aboutsummaryrefslogtreecommitdiff
path: root/bfd/elf32-avr.c
blob: a0d6b6d16fe9d2ac54a7426aadee75a2a7367926 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
/* AVR-specific support for 32-bit ELF
   Copyright (C) 1999-2022 Free Software Foundation, Inc.
   Contributed by Denis Chertykov <denisc@overta.ru>

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor,
   Boston, MA 02110-1301, USA.  */

#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/avr.h"
#include "elf32-avr.h"

/* Enable debugging printout at stdout with this variable.  */
static bool debug_relax = false;

/* Enable debugging printout at stdout with this variable.  */
static bool debug_stubs = false;

static bfd_reloc_status_type
bfd_elf_avr_diff_reloc (bfd *, arelent *, asymbol *, void *,
			asection *, bfd *, char **);

/* Hash table initialization and handling.  Code is taken from the hppa port
   and adapted to the needs of AVR.  */

/* We use two hash tables to hold information for linking avr objects.

   The first is the elf32_avr_link_hash_table which is derived from the
   stanard ELF linker hash table.  We use this as a place to attach the other
   hash table and some static information.

   The second is the stub hash table which is derived from the base BFD
   hash table.  The stub hash table holds the information on the linker
   stubs.  */

struct elf32_avr_stub_hash_entry
{
  /* Base hash table entry structure.  */
  struct bfd_hash_entry bh_root;

  /* Offset within stub_sec of the beginning of this stub.  */
  bfd_vma stub_offset;

  /* Given the symbol's value and its section we can determine its final
     value when building the stubs (so the stub knows where to jump).  */
  bfd_vma target_value;

  /* This way we could mark stubs to be no longer necessary.  */
  bool is_actually_needed;
};

struct elf32_avr_link_hash_table
{
  /* The main hash table.  */
  struct elf_link_hash_table etab;

  /* The stub hash table.  */
  struct bfd_hash_table bstab;

  bool no_stubs;

  /* Linker stub bfd.  */
  bfd *stub_bfd;

  /* The stub section.  */
  asection *stub_sec;

  /* Usually 0, unless we are generating code for a bootloader.  Will
     be initialized by elf32_avr_size_stubs to the vma offset of the
     output section associated with the stub section.  */
  bfd_vma vector_base;

  /* Assorted information used by elf32_avr_size_stubs.  */
  unsigned int	      bfd_count;
  unsigned int	      top_index;
  asection **	      input_list;
  Elf_Internal_Sym ** all_local_syms;

  /* Tables for mapping vma beyond the 128k boundary to the address of the
     corresponding stub.  (AMT)
     "amt_max_entry_cnt" reflects the number of entries that memory is allocated
     for in the "amt_stub_offsets" and "amt_destination_addr" arrays.
     "amt_entry_cnt" informs how many of these entries actually contain
     useful data.  */
  unsigned int amt_entry_cnt;
  unsigned int amt_max_entry_cnt;
  bfd_vma *    amt_stub_offsets;
  bfd_vma *    amt_destination_addr;
};

/* Various hash macros and functions.  */
#define avr_link_hash_table(p) \
  ((is_elf_hash_table ((p)->hash)					\
    && elf_hash_table_id (elf_hash_table (p)) == AVR_ELF_DATA)		\
   ? (struct elf32_avr_link_hash_table *) (p)->hash : NULL)

#define avr_stub_hash_entry(ent) \
  ((struct elf32_avr_stub_hash_entry *)(ent))

#define avr_stub_hash_lookup(table, string, create, copy) \
  ((struct elf32_avr_stub_hash_entry *) \
   bfd_hash_lookup ((table), (string), (create), (copy)))

static reloc_howto_type elf_avr_howto_table[] =
{
  HOWTO (R_AVR_NONE,		/* type */
	 0,			/* rightshift */
	 3,			/* size (0 = byte, 1 = short, 2 = long) */
	 0,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_NONE",		/* name */
	 false,			/* partial_inplace */
	 0,			/* src_mask */
	 0,			/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_AVR_32,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_32",		/* name */
	 false,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  /* A 7 bit PC relative relocation.  */
  HOWTO (R_AVR_7_PCREL,		/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 7,			/* bitsize */
	 true,			/* pc_relative */
	 3,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_generic_reloc, /* special_function */
	 "R_AVR_7_PCREL",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 true),			/* pcrel_offset */

  /* A 13 bit PC relative relocation.  */
  HOWTO (R_AVR_13_PCREL,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 13,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_generic_reloc, /* special_function */
	 "R_AVR_13_PCREL",	/* name */
	 false,			/* partial_inplace */
	 0xfff,			/* src_mask */
	 0xfff,			/* dst_mask */
	 true),			/* pcrel_offset */

  /* A 16 bit absolute relocation.  */
  HOWTO (R_AVR_16,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_16",		/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  /* A 16 bit absolute relocation for command address
     Will be changed when linker stubs are needed.  */
  HOWTO (R_AVR_16_PM,		/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_16_PM",		/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 16 bit address.
     For LDI command.  */
  HOWTO (R_AVR_LO8_LDI,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_LO8_LDI",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A high 8 bit absolute relocation of 16 bit address.
     For LDI command.  */
  HOWTO (R_AVR_HI8_LDI,		/* type */
	 8,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HI8_LDI",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A high 6 bit absolute relocation of 22 bit address.
     For LDI command.  As well second most significant 8 bit value of
     a 32 bit link-time constant.  */
  HOWTO (R_AVR_HH8_LDI,		/* type */
	 16,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HH8_LDI",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A negative low 8 bit absolute relocation of 16 bit address.
     For LDI command.  */
  HOWTO (R_AVR_LO8_LDI_NEG,	/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_LO8_LDI_NEG",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A negative high 8 bit absolute relocation of 16 bit address.
     For LDI command.  */
  HOWTO (R_AVR_HI8_LDI_NEG,	/* type */
	 8,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HI8_LDI_NEG",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A negative high 6 bit absolute relocation of 22 bit address.
     For LDI command.  */
  HOWTO (R_AVR_HH8_LDI_NEG,	/* type */
	 16,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HH8_LDI_NEG",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will not be changed when linker stubs are needed. */
  HOWTO (R_AVR_LO8_LDI_PM,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_LO8_LDI_PM",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will not be changed when linker stubs are needed. */
  HOWTO (R_AVR_HI8_LDI_PM,	/* type */
	 9,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HI8_LDI_PM",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will not be changed when linker stubs are needed. */
  HOWTO (R_AVR_HH8_LDI_PM,	/* type */
	 17,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HH8_LDI_PM",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will not be changed when linker stubs are needed. */
  HOWTO (R_AVR_LO8_LDI_PM_NEG,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_LO8_LDI_PM_NEG", /* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will not be changed when linker stubs are needed. */
  HOWTO (R_AVR_HI8_LDI_PM_NEG,	/* type */
	 9,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HI8_LDI_PM_NEG", /* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will not be changed when linker stubs are needed. */
  HOWTO (R_AVR_HH8_LDI_PM_NEG,	/* type */
	 17,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_HH8_LDI_PM_NEG", /* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* Relocation for CALL command in ATmega.  */
  HOWTO (R_AVR_CALL,		/* type */
	 1,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 23,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_CALL",		/* name */
	 false,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),			/* pcrel_offset */
  /* A 16 bit absolute relocation of 16 bit address.
     For LDI command.  */
  HOWTO (R_AVR_LDI,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_LDI",		/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A 6 bit absolute relocation of 6 bit offset.
     For ldd/sdd command.  */
  HOWTO (R_AVR_6,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 6,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_6",		/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A 6 bit absolute relocation of 6 bit offset.
     For sbiw/adiw command.  */
  HOWTO (R_AVR_6_ADIW,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 6,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_6_ADIW",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* Most significant 8 bit value of a 32 bit link-time constant.  */
  HOWTO (R_AVR_MS8_LDI,		/* type */
	 24,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_MS8_LDI",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* Negative most significant 8 bit value of a 32 bit link-time constant.  */
  HOWTO (R_AVR_MS8_LDI_NEG,	/* type */
	 24,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_MS8_LDI_NEG",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will be changed when linker stubs are needed.  */
  HOWTO (R_AVR_LO8_LDI_GS,	/* type */
	 1,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc, /* special_function */
	 "R_AVR_LO8_LDI_GS",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* A low 8 bit absolute relocation of 24 bit program memory address.
     For LDI command.  Will be changed when linker stubs are needed.  */
  HOWTO (R_AVR_HI8_LDI_GS,	/* type */
	 9,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont, /* complain_on_overflow */
	 bfd_elf_generic_reloc, /* special_function */
	 "R_AVR_HI8_LDI_GS",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* 8 bit offset.  */
  HOWTO (R_AVR_8,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_8",		/* name */
	 false,			/* partial_inplace */
	 0x000000ff,		/* src_mask */
	 0x000000ff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* lo8-part to use in  .byte lo8(sym).  */
  HOWTO (R_AVR_8_LO8,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_8_LO8",		/* name */
	 false,			/* partial_inplace */
	 0xffffff,		/* src_mask */
	 0xffffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* hi8-part to use in  .byte hi8(sym).  */
  HOWTO (R_AVR_8_HI8,		/* type */
	 8,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_8_HI8",		/* name */
	 false,			/* partial_inplace */
	 0xffffff,		/* src_mask */
	 0xffffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* hlo8-part to use in  .byte hlo8(sym).  */
  HOWTO (R_AVR_8_HLO8,		/* type */
	 16,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_8_HLO8",	/* name */
	 false,			/* partial_inplace */
	 0xffffff,		/* src_mask */
	 0xffffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  HOWTO (R_AVR_DIFF8,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 8,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_avr_diff_reloc, /* special_function */
	 "R_AVR_DIFF8",		/* name */
	 false,			/* partial_inplace */
	 0,			/* src_mask */
	 0xff,			/* dst_mask */
	 false),		/* pcrel_offset */
  HOWTO (R_AVR_DIFF16,		/* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 16,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_avr_diff_reloc,/* special_function */
	 "R_AVR_DIFF16",	/* name */
	 false,			/* partial_inplace */
	 0,			/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  HOWTO (R_AVR_DIFF32,		/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_avr_diff_reloc,/* special_function */
	 "R_AVR_DIFF32",	/* name */
	 false,			/* partial_inplace */
	 0,			/* src_mask */
	 0xffffffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  /* 7 bit immediate for LDS/STS in Tiny core.  */
  HOWTO (R_AVR_LDS_STS_16,  /* type */
	 0,			/* rightshift */
	 1,			/* size (0 = byte, 1 = short, 2 = long) */
	 7,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc, /* special_function */
	 "R_AVR_LDS_STS_16",	/* name */
	 false,			/* partial_inplace */
	 0xffff,		/* src_mask */
	 0xffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  HOWTO (R_AVR_PORT6,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 6,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_PORT6",		/* name */
	 false,			/* partial_inplace */
	 0xffffff,		/* src_mask */
	 0xffffff,		/* dst_mask */
	 false),		/* pcrel_offset */
  HOWTO (R_AVR_PORT5,		/* type */
	 0,			/* rightshift */
	 0,			/* size (0 = byte, 1 = short, 2 = long) */
	 5,			/* bitsize */
	 false,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_dont,/* complain_on_overflow */
	 bfd_elf_generic_reloc,	/* special_function */
	 "R_AVR_PORT5",		/* name */
	 false,			/* partial_inplace */
	 0xffffff,		/* src_mask */
	 0xffffff,		/* dst_mask */
	 false),		/* pcrel_offset */

  /* A 32 bit PC relative relocation.  */
  HOWTO (R_AVR_32_PCREL,	/* type */
	 0,			/* rightshift */
	 2,			/* size (0 = byte, 1 = short, 2 = long) */
	 32,			/* bitsize */
	 true,			/* pc_relative */
	 0,			/* bitpos */
	 complain_overflow_bitfield, /* complain_on_overflow */
	 bfd_elf_generic_reloc, /* special_function */
	 "R_AVR_32_PCREL",	/* name */
	 false,			/* partial_inplace */
	 0xffffffff,		/* src_mask */
	 0xffffffff,		/* dst_mask */
	 true),			/* pcrel_offset */
};

/* Map BFD reloc types to AVR ELF reloc types.  */

struct avr_reloc_map
{
  bfd_reloc_code_real_type bfd_reloc_val;
  unsigned int elf_reloc_val;
};

static const struct avr_reloc_map avr_reloc_map[] =
{
  { BFD_RELOC_NONE,		    R_AVR_NONE },
  { BFD_RELOC_32,		    R_AVR_32 },
  { BFD_RELOC_AVR_7_PCREL,	    R_AVR_7_PCREL },
  { BFD_RELOC_AVR_13_PCREL,	    R_AVR_13_PCREL },
  { BFD_RELOC_16,		    R_AVR_16 },
  { BFD_RELOC_AVR_16_PM,	    R_AVR_16_PM },
  { BFD_RELOC_AVR_LO8_LDI,	    R_AVR_LO8_LDI},
  { BFD_RELOC_AVR_HI8_LDI,	    R_AVR_HI8_LDI },
  { BFD_RELOC_AVR_HH8_LDI,	    R_AVR_HH8_LDI },
  { BFD_RELOC_AVR_MS8_LDI,	    R_AVR_MS8_LDI },
  { BFD_RELOC_AVR_LO8_LDI_NEG,	    R_AVR_LO8_LDI_NEG },
  { BFD_RELOC_AVR_HI8_LDI_NEG,	    R_AVR_HI8_LDI_NEG },
  { BFD_RELOC_AVR_HH8_LDI_NEG,	    R_AVR_HH8_LDI_NEG },
  { BFD_RELOC_AVR_MS8_LDI_NEG,	    R_AVR_MS8_LDI_NEG },
  { BFD_RELOC_AVR_LO8_LDI_PM,	    R_AVR_LO8_LDI_PM },
  { BFD_RELOC_AVR_LO8_LDI_GS,	    R_AVR_LO8_LDI_GS },
  { BFD_RELOC_AVR_HI8_LDI_PM,	    R_AVR_HI8_LDI_PM },
  { BFD_RELOC_AVR_HI8_LDI_GS,	    R_AVR_HI8_LDI_GS },
  { BFD_RELOC_AVR_HH8_LDI_PM,	    R_AVR_HH8_LDI_PM },
  { BFD_RELOC_AVR_LO8_LDI_PM_NEG,   R_AVR_LO8_LDI_PM_NEG },
  { BFD_RELOC_AVR_HI8_LDI_PM_NEG,   R_AVR_HI8_LDI_PM_NEG },
  { BFD_RELOC_AVR_HH8_LDI_PM_NEG,   R_AVR_HH8_LDI_PM_NEG },
  { BFD_RELOC_AVR_CALL,		    R_AVR_CALL },
  { BFD_RELOC_AVR_LDI,		    R_AVR_LDI  },
  { BFD_RELOC_AVR_6,		    R_AVR_6    },
  { BFD_RELOC_AVR_6_ADIW,	    R_AVR_6_ADIW },
  { BFD_RELOC_8,		    R_AVR_8 },
  { BFD_RELOC_AVR_8_LO,		    R_AVR_8_LO8 },
  { BFD_RELOC_AVR_8_HI,		    R_AVR_8_HI8 },
  { BFD_RELOC_AVR_8_HLO,	    R_AVR_8_HLO8 },
  { BFD_RELOC_AVR_DIFF8,	    R_AVR_DIFF8 },
  { BFD_RELOC_AVR_DIFF16,	    R_AVR_DIFF16 },
  { BFD_RELOC_AVR_DIFF32,	    R_AVR_DIFF32 },
  { BFD_RELOC_AVR_LDS_STS_16,	    R_AVR_LDS_STS_16},
  { BFD_RELOC_AVR_PORT6,	    R_AVR_PORT6},
  { BFD_RELOC_AVR_PORT5,	    R_AVR_PORT5},
  { BFD_RELOC_32_PCREL,		    R_AVR_32_PCREL}
};

static const struct bfd_elf_special_section elf_avr_special_sections[] =
{
  { STRING_COMMA_LEN (".noinit"), 0, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE },
  { NULL, 0,			  0, 0,		   0 }
};

/* Meant to be filled one day with the wrap around address for the
   specific device.  I.e. should get the value 0x4000 for 16k devices,
   0x8000 for 32k devices and so on.

