aboutsummaryrefslogtreecommitdiff
ModeNameSize
-rw-r--r--.cvsignore378logplain
-rw-r--r--COPYING18007logplain
-rw-r--r--COPYING.LIB25283logplain
-rw-r--r--COPYING.LIBGLOSS7750logplain
-rw-r--r--COPYING.NEWLIB6376logplain
-rw-r--r--ChangeLog269952logplain
-rw-r--r--MAINTAINERS4003logplain
-rw-r--r--Makefile.in64831logplain
-rw-r--r--README1719logplain
-rw-r--r--README-maintainer-mode716logplain
d---------bfd12956logplain
d---------binutils3353logplain
-rw-r--r--config-ml.in23186logplain
-rwxr-xr-xconfig.guess38597logplain
-rw-r--r--config.if2147logplain
-rwxr-xr-xconfig.sub29088logplain
d---------config1856logplain
-rwxr-xr-xconfigure50355logplain
-rw-r--r--configure.in55452logplain
-rwxr-xr-xdjunpack.bat1875logplain
d---------etc766logplain
d---------gas3396logplain
d---------gdb19288logplain
-rw-r--r--gettext.m411357logplain
d---------gprof2258logplain
d---------include1743logplain
-rwxr-xr-xinstall-sh5598logplain
d---------intl1142logplain
d---------ld2284logplain
d---------libiberty4042logplain
-rw-r--r--libtool.m429872logplain
-rw-r--r--ltcf-c.sh32617logplain
-rw-r--r--ltcf-cxx.sh36393logplain
-rw-r--r--ltcf-gcj.sh27361logplain
-rwxr-xr-xltconfig85415logplain
-rw-r--r--ltmain.sh156250logplain
-rw-r--r--makefile.vms1087logplain
-rwxr-xr-xmissing6283logplain
-rwxr-xr-xmkdep2179logplain
-rwxr-xr-xmkinstalldirs730logplain
d---------mmalloc1044logplain
-rwxr-xr-xmove-if-change880logplain
-rw-r--r--mpw-README14898logplain
-rw-r--r--mpw-build.in5169logplain
-rw-r--r--mpw-config.in4742logplain
-rw-r--r--mpw-configure14664logplain
-rw-r--r--mpw-install3171logplain
d---------opcodes5827logplain
d---------readline2535logplain
-rw-r--r--setup.com220logplain
d---------sim993logplain
-rwxr-xr-xsymlink-tree1130logplain
d---------texinfo39logplain
-rwxr-xr-xylwrap3268logplain
/a> 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794
/* Subroutines used for code generation on IBM RS/6000.
   Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published
   by the Free Software Foundation; either version 3, or (at your
   option) any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "obstack.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "except.h"
#include "function.h"
#include "output.h"
#include "basic-block.h"
#include "integrate.h"
#include "toplev.h"
#include "ggc.h"
#include "hashtab.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
#include "langhooks.h"
#include "reload.h"
#include "cfglayout.h"
#include "sched-int.h"
#include "gimple.h"
#include "tree-flow.h"
#include "intl.h"
#include "params.h"
#include "tm-constrs.h"
#if TARGET_XCOFF
#include "xcoffout.h"  /* get declarations of xcoff_*_section_name */
#endif
#if TARGET_MACHO
#include "gstab.h"  /* for N_SLINE */
#endif

#ifndef TARGET_NO_PROTOTYPE
#define TARGET_NO_PROTOTYPE 0
#endif

#define min(A,B)	((A) < (B) ? (A) : (B))
#define max(A,B)	((A) > (B) ? (A) : (B))

/* Structure used to define the rs6000 stack */
typedef struct rs6000_stack {
  int first_gp_reg_save;	/* first callee saved GP register used */
  int first_fp_reg_save;	/* first callee saved FP register used */
  int first_altivec_reg_save;	/* first callee saved AltiVec register used */
  int lr_save_p;		/* true if the link reg needs to be saved */
  int cr_save_p;		/* true if the CR reg needs to be saved */
  unsigned int vrsave_mask;	/* mask of vec registers to save */
  int push_p;			/* true if we need to allocate stack space */
  int calls_p;			/* true if the function makes any calls */
  int world_save_p;		/* true if we're saving *everything*:
				   r13-r31, cr, f14-f31, vrsave, v20-v31  */
  enum rs6000_abi abi;		/* which ABI to use */
  int gp_save_offset;		/* offset to save GP regs from initial SP */
  int fp_save_offset;		/* offset to save FP regs from initial SP */
  int altivec_save_offset;	/* offset to save AltiVec regs from initial SP */
  int lr_save_offset;		/* offset to save LR from initial SP */
  int cr_save_offset;		/* offset to save CR from initial SP */
  int vrsave_save_offset;	/* offset to save VRSAVE from initial SP */
  int spe_gp_save_offset;	/* offset to save spe 64-bit gprs  */
  int varargs_save_offset;	/* offset to save the varargs registers */
  int ehrd_offset;		/* offset to EH return data */
  int reg_size;			/* register size (4 or 8) */
  HOST_WIDE_INT vars_size;	/* variable save area size */
  int parm_size;		/* outgoing parameter size */
  int save_size;		/* save area size */
  int fixed_size;		/* fixed size of stack frame */
  int gp_size;			/* size of saved GP registers */
  int fp_size;			/* size of saved FP registers */
  int altivec_size;		/* size of saved AltiVec registers */
  int cr_size;			/* size to hold CR if not in save_size */
  int vrsave_size;		/* size to hold VRSAVE if not in save_size */
  int altivec_padding_size;	/* size of altivec alignment padding if
				   not in save_size */
  int spe_gp_size;		/* size of 64-bit GPR save size for SPE */
  int spe_padding_size;
  HOST_WIDE_INT total_size;	/* total bytes allocated for stack */
  int spe_64bit_regs_used;
} rs6000_stack_t;

/* A C structure for machine-specific, per-function data.
   This is added to the cfun structure.  */
typedef struct GTY(()) machine_function
{
  /* Flags if __builtin_return_address (n) with n >= 1 was used.  */
  int ra_needs_full_frame;
  /* Some local-dynamic symbol.  */
  const char *some_ld_name;
  /* Whether the instruction chain has been scanned already.  */
  int insn_chain_scanned_p;
  /* Flags if __builtin_return_address (0) was used.  */
  int ra_need_lr;
  /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
     varargs save area.  */
  HOST_WIDE_INT varargs_save_offset;
  /* Temporary stack slot to use for SDmode copies.  This slot is
     64-bits wide and is allocated early enough so that the offset
     does not overflow the 16-bit load/store offset field.  */
  rtx sdmode_stack_slot;
} machine_function;

/* Target cpu type */

enum processor_type rs6000_cpu;
struct rs6000_cpu_select rs6000_select[3] =
{
  /* switch		name,			tune	arch */
  { (const char *)0,	"--with-cpu=",		1,	1 },
  { (const char *)0,	"-mcpu=",		1,	1 },
  { (const char *)0,	"-mtune=",		1,	0 },
};

/* Always emit branch hint bits.  */
static GTY(()) bool rs6000_always_hint;

/* Schedule instructions for group formation.  */
static GTY(()) bool rs6000_sched_groups;

/* Align branch targets.  */
static GTY(()) bool rs6000_align_branch_targets;

/* Support for -msched-costly-dep option.  */
const char *rs6000_sched_costly_dep_str;
enum rs6000_dependence_cost rs6000_sched_costly_dep;

/* Support for -minsert-sched-nops option.  */
const char *rs6000_sched_insert_nops_str;
enum rs6000_nop_insertion rs6000_sched_insert_nops;

/* Support targetm.vectorize.builtin_mask_for_load.  */
static GTY(()) tree altivec_builtin_mask_for_load;

/* Size of long double.  */
int rs6000_long_double_type_size;

/* IEEE quad extended precision long double. */
int rs6000_ieeequad;

/* Nonzero to use AltiVec ABI.  */
int rs6000_altivec_abi;

/* Nonzero if we want SPE SIMD instructions.  */
int rs6000_spe;

/* Nonzero if we want SPE ABI extensions.  */
int rs6000_spe_abi;

/* Nonzero if floating point operations are done in the GPRs.  */
int rs6000_float_gprs = 0;

/* Nonzero if we want Darwin's struct-by-value-in-regs ABI.  */
int rs6000_darwin64_abi;

/* Set to nonzero once AIX common-mode calls have been defined.  */
static GTY(()) int common_mode_defined;

/* Label number of label created for -mrelocatable, to call to so we can
   get the address of the GOT section */
int rs6000_pic_labelno;

#ifdef USING_ELFOS_H
/* Which abi to adhere to */
const char *rs6000_abi_name;

/* Semantics of the small data area */
enum rs6000_sdata_type rs6000_sdata = SDATA_DATA;

/* Which small data model to use */
const char *rs6000_sdata_name = (char *)0;

/* Counter for labels which are to be placed in .fixup.  */
int fixuplabelno = 0;
#endif

/* Bit size of immediate TLS offsets and string from which it is decoded.  */
int rs6000_tls_size = 32;
const char *rs6000_tls_size_string;

/* ABI enumeration available for subtarget to use.  */
enum rs6000_abi rs6000_current_abi;

/* Whether to use variant of AIX ABI for PowerPC64 Linux.  */
int dot_symbols;

/* Debug flags */
const char *rs6000_debug_name;
int rs6000_debug_stack;		/* debug stack applications */
int rs6000_debug_arg;		/* debug argument handling */
int rs6000_debug_reg;		/* debug register classes */
int rs6000_debug_addr;		/* debug memory addressing */
int rs6000_debug_cost;		/* debug rtx_costs */

/* Specify the machine mode that pointers have.  After generation of rtl, the
   compiler makes no further distinction between pointers and any other objects
   of this machine mode.  The type is unsigned since not all things that
   include rs6000.h also include machmode.h.  */
unsigned rs6000_pmode;

/* Width in bits of a pointer.  */
unsigned rs6000_pointer_size;


/* Value is TRUE if register/mode pair is acceptable.  */
bool rs6000_hard_regno_mode_ok_p[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];

/* Maximum number of registers needed for a given register class and mode.  */
unsigned char rs6000_class_max_nregs[NUM_MACHINE_MODES][LIM_REG_CLASSES];

/* How many registers are needed for a given register and mode.  */
unsigned char rs6000_hard_regno_nregs[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];

/* Map register number to register class.  */
enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];

/* Reload functions based on the type and the vector unit.  */
static enum insn_code rs6000_vector_reload[NUM_MACHINE_MODES][2];

/* Built in types.  */
tree rs6000_builtin_types[RS6000_BTI_MAX];
tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];

const char *rs6000_traceback_name;
static enum {
  traceback_default = 0,
  traceback_none,
  traceback_part,
  traceback_full
} rs6000_traceback;

/* Flag to say the TOC is initialized */
int toc_initialized;
char toc_label_name[10];

/* Cached value of rs6000_variable_issue. This is cached in
   rs6000_variable_issue hook and returned from rs6000_sched_reorder2.  */
static short cached_can_issue_more;

static GTY(()) section *read_only_data_section;
static GTY(()) section *private_data_section;
static GTY(()) section *read_only_private_data_section;
static GTY(()) section *sdata2_section;
static GTY(()) section *toc_section;

/* Control alignment for fields within structures.  */
/* String from -malign-XXXXX.  */
int rs6000_alignment_flags;

/* True for any options that were explicitly set.  */
static struct {
  bool aix_struct_ret;		/* True if -maix-struct-ret was used.  */
  bool alignment;		/* True if -malign- was used.  */
  bool spe_abi;			/* True if -mabi=spe/no-spe was used.  */
  bool altivec_abi;		/* True if -mabi=altivec/no-altivec used.  */
  bool spe;			/* True if -mspe= was used.  */
  bool float_gprs;		/* True if -mfloat-gprs= was used.  */
  bool long_double;	        /* True if -mlong-double- was used.  */
  bool ieee;			/* True if -mabi=ieee/ibmlongdouble used.  */
  bool vrsave;			/* True if -mvrsave was used.  */
} rs6000_explicit_options;

struct builtin_description
{
  /* mask is not const because we're going to alter it below.  This
     nonsense will go away when we rewrite the -march infrastructure
     to give us more target flag bits.  */
  unsigned int mask;
  const enum insn_code icode;
  const char *const name;
  const enum rs6000_builtins code;
};

/* Describe the vector unit used for modes.  */
enum rs6000_vector rs6000_vector_unit[NUM_MACHINE_MODES];
enum rs6000_vector rs6000_vector_mem[NUM_MACHINE_MODES];

