relocs;
  bfd_byte *contents;
  unsigned i;
  bfd_boolean ok = TRUE;
  bfd_boolean is_full_prop_section;
  size_t last_zfill_target_offset = 0;
  asection *last_zfill_target_sec = NULL;
  bfd_size_type sec_size;
  bfd_size_type entry_size;

  sec_size = bfd_get_section_limit (abfd, sec);
  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);
  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec_size != 0)
    {
      ok = FALSE;
      goto error_return;
    }

  is_full_prop_section = xtensa_is_proptable_section (sec);
  if (is_full_prop_section)
    entry_size = 12;
  else
    entry_size = 8;

  if (internal_relocs)
    {
      for (i = 0; i < sec->reloc_count; i++)
	{
	  Elf_Internal_Rela *irel;
	  xtensa_relax_info *target_relax_info;
	  unsigned r_type;
	  asection *target_sec;
	  literal_value val;
	  bfd_byte *size_p, *flags_p;

	  /* Locally change the source address.
	     Translate the target to the new target address.
	     If it points to this section and has been removed, MOVE IT.
	     Also, don't forget to modify the associated SIZE at
	     (offset + 4).  */

	  irel = &internal_relocs[i];
	  r_type = ELF32_R_TYPE (irel->r_info);
	  if (r_type == R_XTENSA_NONE)
	    continue;

	  /* Find the literal value.  */
	  r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
	  size_p = &contents[irel->r_offset + 4];
	  flags_p = NULL;
	  if (is_full_prop_section)
	    flags_p = &contents[irel->r_offset + 8];
	  BFD_ASSERT (irel->r_offset + entry_size <= sec_size);

	  target_sec = r_reloc_get_section (&val.r_rel);
	  target_relax_info = get_xtensa_relax_info (target_sec);

	  if (target_relax_info
	      && (target_relax_info->is_relaxable_literal_section
		  || target_relax_info->is_relaxable_asm_section ))
	    {
	      /* Translate the relocation's destination.  */
	      bfd_vma old_offset = val.r_rel.target_offset;
	      bfd_vma new_offset;
	      long old_size, new_size;
	      int removed_by_old_offset =
		removed_by_actions_map (&target_relax_info->action_list,
					old_offset, FALSE);
	      new_offset = old_offset - removed_by_old_offset;

	      /* Assert that we are not out of bounds.  */
	      old_size = bfd_get_32 (abfd, size_p);
	      new_size = old_size;

	      if (old_size == 0)
		{
		  /* Only the first zero-sized unreachable entry is
		     allowed to expand.  In this case the new offset
		     should be the offset before the fill and the new
		     size is the expansion size.  For other zero-sized
		     entries the resulting size should be zero with an
		     offset before or after the fill address depending
		     on whether the expanding unreachable entry
		     preceeds it.  */
		  if (last_zfill_target_sec == 0
		      || last_zfill_target_sec != target_sec
		      || last_zfill_target_offset != old_offset)
		    {
		      bfd_vma new_end_offset = new_offset;

		      /* Recompute the new_offset, but this time don't
			 include any fill inserted by relaxation.  */
		      removed_by_old_offset =
			removed_by_actions_map (&target_relax_info->action_list,
						old_offset, TRUE);
		      new_offset = old_offset - removed_by_old_offset;

		      /* If it is not unreachable and we have not yet
			 seen an unreachable at this address, place it
			 before the fill address.  */
		      if (flags_p && (bfd_get_32 (abfd, flags_p)
				      & XTENSA_PROP_UNREACHABLE) != 0)
			{
			  new_size = new_end_offset - new_offset;

			  last_zfill_target_sec = target_sec;
			  last_zfill_target_offset = old_offset;
			}
		    }
		}
	      else
		{
		  int removed_by_old_offset_size =
		    removed_by_actions_map (&target_relax_info->action_list,
					    old_offset + old_size, TRUE);
		  new_size -= removed_by_old_offset_size - removed_by_old_offset;
		}

	      if (new_size != old_size)
		{
		  bfd_put_32 (abfd, new_size, size_p);
		  pin_contents (sec, contents);
		}

	      if (new_offset != old_offset)
		{
		  bfd_vma diff = new_offset - old_offset;
		  irel->r_addend += diff;
		  pin_internal_relocs (sec, internal_relocs);
		}
	    }
	}
    }