   We initialize it here with a value of 0x1000000 resulting in
   that we will never suggest a wrap-around jump during relaxation.
   The logic of the source code later on assumes that in
   avr_pc_wrap_around one single bit is set.  */
static bfd_vma avr_pc_wrap_around = 0x10000000;

/* If this variable holds a value different from zero, the linker relaxation
   machine will try to optimize call/ret sequences by a single jump
   instruction. This option could be switched off by a linker switch.  */
static int avr_replace_call_ret_sequences = 1;


/* Per-section relaxation related information for avr.  */

struct avr_relax_info
{
  /* Track the avr property records that apply to this section.  */

  struct
  {
    /* Number of records in the list.  */
    unsigned count;

    /* How many records worth of space have we allocated.  */
    unsigned allocated;

    /* The records, only COUNT records are initialised.  */
    struct avr_property_record *items;
  } records;
};

/* Per section data, specialised for avr.  */

struct elf_avr_section_data
{
  /* The standard data must appear first.  */
  struct bfd_elf_section_data elf;

  /* Relaxation related information.  */
  struct avr_relax_info relax_info;
};

/* Possibly initialise avr specific data for new section SEC from ABFD.  */

static bool
elf_avr_new_section_hook (bfd *abfd, asection *sec)
{
  if (!sec->used_by_bfd)
    {
      struct elf_avr_section_data *sdata;
      size_t amt = sizeof (*sdata);

      sdata = bfd_zalloc (abfd, amt);
      if (sdata == NULL)
	return false;
      sec->used_by_bfd = sdata;
    }

  return _bfd_elf_new_section_hook (abfd, sec);
}

/* Return a pointer to the relaxation information for SEC.  */

static struct avr_relax_info *
get_avr_relax_info (asection *sec)
{
  struct elf_avr_section_data *section_data;

  /* No info available if no section or if it is an output section.  */
  if (!sec || sec == sec->output_section)
    return NULL;

  section_data = (struct elf_avr_section_data *) elf_section_data (sec);
  return &section_data->relax_info;
}

/* Initialise the per section relaxation information for SEC.  */

static void
init_avr_relax_info (asection *sec)
{
  struct avr_relax_info *relax_info = get_avr_relax_info (sec);

  relax_info->records.count = 0;
  relax_info->records.allocated = 0;
  relax_info->records.items = NULL;
}

/* Initialize an entry in the stub hash table.  */

static struct bfd_hash_entry *
stub_hash_newfunc (struct bfd_hash_entry *entry,
		   struct bfd_hash_table *table,
		   const char *string)
{
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (entry == NULL)
    {
      entry = bfd_hash_allocate (table,
				 sizeof (struct elf32_avr_stub_hash_entry));
      if (entry == NULL)
	return entry;
    }

  /* Call the allocation method of the superclass.  */
  entry = bfd_hash_newfunc (entry, table, string);
  if (entry != NULL)
    {
      struct elf32_avr_stub_hash_entry *hsh;

      /* Initialize the local fields.  */
      hsh = avr_stub_hash_entry (entry);
      hsh->stub_offset = 0;
      hsh->target_value = 0;
    }

  return entry;
}

/* This function is just a straight passthrough to the real
   function in linker.c.  Its prupose is so that its address
   can be compared inside the avr_link_hash_table macro.  */

static struct bfd_hash_entry *
elf32_avr_link_hash_newfunc (struct bfd_hash_entry * entry,
			     struct bfd_hash_table * table,
			     const char * string)
{
  return _bfd_elf_link_hash_newfunc (entry, table, string);
}

/* Free the derived linker hash table.  */

static void
elf32_avr_link_hash_table_free (bfd *obfd)
{
  struct elf32_avr_link_hash_table *htab
    = (struct elf32_avr_link_hash_table *) obfd->link.hash;

  /* Free the address mapping table.  */
  free (htab->amt_stub_offsets);
  free (htab->amt_destination_addr);

  bfd_hash_table_free (&htab->bstab);
  _bfd_elf_link_hash_table_free (obfd);
}

/* Create the derived linker hash table.  The AVR ELF port uses the derived
   hash table to keep information specific to the AVR ELF linker (without
   using static variables).  */

static struct bfd_link_hash_table *
elf32_avr_link_hash_table_create (bfd *abfd)
{
  struct elf32_avr_link_hash_table *htab;
  size_t amt = sizeof (*htab);

  htab = bfd_zmalloc (amt);
  if (htab == NULL)
    return NULL;

  if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd,
				      elf32_avr_link_hash_newfunc,
				      sizeof (struct elf_link_hash_entry),
				      AVR_ELF_DATA))
    {
      free (htab);
      return NULL;
    }

  /* Init the stub hash table too.  */
  if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
			    sizeof (struct elf32_avr_stub_hash_entry)))
    {
      _bfd_elf_link_hash_table_free (abfd);
      return NULL;
    }
  htab->etab.root.hash_table_free = elf32_avr_link_hash_table_free;

  return &htab->etab.root;
}

/* Calculates the effective distance of a pc relative jump/call.  */

static int
avr_relative_distance_considering_wrap_around (unsigned int distance)
{
  unsigned int wrap_around_mask = avr_pc_wrap_around - 1;
  int dist_with_wrap_around = distance & wrap_around_mask;

  if (dist_with_wrap_around >= ((int) (avr_pc_wrap_around >> 1)))
    dist_with_wrap_around -= avr_pc_wrap_around;

  return dist_with_wrap_around;
}


static reloc_howto_type *
bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
				 bfd_reloc_code_real_type code)
{
  unsigned int i;

  for (i = 0;
       i < sizeof (avr_reloc_map) / sizeof (struct avr_reloc_map);
       i++)
    if (avr_reloc_map[i].bfd_reloc_val == code)
      return &elf_avr_howto_table[avr_reloc_map[i].elf_reloc_val];

  return NULL;
}

static reloc_howto_type *
bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
				 const char *r_name)
{
  unsigned int i;

  for (i = 0;
       i < sizeof (elf_avr_howto_table) / sizeof (elf_avr_howto_table[0]);
       i++)
    if (elf_avr_howto_table[i].name != NULL
	&& strcasecmp (elf_avr_howto_table[i].name, r_name) == 0)
      return &elf_avr_howto_table[i];

  return NULL;
}

/* Set the howto pointer for an AVR ELF reloc.  */

static bool
avr_info_to_howto_rela (bfd *abfd,
			arelent *cache_ptr,
			Elf_Internal_Rela *dst)
{
  unsigned int r_type;

  r_type = ELF32_R_TYPE (dst->r_info);
  if (r_type >= (unsigned int) R_AVR_max)
    {
      /* xgettext:c-format */
      _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
			  abfd, r_type);
      bfd_set_error (bfd_error_bad_value);
      return false;
    }
  cache_ptr->howto = &elf_avr_howto_table[r_type];
  return true;
}

static bool
avr_stub_is_required_for_16_bit_reloc (bfd_vma relocation)
{
  return (relocation >= 0x020000);
}

/* Returns the address of the corresponding stub if there is one.
   Returns otherwise an address above 0x020000.  This function
   could also be used, if there is no knowledge on the section where
   the destination is found.  */

static bfd_vma
avr_get_stub_addr (bfd_vma srel,
		   struct elf32_avr_link_hash_table *htab)
{
  unsigned int sindex;
  bfd_vma stub_sec_addr =
	      (htab->stub_sec->output_section->vma +
	       htab->stub_sec->output_offset);

  for (sindex = 0; sindex < htab->amt_max_entry_cnt; sindex ++)
    if (htab->amt_destination_addr[sindex] == srel)
      return htab->amt_stub_offsets[sindex] + stub_sec_addr;

  /* Return an address that could not be reached by 16 bit relocs.  */
  return 0x020000;
}

/* Perform a diff relocation. Nothing to do, as the difference value is already
   written into the section's contents. */

static bfd_reloc_status_type
bfd_elf_avr_diff_reloc (bfd *abfd ATTRIBUTE_UNUSED,
		      arelent *reloc_entry ATTRIBUTE_UNUSED,
	      asymbol *symbol ATTRIBUTE_UNUSED,
	      void *data ATTRIBUTE_UNUSED,
	      asection *input_section ATTRIBUTE_UNUSED,
	      bfd *output_bfd ATTRIBUTE_UNUSED,
	      char **error_message ATTRIBUTE_UNUSED)
{
  return bfd_reloc_ok;
}


/* Perform a single relocation.  By default we use the standard BFD
   routines, but a few relocs, we have to do them ourselves.  */

static bfd_reloc_status_type
avr_final_link_relocate (reloc_howto_type *		    howto,
			 bfd *				    input_bfd,
			 asection *			    input_section,
			 bfd_byte *			    contents,
			 Elf_Internal_Rela *		    rel,
			 bfd_vma			    relocation,
			 struct elf32_avr_link_hash_table * htab)
{
  bfd_reloc_status_type r = bfd_reloc_ok;
  bfd_vma x;
  bfd_signed_vma srel;
  bfd_signed_vma reloc_addr;
  bool use_stubs = false;
  /* Usually is 0, unless we are generating code for a bootloader.  */
  bfd_signed_vma base_addr = htab->vector_base;

  /* Absolute addr of the reloc in the final excecutable.  */
  reloc_addr = rel->r_offset + input_section->output_section->vma
	       + input_section->output_offset;

  switch (howto->type)
    {
    case R_AVR_7_PCREL:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation;
      srel += rel->r_addend;
      srel -= rel->r_offset;
      srel -= 2;	/* Branch instructions add 2 to the PC...  */
      srel -= (input_section->output_section->vma +
	       input_section->output_offset);

      if (srel & 1)
	return bfd_reloc_outofrange;
      if (srel > ((1 << 7) - 1) || (srel < - (1 << 7)))
	return bfd_reloc_overflow;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xfc07) | (((srel >> 1) * 8) & 0x3f8);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_13_PCREL:
      contents   += rel->r_offset;
      srel = (bfd_signed_vma) relocation;
      srel += rel->r_addend;
      srel -= rel->r_offset;
      srel -= 2;	/* Branch instructions add 2 to the PC...  */
      srel -= (input_section->output_section->vma +
	       input_section->output_offset);

      if (srel & 1)
	return bfd_reloc_outofrange;

      srel = avr_relative_distance_considering_wrap_around (srel);

      /* AVR addresses commands as words.  */
      srel >>= 1;

      /* Check for overflow.  */
      if (srel < -2048 || srel > 2047)
	{
	  /* Relative distance is too large.  */

	  /* Always apply WRAPAROUND for avr2, avr25, and avr4.  */
	  switch (bfd_get_mach (input_bfd))
	    {
	    case bfd_mach_avr2:
	    case bfd_mach_avr25:
	    case bfd_mach_avr4:
	      break;

	    default:
	      return bfd_reloc_overflow;
	    }
	}

      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf000) | (srel & 0xfff);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_LO8_LDI:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_LDI:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if (((srel > 0) && (srel & 0xffff) > 255)
	  || ((srel < 0) && ((-srel) & 0xffff) > 128))
	/* Remove offset for data/eeprom section.  */
	return bfd_reloc_overflow;

      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_6:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if (((srel & 0xffff) > 63) || (srel < 0))
	/* Remove offset for data/eeprom section.  */
	return bfd_reloc_overflow;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xd3f8) | ((srel & 7) | ((srel & (3 << 3)) << 7)
		       | ((srel & (1 << 5)) << 8));
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_6_ADIW:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if (((srel & 0xffff) > 63) || (srel < 0))
	/* Remove offset for data/eeprom section.  */
	return bfd_reloc_overflow;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xff30) | (srel & 0xf) | ((srel & 0x30) << 2);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HI8_LDI:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = (srel >> 8) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HH8_LDI:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = (srel >> 16) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_MS8_LDI:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = (srel >> 24) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_LO8_LDI_NEG:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = -srel;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HI8_LDI_NEG:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = -srel;
      srel = (srel >> 8) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HH8_LDI_NEG:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = -srel;
      srel = (srel >> 16) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_MS8_LDI_NEG:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = -srel;
      srel = (srel >> 24) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_LO8_LDI_GS:
      use_stubs = (!htab->no_stubs);
      /* Fall through.  */
    case R_AVR_LO8_LDI_PM:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;

      if (use_stubs
	  && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
	{
	  bfd_vma old_srel = srel;

	  /* We need to use the address of the stub instead.  */
	  srel = avr_get_stub_addr (srel, htab);
	  if (debug_stubs)
	    printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
		    "reloc at address 0x%x.\n",
		    (unsigned int) srel,
		    (unsigned int) old_srel,
		    (unsigned int) reloc_addr);

	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
	    return bfd_reloc_outofrange;
	}

      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HI8_LDI_GS:
      use_stubs = (!htab->no_stubs);
      /* Fall through.  */
    case R_AVR_HI8_LDI_PM:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;

      if (use_stubs
	  && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
	{
	  bfd_vma old_srel = srel;

	  /* We need to use the address of the stub instead.  */
	  srel = avr_get_stub_addr (srel, htab);
	  if (debug_stubs)
	    printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
		    "reloc at address 0x%x.\n",
		    (unsigned int) srel,
		    (unsigned int) old_srel,
		    (unsigned int) reloc_addr);