/* Register classes for various constraints that are based on the target
   switches.  */
enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];

/* Describe the alignment of a vector.  */
int rs6000_vector_align[NUM_MACHINE_MODES];

/* Map selected modes to types for builtins.  */
static GTY(()) tree builtin_mode_to_type[MAX_MACHINE_MODE][2];

/* Target cpu costs.  */

struct processor_costs {
  const int mulsi;	  /* cost of SImode multiplication.  */
  const int mulsi_const;  /* cost of SImode multiplication by constant.  */
  const int mulsi_const9; /* cost of SImode mult by short constant.  */
  const int muldi;	  /* cost of DImode multiplication.  */
  const int divsi;	  /* cost of SImode division.  */
  const int divdi;	  /* cost of DImode division.  */
  const int fp;		  /* cost of simple SFmode and DFmode insns.  */
  const int dmul;	  /* cost of DFmode multiplication (and fmadd).  */
  const int sdiv;	  /* cost of SFmode division (fdivs).  */
  const int ddiv;	  /* cost of DFmode division (fdiv).  */
  const int cache_line_size;    /* cache line size in bytes. */
  const int l1_cache_size;	/* size of l1 cache, in kilobytes.  */
  const int l2_cache_size;	/* size of l2 cache, in kilobytes.  */
  const int simultaneous_prefetches; /* number of parallel prefetch
					operations.  */
};

const struct processor_costs *rs6000_cost;

/* Processor costs (relative to an add) */

/* Instruction size costs on 32bit processors.  */
static const
struct processor_costs size32_cost = {
  COSTS_N_INSNS (1),    /* mulsi */
  COSTS_N_INSNS (1),    /* mulsi_const */
  COSTS_N_INSNS (1),    /* mulsi_const9 */
  COSTS_N_INSNS (1),    /* muldi */
  COSTS_N_INSNS (1),    /* divsi */
  COSTS_N_INSNS (1),    /* divdi */
  COSTS_N_INSNS (1),    /* fp */
  COSTS_N_INSNS (1),    /* dmul */
  COSTS_N_INSNS (1),    /* sdiv */
  COSTS_N_INSNS (1),    /* ddiv */
  32,
  0,
  0,
  0,
};

/* Instruction size costs on 64bit processors.  */
static const
struct processor_costs size64_cost = {
  COSTS_N_INSNS (1),    /* mulsi */
  COSTS_N_INSNS (1),    /* mulsi_const */
  COSTS_N_INSNS (1),    /* mulsi_const9 */
  COSTS_N_INSNS (1),    /* muldi */
  COSTS_N_INSNS (1),    /* divsi */
  COSTS_N_INSNS (1),    /* divdi */
  COSTS_N_INSNS (1),    /* fp */
  COSTS_N_INSNS (1),    /* dmul */
  COSTS_N_INSNS (1),    /* sdiv */
  COSTS_N_INSNS (1),    /* ddiv */
  128,
  0,
  0,
  0,
};

/* Instruction costs on RIOS1 processors.  */
static const
struct processor_costs rios1_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (19),   /* divsi */
  COSTS_N_INSNS (19),   /* divdi */
  COSTS_N_INSNS (2),    /* fp */
  COSTS_N_INSNS (2),    /* dmul */
  COSTS_N_INSNS (19),   /* sdiv */
  COSTS_N_INSNS (19),   /* ddiv */
  128,			/* cache line size */
  64,			/* l1 cache */
  512,			/* l2 cache */
  0,			/* streams */
};

/* Instruction costs on RIOS2 processors.  */
static const
struct processor_costs rios2_cost = {
  COSTS_N_INSNS (2),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (2),    /* muldi */
  COSTS_N_INSNS (13),   /* divsi */
  COSTS_N_INSNS (13),   /* divdi */
  COSTS_N_INSNS (2),    /* fp */
  COSTS_N_INSNS (2),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (17),   /* ddiv */
  256,			/* cache line size */
  256,			/* l1 cache */
  1024,			/* l2 cache */
  0,			/* streams */
};

/* Instruction costs on RS64A processors.  */
static const
struct processor_costs rs64a_cost = {
  COSTS_N_INSNS (20),   /* mulsi */
  COSTS_N_INSNS (12),   /* mulsi_const */
  COSTS_N_INSNS (8),    /* mulsi_const9 */
  COSTS_N_INSNS (34),   /* muldi */
  COSTS_N_INSNS (65),   /* divsi */
  COSTS_N_INSNS (67),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (31),   /* sdiv */
  COSTS_N_INSNS (31),   /* ddiv */
  128,			/* cache line size */
  128,			/* l1 cache */
  2048,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on MPCCORE processors.  */
static const
struct processor_costs mpccore_cost = {
  COSTS_N_INSNS (2),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (2),    /* muldi */
  COSTS_N_INSNS (6),    /* divsi */
  COSTS_N_INSNS (6),    /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (10),   /* sdiv */
  COSTS_N_INSNS (17),   /* ddiv */
  32,			/* cache line size */
  4,			/* l1 cache */
  16,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC403 processors.  */
static const
struct processor_costs ppc403_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (33),   /* divsi */
  COSTS_N_INSNS (33),   /* divdi */
  COSTS_N_INSNS (11),   /* fp */
  COSTS_N_INSNS (11),   /* dmul */
  COSTS_N_INSNS (11),   /* sdiv */
  COSTS_N_INSNS (11),   /* ddiv */
  32,			/* cache line size */
  4,			/* l1 cache */
  16,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC405 processors.  */
static const
struct processor_costs ppc405_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (35),   /* divsi */
  COSTS_N_INSNS (35),   /* divdi */
  COSTS_N_INSNS (11),   /* fp */
  COSTS_N_INSNS (11),   /* dmul */
  COSTS_N_INSNS (11),   /* sdiv */
  COSTS_N_INSNS (11),   /* ddiv */
  32,			/* cache line size */
  16,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC440 processors.  */
static const
struct processor_costs ppc440_cost = {
  COSTS_N_INSNS (3),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (3),    /* muldi */
  COSTS_N_INSNS (34),   /* divsi */
  COSTS_N_INSNS (34),   /* divdi */
  COSTS_N_INSNS (5),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (19),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC476 processors.  */
static const
struct processor_costs ppc476_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (11),   /* divsi */
  COSTS_N_INSNS (11),   /* divdi */
  COSTS_N_INSNS (6),    /* fp */
  COSTS_N_INSNS (6),    /* dmul */
  COSTS_N_INSNS (19),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,			/* l1 cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC601 processors.  */
static const
struct processor_costs ppc601_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (5),    /* mulsi_const */
  COSTS_N_INSNS (5),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (36),   /* divsi */
  COSTS_N_INSNS (36),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (31),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC603 processors.  */
static const
struct processor_costs ppc603_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (3),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (37),   /* divsi */
  COSTS_N_INSNS (37),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,			/* cache line size */
  8,			/* l1 cache */
  64,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC604 processors.  */
static const
struct processor_costs ppc604_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (20),   /* divsi */
  COSTS_N_INSNS (20),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (32),   /* ddiv */
  32,			/* cache line size */
  16,			/* l1 cache */
  512,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC604e processors.  */
static const
struct processor_costs ppc604e_cost = {
  COSTS_N_INSNS (2),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (2),    /* muldi */
  COSTS_N_INSNS (20),   /* divsi */
  COSTS_N_INSNS (20),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (32),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC620 processors.  */
static const
struct processor_costs ppc620_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (7),    /* muldi */
  COSTS_N_INSNS (21),   /* divsi */
  COSTS_N_INSNS (37),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (32),   /* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC630 processors.  */
static const
struct processor_costs ppc630_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (7),    /* muldi */
  COSTS_N_INSNS (21),   /* divsi */
  COSTS_N_INSNS (37),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (21),   /* ddiv */
  128,			/* cache line size */
  64,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on Cell processor.  */
/* COSTS_N_INSNS (1) ~ one add.  */
static const
struct processor_costs ppccell_cost = {
  COSTS_N_INSNS (9/2)+2,    /* mulsi */
  COSTS_N_INSNS (6/2),    /* mulsi_const */
  COSTS_N_INSNS (6/2),    /* mulsi_const9 */
  COSTS_N_INSNS (15/2)+2,   /* muldi */
  COSTS_N_INSNS (38/2),   /* divsi */
  COSTS_N_INSNS (70/2),   /* divdi */
  COSTS_N_INSNS (10/2),   /* fp */
  COSTS_N_INSNS (10/2),   /* dmul */
  COSTS_N_INSNS (74/2),   /* sdiv */
  COSTS_N_INSNS (74/2),   /* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  6,			/* streams */
};

/* Instruction costs on PPC750 and PPC7400 processors.  */
static const
struct processor_costs ppc750_cost = {
  COSTS_N_INSNS (5),    /* mulsi */
  COSTS_N_INSNS (3),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (5),    /* muldi */
  COSTS_N_INSNS (17),   /* divsi */
  COSTS_N_INSNS (17),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (31),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  512,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC7450 processors.  */
static const
struct processor_costs ppc7450_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (3),    /* mulsi_const */
  COSTS_N_INSNS (3),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (23),   /* divsi */
  COSTS_N_INSNS (23),   /* divdi */
  COSTS_N_INSNS (5),    /* fp */
  COSTS_N_INSNS (5),    /* dmul */
  COSTS_N_INSNS (21),   /* sdiv */
  COSTS_N_INSNS (35),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  1,			/* streams */
};

/* Instruction costs on PPC8540 processors.  */
static const
struct processor_costs ppc8540_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (19),   /* divsi */
  COSTS_N_INSNS (19),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (29),   /* sdiv */
  COSTS_N_INSNS (29),   /* ddiv */
  32,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  1,			/* prefetch streams /*/
};

/* Instruction costs on E300C2 and E300C3 cores.  */
static const
struct processor_costs ppce300c2c3_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (19),   /* divsi */
  COSTS_N_INSNS (19),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (4),    /* dmul */
  COSTS_N_INSNS (18),   /* sdiv */
  COSTS_N_INSNS (33),   /* ddiv */
  32,
  16,			/* l1 cache */
  16,			/* l2 cache */
  1,			/* prefetch streams /*/
};

/* Instruction costs on PPCE500MC processors.  */
static const
struct processor_costs ppce500mc_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (14),   /* divsi */
  COSTS_N_INSNS (14),   /* divdi */
  COSTS_N_INSNS (8),    /* fp */
  COSTS_N_INSNS (10),   /* dmul */
  COSTS_N_INSNS (36),   /* sdiv */
  COSTS_N_INSNS (66),   /* ddiv */
  64,			/* cache line size */
  32,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* prefetch streams /*/
};

/* Instruction costs on PPCE500MC64 processors.  */
static const
struct processor_costs ppce500mc64_cost = {
  COSTS_N_INSNS (4),    /* mulsi */
  COSTS_N_INSNS (4),    /* mulsi_const */
  COSTS_N_INSNS (4),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (14),   /* divsi */
  COSTS_N_INSNS (14),   /* divdi */
  COSTS_N_INSNS (4),    /* fp */
  COSTS_N_INSNS (10),   /* dmul */
  COSTS_N_INSNS (36),   /* sdiv */
  COSTS_N_INSNS (66),   /* ddiv */
  64,			/* cache line size */
  32,			/* l1 cache */
  128,			/* l2 cache */
  1,			/* prefetch streams /*/
};

/* Instruction costs on POWER4 and POWER5 processors.  */
static const
struct processor_costs power4_cost = {
  COSTS_N_INSNS (3),    /* mulsi */
  COSTS_N_INSNS (2),    /* mulsi_const */
  COSTS_N_INSNS (2),    /* mulsi_const9 */
  COSTS_N_INSNS (4),    /* muldi */
  COSTS_N_INSNS (18),   /* divsi */
  COSTS_N_INSNS (34),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (17),   /* sdiv */
  COSTS_N_INSNS (17),   /* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  1024,			/* l2 cache */
  8,			/* prefetch streams /*/
};

/* Instruction costs on POWER6 processors.  */
static const
struct processor_costs power6_cost = {
  COSTS_N_INSNS (8),    /* mulsi */
  COSTS_N_INSNS (8),    /* mulsi_const */
  COSTS_N_INSNS (8),    /* mulsi_const9 */
  COSTS_N_INSNS (8),    /* muldi */
  COSTS_N_INSNS (22),   /* divsi */
  COSTS_N_INSNS (28),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (13),   /* sdiv */
  COSTS_N_INSNS (16),   /* ddiv */
  128,			/* cache line size */
  64,			/* l1 cache */
  2048,			/* l2 cache */
  16,			/* prefetch streams */
};