  /* Combine adjacent property table entries.  This is also done in
     finish_dynamic_sections() but at that point it's too late to
     reclaim the space in the output section, so we do this twice.  */

  if (internal_relocs && (!bfd_link_relocatable (link_info)
			  || xtensa_is_littable_section (sec)))
    {
      Elf_Internal_Rela *last_irel = NULL;
      Elf_Internal_Rela *irel, *next_rel, *rel_end;
      int removed_bytes = 0;
      bfd_vma offset;
      flagword predef_flags;

      predef_flags = xtensa_get_property_predef_flags (sec);

      /* Walk over memory and relocations at the same time.
	 This REQUIRES that the internal_relocs be sorted by offset.  */
      qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
	     internal_reloc_compare);

      pin_internal_relocs (sec, internal_relocs);
      pin_contents (sec, contents);

      next_rel = internal_relocs;
      rel_end = internal_relocs + sec->reloc_count;

      BFD_ASSERT (sec->size % entry_size == 0);

      for (offset = 0; offset < sec->size; offset += entry_size)
	{
	  Elf_Internal_Rela *offset_rel, *extra_rel;
	  bfd_vma bytes_to_remove, size, actual_offset;
	  bfd_boolean remove_this_rel;
	  flagword flags;

	  /* Find the first relocation for the entry at the current offset.
	     Adjust the offsets of any extra relocations for the previous
	     entry.  */
	  offset_rel = NULL;
	  if (next_rel)
	    {
	      for (irel = next_rel; irel < rel_end; irel++)
		{
		  if ((irel->r_offset == offset
		       && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
		      || irel->r_offset > offset)
		    {
		      offset_rel = irel;
		      break;
		    }
		  irel->r_offset -= removed_bytes;
		}
	    }

	  /* Find the next relocation (if there are any left).  */
	  extra_rel = NULL;
	  if (offset_rel)
	    {
	      for (irel = offset_rel + 1; irel < rel_end; irel++)
		{
		  if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
		    {
		      extra_rel = irel;
		      break;
		    }
		}
	    }

	  /* Check if there are relocations on the current entry.  There
	     should usually be a relocation on the offset field.  If there
	     are relocations on the size or flags, then we can't optimize
	     this entry.  Also, find the next relocation to examine on the
	     next iteration.  */
	  if (offset_rel)
	    {
	      if (offset_rel->r_offset >= offset + entry_size)
		{
		  next_rel = offset_rel;
		  /* There are no relocations on the current entry, but we
		     might still be able to remove it if the size is zero.  */
		  offset_rel = NULL;
		}
	      else if (offset_rel->r_offset > offset
		       || (extra_rel
			   && extra_rel->r_offset < offset + entry_size))
		{
		  /* There is a relocation on the size or flags, so we can't
		     do anything with this entry.  Continue with the next.  */
		  next_rel = offset_rel;
		  continue;
		}
	      else
		{
		  BFD_ASSERT (offset_rel->r_offset == offset);
		  offset_rel->r_offset -= removed_bytes;
		  next_rel = offset_rel + 1;
		}
	    }
	  else
	    next_rel = NULL;

	  remove_this_rel = FALSE;
	  bytes_to_remove = 0;
	  actual_offset = offset - removed_bytes;
	  size = bfd_get_32 (abfd, &contents[actual_offset + 4]);

	  if (is_full_prop_section)
	    flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
	  else
	    flags = predef_flags;