	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
	    return bfd_reloc_outofrange;
	}

      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      srel = (srel >> 8) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HH8_LDI_PM:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      srel = (srel >> 16) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_LO8_LDI_PM_NEG:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = -srel;
      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HI8_LDI_PM_NEG:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = -srel;
      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      srel = (srel >> 8) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_HH8_LDI_PM_NEG:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      srel = -srel;
      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      srel = (srel >> 16) & 0xff;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf0f0) | (srel & 0xf) | ((srel << 4) & 0xf00);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_CALL:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      x = bfd_get_16 (input_bfd, contents);
      x |= ((srel & 0x10000) | ((srel << 3) & 0x1f00000)) >> 16;
      bfd_put_16 (input_bfd, x, contents);
      bfd_put_16 (input_bfd, (bfd_vma) srel & 0xffff, contents+2);
      break;

    case R_AVR_16_PM:
      use_stubs = (!htab->no_stubs);
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;

      if (use_stubs
	  && avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
	{
	  bfd_vma old_srel = srel;

	  /* We need to use the address of the stub instead.  */
	  srel = avr_get_stub_addr (srel,htab);
	  if (debug_stubs)
	    printf ("LD: Using jump stub (at 0x%x) with destination 0x%x for "
		    "reloc at address 0x%x.\n",
		    (unsigned int) srel,
		    (unsigned int) old_srel,
		    (unsigned int) reloc_addr);

	  if (avr_stub_is_required_for_16_bit_reloc (srel - base_addr))
	    return bfd_reloc_outofrange;
	}

      if (srel & 1)
	return bfd_reloc_outofrange;
      srel = srel >> 1;
      bfd_put_16 (input_bfd, (bfd_vma) srel &0x00ffff, contents);
      break;

    case R_AVR_DIFF8:
    case R_AVR_DIFF16:
    case R_AVR_DIFF32:
      /* Nothing to do here, as contents already contains the diff value. */
      r = bfd_reloc_ok;
      break;

   case R_AVR_LDS_STS_16:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if ((srel & 0xFFFF) < 0x40 || (srel & 0xFFFF) > 0xbf)
	return bfd_reloc_outofrange;
      srel = srel & 0x7f;
      x = bfd_get_16 (input_bfd, contents);
      x |= (srel & 0x0f) | ((srel & 0x30) << 5) | ((srel & 0x40) << 2);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_PORT6:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if ((srel & 0xffff) > 0x3f)
	return bfd_reloc_outofrange;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xf9f0) | ((srel & 0x30) << 5) | (srel & 0x0f);
      bfd_put_16 (input_bfd, x, contents);
      break;

    case R_AVR_PORT5:
      contents += rel->r_offset;
      srel = (bfd_signed_vma) relocation + rel->r_addend;
      if ((srel & 0xffff) > 0x1f)
	return bfd_reloc_outofrange;
      x = bfd_get_16 (input_bfd, contents);
      x = (x & 0xff07) | ((srel & 0x1f) << 3);
      bfd_put_16 (input_bfd, x, contents);
      break;

    default:
      r = _bfd_final_link_relocate (howto, input_bfd, input_section,
				    contents, rel->r_offset,
				    relocation, rel->r_addend);
    }

  return r;
}

/* Relocate an AVR ELF section.  */

static int
elf32_avr_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
			    struct bfd_link_info *info,
			    bfd *input_bfd,
			    asection *input_section,
			    bfd_byte *contents,
			    Elf_Internal_Rela *relocs,
			    Elf_Internal_Sym *local_syms,
			    asection **local_sections)
{
  Elf_Internal_Shdr *		symtab_hdr;
  struct elf_link_hash_entry ** sym_hashes;
  Elf_Internal_Rela *		rel;
  Elf_Internal_Rela *		relend;
  struct elf32_avr_link_hash_table * htab = avr_link_hash_table (info);

  if (htab == NULL)
    return false;

  symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = elf_sym_hashes (input_bfd);
  relend     = relocs + input_section->reloc_count;

  for (rel = relocs; rel < relend; rel ++)
    {
      reloc_howto_type *	   howto;
      unsigned long		   r_symndx;
      Elf_Internal_Sym *	   sym;
      asection *		   sec;
      struct elf_link_hash_entry * h;
      bfd_vma			   relocation;
      bfd_reloc_status_type	   r;
      const char *		   name;
      int			   r_type;

      r_type = ELF32_R_TYPE (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      howto  = elf_avr_howto_table + r_type;
      h      = NULL;
      sym    = NULL;
      sec    = NULL;

      if (r_symndx < symtab_hdr->sh_info)
	{
	  sym = local_syms + r_symndx;
	  sec = local_sections [r_symndx];
	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);

	  name = bfd_elf_string_from_elf_section
	    (input_bfd, symtab_hdr->sh_link, sym->st_name);
	  name = name == NULL ? bfd_section_name (sec) : name;
	}
      else
	{
	  bool unresolved_reloc, warned, ignored;

	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
				   r_symndx, symtab_hdr, sym_hashes,
				   h, sec, relocation,
				   unresolved_reloc, warned, ignored);

	  name = h->root.root.string;
	}

      if (sec != NULL && discarded_section (sec))
	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
					 rel, 1, relend, howto, 0, contents);

      if (bfd_link_relocatable (info))
	continue;

      r = avr_final_link_relocate (howto, input_bfd, input_section,
				   contents, rel, relocation, htab);

      if (r != bfd_reloc_ok)
	{
	  const char * msg = (const char *) NULL;

	  switch (r)
	    {
	    case bfd_reloc_overflow:
	      (*info->callbacks->reloc_overflow)
		(info, (h ? &h->root : NULL), name, howto->name,
		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
	      break;

	    case bfd_reloc_undefined:
	      (*info->callbacks->undefined_symbol)
		(info, name, input_bfd, input_section, rel->r_offset, true);
	      break;

	    case bfd_reloc_outofrange:
	      msg = _("internal error: out of range error");
	      break;

	    case bfd_reloc_notsupported:
	      msg = _("internal error: unsupported relocation error");
	      break;

	    case bfd_reloc_dangerous:
	      msg = _("internal error: dangerous relocation");
	      break;

	    default:
	      msg = _("internal error: unknown error");
	      break;
	    }

	  if (msg)
	    (*info->callbacks->warning) (info, msg, name, input_bfd,
					 input_section, rel->r_offset);
	}
    }

  return true;
}

/* The final processing done just before writing out a AVR ELF object
   file.  This gets the AVR architecture right based on the machine
   number.  */

static bool
bfd_elf_avr_final_write_processing (bfd *abfd)
{
  unsigned long val;

  switch (bfd_get_mach (abfd))
    {
    default:
    case bfd_mach_avr2:
      val = E_AVR_MACH_AVR2;
      break;

    case bfd_mach_avr1:
      val = E_AVR_MACH_AVR1;
      break;

    case bfd_mach_avr25:
      val = E_AVR_MACH_AVR25;
      break;

    case bfd_mach_avr3:
      val = E_AVR_MACH_AVR3;
      break;

    case bfd_mach_avr31:
      val = E_AVR_MACH_AVR31;
      break;

    case bfd_mach_avr35:
      val = E_AVR_MACH_AVR35;
      break;

    case bfd_mach_avr4:
      val = E_AVR_MACH_AVR4;
      break;

    case bfd_mach_avr5:
      val = E_AVR_MACH_AVR5;
      break;

    case bfd_mach_avr51:
      val = E_AVR_MACH_AVR51;
      break;

    case bfd_mach_avr6:
      val = E_AVR_MACH_AVR6;
      break;

    case bfd_mach_avrxmega1:
      val = E_AVR_MACH_XMEGA1;
      break;

    case bfd_mach_avrxmega2:
      val = E_AVR_MACH_XMEGA2;
      break;

    case bfd_mach_avrxmega3:
      val = E_AVR_MACH_XMEGA3;
      break;

    case bfd_mach_avrxmega4:
      val = E_AVR_MACH_XMEGA4;
      break;

    case bfd_mach_avrxmega5:
      val = E_AVR_MACH_XMEGA5;
      break;

    case bfd_mach_avrxmega6:
      val = E_AVR_MACH_XMEGA6;
      break;

    case bfd_mach_avrxmega7:
      val = E_AVR_MACH_XMEGA7;
      break;

   case bfd_mach_avrtiny:
      val = E_AVR_MACH_AVRTINY;
      break;
    }

  elf_elfheader (abfd)->e_machine = EM_AVR;
  elf_elfheader (abfd)->e_flags &= ~ EF_AVR_MACH;
  elf_elfheader (abfd)->e_flags |= val;
  return _bfd_elf_final_write_processing (abfd);
}

/* Set the right machine number.  */

static bool
elf32_avr_object_p (bfd *abfd)
{
  unsigned int e_set = bfd_mach_avr2;

  if (elf_elfheader (abfd)->e_machine == EM_AVR
      || elf_elfheader (abfd)->e_machine == EM_AVR_OLD)
    {
      int e_mach = elf_elfheader (abfd)->e_flags & EF_AVR_MACH;

      switch (e_mach)
	{
	default:
	case E_AVR_MACH_AVR2:
	  e_set = bfd_mach_avr2;
	  break;

	case E_AVR_MACH_AVR1:
	  e_set = bfd_mach_avr1;
	  break;

	case E_AVR_MACH_AVR25:
	  e_set = bfd_mach_avr25;
	  break;

	case E_AVR_MACH_AVR3:
	  e_set = bfd_mach_avr3;
	  break;

	case E_AVR_MACH_AVR31:
	  e_set = bfd_mach_avr31;
	  break;

	case E_AVR_MACH_AVR35:
	  e_set = bfd_mach_avr35;
	  break;

	case E_AVR_MACH_AVR4:
	  e_set = bfd_mach_avr4;
	  break;

	case E_AVR_MACH_AVR5:
	  e_set = bfd_mach_avr5;
	  break;

	case E_AVR_MACH_AVR51:
	  e_set = bfd_mach_avr51;
	  break;

	case E_AVR_MACH_AVR6:
	  e_set = bfd_mach_avr6;
	  break;

	case E_AVR_MACH_XMEGA1:
	  e_set = bfd_mach_avrxmega1;
	  break;

	case E_AVR_MACH_XMEGA2:
	  e_set = bfd_mach_avrxmega2;
	  break;

	case E_AVR_MACH_XMEGA3:
	  e_set = bfd_mach_avrxmega3;
	  break;

	case E_AVR_MACH_XMEGA4:
	  e_set = bfd_mach_avrxmega4;
	  break;

	case E_AVR_MACH_XMEGA5:
	  e_set = bfd_mach_avrxmega5;
	  break;

	case E_AVR_MACH_XMEGA6:
	  e_set = bfd_mach_avrxmega6;
	  break;

	case E_AVR_MACH_XMEGA7:
	  e_set = bfd_mach_avrxmega7;
	  break;

    case E_AVR_MACH_AVRTINY:
      e_set = bfd_mach_avrtiny;
      break;
	}
    }
  return bfd_default_set_arch_mach (abfd, bfd_arch_avr,
				    e_set);
}

/* Returns whether the relocation type passed is a diff reloc. */

static bool
elf32_avr_is_diff_reloc (Elf_Internal_Rela *irel)
{
  return (ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF8
	  ||ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF16
	  || ELF32_R_TYPE (irel->r_info) == R_AVR_DIFF32);
}

/* Reduce the diff value written in the section by count if the shrinked
   insn address happens to fall between the two symbols for which this
   diff reloc was emitted.  */

static void
elf32_avr_adjust_diff_reloc_value (bfd *abfd,
				   struct bfd_section *isec,
				   Elf_Internal_Rela *irel,
				   bfd_vma symval,
				   bfd_vma shrinked_insn_address,
				   int count)
{
  unsigned char *reloc_contents = NULL;
  unsigned char *isec_contents = elf_section_data (isec)->this_hdr.contents;
  if (isec_contents == NULL)
  {
    if (! bfd_malloc_and_get_section (abfd, isec, &isec_contents))
      return;

    elf_section_data (isec)->this_hdr.contents = isec_contents;
  }

  reloc_contents = isec_contents + irel->r_offset;

  /* Read value written in object file. */
  bfd_signed_vma x = 0;
  switch (ELF32_R_TYPE (irel->r_info))
  {
  case R_AVR_DIFF8:
    {
      x = bfd_get_signed_8 (abfd, reloc_contents);
      break;
    }
  case R_AVR_DIFF16:
    {
      x = bfd_get_signed_16 (abfd, reloc_contents);
      break;
    }
  case R_AVR_DIFF32:
    {
      x = bfd_get_signed_32 (abfd, reloc_contents);
      break;
    }
  default:
    {
      BFD_FAIL();
    }
  }

  /* For a diff reloc sym1 - sym2 the diff at assembly time (x) is written
     into the object file at the reloc offset. sym2's logical value is
     symval (<start_of_section>) + reloc addend. Compute the start and end
     addresses and check if the shrinked insn falls between sym1 and sym2. */

  bfd_vma sym2_address = symval + irel->r_addend;
  bfd_vma sym1_address = sym2_address - x;

  /* Don't assume sym2 is bigger than sym1 - the difference
     could be negative. Compute start and end addresses, and
     use those to see if they span shrinked_insn_address. */

  bfd_vma start_address = sym1_address < sym2_address
    ? sym1_address : sym2_address;
  bfd_vma end_address = sym1_address > sym2_address
    ? sym1_address : sym2_address;


  if (shrinked_insn_address >= start_address
      && shrinked_insn_address < end_address)
  {
    /* Reduce the diff value by count bytes and write it back into section
       contents. */
    bfd_signed_vma new_diff = x < 0 ? x + count : x - count;

    if (sym2_address > shrinked_insn_address)
      irel->r_addend -= count;

    switch (ELF32_R_TYPE (irel->r_info))
    {
    case R_AVR_DIFF8:
      {
	bfd_put_signed_8 (abfd, new_diff, reloc_contents);
	break;
      }
    case R_AVR_DIFF16:
      {
	bfd_put_signed_16 (abfd, new_diff & 0xFFFF, reloc_contents);
	break;
      }
    case R_AVR_DIFF32:
      {
	bfd_put_signed_32 (abfd, new_diff & 0xFFFFFFFF, reloc_contents);
	break;
      }
    default:
      {
	BFD_FAIL();
      }
    }