/* Instruction costs on POWER7 processors.  */
static const
struct processor_costs power7_cost = {
  COSTS_N_INSNS (2),	/* mulsi */
  COSTS_N_INSNS (2),	/* mulsi_const */
  COSTS_N_INSNS (2),	/* mulsi_const9 */
  COSTS_N_INSNS (2),	/* muldi */
  COSTS_N_INSNS (18),	/* divsi */
  COSTS_N_INSNS (34),	/* divdi */
  COSTS_N_INSNS (3),	/* fp */
  COSTS_N_INSNS (3),	/* dmul */
  COSTS_N_INSNS (13),	/* sdiv */
  COSTS_N_INSNS (16),	/* ddiv */
  128,			/* cache line size */
  32,			/* l1 cache */
  256,			/* l2 cache */
  12,			/* prefetch streams */
};

/* Instruction costs on POWER A2 processors.  */
static const
struct processor_costs ppca2_cost = {
  COSTS_N_INSNS (16),    /* mulsi */
  COSTS_N_INSNS (16),    /* mulsi_const */
  COSTS_N_INSNS (16),    /* mulsi_const9 */
  COSTS_N_INSNS (16),   /* muldi */
  COSTS_N_INSNS (22),   /* divsi */
  COSTS_N_INSNS (28),   /* divdi */
  COSTS_N_INSNS (3),    /* fp */
  COSTS_N_INSNS (3),    /* dmul */
  COSTS_N_INSNS (59),   /* sdiv */
  COSTS_N_INSNS (72),   /* ddiv */
  64,
  16,			/* l1 cache */
  2048,			/* l2 cache */
  16,			/* prefetch streams */
};


/* Table that classifies rs6000 builtin functions (pure, const, etc.).  */
#undef RS6000_BUILTIN
#undef RS6000_BUILTIN_EQUATE
#define RS6000_BUILTIN(NAME, TYPE) TYPE,
#define RS6000_BUILTIN_EQUATE(NAME, VALUE)

static const enum rs6000_btc builtin_classify[(int)RS6000_BUILTIN_COUNT] =
{
#include "rs6000-builtin.def"
};

#undef RS6000_BUILTIN
#undef RS6000_BUILTIN_EQUATE


static bool rs6000_function_ok_for_sibcall (tree, tree);
static const char *rs6000_invalid_within_doloop (const_rtx);
static bool rs6000_legitimate_address_p (enum machine_mode, rtx, bool);
static bool rs6000_debug_legitimate_address_p (enum machine_mode, rtx, bool);
static rtx rs6000_generate_compare (rtx, enum machine_mode);
static void rs6000_emit_stack_tie (void);
static void rs6000_frame_related (rtx, rtx, HOST_WIDE_INT, rtx, rtx);
static bool spe_func_has_64bit_regs_p (void);
static void emit_frame_save (rtx, rtx, enum machine_mode, unsigned int,
			     int, HOST_WIDE_INT);
static rtx gen_frame_mem_offset (enum machine_mode, rtx, int);
static void rs6000_emit_allocate_stack (HOST_WIDE_INT, int, int);
static unsigned rs6000_hash_constant (rtx);
static unsigned toc_hash_function (const void *);
static int toc_hash_eq (const void *, const void *);
static bool reg_offset_addressing_ok_p (enum machine_mode);
static bool virtual_stack_registers_memory_p (rtx);
static bool constant_pool_expr_p (rtx);
static bool legitimate_small_data_p (enum machine_mode, rtx);
static bool legitimate_lo_sum_address_p (enum machine_mode, rtx, int);
static struct machine_function * rs6000_init_machine_status (void);
static bool rs6000_assemble_integer (rtx, unsigned int, int);
static bool no_global_regs_above (int, bool);
#ifdef HAVE_GAS_HIDDEN
static void rs6000_assemble_visibility (tree, int);
#endif
static int rs6000_ra_ever_killed (void);
static tree rs6000_handle_longcall_attribute (tree *, tree, tree, int, bool *);
static tree rs6000_handle_altivec_attribute (tree *, tree, tree, int, bool *);
static bool rs6000_ms_bitfield_layout_p (const_tree);
static tree rs6000_handle_struct_attribute (tree *, tree, tree, int, bool *);
static void rs6000_eliminate_indexed_memrefs (rtx operands[2]);
static const char *rs6000_mangle_type (const_tree);
static void rs6000_set_default_type_attributes (tree);
static rtx rs6000_savres_routine_sym (rs6000_stack_t *, bool, bool, bool);
static rtx rs6000_emit_stack_reset (rs6000_stack_t *, rtx, rtx, int, bool);
static rtx rs6000_make_savres_rtx (rs6000_stack_t *, rtx, int,
				   enum machine_mode, bool, bool, bool);
static bool rs6000_reg_live_or_pic_offset_p (int);
static tree rs6000_builtin_vectorized_function (tree, tree, tree);
static int rs6000_savres_strategy (rs6000_stack_t *, bool, int, int);
static void rs6000_restore_saved_cr (rtx, int);
static void rs6000_output_function_prologue (FILE *, HOST_WIDE_INT);
static void rs6000_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void rs6000_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT,
				    tree);
static rtx rs6000_emit_set_long_const (rtx, HOST_WIDE_INT, HOST_WIDE_INT);
static bool rs6000_return_in_memory (const_tree, const_tree);
static rtx rs6000_function_value (const_tree, const_tree, bool);
static void rs6000_file_start (void);
#if TARGET_ELF
static int rs6000_elf_reloc_rw_mask (void);
static void rs6000_elf_asm_out_constructor (rtx, int);
static void rs6000_elf_asm_out_destructor (rtx, int);
static void rs6000_elf_end_indicate_exec_stack (void) ATTRIBUTE_UNUSED;
static void rs6000_elf_asm_init_sections (void);
static section *rs6000_elf_select_rtx_section (enum machine_mode, rtx,
					       unsigned HOST_WIDE_INT);
static void rs6000_elf_encode_section_info (tree, rtx, int)
     ATTRIBUTE_UNUSED;
#endif
static bool rs6000_use_blocks_for_constant_p (enum machine_mode, const_rtx);
static void rs6000_alloc_sdmode_stack_slot (void);
static void rs6000_instantiate_decls (void);
#if TARGET_XCOFF
static void rs6000_xcoff_asm_output_anchor (rtx);
static void rs6000_xcoff_asm_globalize_label (FILE *, const char *);
static void rs6000_xcoff_asm_init_sections (void);
static int rs6000_xcoff_reloc_rw_mask (void);
static void rs6000_xcoff_asm_named_section (const char *, unsigned int, tree);
static section *rs6000_xcoff_select_section (tree, int,
					     unsigned HOST_WIDE_INT);
static void rs6000_xcoff_unique_section (tree, int);
static section *rs6000_xcoff_select_rtx_section
  (enum machine_mode, rtx, unsigned HOST_WIDE_INT);
static const char * rs6000_xcoff_strip_name_encoding (const char *);
static unsigned int rs6000_xcoff_section_type_flags (tree, const char *, int);
static void rs6000_xcoff_file_start (void);
static void rs6000_xcoff_file_end (void);
#endif
static int rs6000_variable_issue (FILE *, int, rtx, int);
static bool rs6000_rtx_costs (rtx, int, int, int *, bool);
static bool rs6000_debug_rtx_costs (rtx, int, int, int *, bool);
static int rs6000_debug_address_cost (rtx, bool);
static int rs6000_adjust_cost (rtx, rtx, rtx, int);
static int rs6000_debug_adjust_cost (rtx, rtx, rtx, int);
static void rs6000_sched_init (FILE *, int, int);
static bool is_microcoded_insn (rtx);
static bool is_nonpipeline_insn (rtx);
static bool is_cracked_insn (rtx);
static bool is_branch_slot_insn (rtx);
static bool is_load_insn (rtx);
static rtx get_store_dest (rtx pat);
static bool is_store_insn (rtx);
static bool set_to_load_agen (rtx,rtx);
static bool adjacent_mem_locations (rtx,rtx);
static int rs6000_adjust_priority (rtx, int);
static int rs6000_issue_rate (void);
static bool rs6000_is_costly_dependence (dep_t, int, int);
static rtx get_next_active_insn (rtx, rtx);
static bool insn_terminates_group_p (rtx , enum group_termination);
static bool insn_must_be_first_in_group (rtx);
static bool insn_must_be_last_in_group (rtx);
static bool is_costly_group (rtx *, rtx);
static int force_new_group (int, FILE *, rtx *, rtx, bool *, int, int *);
static int redefine_groups (FILE *, int, rtx, rtx);
static int pad_groups (FILE *, int, rtx, rtx);
static void rs6000_sched_finish (FILE *, int);
static int rs6000_sched_reorder (FILE *, int, rtx *, int *, int);
static int rs6000_sched_reorder2 (FILE *, int, rtx *, int *, int);
static int rs6000_use_sched_lookahead (void);
static int rs6000_use_sched_lookahead_guard (rtx);
static void * rs6000_alloc_sched_context (void);
static void rs6000_init_sched_context (void *, bool);
static void rs6000_set_sched_context (void *);
static void rs6000_free_sched_context (void *);
static tree rs6000_builtin_reciprocal (unsigned int, bool, bool);
static tree rs6000_builtin_mask_for_load (void);
static tree rs6000_builtin_mul_widen_even (tree);
static tree rs6000_builtin_mul_widen_odd (tree);
static tree rs6000_builtin_conversion (unsigned int, tree, tree);
static tree rs6000_builtin_vec_perm (tree, tree *);
static bool rs6000_builtin_support_vector_misalignment (enum
							machine_mode,
							const_tree,
							int, bool);

static void def_builtin (int, const char *, tree, int);
static bool rs6000_vector_alignment_reachable (const_tree, bool);
static void rs6000_init_builtins (void);
static tree rs6000_builtin_decl (unsigned, bool);

static rtx rs6000_expand_unop_builtin (enum insn_code, tree, rtx);
static rtx rs6000_expand_binop_builtin (enum insn_code, tree, rtx);
static rtx rs6000_expand_ternop_builtin (enum insn_code, tree, rtx);
static rtx rs6000_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
static void altivec_init_builtins (void);
static unsigned builtin_hash_function (const void *);
static int builtin_hash_eq (const void *, const void *);
static tree builtin_function_type (enum machine_mode, enum machine_mode,
				   enum machine_mode, enum machine_mode,
				   enum rs6000_builtins, const char *name);
static void rs6000_common_init_builtins (void);
static void rs6000_init_libfuncs (void);

static void paired_init_builtins (void);
static rtx paired_expand_builtin (tree, rtx, bool *);
static rtx paired_expand_lv_builtin (enum insn_code, tree, rtx);
static rtx paired_expand_stv_builtin (enum insn_code, tree);
static rtx paired_expand_predicate_builtin (enum insn_code, tree, rtx);

static void enable_mask_for_builtins (struct builtin_description *, int,
				      enum rs6000_builtins,
				      enum rs6000_builtins);
static void spe_init_builtins (void);
static rtx spe_expand_builtin (tree, rtx, bool *);
static rtx spe_expand_stv_builtin (enum insn_code, tree);
static rtx spe_expand_predicate_builtin (enum insn_code, tree, rtx);
static rtx spe_expand_evsel_builtin (enum insn_code, tree, rtx);
static int rs6000_emit_int_cmove (rtx, rtx, rtx, rtx);
static rs6000_stack_t *rs6000_stack_info (void);
static void debug_stack_info (rs6000_stack_t *);