	  if (size == 0
	      && (flags & XTENSA_PROP_ALIGN) == 0
	      && (flags & XTENSA_PROP_UNREACHABLE) == 0)
	    {
	      /* Always remove entries with zero size and no alignment.  */
	      bytes_to_remove = entry_size;
	      if (offset_rel)
		remove_this_rel = TRUE;
	    }
	  else if (offset_rel
		   && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
	    {
	      if (last_irel)
		{
		  flagword old_flags;
		  bfd_vma old_size =
		    bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
		  bfd_vma old_address =
		    (last_irel->r_addend
		     + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
		  bfd_vma new_address =
		    (offset_rel->r_addend
		     + bfd_get_32 (abfd, &contents[actual_offset]));
		  if (is_full_prop_section)
		    old_flags = bfd_get_32
		      (abfd, &contents[last_irel->r_offset + 8]);
		  else
		    old_flags = predef_flags;

		  if ((ELF32_R_SYM (offset_rel->r_info)
		       == ELF32_R_SYM (last_irel->r_info))
		      && old_address + old_size == new_address
		      && old_flags == flags
		      && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
		      && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
		    {
		      /* Fix the old size.  */
		      bfd_put_32 (abfd, old_size + size,
				  &contents[last_irel->r_offset + 4]);
		      bytes_to_remove = entry_size;
		      remove_this_rel = TRUE;
		    }
		  else
		    last_irel = offset_rel;
		}
	      else
		last_irel = offset_rel;
	    }

	  if (remove_this_rel)
	    {
	      offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
	      offset_rel->r_offset = 0;
	    }

	  if (bytes_to_remove != 0)
	    {
	      removed_bytes += bytes_to_remove;
	      if (offset + bytes_to_remove < sec->size)
		memmove (&contents[actual_offset],
			 &contents[actual_offset + bytes_to_remove],
			 sec->size - offset - bytes_to_remove);
	    }
	}

      if (removed_bytes)
	{
	  /* Fix up any extra relocations on the last entry.  */
	  for (irel = next_rel; irel < rel_end; irel++)
	    irel->r_offset -= removed_bytes;

	  /* Clear the removed bytes.  */
	  memset (&contents[sec->size - removed_bytes], 0, removed_bytes);

	  if (sec->rawsize == 0)
	    sec->rawsize = sec->size;
	  sec->size -= removed_bytes;

	  if (xtensa_is_littable_section (sec))
	    {
	      asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
	      if (sgotloc)
		sgotloc->size -= removed_bytes;
	    }
	}
    }

 error_return:
  release_internal_relocs (sec, internal_relocs);
  release_contents (sec, contents);
  return ok;
}


/* Third relaxation pass.  */

/* Change symbol values to account for removed literals.  */

bfd_boolean
relax_section_symbols (bfd *abfd, asection *sec)
{
  xtensa_relax_info *relax_info;
  unsigned int sec_shndx;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Sym *isymbuf;
  unsigned i, num_syms, num_locals;

  relax_info = get_xtensa_relax_info (sec);
  BFD_ASSERT (relax_info);

  if (!relax_info->is_relaxable_literal_section
      && !relax_info->is_relaxable_asm_section)
    return TRUE;

  sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);

  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  isymbuf = retrieve_local_syms (abfd);

  num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
  num_locals = symtab_hdr->sh_info;

  /* Adjust the local symbols defined in this section.  */
  for (i = 0; i < num_locals; i++)
    {
      Elf_Internal_Sym *isym = &isymbuf[i];

      if (isym->st_shndx == sec_shndx)
	{
	  bfd_vma orig_addr = isym->st_value;
	  int removed = removed_by_actions_map (&relax_info->action_list,
						orig_addr, FALSE);

	  isym->st_value -= removed;
	  if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
	    isym->st_size -=
	      removed_by_actions_map (&relax_info->action_list,
				      orig_addr + isym->st_size, FALSE) -
	      removed;
	}
    }