  }
}

static void
elf32_avr_adjust_reloc_if_spans_insn (bfd *abfd,
				      asection *isec,
				      Elf_Internal_Rela *irel,  bfd_vma symval,
				      bfd_vma shrinked_insn_address,
				      bfd_vma shrink_boundary,
				      int count)
{

  if (elf32_avr_is_diff_reloc (irel))
    {
      elf32_avr_adjust_diff_reloc_value (abfd, isec, irel,
					 symval,
					 shrinked_insn_address,
					 count);
    }
  else
    {
      bfd_vma reloc_value = symval + irel->r_addend;
      bool addend_within_shrink_boundary = reloc_value <= shrink_boundary;

      bool reloc_spans_insn =
	(symval <= shrinked_insn_address
	 && reloc_value > shrinked_insn_address
	 && addend_within_shrink_boundary);

      if (! reloc_spans_insn)
	return;

      irel->r_addend -= count;

      if (debug_relax)
	printf ("Relocation's addend needed to be fixed \n");
    }
}

static bool
avr_should_move_sym (symvalue symval,
		     bfd_vma start,
		     bfd_vma end,
		     bool did_pad)
{
  bool sym_within_boundary = did_pad ? symval < end : symval <= end;
  return (symval > start && sym_within_boundary);
}

static bool
avr_should_reduce_sym_size (symvalue symval,
			    symvalue symend,
			    bfd_vma start,
			    bfd_vma end,
			    bool did_pad)
{
  bool sym_end_within_boundary = did_pad ? symend < end : symend <= end;
  return (symval <= start && symend > start && sym_end_within_boundary);
}

static bool
avr_should_increase_sym_size (symvalue symval,
			      symvalue symend,
			      bfd_vma start,
			      bfd_vma end,
			      bool did_pad)
{
  return (avr_should_move_sym (symval, start, end, did_pad)
	  && symend >= end && did_pad);
}

/* Delete some bytes from a section while changing the size of an instruction.
   The parameter "addr" denotes the section-relative offset pointing just
   behind the shrinked instruction. "addr+count" point at the first
   byte just behind the original unshrinked instruction. If delete_shrinks_insn
   is FALSE, we are deleting redundant padding bytes from relax_info prop
   record handling. In that case, addr is section-relative offset of start
   of padding, and count is the number of padding bytes to delete. */

static bool
elf32_avr_relax_delete_bytes (bfd *abfd,
			      asection *sec,
			      bfd_vma addr,
			      int count,
			      bool delete_shrinks_insn)
{
  Elf_Internal_Shdr *symtab_hdr;
  unsigned int sec_shndx;
  bfd_byte *contents;
  Elf_Internal_Rela *irel, *irelend;
  Elf_Internal_Sym *isym;
  Elf_Internal_Sym *isymbuf = NULL;
  bfd_vma toaddr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **end_hashes;
  unsigned int symcount;
  struct avr_relax_info *relax_info;
  struct avr_property_record *prop_record = NULL;
  bool did_shrink = false;
  bool did_pad = false;

  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
  contents = elf_section_data (sec)->this_hdr.contents;
  relax_info = get_avr_relax_info (sec);

  toaddr = sec->size;

  if (relax_info->records.count > 0)
    {
      /* There should be no property record within the range of deleted
	 bytes, however, there might be a property record for ADDR, this is
	 how we handle alignment directives.
	 Find the next (if any) property record after the deleted bytes.  */
      unsigned int i;

      for (i = 0; i < relax_info->records.count; ++i)
	{
	  bfd_vma offset = relax_info->records.items [i].offset;

	  BFD_ASSERT (offset <= addr || offset >= (addr + count));
	  if (offset >= (addr + count))
	    {
	      prop_record = &relax_info->records.items [i];
	      toaddr = offset;
	      break;
	    }
	}
    }

  irel = elf_section_data (sec)->relocs;
  irelend = irel + sec->reloc_count;

  /* Actually delete the bytes.  */
  if (toaddr - addr - count > 0)
    {
      memmove (contents + addr, contents + addr + count,
	       (size_t) (toaddr - addr - count));
      did_shrink = true;
    }
  if (prop_record == NULL)
    {
      sec->size -= count;
      did_shrink = true;
    }
  else
    {
      /* Use the property record to fill in the bytes we've opened up.  */
      int fill = 0;
      switch (prop_record->type)
	{
	case RECORD_ORG_AND_FILL:
	  fill = prop_record->data.org.fill;
	  /* Fall through.  */
	case RECORD_ORG:
	  break;
	case RECORD_ALIGN_AND_FILL:
	  fill = prop_record->data.align.fill;
	  /* Fall through.  */
	case RECORD_ALIGN:
	  prop_record->data.align.preceding_deleted += count;
	  break;
	};
      /* If toaddr == (addr + count), then we didn't delete anything, yet
	 we fill count bytes backwards from toaddr. This is still ok - we
	 end up overwriting the bytes we would have deleted. We just need
	 to remember we didn't delete anything i.e. don't set did_shrink,
	 so that we don't corrupt reloc offsets or symbol values.*/
      memset (contents + toaddr - count, fill, count);
      did_pad = true;
    }

  if (!did_shrink)
    return true;

  /* Adjust all the reloc addresses.  */
  for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
    {
      bfd_vma old_reloc_address;

      old_reloc_address = (sec->output_section->vma
			   + sec->output_offset + irel->r_offset);

      /* Get the new reloc address.  */
      if ((irel->r_offset > addr
	   && irel->r_offset < toaddr))
	{
	  if (debug_relax)
	    printf ("Relocation at address 0x%x needs to be moved.\n"
		    "Old section offset: 0x%x, New section offset: 0x%x \n",
		    (unsigned int) old_reloc_address,
		    (unsigned int) irel->r_offset,
		    (unsigned int) ((irel->r_offset) - count));

	  irel->r_offset -= count;
	}

    }

   /* The reloc's own addresses are now ok. However, we need to readjust
      the reloc's addend, i.e. the reloc's value if two conditions are met:
      1.) the reloc is relative to a symbol in this section that
	  is located in front of the shrinked instruction
      2.) symbol plus addend end up behind the shrinked instruction.

      The most common case where this happens are relocs relative to
      the section-start symbol.

      This step needs to be done for all of the sections of the bfd.  */

  {
    struct bfd_section *isec;

    for (isec = abfd->sections; isec; isec = isec->next)
     {
       bfd_vma symval;
       bfd_vma shrinked_insn_address;

       if (isec->reloc_count == 0)
	 continue;

       shrinked_insn_address = (sec->output_section->vma
				+ sec->output_offset + addr);
       if (delete_shrinks_insn)
	 shrinked_insn_address -= count;

       irel = elf_section_data (isec)->relocs;
       /* PR 12161: Read in the relocs for this section if necessary.  */
       if (irel == NULL)
	 irel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, true);

       for (irelend = irel + isec->reloc_count;
	    irel < irelend;
	    irel++)
	 {
	   /* Read this BFD's local symbols if we haven't done
	      so already.  */
	   if (isymbuf == NULL && symtab_hdr->sh_info != 0)
	     {
	       isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
	       if (isymbuf == NULL)
		 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
						 symtab_hdr->sh_info, 0,
						 NULL, NULL, NULL);
	       if (isymbuf == NULL)
		 return false;
	     }

	   /* Get the value of the symbol referred to by the reloc.  */
	   if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
	     {
	       /* A local symbol.  */
	       asection *sym_sec;

	       isym = isymbuf + ELF32_R_SYM (irel->r_info);
	       sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
	       symval = isym->st_value;
	       /* If the reloc is absolute, it will not have
		  a symbol or section associated with it.  */
	       if (sym_sec == sec)
		 {
		   /* If there is an alignment boundary, we only need to
		      adjust addends that end up below the boundary. */
		   bfd_vma shrink_boundary = (toaddr
					      + sec->output_section->vma
					      + sec->output_offset);

		   symval += sym_sec->output_section->vma
			     + sym_sec->output_offset;

		   if (debug_relax)
		     printf ("Checking if the relocation's "
			     "addend needs corrections.\n"
			     "Address of anchor symbol: 0x%x \n"
			     "Address of relocation target: 0x%x \n"
			     "Address of relaxed insn: 0x%x \n",
			     (unsigned int) symval,
			     (unsigned int) (symval + irel->r_addend),
			     (unsigned int) shrinked_insn_address);

		   elf32_avr_adjust_reloc_if_spans_insn (abfd, isec, irel,
							 symval,
							 shrinked_insn_address,
							 shrink_boundary,
							 count);
		 }
	       /* else...Reference symbol is absolute.  No adjustment needed.  */
	     }
	   /* else...Reference symbol is extern.  No need for adjusting
	      the addend.  */
	 }
     }
  }

  /* Adjust the local symbols defined in this section.  */
  isym = (Elf_Internal_Sym *) symtab_hdr->contents;
  /* Fix PR 9841, there may be no local symbols.  */
  if (isym != NULL)
    {
      Elf_Internal_Sym *isymend;

      isymend = isym + symtab_hdr->sh_info;
      for (; isym < isymend; isym++)
	{
	  if (isym->st_shndx == sec_shndx)
	    {
	      symvalue symval = isym->st_value;
	      symvalue symend = symval + isym->st_size;
	      if (avr_should_reduce_sym_size (symval, symend,
				      addr, toaddr, did_pad))
		{
		  /* If this assert fires then we have a symbol that ends
		     part way through an instruction.  Does that make
		     sense?  */
		  BFD_ASSERT (isym->st_value + isym->st_size >= addr + count);
		  isym->st_size -= count;
		}
	      else if (avr_should_increase_sym_size (symval, symend,
				      addr, toaddr, did_pad))
		isym->st_size += count;

	      if (avr_should_move_sym (symval, addr, toaddr, did_pad))
		isym->st_value -= count;
	    }
	}
    }

  /* Now adjust the global symbols defined in this section.  */
  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
	      - symtab_hdr->sh_info);
  sym_hashes = elf_sym_hashes (abfd);
  end_hashes = sym_hashes + symcount;
  for (; sym_hashes < end_hashes; sym_hashes++)
    {
      struct elf_link_hash_entry *sym_hash = *sym_hashes;
      if ((sym_hash->root.type == bfd_link_hash_defined
	   || sym_hash->root.type == bfd_link_hash_defweak)
	  && sym_hash->root.u.def.section == sec)
	{
	  symvalue symval = sym_hash->root.u.def.value;
	  symvalue symend = symval + sym_hash->size;

	  if (avr_should_reduce_sym_size (symval, symend,
				  addr, toaddr, did_pad))
	    {
	      /* If this assert fires then we have a symbol that ends
		 part way through an instruction.  Does that make
		 sense?  */
	      BFD_ASSERT (symend >= addr + count);
	      sym_hash->size -= count;
	    }
	  else if (avr_should_increase_sym_size (symval, symend,
				  addr, toaddr, did_pad))
	      sym_hash->size += count;

	  if (avr_should_move_sym (symval, addr, toaddr, did_pad))
	    sym_hash->root.u.def.value -= count;
	}
    }

  return true;
}

static Elf_Internal_Sym *
retrieve_local_syms (bfd *input_bfd)
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Sym *isymbuf;
  size_t locsymcount;

  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  locsymcount = symtab_hdr->sh_info;

  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
  if (isymbuf == NULL && locsymcount != 0)
    isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
				    NULL, NULL, NULL);

  /* Save the symbols for this input file so they won't be read again.  */
  if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
    symtab_hdr->contents = (unsigned char *) isymbuf;

  return isymbuf;
}

/* Get the input section for a given symbol index.
   If the symbol is:
   . a section symbol, return the section;
   . a common symbol, return the common section;
   . an undefined symbol, return the undefined section;
   . an indirect symbol, follow the links;
   . an absolute value, return the absolute section.  */

static asection *
get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
{
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  asection *target_sec = NULL;
  if (r_symndx < symtab_hdr->sh_info)
    {
      Elf_Internal_Sym *isymbuf;
      unsigned int section_index;

      isymbuf = retrieve_local_syms (abfd);
      section_index = isymbuf[r_symndx].st_shndx;

      if (section_index == SHN_UNDEF)
	target_sec = bfd_und_section_ptr;
      else if (section_index == SHN_ABS)
	target_sec = bfd_abs_section_ptr;
      else if (section_index == SHN_COMMON)
	target_sec = bfd_com_section_ptr;
      else
	target_sec = bfd_section_from_elf_index (abfd, section_index);
    }
  else
    {
      unsigned long indx = r_symndx - symtab_hdr->sh_info;
      struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];

      while (h->root.type == bfd_link_hash_indirect
	     || h->root.type == bfd_link_hash_warning)
	h = (struct elf_link_hash_entry *) h->root.u.i.link;

      switch (h->root.type)
	{
	case bfd_link_hash_defined:
	case  bfd_link_hash_defweak:
	  target_sec = h->root.u.def.section;
	  break;
	case bfd_link_hash_common:
	  target_sec = bfd_com_section_ptr;
	  break;
	case bfd_link_hash_undefined:
	case bfd_link_hash_undefweak:
	  target_sec = bfd_und_section_ptr;
	  break;
	default: /* New indirect warning.  */
	  target_sec = bfd_und_section_ptr;
	  break;
	}
    }
  return target_sec;
}

/* Get the section-relative offset for a symbol number.  */

static bfd_vma
get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
{
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
  bfd_vma offset = 0;

  if (r_symndx < symtab_hdr->sh_info)
    {
      Elf_Internal_Sym *isymbuf;
      isymbuf = retrieve_local_syms (abfd);
      offset = isymbuf[r_symndx].st_value;
    }
  else
    {
      unsigned long indx = r_symndx - symtab_hdr->sh_info;
      struct elf_link_hash_entry *h =
	elf_sym_hashes (abfd)[indx];

      while (h->root.type == bfd_link_hash_indirect
	     || h->root.type == bfd_link_hash_warning)
	h = (struct elf_link_hash_entry *) h->root.u.i.link;
      if (h->root.type == bfd_link_hash_defined
	  || h->root.type == bfd_link_hash_defweak)
	offset = h->root.u.def.value;
    }
  return offset;
}

/* Iterate over the property records in R_LIST, and copy each record into
   the list of records within the relaxation information for the section to
   which the record applies.  */

static void
avr_elf32_assign_records_to_sections (struct avr_property_record_list *r_list)
{
  unsigned int i;

  for (i = 0; i < r_list->record_count; ++i)
    {
      struct avr_relax_info *relax_info;

      relax_info = get_avr_relax_info (r_list->records [i].section);
      BFD_ASSERT (relax_info != NULL);

      if (relax_info->records.count
	  == relax_info->records.allocated)
	{
	  /* Allocate more space.  */
	  bfd_size_type size;

	  relax_info->records.allocated += 10;
	  size = (sizeof (struct avr_property_record)
		  * relax_info->records.allocated);
	  relax_info->records.items
	    = bfd_realloc (relax_info->records.items, size);
	}

      memcpy (&relax_info->records.items [relax_info->records.count],
	      &r_list->records [i],
	      sizeof (struct avr_property_record));
      relax_info->records.count++;
    }
}