static rtx altivec_expand_builtin (tree, rtx, bool *);
static rtx altivec_expand_ld_builtin (tree, rtx, bool *);
static rtx altivec_expand_st_builtin (tree, rtx, bool *);
static rtx altivec_expand_dst_builtin (tree, rtx, bool *);
static rtx altivec_expand_abs_builtin (enum insn_code, tree, rtx);
static rtx altivec_expand_predicate_builtin (enum insn_code, tree, rtx);
static rtx altivec_expand_stv_builtin (enum insn_code, tree);
static rtx altivec_expand_vec_init_builtin (tree, tree, rtx);
static rtx altivec_expand_vec_set_builtin (tree);
static rtx altivec_expand_vec_ext_builtin (tree, rtx);
static int get_element_number (tree, tree);
static bool rs6000_handle_option (size_t, const char *, int);
static void rs6000_parse_tls_size_option (void);
static void rs6000_parse_yes_no_option (const char *, const char *, int *);
static int first_altivec_reg_to_save (void);
static unsigned int compute_vrsave_mask (void);
static void compute_save_world_info (rs6000_stack_t *info_ptr);
static void is_altivec_return_reg (rtx, void *);
static rtx generate_set_vrsave (rtx, rs6000_stack_t *, int);
int easy_vector_constant (rtx, enum machine_mode);
static rtx rs6000_dwarf_register_span (rtx);
static void rs6000_init_dwarf_reg_sizes_extra (tree);
static rtx rs6000_legitimize_address (rtx, rtx, enum machine_mode);
static rtx rs6000_debug_legitimize_address (rtx, rtx, enum machine_mode);
static rtx rs6000_legitimize_tls_address (rtx, enum tls_model);
static void rs6000_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
static rtx rs6000_delegitimize_address (rtx);
static rtx rs6000_tls_get_addr (void);
static rtx rs6000_got_sym (void);
static int rs6000_tls_symbol_ref_1 (rtx *, void *);
static const char *rs6000_get_some_local_dynamic_name (void);
static int rs6000_get_some_local_dynamic_name_1 (rtx *, void *);
static rtx rs6000_complex_function_value (enum machine_mode);
static rtx rs6000_spe_function_arg (CUMULATIVE_ARGS *,
				    enum machine_mode, tree);
static void rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *,
						      HOST_WIDE_INT);
static void rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *,
							tree, HOST_WIDE_INT);
static void rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *,
					      HOST_WIDE_INT,
					      rtx[], int *);
static void rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *,
						const_tree, HOST_WIDE_INT,
						rtx[], int *);
static rtx rs6000_darwin64_record_arg (CUMULATIVE_ARGS *, const_tree, int, bool);
static rtx rs6000_mixed_function_arg (enum machine_mode, tree, int);
static void rs6000_move_block_from_reg (int regno, rtx x, int nregs);
static void setup_incoming_varargs (CUMULATIVE_ARGS *,
				    enum machine_mode, tree,
				    int *, int);
static bool rs6000_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
				      const_tree, bool);
static int rs6000_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
				     tree, bool);
static const char *invalid_arg_for_unprototyped_fn (const_tree, const_tree, const_tree);
#if TARGET_MACHO
static void macho_branch_islands (void);
static int no_previous_def (tree function_name);
static tree get_prev_label (tree function_name);
static void rs6000_darwin_file_start (void);
#endif

static tree rs6000_build_builtin_va_list (void);
static void rs6000_va_start (tree, rtx);
static tree rs6000_gimplify_va_arg (tree, tree, gimple_seq *, gimple_seq *);
static bool rs6000_must_pass_in_stack (enum machine_mode, const_tree);
static bool rs6000_scalar_mode_supported_p (enum machine_mode);
static bool rs6000_vector_mode_supported_p (enum machine_mode);
static rtx rs6000_emit_vector_compare_inner (enum rtx_code, rtx, rtx);
static rtx rs6000_emit_vector_compare (enum rtx_code, rtx, rtx,
				       enum machine_mode);
static tree rs6000_stack_protect_fail (void);

static rtx rs6000_legitimize_reload_address (rtx, enum machine_mode, int, int,
					     int, int *);

static rtx rs6000_debug_legitimize_reload_address (rtx, enum machine_mode, int,
						   int, int, int *);

rtx (*rs6000_legitimize_reload_address_ptr) (rtx, enum machine_mode, int, int,
					     int, int *)
  = rs6000_legitimize_reload_address;

static bool rs6000_mode_dependent_address (rtx);
static bool rs6000_debug_mode_dependent_address (rtx);
bool (*rs6000_mode_dependent_address_ptr) (rtx)
  = rs6000_mode_dependent_address;

static enum reg_class rs6000_secondary_reload_class (enum reg_class,
						     enum machine_mode, rtx);
static enum reg_class rs6000_debug_secondary_reload_class (enum reg_class,
							   enum machine_mode,
							   rtx);
enum reg_class (*rs6000_secondary_reload_class_ptr) (enum reg_class,
						     enum machine_mode, rtx)
  = rs6000_secondary_reload_class;

static enum reg_class rs6000_preferred_reload_class (rtx, enum reg_class);
static enum reg_class rs6000_debug_preferred_reload_class (rtx,
							   enum reg_class);
enum reg_class (*rs6000_preferred_reload_class_ptr) (rtx, enum reg_class)
  = rs6000_preferred_reload_class;

static bool rs6000_secondary_memory_needed (enum reg_class, enum reg_class,
					    enum machine_mode);

static bool rs6000_debug_secondary_memory_needed (enum reg_class,
						  enum reg_class,
						  enum machine_mode);

bool (*rs6000_secondary_memory_needed_ptr) (enum reg_class, enum reg_class,
					    enum machine_mode)
  = rs6000_secondary_memory_needed;

static bool rs6000_cannot_change_mode_class (enum machine_mode,
					     enum machine_mode,
					     enum reg_class);
static bool rs6000_debug_cannot_change_mode_class (enum machine_mode,
						   enum machine_mode,
						   enum reg_class);

bool (*rs6000_cannot_change_mode_class_ptr) (enum machine_mode,
					     enum machine_mode,
					     enum reg_class)
  = rs6000_cannot_change_mode_class;

static enum reg_class rs6000_secondary_reload (bool, rtx, enum reg_class,
					       enum machine_mode,
					       struct secondary_reload_info *);

static const enum reg_class *rs6000_ira_cover_classes (void);

const int INSN_NOT_AVAILABLE = -1;
static enum machine_mode rs6000_eh_return_filter_mode (void);
static bool rs6000_can_eliminate (const int, const int);
static void rs6000_trampoline_init (rtx, tree, rtx);

/* Hash table stuff for keeping track of TOC entries.  */

struct GTY(()) toc_hash_struct
{
  /* `key' will satisfy CONSTANT_P; in fact, it will satisfy
     ASM_OUTPUT_SPECIAL_POOL_ENTRY_P.  */
  rtx key;
  enum machine_mode key_mode;
  int labelno;
};

static GTY ((param_is (struct toc_hash_struct))) htab_t toc_hash_table;

/* Hash table to keep track of the argument types for builtin functions.  */

struct GTY(()) builtin_hash_struct
{
  tree type;
  enum machine_mode mode[4];	/* return value + 3 arguments.  */
  unsigned char uns_p[4];	/* and whether the types are unsigned.  */
};

static GTY ((param_is (struct builtin_hash_struct))) htab_t builtin_hash_table;

/* Default register names.  */
char rs6000_reg_names[][8] =
{
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "8",  "9", "10", "11", "12", "13", "14", "15",
     "16", "17", "18", "19", "20", "21", "22", "23",
     "24", "25", "26", "27", "28", "29", "30", "31",
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "8",  "9", "10", "11", "12", "13", "14", "15",
     "16", "17", "18", "19", "20", "21", "22", "23",
     "24", "25", "26", "27", "28", "29", "30", "31",
     "mq", "lr", "ctr","ap",
      "0",  "1",  "2",  "3",  "4",  "5",  "6",  "7",
      "xer",
      /* AltiVec registers.  */
      "0",  "1",  "2",  "3",  "4",  "5",  "6", "7",
      "8",  "9",  "10", "11", "12", "13", "14", "15",
      "16", "17", "18", "19", "20", "21", "22", "23",
      "24", "25", "26", "27", "28", "29", "30", "31",
      "vrsave", "vscr",
      /* SPE registers.  */
      "spe_acc", "spefscr",
      /* Soft frame pointer.  */
      "sfp"
};

#ifdef TARGET_REGNAMES
static const char alt_reg_names[][8] =
{
   "%r0",   "%r1",  "%r2",  "%r3",  "%r4",  "%r5",  "%r6",  "%r7",
   "%r8",   "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
  "%r16",  "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23",
  "%r24",  "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31",
   "%f0",   "%f1",  "%f2",  "%f3",  "%f4",  "%f5",  "%f6",  "%f7",
   "%f8",   "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15",
  "%f16",  "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23",
  "%f24",  "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31",
    "mq",    "lr",  "ctr",   "ap",
  "%cr0",  "%cr1", "%cr2", "%cr3", "%cr4", "%cr5", "%cr6", "%cr7",
   "xer",
  /* AltiVec registers.  */
   "%v0",  "%v1",  "%v2",  "%v3",  "%v4",  "%v5",  "%v6", "%v7",
   "%v8",  "%v9", "%v10", "%v11", "%v12", "%v13", "%v14", "%v15",
  "%v16", "%v17", "%v18", "%v19", "%v20", "%v21", "%v22", "%v23",
  "%v24", "%v25", "%v26", "%v27", "%v28", "%v29", "%v30", "%v31",
  "vrsave", "vscr",
  /* SPE registers.  */
  "spe_acc", "spefscr",
  /* Soft frame pointer.  */
  "sfp"
};
#endif

/* Table of valid machine attributes.  */

static const struct attribute_spec rs6000_attribute_table[] =
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "altivec",   1, 1, false, true,  false, rs6000_handle_altivec_attribute },
  { "longcall",  0, 0, false, true,  true,  rs6000_handle_longcall_attribute },
  { "shortcall", 0, 0, false, true,  true,  rs6000_handle_longcall_attribute },
  { "ms_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
  { "gcc_struct", 0, 0, false, false, false, rs6000_handle_struct_attribute },
#ifdef SUBTARGET_ATTRIBUTE_TABLE
  SUBTARGET_ATTRIBUTE_TABLE,
#endif
  { NULL,        0, 0, false, false, false, NULL }
};

#ifndef MASK_STRICT_ALIGN
#define MASK_STRICT_ALIGN 0
#endif
#ifndef TARGET_PROFILE_KERNEL
#define TARGET_PROFILE_KERNEL 0
#endif

/* The VRSAVE bitmask puts bit %v0 as the most significant bit.  */
#define ALTIVEC_REG_BIT(REGNO) (0x80000000 >> ((REGNO) - FIRST_ALTIVEC_REGNO))

/* Initialize the GCC target structure.  */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE rs6000_attribute_table
#undef TARGET_SET_DEFAULT_TYPE_ATTRIBUTES
#define TARGET_SET_DEFAULT_TYPE_ATTRIBUTES rs6000_set_default_type_attributes

#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP DOUBLE_INT_ASM_OP

/* Default unaligned ops are only provided for ELF.  Find the ops needed
   for non-ELF systems.  */
#ifndef OBJECT_FORMAT_ELF
#if TARGET_XCOFF
/* For XCOFF.  rs6000_assemble_integer will handle unaligned DIs on
   64-bit targets.  */
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.vbyte\t2,"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.vbyte\t4,"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\t.vbyte\t8,"
#else
/* For Darwin.  */
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\t.quad\t"
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
#endif
#endif

/* This hook deals with fixups for relocatable code and DI-mode objects
   in 64-bit code.  */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER rs6000_assemble_integer

#ifdef HAVE_GAS_HIDDEN
#undef TARGET_ASM_ASSEMBLE_VISIBILITY
#define TARGET_ASM_ASSEMBLE_VISIBILITY rs6000_assemble_visibility
#endif

#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM rs6000_tls_referenced_p

#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS rs6000_delegitimize_address

#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE rs6000_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE rs6000_output_function_epilogue

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS rs6000_legitimize_address

#undef  TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE rs6000_variable_issue

#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE rs6000_issue_rate
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST rs6000_adjust_cost
#undef TARGET_SCHED_ADJUST_PRIORITY
#define TARGET_SCHED_ADJUST_PRIORITY rs6000_adjust_priority
#undef TARGET_SCHED_IS_COSTLY_DEPENDENCE
#define TARGET_SCHED_IS_COSTLY_DEPENDENCE rs6000_is_costly_dependence
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT rs6000_sched_init
#undef TARGET_SCHED_FINISH
#define TARGET_SCHED_FINISH rs6000_sched_finish
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER rs6000_sched_reorder
#undef TARGET_SCHED_REORDER2
#define TARGET_SCHED_REORDER2 rs6000_sched_reorder2

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD rs6000_use_sched_lookahead

#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD rs6000_use_sched_lookahead_guard

#undef TARGET_SCHED_ALLOC_SCHED_CONTEXT
#define TARGET_SCHED_ALLOC_SCHED_CONTEXT rs6000_alloc_sched_context
#undef TARGET_SCHED_INIT_SCHED_CONTEXT
#define TARGET_SCHED_INIT_SCHED_CONTEXT rs6000_init_sched_context
#undef TARGET_SCHED_SET_SCHED_CONTEXT
#define TARGET_SCHED_SET_SCHED_CONTEXT rs6000_set_sched_context
#undef TARGET_SCHED_FREE_SCHED_CONTEXT
#define TARGET_SCHED_FREE_SCHED_CONTEXT rs6000_free_sched_context