  /* Now adjust the global symbols defined in this section.  */
  for (i = 0; i < (num_syms - num_locals); i++)
    {
      struct elf_link_hash_entry *sym_hash;

      sym_hash = elf_sym_hashes (abfd)[i];

      if (sym_hash->root.type == bfd_link_hash_warning)
	sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;

      if ((sym_hash->root.type == bfd_link_hash_defined
	   || sym_hash->root.type == bfd_link_hash_defweak)
	  && sym_hash->root.u.def.section == sec)
	{
	  bfd_vma orig_addr = sym_hash->root.u.def.value;
	  int removed = removed_by_actions_map (&relax_info->action_list,
						orig_addr, FALSE);

	  sym_hash->root.u.def.value -= removed;

	  if (sym_hash->type == STT_FUNC)
	    sym_hash->size -=
	      removed_by_actions_map (&relax_info->action_list,
				      orig_addr + sym_hash->size, FALSE) -
	      removed;
	}
    }

  return TRUE;
}


/* "Fix" handling functions, called while performing relocations.  */

static bfd_boolean
do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
			     bfd *input_bfd,
			     asection *input_section,
			     bfd_byte *contents)
{
  r_reloc r_rel;
  asection *sec, *old_sec;
  bfd_vma old_offset;
  int r_type = ELF32_R_TYPE (rel->r_info);
  reloc_bfd_fix *fix;

  if (r_type == R_XTENSA_NONE)
    return TRUE;

  fix = get_bfd_fix (input_section, rel->r_offset, r_type);
  if (!fix)
    return TRUE;

  r_reloc_init (&r_rel, input_bfd, rel, contents,
		bfd_get_section_limit (input_bfd, input_section));
  old_sec = r_reloc_get_section (&r_rel);
  old_offset = r_rel.target_offset;

  if (!old_sec || !r_reloc_is_defined (&r_rel))
    {
      if (r_type != R_XTENSA_ASM_EXPAND)
	{
	  _bfd_error_handler
	    /* xgettext:c-format */
	    (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
	     input_bfd, input_section, (uint64_t) rel->r_offset,
	     elf_howto_table[r_type].name);
	  return FALSE;
	}
      /* Leave it be.  Resolution will happen in a later stage.  */
    }
  else
    {
      sec = fix->target_sec;
      rel->r_addend += ((sec->output_offset + fix->target_offset)
			- (old_sec->output_offset + old_offset));
    }
  return TRUE;
}


static void
do_fix_for_final_link (Elf_Internal_Rela *rel,
		       bfd *input_bfd,
		       asection *input_section,
		       bfd_byte *contents,
		       bfd_vma *relocationp)
{
  asection *sec;
  int r_type = ELF32_R_TYPE (rel->r_info);
  reloc_bfd_fix *fix;
  bfd_vma fixup_diff;

  if (r_type == R_XTENSA_NONE)
    return;

  fix = get_bfd_fix (input_section, rel->r_offset, r_type);
  if (!fix)
    return;

  sec = fix->target_sec;

  fixup_diff = rel->r_addend;
  if (elf_howto_table[fix->src_type].partial_inplace)
    {
      bfd_vma inplace_val;
      BFD_ASSERT (fix->src_offset
		  < bfd_get_section_limit (input_bfd, input_section));
      inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
      fixup_diff += inplace_val;
    }

  *relocationp = (sec->output_section->vma
		  + sec->output_offset
		  + fix->target_offset - fixup_diff);
}


/* Miscellaneous utility functions....  */

static asection *
elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
{
  bfd *dynobj;
  char plt_name[17];

  if (chunk == 0)
    return elf_hash_table (info)->splt;

  dynobj = elf_hash_table (info)->dynobj;
  sprintf (plt_name, ".plt.%u", chunk);
  return bfd_get_linker_section (dynobj, plt_name);
}


static asection *
elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
{
  bfd *dynobj;
  char got_name[21];

  if (chunk == 0)
    return elf_hash_table (info)->sgotplt;

  dynobj = elf_hash_table (info)->dynobj;
  sprintf (got_name, ".got.plt.%u", chunk);
  return bfd_get_linker_section (dynobj, got_name);
}