/* Compare two STRUCT AVR_PROPERTY_RECORD in AP and BP, used as the
   ordering callback from QSORT.  */

static int
avr_property_record_compare (const void *ap, const void *bp)
{
  const struct avr_property_record *a
    = (struct avr_property_record *) ap;
  const struct avr_property_record *b
    = (struct avr_property_record *) bp;

  if (a->offset != b->offset)
    return (a->offset - b->offset);

  if (a->section != b->section)
    return bfd_section_vma (a->section) - bfd_section_vma (b->section);

  return (a->type - b->type);
}

/* Load all of the avr property sections from all of the bfd objects
   referenced from LINK_INFO.  All of the records within each property
   section are assigned to the STRUCT AVR_RELAX_INFO within the section
   specific data of the appropriate section.  */

static void
avr_load_all_property_sections (struct bfd_link_info *link_info)
{
  bfd *abfd;
  asection *sec;

  /* Initialize the per-section relaxation info.  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    for (sec = abfd->sections; sec != NULL; sec = sec->next)
      {
	init_avr_relax_info (sec);
      }

  /* Load the descriptor tables from .avr.prop sections.  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    {
      struct avr_property_record_list *r_list;

      r_list = avr_elf32_load_property_records (abfd);
      if (r_list != NULL)
	avr_elf32_assign_records_to_sections (r_list);

      free (r_list);
    }

  /* Now, for every section, ensure that the descriptor list in the
     relaxation data is sorted by ascending offset within the section.  */
  for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
    for (sec = abfd->sections; sec != NULL; sec = sec->next)
      {
	struct avr_relax_info *relax_info = get_avr_relax_info (sec);
	if (relax_info && relax_info->records.count > 0)
	  {
	    unsigned int i;

	    qsort (relax_info->records.items,
		   relax_info->records.count,
		   sizeof (struct avr_property_record),
		   avr_property_record_compare);

	    /* For debug purposes, list all the descriptors.  */
	    for (i = 0; i < relax_info->records.count; ++i)
	      {
		switch (relax_info->records.items [i].type)
		  {
		  case RECORD_ORG:
		    break;
		  case RECORD_ORG_AND_FILL:
		    break;
		  case RECORD_ALIGN:
		    break;
		  case RECORD_ALIGN_AND_FILL:
		    break;
		  };
	      }
	  }
      }
}

/* This function handles relaxing for the avr.
   Many important relaxing opportunities within functions are already
   realized by the compiler itself.
   Here we try to replace  call (4 bytes) ->  rcall (2 bytes)
   and jump -> rjmp (safes also 2 bytes).
   As well we now optimize seqences of
     - call/rcall function
     - ret
   to yield
     - jmp/rjmp function
     - ret
   . In case that within a sequence
     - jmp/rjmp label
     - ret
   the ret could no longer be reached it is optimized away. In order
   to check if the ret is no longer needed, it is checked that the ret's address
   is not the target of a branch or jump within the same section, it is checked
   that there is no skip instruction before the jmp/rjmp and that there
   is no local or global label place at the address of the ret.

   We refrain from relaxing within sections ".vectors" and
   ".jumptables" in order to maintain the position of the instructions.
   There, however, we substitute jmp/call by a sequence rjmp,nop/rcall,nop
   if possible. (In future one could possibly use the space of the nop
   for the first instruction of the irq service function.

   The .jumptables sections is meant to be used for a future tablejump variant
   for the devices with 3-byte program counter where the table itself
   contains 4-byte jump instructions whose relative offset must not
   be changed.  */

static bool
elf32_avr_relax_section (bfd *abfd,
			 asection *sec,
			 struct bfd_link_info *link_info,
			 bool *again)
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *internal_relocs;
  Elf_Internal_Rela *irel, *irelend;
  bfd_byte *contents = NULL;
  Elf_Internal_Sym *isymbuf = NULL;
  struct elf32_avr_link_hash_table *htab;
  static bool relaxation_initialised = false;

  if (!relaxation_initialised)
    {
      relaxation_initialised = true;

      /* Load entries from the .avr.prop sections.  */
      avr_load_all_property_sections (link_info);
    }

  /* If 'shrinkable' is FALSE, do not shrink by deleting bytes while
     relaxing. Such shrinking can cause issues for the sections such
     as .vectors and .jumptables. Instead the unused bytes should be
     filled with nop instructions. */
  bool shrinkable = true;

  if (!strcmp (sec->name,".vectors")
      || !strcmp (sec->name,".jumptables"))
    shrinkable = false;

  if (bfd_link_relocatable (link_info))
    (*link_info->callbacks->einfo)
      (_("%P%F: --relax and -r may not be used together\n"));

  htab = avr_link_hash_table (link_info);
  if (htab == NULL)
    return false;

  /* Assume nothing changes.  */
  *again = false;

  if ((!htab->no_stubs) && (sec == htab->stub_sec))
    {
      /* We are just relaxing the stub section.
	 Let's calculate the size needed again.  */
      bfd_size_type last_estimated_stub_section_size = htab->stub_sec->size;

      if (debug_relax)
	printf ("Relaxing the stub section. Size prior to this pass: %i\n",
		(int) last_estimated_stub_section_size);

      elf32_avr_size_stubs (htab->stub_sec->output_section->owner,
			    link_info, false);

      /* Check if the number of trampolines changed.  */
      if (last_estimated_stub_section_size != htab->stub_sec->size)
	*again = true;

      if (debug_relax)
	printf ("Size of stub section after this pass: %i\n",
		(int) htab->stub_sec->size);

      return true;
    }

  /* We don't have to do anything for a relocatable link, if
     this section does not have relocs, or if this is not a
     code section.  */
  if (bfd_link_relocatable (link_info)
      || (sec->flags & SEC_RELOC) == 0
      || sec->reloc_count == 0
      || (sec->flags & SEC_CODE) == 0)
    return true;

  /* Check if the object file to relax uses internal symbols so that we
     could fix up the relocations.  */
  if (!(elf_elfheader (abfd)->e_flags & EF_AVR_LINKRELAX_PREPARED))
    return true;

  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;

  /* Get a copy of the native relocations.  */
  internal_relocs = (_bfd_elf_link_read_relocs
		     (abfd, sec, NULL, NULL, link_info->keep_memory));
  if (internal_relocs == NULL)
    goto error_return;

  /* Walk through the relocs looking for relaxing opportunities.  */
  irelend = internal_relocs + sec->reloc_count;
  for (irel = internal_relocs; irel < irelend; irel++)
    {
      bfd_vma symval;

      if (   ELF32_R_TYPE (irel->r_info) != R_AVR_13_PCREL
	  && ELF32_R_TYPE (irel->r_info) != R_AVR_7_PCREL
	  && ELF32_R_TYPE (irel->r_info) != R_AVR_CALL)
	continue;

      /* Get the section contents if we haven't done so already.  */
      if (contents == NULL)
	{
	  /* Get cached copy if it exists.  */
	  if (elf_section_data (sec)->this_hdr.contents != NULL)
	    contents = elf_section_data (sec)->this_hdr.contents;
	  else
	    {
	      /* Go get them off disk.  */
	      if (! bfd_malloc_and_get_section (abfd, sec, &contents))
		goto error_return;
	    }
	}

      /* Read this BFD's local symbols if we haven't done so already.  */
      if (isymbuf == NULL && symtab_hdr->sh_info != 0)
	{
	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
	  if (isymbuf == NULL)
	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
					    symtab_hdr->sh_info, 0,
					    NULL, NULL, NULL);
	  if (isymbuf == NULL)
	    goto error_return;
	}


      /* Get the value of the symbol referred to by the reloc.  */
      if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
	{
	  /* A local symbol.  */
	  Elf_Internal_Sym *isym;
	  asection *sym_sec;

	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
	  sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
	  symval = isym->st_value;
	  /* If the reloc is absolute, it will not have
	     a symbol or section associated with it.  */
	  if (sym_sec)
	    symval += sym_sec->output_section->vma
	      + sym_sec->output_offset;
	}
      else
	{
	  unsigned long indx;
	  struct elf_link_hash_entry *h;

	  /* An external symbol.  */
	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
	  h = elf_sym_hashes (abfd)[indx];
	  BFD_ASSERT (h != NULL);
	  if (h->root.type != bfd_link_hash_defined
	      && h->root.type != bfd_link_hash_defweak)
	    /* This appears to be a reference to an undefined
	       symbol.  Just ignore it--it will be caught by the
	       regular reloc processing.  */
	    continue;

	  symval = (h->root.u.def.value
		    + h->root.u.def.section->output_section->vma
		    + h->root.u.def.section->output_offset);
	}

      /* For simplicity of coding, we are going to modify the section
	 contents, the section relocs, and the BFD symbol table.  We
	 must tell the rest of the code not to free up this
	 information.  It would be possible to instead create a table
	 of changes which have to be made, as is done in coff-mips.c;
	 that would be more work, but would require less memory when
	 the linker is run.  */
      switch (ELF32_R_TYPE (irel->r_info))
	{
	  /* Try to turn a 22-bit absolute call/jump into an 13-bit
	     pc-relative rcall/rjmp.  */
	case R_AVR_CALL:
	  {
	    bfd_vma value = symval + irel->r_addend;
	    bfd_vma dot, gap;
	    int distance_short_enough = 0;

	    /* Get the address of this instruction.  */
	    dot = (sec->output_section->vma
		   + sec->output_offset + irel->r_offset);

	    /* Compute the distance from this insn to the branch target.  */
	    gap = value - dot;

	    /* The ISA manual states that addressable range is PC - 2k + 1 to
	       PC + 2k. In bytes, that would be -4094 <= PC <= 4096. The range
	       is shifted one word to the right, because pc-relative instructions
	       implicitly add one word i.e. rjmp 0 jumps to next insn, not the
	       current one.
	       Therefore, for the !shrinkable case, the range is as above.
	       If shrinkable, then the current code only deletes bytes 3 and
	       4 of the absolute call/jmp, so the forward jump range increases
	       by 2 bytes, but the backward (negative) jump range remains
	       the same. */


	    /* Check if the gap falls in the range that can be accommodated
	       in 13bits signed (It is 12bits when encoded, as we deal with
	       word addressing). */
	    if (!shrinkable && ((int) gap >= -4094 && (int) gap <= 4096))
	      distance_short_enough = 1;
	    /* If shrinkable, then we can check for a range of distance which
	       is two bytes farther on the positive direction because the call
	       or jump target will be closer by two bytes after the
	       relaxation. */
	    else if (shrinkable && ((int) gap >= -4094 && (int) gap <= 4098))
	      distance_short_enough = 1;

	    /* Here we handle the wrap-around case.  E.g. for a 16k device
	       we could use a rjmp to jump from address 0x100 to 0x3d00!
	       In order to make this work properly, we need to fill the
	       vaiable avr_pc_wrap_around with the appropriate value.
	       I.e. 0x4000 for a 16k device.  */
	    {
	      /* Shrinking the code size makes the gaps larger in the
		 case of wrap-arounds.  So we use a heuristical safety
		 margin to avoid that during relax the distance gets
		 again too large for the short jumps.  Let's assume
		 a typical code-size reduction due to relax for a
		 16k device of 600 bytes.  So let's use twice the
		 typical value as safety margin.  */
	      int rgap;
	      int safety_margin;

	      int assumed_shrink = 600;
	      if (avr_pc_wrap_around > 0x4000)
		assumed_shrink = 900;

	      safety_margin = 2 * assumed_shrink;

	      rgap = avr_relative_distance_considering_wrap_around (gap);

	      if (rgap >= (-4092 + safety_margin)
		  && rgap <= (4094 - safety_margin))
		distance_short_enough = 1;
	    }

	    if (distance_short_enough)
	      {
		unsigned char code_msb;
		unsigned char code_lsb;

		if (debug_relax)
		  printf ("shrinking jump/call instruction at address 0x%x"
			  " in section %s\n\n",
			  (int) dot, sec->name);

		/* Note that we've changed the relocs, section contents,
		   etc.  */
		elf_section_data (sec)->relocs = internal_relocs;
		elf_section_data (sec)->this_hdr.contents = contents;
		symtab_hdr->contents = (unsigned char *) isymbuf;

		/* Get the instruction code for relaxing.  */
		code_lsb = bfd_get_8 (abfd, contents + irel->r_offset);
		code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);

		/* Mask out the relocation bits.  */
		code_msb &= 0x94;
		code_lsb &= 0x0E;
		if (code_msb == 0x94 && code_lsb == 0x0E)
		  {
		    /* we are changing call -> rcall .  */
		    bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
		    bfd_put_8 (abfd, 0xD0, contents + irel->r_offset + 1);
		  }
		else if (code_msb == 0x94 && code_lsb == 0x0C)
		  {
		    /* we are changeing jump -> rjmp.  */
		    bfd_put_8 (abfd, 0x00, contents + irel->r_offset);
		    bfd_put_8 (abfd, 0xC0, contents + irel->r_offset + 1);
		  }
		else
		  abort ();

		/* Fix the relocation's type.  */
		irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
					     R_AVR_13_PCREL);

		/* We should not modify the ordering if 'shrinkable' is
		   FALSE. */
		if (!shrinkable)
		  {
		    /* Let's insert a nop.  */
		    bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 2);
		    bfd_put_8 (abfd, 0x00, contents + irel->r_offset + 3);
		  }
		else
		  {
		    /* Delete two bytes of data.  */
		    if (!elf32_avr_relax_delete_bytes (abfd, sec,
						       irel->r_offset + 2, 2,
						       true))
		      goto error_return;

		    /* That will change things, so, we should relax again.
		       Note that this is not required, and it may be slow.  */
		    *again = true;
		  }
	      }
	  }
	  /* Fall through.  */

	default:
	  {
	    unsigned char code_msb;
	    unsigned char code_lsb;
	    bfd_vma dot;

	    code_msb = bfd_get_8 (abfd, contents + irel->r_offset + 1);
	    code_lsb = bfd_get_8 (abfd, contents + irel->r_offset + 0);

	    /* Get the address of this instruction.  */
	    dot = (sec->output_section->vma
		   + sec->output_offset + irel->r_offset);