#undef TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD
#define TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD rs6000_builtin_mask_for_load
#undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN
#define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_EVEN rs6000_builtin_mul_widen_even
#undef TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD
#define TARGET_VECTORIZE_BUILTIN_MUL_WIDEN_ODD rs6000_builtin_mul_widen_odd
#undef TARGET_VECTORIZE_BUILTIN_CONVERSION
#define TARGET_VECTORIZE_BUILTIN_CONVERSION rs6000_builtin_conversion
#undef TARGET_VECTORIZE_BUILTIN_VEC_PERM
#define TARGET_VECTORIZE_BUILTIN_VEC_PERM rs6000_builtin_vec_perm
#undef TARGET_SUPPORT_VECTOR_MISALIGNMENT
#define TARGET_SUPPORT_VECTOR_MISALIGNMENT		\
  rs6000_builtin_support_vector_misalignment
#undef TARGET_VECTOR_ALIGNMENT_REACHABLE
#define TARGET_VECTOR_ALIGNMENT_REACHABLE rs6000_vector_alignment_reachable

#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS rs6000_init_builtins
#undef TARGET_BUILTIN_DECL
#define TARGET_BUILTIN_DECL rs6000_builtin_decl

#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN rs6000_expand_builtin

#undef TARGET_MANGLE_TYPE
#define TARGET_MANGLE_TYPE rs6000_mangle_type

#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS rs6000_init_libfuncs

#if TARGET_MACHO
#undef TARGET_BINDS_LOCAL_P
#define TARGET_BINDS_LOCAL_P darwin_binds_local_p
#endif

#undef TARGET_MS_BITFIELD_LAYOUT_P
#define TARGET_MS_BITFIELD_LAYOUT_P rs6000_ms_bitfield_layout_p

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK rs6000_output_mi_thunk

#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL rs6000_function_ok_for_sibcall

#undef TARGET_INVALID_WITHIN_DOLOOP
#define TARGET_INVALID_WITHIN_DOLOOP rs6000_invalid_within_doloop

#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS rs6000_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_bool_0

#undef TARGET_DWARF_REGISTER_SPAN
#define TARGET_DWARF_REGISTER_SPAN rs6000_dwarf_register_span

#undef TARGET_INIT_DWARF_REG_SIZES_EXTRA
#define TARGET_INIT_DWARF_REG_SIZES_EXTRA rs6000_init_dwarf_reg_sizes_extra

/* On rs6000, function arguments are promoted, as are function return
   values.  */
#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY rs6000_return_in_memory

#undef TARGET_SETUP_INCOMING_VARARGS
#define TARGET_SETUP_INCOMING_VARARGS setup_incoming_varargs

/* Always strict argument naming on rs6000.  */
#undef TARGET_STRICT_ARGUMENT_NAMING
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
#undef TARGET_SPLIT_COMPLEX_ARG
#define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK rs6000_must_pass_in_stack
#undef TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE rs6000_pass_by_reference
#undef TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES rs6000_arg_partial_bytes

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST rs6000_build_builtin_va_list

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START rs6000_va_start

#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR rs6000_gimplify_va_arg

#undef TARGET_EH_RETURN_FILTER_MODE
#define TARGET_EH_RETURN_FILTER_MODE rs6000_eh_return_filter_mode

#undef TARGET_SCALAR_MODE_SUPPORTED_P
#define TARGET_SCALAR_MODE_SUPPORTED_P rs6000_scalar_mode_supported_p

#undef TARGET_VECTOR_MODE_SUPPORTED_P
#define TARGET_VECTOR_MODE_SUPPORTED_P rs6000_vector_mode_supported_p

#undef TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN
#define TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN invalid_arg_for_unprototyped_fn

#undef TARGET_HANDLE_OPTION
#define TARGET_HANDLE_OPTION rs6000_handle_option

#undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION
#define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \
  rs6000_builtin_vectorized_function

#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS \
  (TARGET_DEFAULT)

#undef TARGET_STACK_PROTECT_FAIL
#define TARGET_STACK_PROTECT_FAIL rs6000_stack_protect_fail

/* MPC604EUM 3.5.2 Weak Consistency between Multiple Processors
   The PowerPC architecture requires only weak consistency among
   processors--that is, memory accesses between processors need not be
   sequentially consistent and memory accesses among processors can occur
   in any order. The ability to order memory accesses weakly provides
   opportunities for more efficient use of the system bus. Unless a
   dependency exists, the 604e allows read operations to precede store
   operations.  */
#undef TARGET_RELAXED_ORDERING
#define TARGET_RELAXED_ORDERING true

#ifdef HAVE_AS_TLS
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
#define TARGET_ASM_OUTPUT_DWARF_DTPREL rs6000_output_dwarf_dtprel
#endif

/* Use a 32-bit anchor range.  This leads to sequences like:

	addis	tmp,anchor,high
	add	dest,tmp,low

   where tmp itself acts as an anchor, and can be shared between
   accesses to the same 64k page.  */
#undef TARGET_MIN_ANCHOR_OFFSET
#define TARGET_MIN_ANCHOR_OFFSET -0x7fffffff - 1
#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 0x7fffffff
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P rs6000_use_blocks_for_constant_p

#undef TARGET_BUILTIN_RECIPROCAL
#define TARGET_BUILTIN_RECIPROCAL rs6000_builtin_reciprocal

#undef TARGET_EXPAND_TO_RTL_HOOK
#define TARGET_EXPAND_TO_RTL_HOOK rs6000_alloc_sdmode_stack_slot

#undef TARGET_INSTANTIATE_DECLS
#define TARGET_INSTANTIATE_DECLS rs6000_instantiate_decls

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD rs6000_secondary_reload

#undef TARGET_IRA_COVER_CLASSES
#define TARGET_IRA_COVER_CLASSES rs6000_ira_cover_classes

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P rs6000_legitimate_address_p

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE rs6000_can_eliminate

#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT rs6000_trampoline_init

#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE rs6000_function_value

struct gcc_target targetm = TARGET_INITIALIZER;

/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.
   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers.

   For the SPE, GPRs are 64 bits but only 32 bits are visible in
   scalar instructions.  The upper 32 bits are only available to the
   SIMD instructions.

   POWER and PowerPC GPRs hold 32 bits worth;
   PowerPC64 GPRs and FPRs point register holds 64 bits worth.  */

static int
rs6000_hard_regno_nregs_internal (int regno, enum machine_mode mode)
{
  unsigned HOST_WIDE_INT reg_size;

  if (FP_REGNO_P (regno))
    reg_size = (VECTOR_MEM_VSX_P (mode)
		? UNITS_PER_VSX_WORD
		: UNITS_PER_FP_WORD);

  else if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
    reg_size = UNITS_PER_SPE_WORD;

  else if (ALTIVEC_REGNO_P (regno))
    reg_size = UNITS_PER_ALTIVEC_WORD;

  /* The value returned for SCmode in the E500 double case is 2 for
     ABI compatibility; storing an SCmode value in a single register
     would require function_arg and rs6000_spe_function_arg to handle
     SCmode so as to pass the value correctly in a pair of
     registers.  */
  else if (TARGET_E500_DOUBLE && FLOAT_MODE_P (mode) && mode != SCmode
	   && !DECIMAL_FLOAT_MODE_P (mode))
    reg_size = UNITS_PER_FP_WORD;

  else
    reg_size = UNITS_PER_WORD;

  return (GET_MODE_SIZE (mode) + reg_size - 1) / reg_size;
}

/* Value is 1 if hard register REGNO can hold a value of machine-mode
   MODE.  */
static int
rs6000_hard_regno_mode_ok (int regno, enum machine_mode mode)
{
  int last_regno = regno + rs6000_hard_regno_nregs[mode][regno] - 1;

  /* VSX registers that overlap the FPR registers are larger than for non-VSX
     implementations.  Don't allow an item to be split between a FP register
     and an Altivec register.  */
  if (VECTOR_MEM_VSX_P (mode))
    {
      if (FP_REGNO_P (regno))
	return FP_REGNO_P (last_regno);

      if (ALTIVEC_REGNO_P (regno))
	return ALTIVEC_REGNO_P (last_regno);
    }

  /* The GPRs can hold any mode, but values bigger than one register
     cannot go past R31.  */
  if (INT_REGNO_P (regno))
    return INT_REGNO_P (last_regno);

  /* The float registers (except for VSX vector modes) can only hold floating
     modes and DImode.  This excludes the 32-bit decimal float mode for
     now.  */
  if (FP_REGNO_P (regno))
    {
      if (SCALAR_FLOAT_MODE_P (mode)
	  && (mode != TDmode || (regno % 2) == 0)
	  && FP_REGNO_P (last_regno))
	return 1;

      if (GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_SIZE (mode) == UNITS_PER_FP_WORD)
	return 1;

      if (PAIRED_SIMD_REGNO_P (regno) && TARGET_PAIRED_FLOAT
	  && PAIRED_VECTOR_MODE (mode))
	return 1;

      return 0;
    }

  /* The CR register can only hold CC modes.  */
  if (CR_REGNO_P (regno))
    return GET_MODE_CLASS (mode) == MODE_CC;

  if (XER_REGNO_P (regno))
    return mode == PSImode;

  /* AltiVec only in AldyVec registers.  */
  if (ALTIVEC_REGNO_P (regno))
    return VECTOR_MEM_ALTIVEC_OR_VSX_P (mode);

  /* ...but GPRs can hold SIMD data on the SPE in one register.  */
  if (SPE_SIMD_REGNO_P (regno) && TARGET_SPE && SPE_VECTOR_MODE (mode))
    return 1;

  /* We cannot put TImode anywhere except general register and it must be able
     to fit within the register set.  In the future, allow TImode in the
     Altivec or VSX registers.  */

  return GET_MODE_SIZE (mode) <= UNITS_PER_WORD;
}

/* Print interesting facts about registers.  */
static void
rs6000_debug_reg_print (int first_regno, int last_regno, const char *reg_name)
{
  int r, m;

  for (r = first_regno; r <= last_regno; ++r)
    {
      const char *comma = "";
      int len;

      if (first_regno == last_regno)
	fprintf (stderr, "%s:\t", reg_name);
      else
	fprintf (stderr, "%s%d:\t", reg_name, r - first_regno);

      len = 8;
      for (m = 0; m < NUM_MACHINE_MODES; ++m)
	if (rs6000_hard_regno_mode_ok_p[m][r] && rs6000_hard_regno_nregs[m][r])
	  {
	    if (len > 70)
	      {
		fprintf (stderr, ",\n\t");
		len = 8;
		comma = "";
	      }

	    if (rs6000_hard_regno_nregs[m][r] > 1)
	      len += fprintf (stderr, "%s%s/%d", comma, GET_MODE_NAME (m),
			     rs6000_hard_regno_nregs[m][r]);
	    else
	      len += fprintf (stderr, "%s%s", comma, GET_MODE_NAME (m));

	    comma = ", ";
	  }

      if (call_used_regs[r])
	{
	  if (len > 70)
	    {
	      fprintf (stderr, ",\n\t");
	      len = 8;
	      comma = "";
	    }

	  len += fprintf (stderr, "%s%s", comma, "call-used");
	  comma = ", ";
	}

      if (fixed_regs[r])
	{
	  if (len > 70)
	    {
	      fprintf (stderr, ",\n\t");
	      len = 8;
	      comma = "";
	    }

	  len += fprintf (stderr, "%s%s", comma, "fixed");
	  comma = ", ";
	}

      if (len > 70)
	{
	  fprintf (stderr, ",\n\t");
	  comma = "";
	}

      fprintf (stderr, "%sregno = %d\n", comma, r);
    }
}

/* Print various interesting information with -mdebug=reg.  */
static void
rs6000_debug_reg_global (void)
{
  const char *nl = (const char *)0;
  int m;
  char costly_num[20];
  char nop_num[20];
  const char *costly_str;
  const char *nop_str;