/* Get the input section for a given symbol index.
   If the symbol is:
   . a section symbol, return the section;
   . a common symbol, return the common section;
   . an undefined symbol, return the undefined section;
   . an indirect symbol, follow the links;
   . an absolute value, return the absolute section.  */

static asection *
get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
{
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  asection *target_sec = NULL;
  if (r_symndx < symtab_hdr->sh_info)
    {
      Elf_Internal_Sym *isymbuf;
      unsigned int section_index;

      isymbuf = retrieve_local_syms (abfd);
      section_index = isymbuf[r_symndx].st_shndx;

      if (section_index == SHN_UNDEF)
	target_sec = bfd_und_section_ptr;
      else if (section_index == SHN_ABS)
	target_sec = bfd_abs_section_ptr;
      else if (section_index == SHN_COMMON)
	target_sec = bfd_com_section_ptr;
      else
	target_sec = bfd_section_from_elf_index (abfd, section_index);
    }
  else
    {
      unsigned long indx = r_symndx - symtab_hdr->sh_info;
      struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];

      while (h->root.type == bfd_link_hash_indirect
	     || h->root.type == bfd_link_hash_warning)
	h = (struct elf_link_hash_entry *) h->root.u.i.link;

      switch (h->root.type)
	{
	case bfd_link_hash_defined:
	case  bfd_link_hash_defweak:
	  target_sec = h->root.u.def.section;
	  break;
	case bfd_link_hash_common:
	  target_sec = bfd_com_section_ptr;
	  break;
	case bfd_link_hash_undefined:
	case bfd_link_hash_undefweak:
	  target_sec = bfd_und_section_ptr;
	  break;
	default: /* New indirect warning.  */
	  target_sec = bfd_und_section_ptr;
	  break;
	}
    }
  return target_sec;
}


static struct elf_link_hash_entry *
get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
{
  unsigned long indx;
  struct elf_link_hash_entry *h;
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;

  if (r_symndx < symtab_hdr->sh_info)
    return NULL;

  indx = r_symndx - symtab_hdr->sh_info;
  h = elf_sym_hashes (abfd)[indx];
  while (h->root.type == bfd_link_hash_indirect
	 || h->root.type == bfd_link_hash_warning)
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
  return h;
}


/* Get the section-relative offset for a symbol number.  */

static bfd_vma
get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
{
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  bfd_vma offset = 0;

  if (r_symndx < symtab_hdr->sh_info)
    {
      Elf_Internal_Sym *isymbuf;
      isymbuf = retrieve_local_syms (abfd);
      offset = isymbuf[r_symndx].st_value;
    }
  else
    {
      unsigned long indx = r_symndx - symtab_hdr->sh_info;
      struct elf_link_hash_entry *h =
	elf_sym_hashes (abfd)[indx];

      while (h->root.type == bfd_link_hash_indirect
	     || h->root.type == bfd_link_hash_warning)
	h = (struct elf_link_hash_entry *) h->root.u.i.link;
      if (h->root.type == bfd_link_hash_defined
	  || h->root.type == bfd_link_hash_defweak)
	offset = h->root.u.def.value;
    }
  return offset;
}


static bfd_boolean
is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
{
  unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
  struct elf_link_hash_entry *h;

  h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
  if (h && h->root.type == bfd_link_hash_defweak)
    return TRUE;
  return FALSE;
}


static bfd_boolean
pcrel_reloc_fits (xtensa_opcode opc,
		  int opnd,
		  bfd_vma self_address,
		  bfd_vma dest_address)
{
  xtensa_isa isa = xtensa_default_isa;
  uint32 valp = dest_address;
  if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
      || xtensa_operand_encode (isa, opc, opnd, &valp))
    return FALSE;
  return TRUE;
}