	    /* Here we look for rcall/ret or call/ret sequences that could be
	       safely replaced by rjmp/ret or jmp/ret.  */
	    if (((code_msb & 0xf0) == 0xd0)
		&& avr_replace_call_ret_sequences)
	      {
		/* This insn is a rcall.  */
		unsigned char next_insn_msb = 0;
		unsigned char next_insn_lsb = 0;

		if (irel->r_offset + 3 < sec->size)
		  {
		    next_insn_msb =
		      bfd_get_8 (abfd, contents + irel->r_offset + 3);
		    next_insn_lsb =
		      bfd_get_8 (abfd, contents + irel->r_offset + 2);
		  }

		if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
		  {
		    /* The next insn is a ret. We now convert the rcall insn
		       into a rjmp instruction.  */
		    code_msb &= 0xef;
		    bfd_put_8 (abfd, code_msb, contents + irel->r_offset + 1);
		    if (debug_relax)
		      printf ("converted rcall/ret sequence at address 0x%x"
			      " into rjmp/ret sequence. Section is %s\n\n",
			      (int) dot, sec->name);
		    *again = true;
		    break;
		  }
	      }
	    else if ((0x94 == (code_msb & 0xfe))
		     && (0x0e == (code_lsb & 0x0e))
		     && avr_replace_call_ret_sequences)
	      {
		/* This insn is a call.  */
		unsigned char next_insn_msb = 0;
		unsigned char next_insn_lsb = 0;

		if (irel->r_offset + 5 < sec->size)
		  {
		    next_insn_msb =
		      bfd_get_8 (abfd, contents + irel->r_offset + 5);
		    next_insn_lsb =
		      bfd_get_8 (abfd, contents + irel->r_offset + 4);
		  }

		if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
		  {
		    /* The next insn is a ret. We now convert the call insn
		       into a jmp instruction.  */

		    code_lsb &= 0xfd;
		    bfd_put_8 (abfd, code_lsb, contents + irel->r_offset);
		    if (debug_relax)
		      printf ("converted call/ret sequence at address 0x%x"
			      " into jmp/ret sequence. Section is %s\n\n",
			      (int) dot, sec->name);
		    *again = true;
		    break;
		  }
	      }
	    else if ((0xc0 == (code_msb & 0xf0))
		     || ((0x94 == (code_msb & 0xfe))
			 && (0x0c == (code_lsb & 0x0e))))
	      {
		/* This insn is a rjmp or a jmp.  */
		unsigned char next_insn_msb = 0;
		unsigned char next_insn_lsb = 0;
		int insn_size;

		if (0xc0 == (code_msb & 0xf0))
		  insn_size = 2; /* rjmp insn */
		else
		  insn_size = 4; /* jmp insn */

		if (irel->r_offset + insn_size + 1 < sec->size)
		  {
		    next_insn_msb =
		      bfd_get_8 (abfd, contents + irel->r_offset
				 + insn_size + 1);
		    next_insn_lsb =
		      bfd_get_8 (abfd, contents + irel->r_offset
				 + insn_size);
		  }

		if ((0x95 == next_insn_msb) && (0x08 == next_insn_lsb))
		  {
		    /* The next insn is a ret. We possibly could delete
		       this ret. First we need to check for preceding
		       sbis/sbic/sbrs or cpse "skip" instructions.  */

		    int there_is_preceding_non_skip_insn = 1;
		    bfd_vma address_of_ret;

		    address_of_ret = dot + insn_size;

		    if (debug_relax && (insn_size == 2))
		      printf ("found rjmp / ret sequence at address 0x%x\n",
			      (int) dot);
		    if (debug_relax && (insn_size == 4))
		      printf ("found jmp / ret sequence at address 0x%x\n",
			      (int) dot);

		    /* We have to make sure that there is a preceding insn.  */
		    if (irel->r_offset >= 2)
		      {
			unsigned char preceding_msb;
			unsigned char preceding_lsb;

			preceding_msb =
			  bfd_get_8 (abfd, contents + irel->r_offset - 1);
			preceding_lsb =
			  bfd_get_8 (abfd, contents + irel->r_offset - 2);

			/* sbic.  */
			if (0x99 == preceding_msb)
			  there_is_preceding_non_skip_insn = 0;

			/* sbis.  */
			if (0x9b == preceding_msb)
			  there_is_preceding_non_skip_insn = 0;

			/* sbrc */
			if ((0xfc == (preceding_msb & 0xfe)
			     && (0x00 == (preceding_lsb & 0x08))))
			  there_is_preceding_non_skip_insn = 0;

			/* sbrs */
			if ((0xfe == (preceding_msb & 0xfe)
			     && (0x00 == (preceding_lsb & 0x08))))
			  there_is_preceding_non_skip_insn = 0;

			/* cpse */
			if (0x10 == (preceding_msb & 0xfc))
			  there_is_preceding_non_skip_insn = 0;

			if (there_is_preceding_non_skip_insn == 0)
			  if (debug_relax)
			    printf ("preceding skip insn prevents deletion of"
				    " ret insn at Addy 0x%x in section %s\n",
				    (int) dot + 2, sec->name);
		      }
		    else
		      {
			/* There is no previous instruction.  */
			there_is_preceding_non_skip_insn = 0;
		      }

		    if (there_is_preceding_non_skip_insn)
		      {
			/* We now only have to make sure that there is no
			   local label defined at the address of the ret
			   instruction and that there is no local relocation
			   in this section pointing to the ret.  */

			int deleting_ret_is_safe = 1;
			unsigned int section_offset_of_ret_insn =
			  irel->r_offset + insn_size;
			Elf_Internal_Sym *isym, *isymend;
			unsigned int sec_shndx;
			struct bfd_section *isec;

			sec_shndx =
			  _bfd_elf_section_from_bfd_section (abfd, sec);

			/* Check for local symbols.  */
			isym = (Elf_Internal_Sym *) symtab_hdr->contents;
			isymend = isym + symtab_hdr->sh_info;
			/* PR 6019: There may not be any local symbols.  */
			for (; isym != NULL && isym < isymend; isym++)
			  {
			    if (isym->st_value == section_offset_of_ret_insn
				&& isym->st_shndx == sec_shndx)
			      {
				deleting_ret_is_safe = 0;
				if (debug_relax)
				  printf ("local label prevents deletion of ret "
					  "insn at address 0x%x\n",
					  (int) dot + insn_size);
			      }
			  }

			/* Now check for global symbols.  */
			{
			  int symcount;
			  struct elf_link_hash_entry **sym_hashes;
			  struct elf_link_hash_entry **end_hashes;

			  symcount = (symtab_hdr->sh_size
				      / sizeof (Elf32_External_Sym)
				      - symtab_hdr->sh_info);
			  sym_hashes = elf_sym_hashes (abfd);
			  end_hashes = sym_hashes + symcount;
			  for (; sym_hashes < end_hashes; sym_hashes++)
			    {
			      struct elf_link_hash_entry *sym_hash =
				*sym_hashes;
			      if ((sym_hash->root.type == bfd_link_hash_defined
				   || sym_hash->root.type ==
				   bfd_link_hash_defweak)
				  && sym_hash->root.u.def.section == sec
				  && sym_hash->root.u.def.value == section_offset_of_ret_insn)
				{
				  deleting_ret_is_safe = 0;
				  if (debug_relax)
				    printf ("global label prevents deletion of "
					    "ret insn at address 0x%x\n",
					    (int) dot + insn_size);
				}
			    }
			}

			/* Now we check for relocations pointing to ret.  */
			for (isec = abfd->sections; isec && deleting_ret_is_safe; isec = isec->next)
			  {
			    Elf_Internal_Rela *rel;
			    Elf_Internal_Rela *relend;

			    rel = elf_section_data (isec)->relocs;
			    if (rel == NULL)
			      rel = _bfd_elf_link_read_relocs (abfd, isec, NULL, NULL, true);

			    relend = rel + isec->reloc_count;

			    for (; rel && rel < relend; rel++)
			      {
				bfd_vma reloc_target = 0;

				/* Read this BFD's local symbols if we haven't
				   done so already.  */
				if (isymbuf == NULL && symtab_hdr->sh_info != 0)
				  {
				    isymbuf = (Elf_Internal_Sym *)
				      symtab_hdr->contents;
				    if (isymbuf == NULL)
				      isymbuf = bfd_elf_get_elf_syms
					(abfd,
					 symtab_hdr,
					 symtab_hdr->sh_info, 0,
					 NULL, NULL, NULL);
				    if (isymbuf == NULL)
				      break;
				  }

				/* Get the value of the symbol referred to
				   by the reloc.  */
				if (ELF32_R_SYM (rel->r_info)
				    < symtab_hdr->sh_info)
				  {
				    /* A local symbol.  */
				    asection *sym_sec;

				    isym = isymbuf
				      + ELF32_R_SYM (rel->r_info);
				    sym_sec = bfd_section_from_elf_index
				      (abfd, isym->st_shndx);
				    symval = isym->st_value;

				    /* If the reloc is absolute, it will not
				       have a symbol or section associated
				       with it.  */

				    if (sym_sec)
				      {
					symval +=
					  sym_sec->output_section->vma
					  + sym_sec->output_offset;
					reloc_target = symval + rel->r_addend;
				      }
				    else
				      {
					reloc_target = symval + rel->r_addend;
					/* Reference symbol is absolute.  */
				      }
				  }
				/* else ... reference symbol is extern.  */

				if (address_of_ret == reloc_target)
				  {
				    deleting_ret_is_safe = 0;
				    if (debug_relax)
				      printf ("ret from "
					      "rjmp/jmp ret sequence at address"
					      " 0x%x could not be deleted. ret"
					      " is target of a relocation.\n",
					      (int) address_of_ret);
				    break;
				  }
			      }
			  }

			if (deleting_ret_is_safe)
			  {
			    if (debug_relax)
			      printf ("unreachable ret instruction "
				      "at address 0x%x deleted.\n",
				      (int) dot + insn_size);

			    /* Delete two bytes of data.  */
			    if (!elf32_avr_relax_delete_bytes (abfd, sec,
							       irel->r_offset + insn_size, 2,
							       true))
			      goto error_return;

			    /* That will change things, so, we should relax
			       again. Note that this is not required, and it
			       may be slow.  */
			    *again = true;
			    break;
			  }
		      }
		  }
	      }
	    break;
	  }
	}
    }

  if (!*again)
    {
      /* Look through all the property records in this section to see if
	 there's any alignment records that can be moved.  */
      struct avr_relax_info *relax_info;

      relax_info = get_avr_relax_info (sec);
      if (relax_info->records.count > 0)
	{
	  unsigned int i;

	  for (i = 0; i < relax_info->records.count; ++i)
	    {
	      switch (relax_info->records.items [i].type)
		{
		case RECORD_ORG:
		case RECORD_ORG_AND_FILL:
		  break;
		case RECORD_ALIGN:
		case RECORD_ALIGN_AND_FILL:
		  {
		    struct avr_property_record *record;
		    unsigned long bytes_to_align;
		    int count = 0;

		    /* Look for alignment directives that have had enough
		       bytes deleted before them, such that the directive
		       can be moved backwards and still maintain the
		       required alignment.  */
		    record = &relax_info->records.items [i];
		    bytes_to_align
		      = (unsigned long) (1 << record->data.align.bytes);
		    while (record->data.align.preceding_deleted >=
			   bytes_to_align)
		      {
			record->data.align.preceding_deleted
			  -= bytes_to_align;
			count += bytes_to_align;
		      }

		    if (count > 0)
		      {
			bfd_vma addr = record->offset;

			/* We can delete COUNT bytes and this alignment
			   directive will still be correctly aligned.
			   First move the alignment directive, then delete
			   the bytes.  */
			record->offset -= count;
			elf32_avr_relax_delete_bytes (abfd, sec,
						      addr - count,
						      count, false);
			*again = true;
		      }
		  }
		  break;
		}
	    }
	}
    }

  if (contents != NULL
      && elf_section_data (sec)->this_hdr.contents != contents)
    {
      if (! link_info->keep_memory)
	free (contents);
      else
	{
	  /* Cache the section contents for elf_link_input_bfd.  */
	  elf_section_data (sec)->this_hdr.contents = contents;
	}
    }

  if (elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);

  return true;

 error_return:
  if (symtab_hdr->contents != (unsigned char *) isymbuf)
    free (isymbuf);
  if (elf_section_data (sec)->this_hdr.contents != contents)
    free (contents);
  if (elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);

  return false;
}

/* This is a version of bfd_generic_get_relocated_section_contents
   which uses elf32_avr_relocate_section.

   For avr it's essentially a cut and paste taken from the H8300 port.
   The author of the relaxation support patch for avr had absolutely no
   clue what is happening here but found out that this part of the code
   seems to be important.  */

static bfd_byte *
elf32_avr_get_relocated_section_contents (bfd *output_bfd,
					  struct bfd_link_info *link_info,
					  struct bfd_link_order *link_order,
					  bfd_byte *data,
					  bool relocatable,
					  asymbol **symbols)
{
  Elf_Internal_Shdr *symtab_hdr;
  asection *input_section = link_order->u.indirect.section;
  bfd *input_bfd = input_section->owner;
  asection **sections = NULL;
  Elf_Internal_Rela *internal_relocs = NULL;
  Elf_Internal_Sym *isymbuf = NULL;

  /* We only need to handle the case of relaxing, or of having a
     particular set of section contents, specially.  */
  if (relocatable
      || elf_section_data (input_section)->this_hdr.contents == NULL)
    return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
						       link_order, data,
						       relocatable,
						       symbols);
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;

  memcpy (data, elf_section_data (input_section)->this_hdr.contents,
	  (size_t) input_section->size);

  if ((input_section->flags & SEC_RELOC) != 0
      && input_section->reloc_count > 0)
    {
      asection **secpp;
      Elf_Internal_Sym *isym, *isymend;
      bfd_size_type amt;

      internal_relocs = (_bfd_elf_link_read_relocs
			 (input_bfd, input_section, NULL, NULL, false));
      if (internal_relocs == NULL)
	goto error_return;

      if (symtab_hdr->sh_info != 0)
	{
	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
	  if (isymbuf == NULL)
	    isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
					    symtab_hdr->sh_info, 0,
					    NULL, NULL, NULL);
	  if (isymbuf == NULL)
	    goto error_return;
	}

      amt = symtab_hdr->sh_info;
      amt *= sizeof (asection *);
      sections = bfd_malloc (amt);
      if (sections == NULL && amt != 0)
	goto error_return;

      isymend = isymbuf + symtab_hdr->sh_info;
      for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
	{
	  asection *isec;

	  if (isym->st_shndx == SHN_UNDEF)
	    isec = bfd_und_section_ptr;
	  else if (isym->st_shndx == SHN_ABS)
	    isec = bfd_abs_section_ptr;
	  else if (isym->st_shndx == SHN_COMMON)
	    isec = bfd_com_section_ptr;
	  else
	    isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);