  /* Map enum rs6000_vector to string.  */
  static const char *rs6000_debug_vector_unit[] = {
    "none",
    "altivec",
    "vsx",
    "paired",
    "spe",
    "other"
  };

  fprintf (stderr, "Register information: (last virtual reg = %d)\n",
	   LAST_VIRTUAL_REGISTER);
  rs6000_debug_reg_print (0, 31, "gr");
  rs6000_debug_reg_print (32, 63, "fp");
  rs6000_debug_reg_print (FIRST_ALTIVEC_REGNO,
			  LAST_ALTIVEC_REGNO,
			  "vs");
  rs6000_debug_reg_print (LR_REGNO, LR_REGNO, "lr");
  rs6000_debug_reg_print (CTR_REGNO, CTR_REGNO, "ctr");
  rs6000_debug_reg_print (CR0_REGNO, CR7_REGNO, "cr");
  rs6000_debug_reg_print (MQ_REGNO, MQ_REGNO, "mq");
  rs6000_debug_reg_print (XER_REGNO, XER_REGNO, "xer");
  rs6000_debug_reg_print (VRSAVE_REGNO, VRSAVE_REGNO, "vrsave");
  rs6000_debug_reg_print (VSCR_REGNO, VSCR_REGNO, "vscr");
  rs6000_debug_reg_print (SPE_ACC_REGNO, SPE_ACC_REGNO, "spe_a");
  rs6000_debug_reg_print (SPEFSCR_REGNO, SPEFSCR_REGNO, "spe_f");

  fprintf (stderr,
	   "\n"
	   "d  reg_class = %s\n"
	   "f  reg_class = %s\n"
	   "v  reg_class = %s\n"
	   "wa reg_class = %s\n"
	   "wd reg_class = %s\n"
	   "wf reg_class = %s\n"
	   "ws reg_class = %s\n\n",
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_d]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_f]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_v]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wa]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wd]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_wf]],
	   reg_class_names[rs6000_constraints[RS6000_CONSTRAINT_ws]]);

  for (m = 0; m < NUM_MACHINE_MODES; ++m)
    if (rs6000_vector_unit[m] || rs6000_vector_mem[m])
      {
	nl = "\n";
	fprintf (stderr, "Vector mode: %-5s arithmetic: %-8s move: %-8s\n",
		 GET_MODE_NAME (m),
		 rs6000_debug_vector_unit[ rs6000_vector_unit[m] ],
		 rs6000_debug_vector_unit[ rs6000_vector_mem[m] ]);
      }

  if (nl)
    fputs (nl, stderr);

  switch (rs6000_sched_costly_dep)
    {
    case max_dep_latency:
      costly_str = "max_dep_latency";
      break;

    case no_dep_costly:
      costly_str = "no_dep_costly";
      break;

    case all_deps_costly:
      costly_str = "all_deps_costly";
      break;

    case true_store_to_load_dep_costly:
      costly_str = "true_store_to_load_dep_costly";
      break;

    case store_to_load_dep_costly:
      costly_str = "store_to_load_dep_costly";
      break;

    default:
      costly_str = costly_num;
      sprintf (costly_num, "%d", (int)rs6000_sched_costly_dep);
      break;
    }

  switch (rs6000_sched_insert_nops)
    {
    case sched_finish_regroup_exact:
      nop_str = "sched_finish_regroup_exact";
      break;

    case sched_finish_pad_groups:
      nop_str = "sched_finish_pad_groups";
      break;

    case sched_finish_none:
      nop_str = "sched_finish_none";
      break;

    default:
      nop_str = nop_num;
      sprintf (nop_num, "%d", (int)rs6000_sched_insert_nops);
      break;
    }

  fprintf (stderr,
	   "always_hint                     = %s\n"
	   "align_branch_targets            = %s\n"
	   "sched_restricted_insns_priority = %d\n"
	   "sched_costly_dep                = %s\n"
	   "sched_insert_nops               = %s\n\n",
	   rs6000_always_hint ? "true" : "false",
	   rs6000_align_branch_targets ? "true" : "false",
	   (int)rs6000_sched_restricted_insns_priority,
	   costly_str, nop_str);
}

/* Initialize the various global tables that are based on register size.  */
static void
rs6000_init_hard_regno_mode_ok (void)
{
  int r, m, c;
  int align64;
  int align32;

  /* Precalculate REGNO_REG_CLASS.  */
  rs6000_regno_regclass[0] = GENERAL_REGS;
  for (r = 1; r < 32; ++r)
    rs6000_regno_regclass[r] = BASE_REGS;

  for (r = 32; r < 64; ++r)
    rs6000_regno_regclass[r] = FLOAT_REGS;

  for (r = 64; r < FIRST_PSEUDO_REGISTER; ++r)
    rs6000_regno_regclass[r] = NO_REGS;

  for (r = FIRST_ALTIVEC_REGNO; r <= LAST_ALTIVEC_REGNO; ++r)
    rs6000_regno_regclass[r] = ALTIVEC_REGS;

  rs6000_regno_regclass[CR0_REGNO] = CR0_REGS;
  for (r = CR1_REGNO; r <= CR7_REGNO; ++r)
    rs6000_regno_regclass[r] = CR_REGS;

  rs6000_regno_regclass[MQ_REGNO] = MQ_REGS;
  rs6000_regno_regclass[LR_REGNO] = LINK_REGS;
  rs6000_regno_regclass[CTR_REGNO] = CTR_REGS;
  rs6000_regno_regclass[XER_REGNO] = XER_REGS;
  rs6000_regno_regclass[VRSAVE_REGNO] = VRSAVE_REGS;
  rs6000_regno_regclass[VSCR_REGNO] = VRSAVE_REGS;
  rs6000_regno_regclass[SPE_ACC_REGNO] = SPE_ACC_REGS;
  rs6000_regno_regclass[SPEFSCR_REGNO] = SPEFSCR_REGS;
  rs6000_regno_regclass[ARG_POINTER_REGNUM] = BASE_REGS;
  rs6000_regno_regclass[FRAME_POINTER_REGNUM] = BASE_REGS;

  /* Precalculate vector information, this must be set up before the
     rs6000_hard_regno_nregs_internal below.  */
  for (m = 0; m < NUM_MACHINE_MODES; ++m)
    {
      rs6000_vector_unit[m] = rs6000_vector_mem[m] = VECTOR_NONE;
      rs6000_vector_reload[m][0] = CODE_FOR_nothing;
      rs6000_vector_reload[m][1] = CODE_FOR_nothing;
    }

  for (c = 0; c < (int)(int)RS6000_CONSTRAINT_MAX; c++)
    rs6000_constraints[c] = NO_REGS;

  /* The VSX hardware allows native alignment for vectors, but control whether the compiler
     believes it can use native alignment or still uses 128-bit alignment.  */
  if (TARGET_VSX && !TARGET_VSX_ALIGN_128)
    {
      align64 = 64;
      align32 = 32;
    }
  else
    {
      align64 = 128;
      align32 = 128;
    }

  /* V2DF mode, VSX only.  */
  if (TARGET_VSX)
    {
      rs6000_vector_unit[V2DFmode] = VECTOR_VSX;
      rs6000_vector_mem[V2DFmode] = VECTOR_VSX;
      rs6000_vector_align[V2DFmode] = align64;
    }

  /* V4SF mode, either VSX or Altivec.  */
  if (TARGET_VSX)
    {
      rs6000_vector_unit[V4SFmode] = VECTOR_VSX;
      rs6000_vector_mem[V4SFmode] = VECTOR_VSX;
      rs6000_vector_align[V4SFmode] = align32;
    }
  else if (TARGET_ALTIVEC)
    {
      rs6000_vector_unit[V4SFmode] = VECTOR_ALTIVEC;
      rs6000_vector_mem[V4SFmode] = VECTOR_ALTIVEC;
      rs6000_vector_align[V4SFmode] = align32;
    }

  /* V16QImode, V8HImode, V4SImode are Altivec only, but possibly do VSX loads
     and stores. */
  if (TARGET_ALTIVEC)
    {
      rs6000_vector_unit[V4SImode] = VECTOR_ALTIVEC;
      rs6000_vector_unit[V8HImode] = VECTOR_ALTIVEC;
      rs6000_vector_unit[V16QImode] = VECTOR_ALTIVEC;
      rs6000_vector_align[V4SImode] = align32;
      rs6000_vector_align[V8HImode] = align32;
      rs6000_vector_align[V16QImode] = align32;

      if (TARGET_VSX)
	{
	  rs6000_vector_mem[V4SImode] = VECTOR_VSX;
	  rs6000_vector_mem[V8HImode] = VECTOR_VSX;
	  rs6000_vector_mem[V16QImode] = VECTOR_VSX;
	}
      else
	{
	  rs6000_vector_mem[V4SImode] = VECTOR_ALTIVEC;
	  rs6000_vector_mem[V8HImode] = VECTOR_ALTIVEC;
	  rs6000_vector_mem[V16QImode] = VECTOR_ALTIVEC;
	}
    }

  /* V2DImode, only allow under VSX, which can do V2DI insert/splat/extract.
     Altivec doesn't have 64-bit support.  */
  if (TARGET_VSX)
    {
      rs6000_vector_mem[V2DImode] = VECTOR_VSX;
      rs6000_vector_unit[V2DImode] = VECTOR_NONE;
      rs6000_vector_align[V2DImode] = align64;
    }

  /* DFmode, see if we want to use the VSX unit.  */
  if (TARGET_VSX && TARGET_VSX_SCALAR_DOUBLE)
    {
      rs6000_vector_unit[DFmode] = VECTOR_VSX;
      rs6000_vector_mem[DFmode]
	= (TARGET_VSX_SCALAR_MEMORY ? VECTOR_VSX : VECTOR_NONE);
      rs6000_vector_align[DFmode] = align64;
    }

  /* TODO add SPE and paired floating point vector support.  */

  /* Register class constaints for the constraints that depend on compile
     switches.  */
  if (TARGET_HARD_FLOAT && TARGET_FPRS)
    rs6000_constraints[RS6000_CONSTRAINT_f] = FLOAT_REGS;

  if (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
    rs6000_constraints[RS6000_CONSTRAINT_d] = FLOAT_REGS;

  if (TARGET_VSX)
    {
      /* At present, we just use VSX_REGS, but we have different constraints
	 based on the use, in case we want to fine tune the default register
	 class used.  wa = any VSX register, wf = register class to use for
	 V4SF, wd = register class to use for V2DF, and ws = register classs to
	 use for DF scalars.  */
      rs6000_constraints[RS6000_CONSTRAINT_wa] = VSX_REGS;
      rs6000_constraints[RS6000_CONSTRAINT_wf] = VSX_REGS;
      rs6000_constraints[RS6000_CONSTRAINT_wd] = VSX_REGS;
      if (TARGET_VSX_SCALAR_DOUBLE)
	rs6000_constraints[RS6000_CONSTRAINT_ws] = VSX_REGS;
    }

  if (TARGET_ALTIVEC)
    rs6000_constraints[RS6000_CONSTRAINT_v] = ALTIVEC_REGS;

  /* Set up the reload helper functions.  */
  if (TARGET_VSX || TARGET_ALTIVEC)
    {
      if (TARGET_64BIT)
	{
	  rs6000_vector_reload[V16QImode][0] = CODE_FOR_reload_v16qi_di_store;
	  rs6000_vector_reload[V16QImode][1] = CODE_FOR_reload_v16qi_di_load;
	  rs6000_vector_reload[V8HImode][0]  = CODE_FOR_reload_v8hi_di_store;
	  rs6000_vector_reload[V8HImode][1]  = CODE_FOR_reload_v8hi_di_load;
	  rs6000_vector_reload[V4SImode][0]  = CODE_FOR_reload_v4si_di_store;
	  rs6000_vector_reload[V4SImode][1]  = CODE_FOR_reload_v4si_di_load;
	  rs6000_vector_reload[V2DImode][0]  = CODE_FOR_reload_v2di_di_store;
	  rs6000_vector_reload[V2DImode][1]  = CODE_FOR_reload_v2di_di_load;
	  rs6000_vector_reload[V4SFmode][0]  = CODE_FOR_reload_v4sf_di_store;
	  rs6000_vector_reload[V4SFmode][1]  = CODE_FOR_reload_v4sf_di_load;
	  rs6000_vector_reload[V2DFmode][0]  = CODE_FOR_reload_v2df_di_store;
	  rs6000_vector_reload[V2DFmode][1]  = CODE_FOR_reload_v2df_di_load;
	}
      else
	{
	  rs6000_vector_reload[V16QImode][0] = CODE_FOR_reload_v16qi_si_store;
	  rs6000_vector_reload[V16QImode][1] = CODE_FOR_reload_v16qi_si_load;
	  rs6000_vector_reload[V8HImode][0]  = CODE_FOR_reload_v8hi_si_store;
	  rs6000_vector_reload[V8HImode][1]  = CODE_FOR_reload_v8hi_si_load;
	  rs6000_vector_reload[V4SImode][0]  = CODE_FOR_reload_v4si_si_store;
	  rs6000_vector_reload[V4SImode][1]  = CODE_FOR_reload_v4si_si_load;
	  rs6000_vector_reload[V2DImode][0]  = CODE_FOR_reload_v2di_si_store;
	  rs6000_vector_reload[V2DImode][1]  = CODE_FOR_reload_v2di_si_load;
	  rs6000_vector_reload[V4SFmode][0]  = CODE_FOR_reload_v4sf_si_store;
	  rs6000_vector_reload[V4SFmode][1]  = CODE_FOR_reload_v4sf_si_load;
	  rs6000_vector_reload[V2DFmode][0]  = CODE_FOR_reload_v2df_si_store;
	  rs6000_vector_reload[V2DFmode][1]  = CODE_FOR_reload_v2df_si_load;
	}
    }