static bfd_boolean
xtensa_is_property_section (asection *sec)
{
  if (xtensa_is_insntable_section (sec)
      || xtensa_is_littable_section (sec)
      || xtensa_is_proptable_section (sec))
    return TRUE;

  return FALSE;
}


static bfd_boolean
xtensa_is_insntable_section (asection *sec)
{
  if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
      || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
    return TRUE;

  return FALSE;
}


static bfd_boolean
xtensa_is_littable_section (asection *sec)
{
  if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
      || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
    return TRUE;

  return FALSE;
}


static bfd_boolean
xtensa_is_proptable_section (asection *sec)
{
  if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
      || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
    return TRUE;

  return FALSE;
}


static int
internal_reloc_compare (const void *ap, const void *bp)
{
  const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
  const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;

  if (a->r_offset != b->r_offset)
    return (a->r_offset - b->r_offset);

  /* We don't need to sort on these criteria for correctness,
     but enforcing a more strict ordering prevents unstable qsort
     from behaving differently with different implementations.
     Without the code below we get correct but different results
     on Solaris 2.7 and 2.8.  We would like to always produce the
     same results no matter the host.  */

  if (a->r_info != b->r_info)
    return (a->r_info - b->r_info);

  return (a->r_addend - b->r_addend);
}


static int
internal_reloc_matches (const void *ap, const void *bp)
{
  const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
  const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;

  /* Check if one entry overlaps with the other; this shouldn't happen
     except when searching for a match.  */
  return (a->r_offset - b->r_offset);
}


/* Predicate function used to look up a section in a particular group.  */

static bfd_boolean
match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
{
  const char *gname = inf;
  const char *group_name = elf_group_name (sec);

  return (group_name == gname
	  || (group_name != NULL
	      && gname != NULL
	      && strcmp (group_name, gname) == 0));
}


static int linkonce_len = sizeof (".gnu.linkonce.") - 1;

static char *
xtensa_property_section_name (asection *sec, const char *base_name)
{
  const char *suffix, *group_name;
  char *prop_sec_name;

  group_name = elf_group_name (sec);
  if (group_name)
    {
      suffix = strrchr (sec->name, '.');
      if (suffix == sec->name)
	suffix = 0;
      prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
					   + (suffix ? strlen (suffix) : 0));
      strcpy (prop_sec_name, base_name);
      if (suffix)
	strcat (prop_sec_name, suffix);
    }
  else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
    {
      char *linkonce_kind = 0;

      if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
	linkonce_kind = "x.";
      else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
	linkonce_kind = "p.";
      else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
	linkonce_kind = "prop.";
      else
	abort ();

      prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
					   + strlen (linkonce_kind) + 1);
      memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
      strcpy (prop_sec_name + linkonce_len, linkonce_kind);

      suffix = sec->name + linkonce_len;
      /* For backward compatibility, replace "t." instead of inserting
	 the new linkonce_kind (but not for "prop" sections).  */
      if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
	suffix += 2;
      strcat (prop_sec_name + linkonce_len, suffix);
    }
  else
    prop_sec_name = strdup (base_name);

  return prop_sec_name;
}


static asection *
xtensa_get_property_section (asection *sec, const char *base_name)
{
  char *prop_sec_name;
  asection *prop_sec;

  prop_sec_name = xtensa_property_section_name (sec, base_name);
  prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
					 match_section_group,
					 (void *) elf_group_name (sec));
  free (prop_sec_name);
  return prop_sec;
}


asection *
xtensa_make_property_section (asection *sec, const char *base_name)
{
  char *prop_sec_name;
  asection *prop_sec;