	  *secpp = isec;
	}

      if (! elf32_avr_relocate_section (output_bfd, link_info, input_bfd,
					input_section, data, internal_relocs,
					isymbuf, sections))
	goto error_return;

      free (sections);
      if (symtab_hdr->contents != (unsigned char *) isymbuf)
	free (isymbuf);
      if (elf_section_data (input_section)->relocs != internal_relocs)
	free (internal_relocs);
    }

  return data;

 error_return:
  free (sections);
  if (symtab_hdr->contents != (unsigned char *) isymbuf)
    free (isymbuf);
  if (elf_section_data (input_section)->relocs != internal_relocs)
    free (internal_relocs);
  return NULL;
}


/* Determines the hash entry name for a particular reloc. It consists of
   the identifier of the symbol section and the added reloc addend and
   symbol offset relative to the section the symbol is attached to.  */

static char *
avr_stub_name (const asection *symbol_section,
	       const bfd_vma symbol_offset,
	       const Elf_Internal_Rela *rela)
{
  char *stub_name;
  bfd_size_type len;

  len = 8 + 1 + 8 + 1 + 1;
  stub_name = bfd_malloc (len);
  if (stub_name != NULL)
    sprintf (stub_name, "%08x+%08x",
	     symbol_section->id & 0xffffffff,
	     (unsigned int) ((rela->r_addend & 0xffffffff) + symbol_offset));

  return stub_name;
}


/* Add a new stub entry to the stub hash.  Not all fields of the new
   stub entry are initialised.  */

static struct elf32_avr_stub_hash_entry *
avr_add_stub (const char *stub_name,
	      struct elf32_avr_link_hash_table *htab)
{
  struct elf32_avr_stub_hash_entry *hsh;

  /* Enter this entry into the linker stub hash table.  */
  hsh = avr_stub_hash_lookup (&htab->bstab, stub_name, true, false);

  if (hsh == NULL)
    {
      /* xgettext:c-format */
      _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
      return NULL;
    }

  hsh->stub_offset = 0;
  return hsh;
}

/* We assume that there is already space allocated for the stub section
   contents and that before building the stubs the section size is
   initialized to 0.  We assume that within the stub hash table entry,
   the absolute position of the jmp target has been written in the
   target_value field.  We write here the offset of the generated jmp insn
   relative to the trampoline section start to the stub_offset entry in
   the stub hash table entry.  */

static  bool
avr_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
  struct elf32_avr_stub_hash_entry *hsh;
  struct bfd_link_info *info;
  struct elf32_avr_link_hash_table *htab;
  bfd *stub_bfd;
  bfd_byte *loc;
  bfd_vma target;
  bfd_vma starget;

  /* Basic opcode */
  bfd_vma jmp_insn = 0x0000940c;

  /* Massage our args to the form they really have.  */
  hsh = avr_stub_hash_entry (bh);

  if (!hsh->is_actually_needed)
    return true;

  info = (struct bfd_link_info *) in_arg;

  htab = avr_link_hash_table (info);
  if (htab == NULL)
    return false;

  target = hsh->target_value;

  /* Make a note of the offset within the stubs for this entry.  */
  hsh->stub_offset = htab->stub_sec->size;
  loc = htab->stub_sec->contents + hsh->stub_offset;

  stub_bfd = htab->stub_sec->owner;

  if (debug_stubs)
    printf ("Building one Stub. Address: 0x%x, Offset: 0x%x\n",
	     (unsigned int) target,
	     (unsigned int) hsh->stub_offset);

  /* We now have to add the information on the jump target to the bare
     opcode bits already set in jmp_insn.  */

  /* Check for the alignment of the address.  */
  if (target & 1)
     return false;

  starget = target >> 1;
  jmp_insn |= ((starget & 0x10000) | ((starget << 3) & 0x1f00000)) >> 16;
  bfd_put_16 (stub_bfd, jmp_insn, loc);
  bfd_put_16 (stub_bfd, (bfd_vma) starget & 0xffff, loc + 2);

  htab->stub_sec->size += 4;

  /* Now add the entries in the address mapping table if there is still
     space left.  */
  {
    unsigned int nr;

    nr = htab->amt_entry_cnt + 1;
    if (nr <= htab->amt_max_entry_cnt)
      {
	htab->amt_entry_cnt = nr;

	htab->amt_stub_offsets[nr - 1] = hsh->stub_offset;
	htab->amt_destination_addr[nr - 1] = target;
      }
  }

  return true;
}

static bool
avr_mark_stub_not_to_be_necessary (struct bfd_hash_entry *bh,
				   void *in_arg ATTRIBUTE_UNUSED)
{
  struct elf32_avr_stub_hash_entry *hsh;

  hsh = avr_stub_hash_entry (bh);
  hsh->is_actually_needed = false;

  return true;
}

static bool
avr_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
{
  struct elf32_avr_stub_hash_entry *hsh;
  struct elf32_avr_link_hash_table *htab;
  int size;

  /* Massage our args to the form they really have.  */
  hsh = avr_stub_hash_entry (bh);
  htab = in_arg;

  if (hsh->is_actually_needed)
    size = 4;
  else
    size = 0;

  htab->stub_sec->size += size;
  return true;
}

void
elf32_avr_setup_params (struct bfd_link_info *info,
			bfd *avr_stub_bfd,
			asection *avr_stub_section,
			bool no_stubs,
			bool deb_stubs,
			bool deb_relax,
			bfd_vma pc_wrap_around,
			bool call_ret_replacement)
{
  struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);

  if (htab == NULL)
    return;
  htab->stub_sec = avr_stub_section;
  htab->stub_bfd = avr_stub_bfd;
  htab->no_stubs = no_stubs;

  debug_relax = deb_relax;
  debug_stubs = deb_stubs;
  avr_pc_wrap_around = pc_wrap_around;
  avr_replace_call_ret_sequences = call_ret_replacement;
}


/* Set up various things so that we can make a list of input sections
   for each output section included in the link.  Returns -1 on error,
   0 when no stubs will be needed, and 1 on success.  It also sets
   information on the stubs bfd and the stub section in the info
   struct.  */

int
elf32_avr_setup_section_lists (bfd *output_bfd,
			       struct bfd_link_info *info)
{
  bfd *input_bfd;
  unsigned int bfd_count;
  unsigned int top_id, top_index;
  asection *section;
  asection **input_list, **list;
  size_t amt;
  struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);

  if (htab == NULL || htab->no_stubs)
    return 0;

  /* Count the number of input BFDs and find the top input section id.  */
  for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
       input_bfd != NULL;
       input_bfd = input_bfd->link.next)
    {
      bfd_count += 1;
      for (section = input_bfd->sections;
	   section != NULL;
	   section = section->next)
	if (top_id < section->id)
	  top_id = section->id;
    }

  htab->bfd_count = bfd_count;

  /* We can't use output_bfd->section_count here to find the top output
     section index as some sections may have been removed, and
     strip_excluded_output_sections doesn't renumber the indices.  */
  for (section = output_bfd->sections, top_index = 0;
       section != NULL;
       section = section->next)
    if (top_index < section->index)
      top_index = section->index;

  htab->top_index = top_index;
  amt = sizeof (asection *) * (top_index + 1);
  input_list = bfd_malloc (amt);
  htab->input_list = input_list;
  if (input_list == NULL)
    return -1;

  /* For sections we aren't interested in, mark their entries with a
     value we can check later.  */
  list = input_list + top_index;
  do
    *list = bfd_abs_section_ptr;
  while (list-- != input_list);

  for (section = output_bfd->sections;
       section != NULL;
       section = section->next)
    if ((section->flags & SEC_CODE) != 0)
      input_list[section->index] = NULL;

  return 1;
}


/* Read in all local syms for all input bfds, and create hash entries
   for export stubs if we are building a multi-subspace shared lib.
   Returns -1 on error, 0 otherwise.  */

static int
get_local_syms (bfd *input_bfd, struct bfd_link_info *info)
{
  unsigned int bfd_indx;
  Elf_Internal_Sym *local_syms, **all_local_syms;
  struct elf32_avr_link_hash_table *htab = avr_link_hash_table (info);
  size_t amt;

  if (htab == NULL)
    return -1;

  /* We want to read in symbol extension records only once.  To do this
     we need to read in the local symbols in parallel and save them for
     later use; so hold pointers to the local symbols in an array.  */
  amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
  all_local_syms = bfd_zmalloc (amt);
  htab->all_local_syms = all_local_syms;
  if (all_local_syms == NULL)
    return -1;

  /* Walk over all the input BFDs, swapping in local symbols.
     If we are creating a shared library, create hash entries for the
     export stubs.  */
  for (bfd_indx = 0;
       input_bfd != NULL;
       input_bfd = input_bfd->link.next, bfd_indx++)
    {
      Elf_Internal_Shdr *symtab_hdr;

      /* We'll need the symbol table in a second.  */
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      if (symtab_hdr->sh_info == 0)
	continue;

      /* We need an array of the local symbols attached to the input bfd.  */
      local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
      if (local_syms == NULL)
	{
	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
					     symtab_hdr->sh_info, 0,
					     NULL, NULL, NULL);
	  /* Cache them for elf_link_input_bfd.  */
	  symtab_hdr->contents = (unsigned char *) local_syms;
	}
      if (local_syms == NULL)
	return -1;

      all_local_syms[bfd_indx] = local_syms;
    }

  return 0;
}

#define ADD_DUMMY_STUBS_FOR_DEBUGGING 0

bool
elf32_avr_size_stubs (bfd *output_bfd,
		      struct bfd_link_info *info,
		      bool is_prealloc_run)
{
  struct elf32_avr_link_hash_table *htab;
  int stub_changed = 0;

  htab = avr_link_hash_table (info);
  if (htab == NULL)
    return false;

  /* At this point we initialize htab->vector_base
     To the start of the text output section.  */
  htab->vector_base = htab->stub_sec->output_section->vma;

  if (get_local_syms (info->input_bfds, info))
    {
      if (htab->all_local_syms)
	goto error_ret_free_local;
      return false;
    }

  if (ADD_DUMMY_STUBS_FOR_DEBUGGING)
    {
      struct elf32_avr_stub_hash_entry *test;

      test = avr_add_stub ("Hugo",htab);
      test->target_value = 0x123456;
      test->stub_offset = 13;

      test = avr_add_stub ("Hugo2",htab);
      test->target_value = 0x84210;
      test->stub_offset = 14;
    }

  while (1)
    {
      bfd *input_bfd;
      unsigned int bfd_indx;

      /* We will have to re-generate the stub hash table each time anything
	 in memory has changed.  */

      bfd_hash_traverse (&htab->bstab, avr_mark_stub_not_to_be_necessary, htab);
      for (input_bfd = info->input_bfds, bfd_indx = 0;
	   input_bfd != NULL;
	   input_bfd = input_bfd->link.next, bfd_indx++)
	{
	  Elf_Internal_Shdr *symtab_hdr;
	  asection *section;
	  Elf_Internal_Sym *local_syms;

	  /* We'll need the symbol table in a second.  */
	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
	  if (symtab_hdr->sh_info == 0)
	    continue;

	  local_syms = htab->all_local_syms[bfd_indx];

	  /* Walk over each section attached to the input bfd.  */
	  for (section = input_bfd->sections;
	       section != NULL;
	       section = section->next)
	    {
	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;

	      /* If there aren't any relocs, then there's nothing more
		 to do.  */
	      if ((section->flags & SEC_RELOC) == 0
		  || section->reloc_count == 0)
		continue;

	      /* If this section is a link-once section that will be
		 discarded, then don't create any stubs.  */
	      if (section->output_section == NULL
		  || section->output_section->owner != output_bfd)
		continue;

	      /* Get the relocs.  */
	      internal_relocs
		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
					     info->keep_memory);
	      if (internal_relocs == NULL)
		goto error_ret_free_local;

	      /* Now examine each relocation.  */
	      irela = internal_relocs;
	      irelaend = irela + section->reloc_count;
	      for (; irela < irelaend; irela++)
		{
		  unsigned int r_type, r_indx;
		  struct elf32_avr_stub_hash_entry *hsh;
		  asection *sym_sec;
		  bfd_vma sym_value;
		  bfd_vma destination;
		  struct elf_link_hash_entry *hh;
		  char *stub_name;

		  r_type = ELF32_R_TYPE (irela->r_info);
		  r_indx = ELF32_R_SYM (irela->r_info);

		  /* Only look for 16 bit GS relocs. No other reloc will need a
		     stub.  */
		  if (!((r_type == R_AVR_16_PM)
			|| (r_type == R_AVR_LO8_LDI_GS)
			|| (r_type == R_AVR_HI8_LDI_GS)))
		    continue;

		  /* Now determine the call target, its name, value,
		     section.  */
		  sym_sec = NULL;
		  sym_value = 0;
		  destination = 0;
		  hh = NULL;
		  if (r_indx < symtab_hdr->sh_info)
		    {
		      /* It's a local symbol.  */
		      Elf_Internal_Sym *sym;
		      Elf_Internal_Shdr *hdr;
		      unsigned int shndx;

		      sym = local_syms + r_indx;
		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
			sym_value = sym->st_value;
		      shndx = sym->st_shndx;
		      if (shndx < elf_numsections (input_bfd))
			{
			  hdr = elf_elfsections (input_bfd)[shndx];
			  sym_sec = hdr->bfd_section;
			  destination = (sym_value + irela->r_addend
					 + sym_sec->output_offset
					 + sym_sec->output_section->vma);
			}
		    }
		  else
		    {
		      /* It's an external symbol.  */
		      int e_indx;

		      e_indx = r_indx - symtab_hdr->sh_info;
		      hh = elf_sym_hashes (input_bfd)[e_indx];

		      while (hh->root.type == bfd_link_hash_indirect
			     || hh->root.type == bfd_link_hash_warning)
			hh = (struct elf_link_hash_entry *)
			      (hh->root.u.i.link);

		      if (hh->root.type == bfd_link_hash_defined
			  || hh->root.type == bfd_link_hash_defweak)
			{
			  sym_sec = hh->root.u.def.section;
			  sym_value = hh->root.u.def.value;
			  if (sym_sec->output_section != NULL)
			  destination = (sym_value + irela->r_addend
					 + sym_sec->output_offset
					 + sym_sec->output_section->vma);
			}
		      else if (hh->root.type == bfd_link_hash_undefweak)
			{
			  if (! bfd_link_pic (info))
			    continue;
			}
		      else if (hh->root.type == bfd_link_hash_undefined)
			{
			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
				 && (ELF_ST_VISIBILITY (hh->other)
				     == STV_DEFAULT)))
			     continue;
			}
		      else
			{
			  bfd_set_error (bfd_error_bad_value);

			  error_ret_free_internal:
			  if (elf_section_data (section)->relocs == NULL)
			    free (internal_relocs);
			  goto error_ret_free_local;
			}
		    }

		  if (! avr_stub_is_required_for_16_bit_reloc
		      (destination - htab->vector_base))
		    {
		      if (!is_prealloc_run)
			/* We are having a reloc that does't need a stub.  */
			continue;