  /* Precalculate HARD_REGNO_NREGS.  */
  for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
    for (m = 0; m < NUM_MACHINE_MODES; ++m)
      rs6000_hard_regno_nregs[m][r]
	= rs6000_hard_regno_nregs_internal (r, (enum machine_mode)m);

  /* Precalculate HARD_REGNO_MODE_OK.  */
  for (r = 0; r < FIRST_PSEUDO_REGISTER; ++r)
    for (m = 0; m < NUM_MACHINE_MODES; ++m)
      if (rs6000_hard_regno_mode_ok (r, (enum machine_mode)m))
	rs6000_hard_regno_mode_ok_p[m][r] = true;

  /* Precalculate CLASS_MAX_NREGS sizes.  */
  for (c = 0; c < LIM_REG_CLASSES; ++c)
    {
      int reg_size;

      if (TARGET_VSX && VSX_REG_CLASS_P (c))
	reg_size = UNITS_PER_VSX_WORD;

      else if (c == ALTIVEC_REGS)
	reg_size = UNITS_PER_ALTIVEC_WORD;

      else if (c == FLOAT_REGS)
	reg_size = UNITS_PER_FP_WORD;

      else
	reg_size = UNITS_PER_WORD;

      for (m = 0; m < NUM_MACHINE_MODES; ++m)
	rs6000_class_max_nregs[m][c]
	  = (GET_MODE_SIZE (m) + reg_size - 1) / reg_size;
    }

  if (TARGET_E500_DOUBLE)
    rs6000_class_max_nregs[DFmode][GENERAL_REGS] = 1;

  if (TARGET_DEBUG_REG)
    rs6000_debug_reg_global ();
}

#if TARGET_MACHO
/* The Darwin version of SUBTARGET_OVERRIDE_OPTIONS.  */

static void
darwin_rs6000_override_options (void)
{
  /* The Darwin ABI always includes AltiVec, can't be (validly) turned
     off.  */
  rs6000_altivec_abi = 1;
  TARGET_ALTIVEC_VRSAVE = 1;
  if (DEFAULT_ABI == ABI_DARWIN)
  {
    if (MACHO_DYNAMIC_NO_PIC_P)
      {
        if (flag_pic)
            warning (0, "-mdynamic-no-pic overrides -fpic or -fPIC");
        flag_pic = 0;
      }
    else if (flag_pic == 1)
      {
        flag_pic = 2;
      }
  }
  if (TARGET_64BIT && ! TARGET_POWERPC64)
    {
      target_flags |= MASK_POWERPC64;
      warning (0, "-m64 requires PowerPC64 architecture, enabling");
    }
  if (flag_mkernel)
    {
      rs6000_default_long_calls = 1;
      target_flags |= MASK_SOFT_FLOAT;
    }

  /* Make -m64 imply -maltivec.  Darwin's 64-bit ABI includes
     Altivec.  */
  if (!flag_mkernel && !flag_apple_kext
      && TARGET_64BIT
      && ! (target_flags_explicit & MASK_ALTIVEC))
    target_flags |= MASK_ALTIVEC;

  /* Unless the user (not the configurer) has explicitly overridden
     it with -mcpu=G3 or -mno-altivec, then 10.5+ targets default to
     G4 unless targetting the kernel.  */
  if (!flag_mkernel
      && !flag_apple_kext
      && strverscmp (darwin_macosx_version_min, "10.5") >= 0
      && ! (target_flags_explicit & MASK_ALTIVEC)
      && ! rs6000_select[1].string)
    {
      target_flags |= MASK_ALTIVEC;
    }
}
#endif

/* If not otherwise specified by a target, make 'long double' equivalent to
   'double'.  */

#ifndef RS6000_DEFAULT_LONG_DOUBLE_SIZE
#define RS6000_DEFAULT_LONG_DOUBLE_SIZE 64
#endif

/* Override command line options.  Mostly we process the processor
   type and sometimes adjust other TARGET_ options.  */

void
rs6000_override_options (const char *default_cpu)
{
  size_t i, j;
  struct rs6000_cpu_select *ptr;
  int set_masks;

  /* Simplifications for entries below.  */

  enum {
    POWERPC_BASE_MASK = MASK_POWERPC | MASK_NEW_MNEMONICS,
    POWERPC_7400_MASK = POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_ALTIVEC
  };

  /* This table occasionally claims that a processor does not support
     a particular feature even though it does, but the feature is slower
     than the alternative.  Thus, it shouldn't be relied on as a
     complete description of the processor's support.

     Please keep this list in order, and don't forget to update the
     documentation in invoke.texi when adding a new processor or
     flag.  */
  static struct ptt
    {
      const char *const name;		/* Canonical processor name.  */
      const enum processor_type processor; /* Processor type enum value.  */
      const int target_enable;	/* Target flags to enable.  */
    } const processor_target_table[]
      = {{"401", PROCESSOR_PPC403, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
	 {"403", PROCESSOR_PPC403,
	  POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_STRICT_ALIGN},
	 {"405", PROCESSOR_PPC405,
	  POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
	 {"405fp", PROCESSOR_PPC405,
	  POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
	 {"440", PROCESSOR_PPC440,
	  POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
	 {"440fp", PROCESSOR_PPC440,
	  POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
	 {"464", PROCESSOR_PPC440,
	  POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_MULHW | MASK_DLMZB},
	 {"464fp", PROCESSOR_PPC440,
	  POWERPC_BASE_MASK | MASK_MULHW | MASK_DLMZB},
 	 {"476", PROCESSOR_PPC476,
	  POWERPC_BASE_MASK | MASK_SOFT_FLOAT | MASK_PPC_GFXOPT | MASK_MFCRF
	  | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_MULHW | MASK_DLMZB},
 	 {"476fp", PROCESSOR_PPC476,
	  POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_MFCRF | MASK_POPCNTB
	  | MASK_FPRND | MASK_CMPB | MASK_MULHW | MASK_DLMZB},
	 {"505", PROCESSOR_MPCCORE, POWERPC_BASE_MASK},
	 {"601", PROCESSOR_PPC601,
	  MASK_POWER | POWERPC_BASE_MASK | MASK_MULTIPLE | MASK_STRING},
	 {"602", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"603", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"604", PROCESSOR_PPC604, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"604e", PROCESSOR_PPC604e, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"620", PROCESSOR_PPC620,
	  POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
	 {"630", PROCESSOR_PPC630,
	  POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
	 {"740", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"7400", PROCESSOR_PPC7400, POWERPC_7400_MASK},
	 {"7450", PROCESSOR_PPC7450, POWERPC_7400_MASK},
	 {"750", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"801", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
	 {"821", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
	 {"823", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
	 {"8540", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN
	  | MASK_ISEL},
	 /* 8548 has a dummy entry for now.  */
	 {"8548", PROCESSOR_PPC8540, POWERPC_BASE_MASK | MASK_STRICT_ALIGN
	  | MASK_ISEL},
 	 {"a2", PROCESSOR_PPCA2,
 	  POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64 | MASK_POPCNTB
 	  | MASK_CMPB | MASK_NO_UPDATE },
	 {"e300c2", PROCESSOR_PPCE300C2, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
	 {"e300c3", PROCESSOR_PPCE300C3, POWERPC_BASE_MASK},
	 {"e500mc", PROCESSOR_PPCE500MC, POWERPC_BASE_MASK | MASK_PPC_GFXOPT
	  | MASK_ISEL},
	 {"e500mc64", PROCESSOR_PPCE500MC64, POWERPC_BASE_MASK | MASK_POWERPC64
	  | MASK_PPC_GFXOPT | MASK_ISEL},
	 {"860", PROCESSOR_MPCCORE, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
	 {"970", PROCESSOR_POWER4,
	  POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
	 {"cell", PROCESSOR_CELL,
	  POWERPC_7400_MASK  | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
	 {"common", PROCESSOR_COMMON, MASK_NEW_MNEMONICS},
	 {"ec603e", PROCESSOR_PPC603, POWERPC_BASE_MASK | MASK_SOFT_FLOAT},
	 {"G3", PROCESSOR_PPC750, POWERPC_BASE_MASK | MASK_PPC_GFXOPT},
	 {"G4",  PROCESSOR_PPC7450, POWERPC_7400_MASK},
	 {"G5", PROCESSOR_POWER4,
	  POWERPC_7400_MASK | MASK_PPC_GPOPT | MASK_MFCRF | MASK_POWERPC64},
	 {"power", PROCESSOR_POWER, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
	 {"power2", PROCESSOR_POWER,
	  MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
	 {"power3", PROCESSOR_PPC630,
	  POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
	 {"power4", PROCESSOR_POWER4,
	  POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
	  | MASK_MFCRF},
	 {"power5", PROCESSOR_POWER5,
	  POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
	  | MASK_MFCRF | MASK_POPCNTB},
	 {"power5+", PROCESSOR_POWER5,
	  POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
	  | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND},
 	 {"power6", PROCESSOR_POWER6,
	  POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
	  | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP},
	 {"power6x", PROCESSOR_POWER6,
	  POWERPC_BASE_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_PPC_GFXOPT
	  | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP
	  | MASK_MFPGPR},
	 {"power7", PROCESSOR_POWER7,
	  POWERPC_7400_MASK | MASK_POWERPC64 | MASK_PPC_GPOPT | MASK_MFCRF
	  | MASK_POPCNTB | MASK_FPRND | MASK_CMPB | MASK_DFP | MASK_POPCNTD
	  | MASK_VSX},		/* Don't add MASK_ISEL by default */
	 {"powerpc", PROCESSOR_POWERPC, POWERPC_BASE_MASK},
	 {"powerpc64", PROCESSOR_POWERPC64,
	  POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64},
	 {"rios", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
	 {"rios1", PROCESSOR_RIOS1, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
	 {"rios2", PROCESSOR_RIOS2,
	  MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING},
	 {"rsc", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
	 {"rsc1", PROCESSOR_PPC601, MASK_POWER | MASK_MULTIPLE | MASK_STRING},
	 {"rs64", PROCESSOR_RS64A,
	  POWERPC_BASE_MASK | MASK_PPC_GFXOPT | MASK_POWERPC64}
      };

  const size_t ptt_size = ARRAY_SIZE (processor_target_table);

  /* Some OSs don't support saving the high part of 64-bit registers on
     context switch.  Other OSs don't support saving Altivec registers.
     On those OSs, we don't touch the MASK_POWERPC64 or MASK_ALTIVEC
     settings; if the user wants either, the user must explicitly specify
     them and we won't interfere with the user's specification.  */

  enum {
    POWER_MASKS = MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING,
    POWERPC_MASKS = (POWERPC_BASE_MASK | MASK_PPC_GPOPT | MASK_STRICT_ALIGN
		     | MASK_PPC_GFXOPT | MASK_POWERPC64 | MASK_ALTIVEC
		     | MASK_MFCRF | MASK_POPCNTB | MASK_FPRND | MASK_MULHW
		     | MASK_DLMZB | MASK_CMPB | MASK_MFPGPR | MASK_DFP
		     | MASK_POPCNTD | MASK_VSX | MASK_ISEL | MASK_NO_UPDATE)
  };

  /* Numerous experiment shows that IRA based loop pressure
     calculation works better for RTL loop invariant motion on targets
     with enough (>= 32) registers.  It is an expensive optimization.
     So it is on only for peak performance.  */
  if (optimize >= 3)
    flag_ira_loop_pressure = 1;

  /* Set the pointer size.  */
  if (TARGET_64BIT)
    {
      rs6000_pmode = (int)DImode;
      rs6000_pointer_size = 64;
    }
  else
    {
      rs6000_pmode = (int)SImode;
      rs6000_pointer_size = 32;
    }

  set_masks = POWER_MASKS | POWERPC_MASKS | MASK_SOFT_FLOAT;
#ifdef OS_MISSING_POWERPC64
  if (OS_MISSING_POWERPC64)
    set_masks &= ~MASK_POWERPC64;
#endif
#ifdef OS_MISSING_ALTIVEC
  if (OS_MISSING_ALTIVEC)
    set_masks &= ~MASK_ALTIVEC;
#endif