  /* Check if the section already exists.  */
  prop_sec_name = xtensa_property_section_name (sec, base_name);
  prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
					 match_section_group,
					 (void *) elf_group_name (sec));
  /* If not, create it.  */
  if (! prop_sec)
    {
      flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
      flags |= (bfd_get_section_flags (sec->owner, sec)
		& (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));

      prop_sec = bfd_make_section_anyway_with_flags
	(sec->owner, strdup (prop_sec_name), flags);
      if (! prop_sec)
	return 0;

      elf_group_name (prop_sec) = elf_group_name (sec);
    }

  free (prop_sec_name);
  return prop_sec;
}


flagword
xtensa_get_property_predef_flags (asection *sec)
{
  if (xtensa_is_insntable_section (sec))
    return (XTENSA_PROP_INSN
	    | XTENSA_PROP_NO_TRANSFORM
	    | XTENSA_PROP_INSN_NO_REORDER);

  if (xtensa_is_littable_section (sec))
    return (XTENSA_PROP_LITERAL
	    | XTENSA_PROP_NO_TRANSFORM
	    | XTENSA_PROP_INSN_NO_REORDER);

  return 0;
}


/* Other functions called directly by the linker.  */

bfd_boolean
xtensa_callback_required_dependence (bfd *abfd,
				     asection *sec,
				     struct bfd_link_info *link_info,
				     deps_callback_t callback,
				     void *closure)
{
  Elf_Internal_Rela *internal_relocs;
  bfd_byte *contents;
  unsigned i;
  bfd_boolean ok = TRUE;
  bfd_size_type sec_size;

  sec_size = bfd_get_section_limit (abfd, sec);

  /* ".plt*" sections have no explicit relocations but they contain L32R
     instructions that reference the corresponding ".got.plt*" sections.  */
  if ((sec->flags & SEC_LINKER_CREATED) != 0
      && CONST_STRNEQ (sec->name, ".plt"))
    {
      asection *sgotplt;

      /* Find the corresponding ".got.plt*" section.  */
      if (sec->name[4] == '\0')
	sgotplt = elf_hash_table (link_info)->sgotplt;
      else
	{
	  char got_name[14];
	  int chunk = 0;

	  BFD_ASSERT (sec->name[4] == '.');
	  chunk = strtol (&sec->name[5], NULL, 10);

	  sprintf (got_name, ".got.plt.%u", chunk);
	  sgotplt = bfd_get_linker_section (sec->owner, got_name);
	}
      BFD_ASSERT (sgotplt);

      /* Assume worst-case offsets: L32R at the very end of the ".plt"
	 section referencing a literal at the very beginning of
	 ".got.plt".  This is very close to the real dependence, anyway.  */
      (*callback) (sec, sec_size, sgotplt, 0, closure);
    }

  /* Only ELF files are supported for Xtensa.  Check here to avoid a segfault
     when building uclibc, which runs "ld -b binary /dev/null".  */
  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
    return ok;

  internal_relocs = retrieve_internal_relocs (abfd, sec,
					      link_info->keep_memory);
  if (internal_relocs == NULL
      || sec->reloc_count == 0)
    return ok;

  /* Cache the contents for the duration of this scan.  */
  contents = retrieve_contents (abfd, sec, link_info->keep_memory);
  if (contents == NULL && sec_size != 0)
    {
      ok = FALSE;
      goto error_return;
    }

  if (!xtensa_default_isa)
    xtensa_default_isa = xtensa_isa_init (0, 0);

  for (i = 0; i < sec->reloc_count; i++)
    {
      Elf_Internal_Rela *irel = &internal_relocs[i];
      if (is_l32r_relocation (abfd, sec, contents, irel))
	{
	  r_reloc l32r_rel;
	  asection *target_sec;
	  bfd_vma target_offset;

	  r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
	  target_sec = NULL;
	  target_offset = 0;
	  /* L32Rs must be local to the input file.  */
	  if (r_reloc_is_defined (&l32r_rel))
	    {
	      target_sec = r_reloc_get_section (&l32r_rel);
	      target_offset = l32r_rel.target_offset;
	    }
	  (*callback) (sec, irel->r_offset, target_sec, target_offset,
		       closure);
	}
    }

 error_return:
  release_internal_relocs (sec, internal_relocs);
  release_contents (sec, contents);
  return ok;
}