		      /* We don't right now know if a stub will be needed.
			 Let's rather be on the safe side.  */
		    }

		  /* Get the name of this stub.  */
		  stub_name = avr_stub_name (sym_sec, sym_value, irela);

		  if (!stub_name)
		    goto error_ret_free_internal;


		  hsh = avr_stub_hash_lookup (&htab->bstab,
					      stub_name,
					      false, false);
		  if (hsh != NULL)
		    {
		      /* The proper stub has already been created.  Mark it
			 to be used and write the possibly changed destination
			 value.  */
		      hsh->is_actually_needed = true;
		      hsh->target_value = destination;
		      free (stub_name);
		      continue;
		    }

		  hsh = avr_add_stub (stub_name, htab);
		  if (hsh == NULL)
		    {
		      free (stub_name);
		      goto error_ret_free_internal;
		    }

		  hsh->is_actually_needed = true;
		  hsh->target_value = destination;

		  if (debug_stubs)
		    printf ("Adding stub with destination 0x%x to the"
			    " hash table.\n", (unsigned int) destination);
		  if (debug_stubs)
		    printf ("(Pre-Alloc run: %i)\n", is_prealloc_run);

		  stub_changed = true;
		}

	      /* We're done with the internal relocs, free them.  */
	      if (elf_section_data (section)->relocs == NULL)
		free (internal_relocs);
	    }
	}

      /* Re-Calculate the number of needed stubs.  */
      htab->stub_sec->size = 0;
      bfd_hash_traverse (&htab->bstab, avr_size_one_stub, htab);

      if (!stub_changed)
	break;

      stub_changed = false;
    }

  free (htab->all_local_syms);
  return true;

 error_ret_free_local:
  free (htab->all_local_syms);
  return false;
}


/* Build all the stubs associated with the current output file.  The
   stubs are kept in a hash table attached to the main linker hash
   table.  We also set up the .plt entries for statically linked PIC
   functions here.  This function is called via hppaelf_finish in the
   linker.  */

bool
elf32_avr_build_stubs (struct bfd_link_info *info)
{
  asection *stub_sec;
  struct bfd_hash_table *table;
  struct elf32_avr_link_hash_table *htab;
  bfd_size_type total_size = 0;

  htab = avr_link_hash_table (info);
  if (htab == NULL)
    return false;

  /* In case that there were several stub sections:  */
  for (stub_sec = htab->stub_bfd->sections;
       stub_sec != NULL;
       stub_sec = stub_sec->next)
    {
      bfd_size_type size;

      /* Allocate memory to hold the linker stubs.  */
      size = stub_sec->size;
      total_size += size;

      stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
      if (stub_sec->contents == NULL && size != 0)
	return false;
      stub_sec->size = 0;
    }

  /* Allocate memory for the adress mapping table.  */
  htab->amt_entry_cnt = 0;
  htab->amt_max_entry_cnt = total_size / 4;
  htab->amt_stub_offsets = bfd_malloc (sizeof (bfd_vma)
				       * htab->amt_max_entry_cnt);
  htab->amt_destination_addr = bfd_malloc (sizeof (bfd_vma)
					   * htab->amt_max_entry_cnt );

  if (debug_stubs)
    printf ("Allocating %i entries in the AMT\n", htab->amt_max_entry_cnt);

  /* Build the stubs as directed by the stub hash table.  */
  table = &htab->bstab;
  bfd_hash_traverse (table, avr_build_one_stub, info);

  if (debug_stubs)
    printf ("Final Stub section Size: %i\n", (int) htab->stub_sec->size);

  return true;
}

/* Callback used by QSORT to order relocations AP and BP.  */

static int
internal_reloc_compare (const void *ap, const void *bp)
{
  const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
  const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;

  if (a->r_offset != b->r_offset)
    return (a->r_offset - b->r_offset);

  /* We don't need to sort on these criteria for correctness,
     but enforcing a more strict ordering prevents unstable qsort
     from behaving differently with different implementations.
     Without the code below we get correct but different results
     on Solaris 2.7 and 2.8.  We would like to always produce the
     same results no matter the host.  */

  if (a->r_info != b->r_info)
    return (a->r_info - b->r_info);

  return (a->r_addend - b->r_addend);
}

/* Return true if ADDRESS is within the vma range of SECTION from ABFD.  */

static bool
avr_is_section_for_address (asection *section, bfd_vma address)
{
  bfd_vma vma;
  bfd_size_type size;

  vma = bfd_section_vma (section);
  if (address < vma)
    return false;

  size = section->size;
  if (address >= vma + size)
    return false;

  return true;
}

/* Data structure used by AVR_FIND_SECTION_FOR_ADDRESS.  */

struct avr_find_section_data
{
  /* The address we're looking for.  */
  bfd_vma address;

  /* The section we've found.  */
  asection *section;
};

/* Helper function to locate the section holding a certain virtual memory
   address.  This is called via bfd_map_over_sections.  The DATA is an
   instance of STRUCT AVR_FIND_SECTION_DATA, the address field of which
   has been set to the address to search for, and the section field has
   been set to NULL.  If SECTION from ABFD contains ADDRESS then the
   section field in DATA will be set to SECTION.  As an optimisation, if
   the section field is already non-null then this function does not
   perform any checks, and just returns.  */

static void
avr_find_section_for_address (bfd *abfd ATTRIBUTE_UNUSED,
			      asection *section, void *data)
{
  struct avr_find_section_data *fs_data
    = (struct avr_find_section_data *) data;

  /* Return if already found.  */
  if (fs_data->section != NULL)
    return;

  /* If this section isn't part of the addressable code content, skip it.  */
  if ((bfd_section_flags (section) & SEC_ALLOC) == 0
      && (bfd_section_flags (section) & SEC_CODE) == 0)
    return;

  if (avr_is_section_for_address (section, fs_data->address))
    fs_data->section = section;
}

/* Load all of the property records from SEC, a section from ABFD.  Return
   a STRUCT AVR_PROPERTY_RECORD_LIST containing all the records.  The
   memory for the returned structure, and all of the records pointed too by
   the structure are allocated with a single call to malloc, so, only the
   pointer returned needs to be free'd.  */

static struct avr_property_record_list *
avr_elf32_load_records_from_section (bfd *abfd, asection *sec)
{
  bfd_byte *contents, *ptr;
  bfd_size_type size, mem_size;
  bfd_byte version, flags;
  uint16_t record_count, i;
  struct avr_property_record_list *r_list = NULL;
  Elf_Internal_Rela *internal_relocs = NULL, *rel, *rel_end;
  struct avr_find_section_data fs_data;

  fs_data.section = NULL;

  if (!bfd_malloc_and_get_section (abfd, sec, &contents))
    goto load_failed;
  ptr = contents;

  /* Load the relocations for the '.avr.prop' section if there are any, and
     sort them.  */
  internal_relocs = (_bfd_elf_link_read_relocs
		     (abfd, sec, NULL, NULL, false));
  if (internal_relocs)
    qsort (internal_relocs, sec->reloc_count,
	   sizeof (Elf_Internal_Rela), internal_reloc_compare);

  /* There is a header at the start of the property record section SEC, the
     format of this header is:
       uint8_t  : version number
       uint8_t  : flags
       uint16_t : record counter
  */

  /* Check we have at least got a headers worth of bytes.  */
  size = bfd_section_size (sec);
  if (size < AVR_PROPERTY_SECTION_HEADER_SIZE)
    goto load_failed;

  version = *ptr;
  ptr++;
  flags = *ptr;
  ptr++;
  record_count = bfd_get_16 (abfd, ptr);
  ptr += 2;
  BFD_ASSERT (ptr - contents == AVR_PROPERTY_SECTION_HEADER_SIZE);

  /* Now allocate space for the list structure, and all of the list
     elements in a single block.  */
  mem_size = sizeof (struct avr_property_record_list)
    + sizeof (struct avr_property_record) * record_count;
  r_list = bfd_malloc (mem_size);
  if (r_list == NULL)
    goto load_failed;

  r_list->version = version;
  r_list->flags = flags;
  r_list->section = sec;
  r_list->record_count = record_count;
  r_list->records = (struct avr_property_record *) (&r_list [1]);
  size -= AVR_PROPERTY_SECTION_HEADER_SIZE;

  /* Check that we understand the version number.  There is only one
     version number right now, anything else is an error.  */
  if (r_list->version != AVR_PROPERTY_RECORDS_VERSION)
    goto load_failed;

  rel = internal_relocs;
  rel_end = rel + sec->reloc_count;
  for (i = 0; i < record_count; ++i)
    {
      bfd_vma address;

      /* Each entry is a 32-bit address, followed by a single byte type.
	 After that is the type specific data.  We must take care to
	 ensure that we don't read beyond the end of the section data.  */
      if (size < 5)
	goto load_failed;

      r_list->records [i].section = NULL;
      r_list->records [i].offset = 0;

      if (rel)
	{
	  /* The offset of the address within the .avr.prop section.  */
	  size_t offset = ptr - contents;

	  while (rel < rel_end && rel->r_offset < offset)
	    ++rel;

	  if (rel == rel_end)
	    rel = NULL;
	  else if (rel->r_offset == offset)
	    {
	      /* Find section and section offset.  */
	      unsigned long r_symndx;

	      asection * rel_sec;
	      bfd_vma sec_offset;

	      r_symndx = ELF32_R_SYM (rel->r_info);
	      rel_sec = get_elf_r_symndx_section (abfd, r_symndx);
	      sec_offset = get_elf_r_symndx_offset (abfd, r_symndx)
		+ rel->r_addend;

	      r_list->records [i].section = rel_sec;
	      r_list->records [i].offset = sec_offset;
	    }
	}

      address = bfd_get_32 (abfd, ptr);
      ptr += 4;
      size -= 4;

      if (r_list->records [i].section == NULL)
	{
	  /* Try to find section and offset from address.  */
	  if (fs_data.section != NULL
	      && !avr_is_section_for_address (fs_data.section, address))
	    fs_data.section = NULL;

	  if (fs_data.section == NULL)
	    {
	      fs_data.address = address;
	      bfd_map_over_sections (abfd, avr_find_section_for_address,
				     &fs_data);
	    }

	  if (fs_data.section == NULL)
	    {
	      fprintf (stderr, "Failed to find matching section.\n");
	      goto load_failed;
	    }

	  r_list->records [i].section = fs_data.section;
	  r_list->records [i].offset
	    = address - bfd_section_vma (fs_data.section);
	}

      r_list->records [i].type = *ptr;
      ptr += 1;
      size -= 1;

      switch (r_list->records [i].type)
	{
	case RECORD_ORG:
	  /* Nothing else to load.  */
	  break;
	case RECORD_ORG_AND_FILL:
	  /* Just a 4-byte fill to load.  */
	  if (size < 4)
	    goto load_failed;
	  r_list->records [i].data.org.fill = bfd_get_32 (abfd, ptr);
	  ptr += 4;
	  size -= 4;
	  break;
	case RECORD_ALIGN:
	  /* Just a 4-byte alignment to load.  */
	  if (size < 4)
	    goto load_failed;
	  r_list->records [i].data.align.bytes = bfd_get_32 (abfd, ptr);
	  ptr += 4;
	  size -= 4;
	  /* Just initialise PRECEDING_DELETED field, this field is
	     used during linker relaxation.  */
	  r_list->records [i].data.align.preceding_deleted = 0;
	  break;
	case RECORD_ALIGN_AND_FILL:
	  /* A 4-byte alignment, and a 4-byte fill to load.  */
	  if (size < 8)
	    goto load_failed;
	  r_list->records [i].data.align.bytes = bfd_get_32 (abfd, ptr);
	  ptr += 4;
	  r_list->records [i].data.align.fill = bfd_get_32 (abfd, ptr);
	  ptr += 4;
	  size -= 8;
	  /* Just initialise PRECEDING_DELETED field, this field is
	     used during linker relaxation.  */
	  r_list->records [i].data.align.preceding_deleted = 0;
	  break;
	default:
	  goto load_failed;
	}
    }

  free (contents);
  if (elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
  return r_list;

 load_failed:
  if (elf_section_data (sec)->relocs != internal_relocs)
    free (internal_relocs);
  free (contents);
  free (r_list);
  return NULL;
}

/* Load all of the property records from ABFD.  See
   AVR_ELF32_LOAD_RECORDS_FROM_SECTION for details of the return value.  */

struct avr_property_record_list *
avr_elf32_load_property_records (bfd *abfd)
{
  asection *sec;

  /* Find the '.avr.prop' section and load the contents into memory.  */
  sec = bfd_get_section_by_name (abfd, AVR_PROPERTY_RECORD_SECTION_NAME);
  if (sec == NULL)
    return NULL;
  return avr_elf32_load_records_from_section (abfd, sec);
}

const char *
avr_elf32_property_record_name (struct avr_property_record *rec)
{
  const char *str;

  switch (rec->type)
    {
    case RECORD_ORG:
      str = "ORG";
      break;
    case RECORD_ORG_AND_FILL:
      str = "ORG+FILL";
      break;
    case RECORD_ALIGN:
      str = "ALIGN";
      break;
    case RECORD_ALIGN_AND_FILL:
      str = "ALIGN+FILL";
      break;
    default:
      str = "unknown";
    }

  return str;
}


#define ELF_ARCH		bfd_arch_avr
#define ELF_TARGET_ID		AVR_ELF_DATA
#define ELF_MACHINE_CODE	EM_AVR
#define ELF_MACHINE_ALT1	EM_AVR_OLD
#define ELF_MAXPAGESIZE		1

#define TARGET_LITTLE_SYM	avr_elf32_vec
#define TARGET_LITTLE_NAME	"elf32-avr"

#define bfd_elf32_bfd_link_hash_table_create elf32_avr_link_hash_table_create

#define elf_info_to_howto		     avr_info_to_howto_rela
#define elf_info_to_howto_rel		     NULL
#define elf_backend_relocate_section	     elf32_avr_relocate_section
#define elf_backend_can_gc_sections	     1
#define elf_backend_rela_normal		     1
#define elf_backend_final_write_processing \
					bfd_elf_avr_final_write_processing
#define elf_backend_object_p		elf32_avr_object_p

#define bfd_elf32_bfd_relax_section elf32_avr_relax_section
#define bfd_elf32_bfd_get_relocated_section_contents \
					elf32_avr_get_relocated_section_contents
#define bfd_elf32_new_section_hook	elf_avr_new_section_hook
#define elf_backend_special_sections	elf_avr_special_sections

#include "elf32-target.h"