/* The default literal sections should always be marked as "code" (i.e.,
   SHF_EXECINSTR).  This is particularly important for the Linux kernel
   module loader so that the literals are not placed after the text.  */
static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
{
  { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".literal"),	0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
  { STRING_COMMA_LEN (".xtensa.info"),	0, SHT_NOTE,	 0 },
  { NULL,			0,	0, 0,		 0 }
};

#define ELF_TARGET_ID			XTENSA_ELF_DATA
#ifndef ELF_ARCH
#define TARGET_LITTLE_SYM		xtensa_elf32_le_vec
#define TARGET_LITTLE_NAME		"elf32-xtensa-le"
#define TARGET_BIG_SYM			xtensa_elf32_be_vec
#define TARGET_BIG_NAME			"elf32-xtensa-be"
#define ELF_ARCH			bfd_arch_xtensa

#define ELF_MACHINE_CODE		EM_XTENSA
#define ELF_MACHINE_ALT1		EM_XTENSA_OLD

#define ELF_MAXPAGESIZE			0x1000
#endif /* ELF_ARCH */

#define elf_backend_can_gc_sections	1
#define elf_backend_can_refcount	1
#define elf_backend_plt_readonly	1
#define elf_backend_got_header_size	4
#define elf_backend_want_dynbss		0
#define elf_backend_want_got_plt	1
#define elf_backend_dtrel_excludes_plt	1

#define elf_info_to_howto		     elf_xtensa_info_to_howto_rela

#define bfd_elf32_mkobject		     elf_xtensa_mkobject

#define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
#define bfd_elf32_new_section_hook	     elf_xtensa_new_section_hook
#define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
#define bfd_elf32_bfd_relax_section	     elf_xtensa_relax_section
#define bfd_elf32_bfd_reloc_type_lookup	     elf_xtensa_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup \
  elf_xtensa_reloc_name_lookup
#define bfd_elf32_bfd_set_private_flags	     elf_xtensa_set_private_flags
#define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create

#define elf_backend_adjust_dynamic_symbol    elf_xtensa_adjust_dynamic_symbol
#define elf_backend_check_relocs	     elf_xtensa_check_relocs
#define elf_backend_create_dynamic_sections  elf_xtensa_create_dynamic_sections
#define elf_backend_discard_info	     elf_xtensa_discard_info
#define elf_backend_ignore_discarded_relocs  elf_xtensa_ignore_discarded_relocs
#define elf_backend_final_write_processing   elf_xtensa_final_write_processing
#define elf_backend_finish_dynamic_sections  elf_xtensa_finish_dynamic_sections
#define elf_backend_finish_dynamic_symbol    elf_xtensa_finish_dynamic_symbol
#define elf_backend_gc_mark_hook	     elf_xtensa_gc_mark_hook
#define elf_backend_grok_prstatus	     elf_xtensa_grok_prstatus
#define elf_backend_grok_psinfo		     elf_xtensa_grok_psinfo
#define elf_backend_hide_symbol		     elf_xtensa_hide_symbol
#define elf_backend_object_p		     elf_xtensa_object_p
#define elf_backend_reloc_type_class	     elf_xtensa_reloc_type_class
#define elf_backend_relocate_section	     elf_xtensa_relocate_section
#define elf_backend_size_dynamic_sections    elf_xtensa_size_dynamic_sections
#define elf_backend_always_size_sections     elf_xtensa_always_size_sections
#define elf_backend_omit_section_dynsym      _bfd_elf_omit_section_dynsym_all
#define elf_backend_special_sections	     elf_xtensa_special_sections
#define elf_backend_action_discarded	     elf_xtensa_action_discarded
#define elf_backend_copy_indirect_symbol     elf_xtensa_copy_indirect_symbol

#include "elf32-target.h"