  /* Don't override by the processor default if given explicitly.  */
  set_masks &= ~target_flags_explicit;

  /* Identify the processor type.  */
  rs6000_select[0].string = default_cpu;
  rs6000_cpu = TARGET_POWERPC64 ? PROCESSOR_DEFAULT64 : PROCESSOR_DEFAULT;

  for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
    {
      ptr = &rs6000_select[i];
      if (ptr->string != (char *)0 && ptr->string[0] != '\0')
	{
	  for (j = 0; j < ptt_size; j++)
	    if (! strcmp (ptr->string, processor_target_table[j].name))
	      {
		if (ptr->set_tune_p)
		  rs6000_cpu = processor_target_table[j].processor;

		if (ptr->set_arch_p)
		  {
		    target_flags &= ~set_masks;
		    target_flags |= (processor_target_table[j].target_enable
				     & set_masks);
		  }
		break;
	      }

	  if (j == ptt_size)
	    error ("bad value (%s) for %s switch", ptr->string, ptr->name);
	}
    }

  if (rs6000_cpu == PROCESSOR_PPCE300C2 || rs6000_cpu == PROCESSOR_PPCE300C3
      || rs6000_cpu == PROCESSOR_PPCE500MC || rs6000_cpu == PROCESSOR_PPCE500MC64)
    {
      if (TARGET_ALTIVEC)
	error ("AltiVec not supported in this target");
      if (TARGET_SPE)
	error ("Spe not supported in this target");
    }

  /* Disable Cell microcode if we are optimizing for the Cell
     and not optimizing for size.  */
  if (rs6000_gen_cell_microcode == -1)
    rs6000_gen_cell_microcode = !(rs6000_cpu == PROCESSOR_CELL
                                  && !optimize_size);

  /* If we are optimizing big endian systems for space and it's OK to
     use instructions that would be microcoded on the Cell, use the
     load/store multiple and string instructions.  */
  if (BYTES_BIG_ENDIAN && optimize_size && rs6000_gen_cell_microcode)
    target_flags |= ~target_flags_explicit & (MASK_MULTIPLE | MASK_STRING);

  /* Don't allow -mmultiple or -mstring on little endian systems
     unless the cpu is a 750, because the hardware doesn't support the
     instructions used in little endian mode, and causes an alignment
     trap.  The 750 does not cause an alignment trap (except when the
     target is unaligned).  */

  if (!BYTES_BIG_ENDIAN && rs6000_cpu != PROCESSOR_PPC750)
    {
      if (TARGET_MULTIPLE)
	{
	  target_flags &= ~MASK_MULTIPLE;
	  if ((target_flags_explicit & MASK_MULTIPLE) != 0)
	    warning (0, "-mmultiple is not supported on little endian systems");
	}

      if (TARGET_STRING)
	{
	  target_flags &= ~MASK_STRING;
	  if ((target_flags_explicit & MASK_STRING) != 0)
	    warning (0, "-mstring is not supported on little endian systems");
	}
    }

  /* Add some warnings for VSX.  */
  if (TARGET_VSX)
    {
      const char *msg = NULL;
      if (!TARGET_HARD_FLOAT || !TARGET_FPRS
	  || !TARGET_SINGLE_FLOAT || !TARGET_DOUBLE_FLOAT)
	{
	  if (target_flags_explicit & MASK_VSX)
	    msg = N_("-mvsx requires hardware floating point");
	  else
	    target_flags &= ~ MASK_VSX;
	}
      else if (TARGET_PAIRED_FLOAT)
	msg = N_("-mvsx and -mpaired are incompatible");
      /* The hardware will allow VSX and little endian, but until we make sure
	 things like vector select, etc. work don't allow VSX on little endian
	 systems at this point.  */
      else if (!BYTES_BIG_ENDIAN)
	msg = N_("-mvsx used with little endian code");
      else if (TARGET_AVOID_XFORM > 0)
	msg = N_("-mvsx needs indexed addressing");
      else if (!TARGET_ALTIVEC && (target_flags_explicit & MASK_ALTIVEC))
        {
	  if (target_flags_explicit & MASK_VSX)
	    msg = N_("-mvsx and -mno-altivec are incompatible");
	  else
	    msg = N_("-mno-altivec disables vsx");
        }

      if (msg)
	{
	  warning (0, msg);
	  target_flags &= ~ MASK_VSX;
	}
      else if (TARGET_VSX && !TARGET_ALTIVEC)
	target_flags |= MASK_ALTIVEC;
    }

  /* Set debug flags */
  if (rs6000_debug_name)
    {
      if (! strcmp (rs6000_debug_name, "all"))
	rs6000_debug_stack = rs6000_debug_arg = rs6000_debug_reg
	  = rs6000_debug_addr = rs6000_debug_cost = 1;
      else if (! strcmp (rs6000_debug_name, "stack"))
	rs6000_debug_stack = 1;
      else if (! strcmp (rs6000_debug_name, "arg"))
	rs6000_debug_arg = 1;
      else if (! strcmp (rs6000_debug_name, "reg"))
	rs6000_debug_reg = 1;
      else if (! strcmp (rs6000_debug_name, "addr"))
	rs6000_debug_addr = 1;
      else if (! strcmp (rs6000_debug_name, "cost"))
	rs6000_debug_cost = 1;
      else
	error ("unknown -mdebug-%s switch", rs6000_debug_name);

      /* If the appropriate debug option is enabled, replace the target hooks
	 with debug versions that call the real version and then prints
	 debugging information.  */
      if (TARGET_DEBUG_COST)
	{
	  targetm.rtx_costs = rs6000_debug_rtx_costs;
	  targetm.address_cost = rs6000_debug_address_cost;
	  targetm.sched.adjust_cost = rs6000_debug_adjust_cost;
	}

      if (TARGET_DEBUG_ADDR)
	{
	  targetm.legitimate_address_p = rs6000_debug_legitimate_address_p;
	  targetm.legitimize_address = rs6000_debug_legitimize_address;
	  rs6000_secondary_reload_class_ptr
	    = rs6000_debug_secondary_reload_class;
	  rs6000_secondary_memory_needed_ptr
	    = rs6000_debug_secondary_memory_needed;
	  rs6000_cannot_change_mode_class_ptr
	    = rs6000_debug_cannot_change_mode_class;
	  rs6000_preferred_reload_class_ptr
	    = rs6000_debug_preferred_reload_class;
	  rs6000_legitimize_reload_address_ptr
	    = rs6000_debug_legitimize_reload_address;
	  rs6000_mode_dependent_address_ptr
	    = rs6000_debug_mode_dependent_address;
	}
    }

  if (rs6000_traceback_name)
    {
      if (! strncmp (rs6000_traceback_name, "full", 4))
	rs6000_traceback = traceback_full;
      else if (! strncmp (rs6000_traceback_name, "part", 4))
	rs6000_traceback = traceback_part;
      else if (! strncmp (rs6000_traceback_name, "no", 2))
	rs6000_traceback = traceback_none;
      else
	error ("unknown -mtraceback arg %qs; expecting %<full%>, %<partial%> or %<none%>",
	       rs6000_traceback_name);
    }

  if (!rs6000_explicit_options.long_double)
    rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;

#ifndef POWERPC_LINUX
  if (!rs6000_explicit_options.ieee)
    rs6000_ieeequad = 1;
#endif

  /* Enable Altivec ABI for AIX -maltivec.  */
  if (TARGET_XCOFF && (TARGET_ALTIVEC || TARGET_VSX))
    rs6000_altivec_abi = 1;

  /* The AltiVec ABI is the default for PowerPC-64 GNU/Linux.  For
     PowerPC-32 GNU/Linux, -maltivec implies the AltiVec ABI.  It can
     be explicitly overridden in either case.  */
  if (TARGET_ELF)
    {
      if (!rs6000_explicit_options.altivec_abi
	  && (TARGET_64BIT || TARGET_ALTIVEC || TARGET_VSX))
	rs6000_altivec_abi = 1;

      /* Enable VRSAVE for AltiVec ABI, unless explicitly overridden.  */
      if (!rs6000_explicit_options.vrsave)
	TARGET_ALTIVEC_VRSAVE = rs6000_altivec_abi;
    }

  /* Set the Darwin64 ABI as default for 64-bit Darwin.  */
  if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
    {
      rs6000_darwin64_abi = 1;
#if TARGET_MACHO
      darwin_one_byte_bool = 1;
#endif
      /* Default to natural alignment, for better performance.  */
      rs6000_alignment_flags = MASK_ALIGN_NATURAL;
    }

  /* Place FP constants in the constant pool instead of TOC
     if section anchors enabled.  */
  if (flag_section_anchors)
    TARGET_NO_FP_IN_TOC = 1;

  /* Handle -mtls-size option.  */
  rs6000_parse_tls_size_option ();

#ifdef SUBTARGET_OVERRIDE_OPTIONS
  SUBTARGET_OVERRIDE_OPTIONS;
#endif
#ifdef SUBSUBTARGET_OVERRIDE_OPTIONS
  SUBSUBTARGET_OVERRIDE_OPTIONS;
#endif
#ifdef SUB3TARGET_OVERRIDE_OPTIONS
  SUB3TARGET_OVERRIDE_OPTIONS;
#endif

  if (TARGET_E500 || rs6000_cpu == PROCESSOR_PPCE500MC
      || rs6000_cpu == PROCESSOR_PPCE500MC64)
    {
      /* The e500 and e500mc do not have string instructions, and we set
	 MASK_STRING above when optimizing for size.  */
      if ((target_flags & MASK_STRING) != 0)
	target_flags = target_flags & ~MASK_STRING;
    }
  else if (rs6000_select[1].string != NULL)
    {
      /* For the powerpc-eabispe configuration, we set all these by
	 default, so let's unset them if we manually set another
	 CPU that is not the E500.  */
      if (!rs6000_explicit_options.spe_abi)
	rs6000_spe_abi = 0;
      if (!rs6000_explicit_options.spe)
	rs6000_spe = 0;
      if (!rs6000_explicit_options.float_gprs)
	rs6000_float_gprs = 0;
      if (!(target_flags_explicit & MASK_ISEL))
	target_flags &= ~MASK_ISEL;
    }

  /* Detect invalid option combinations with E500.  */
  CHECK_E500_OPTIONS;

  rs6000_always_hint = (rs6000_cpu != PROCESSOR_POWER4
			&& rs6000_cpu != PROCESSOR_POWER5
			&& rs6000_cpu != PROCESSOR_POWER6
			&& rs6000_cpu != PROCESSOR_POWER7
			&& rs6000_cpu != PROCESSOR_PPCA2
			&& rs6000_cpu != PROCESSOR_CELL);
  rs6000_sched_groups = (rs6000_cpu == PROCESSOR_POWER4
			 || rs6000_cpu == PROCESSOR_POWER5
			 || rs6000_cpu == PROCESSOR_POWER7);
  rs6000_align_branch_targets = (rs6000_cpu == PROCESSOR_POWER4
				 || rs6000_cpu == PROCESSOR_POWER5
				 || rs6000_cpu == PROCESSOR_POWER6
				 || rs6000_cpu == PROCESSOR_POWER7
				 || rs6000_cpu == PROCESSOR_PPCE500MC
				 || rs6000_cpu == PROCESSOR_PPCE500MC64);

  /* Allow debug switches to override the above settings.  */
  if (TARGET_ALWAYS_HINT > 0)
    rs6000_always_hint = TARGET_ALWAYS_HINT;

  if (TARGET_SCHED_GROUPS > 0)
    rs6000_sched_groups = TARGET_SCHED_GROUPS;

  if (TARGET_ALIGN_BRANCH_TARGETS > 0)
    rs6000_align_branch_targets = TARGET_ALIGN_BRANCH_TARGETS;

  rs6000_sched_restricted_insns_priority
    = (rs6000_sched_groups ? 1 : 0);

  /* Handle -msched-costly-dep option.  */
  rs6000_sched_costly_dep
    = (rs6000_sched_groups ? store_to_load_dep_costly : no_dep_costly);

  if (rs6000_sched_costly_dep_str)
    {
      if (! strcmp (rs6000_sched_costly_dep_str, "no"))
	rs6000_sched_costly_dep = no_dep_costly;
      else if (! strcmp (rs6000_sched_costly_dep_str, "all"))
	rs6000_sched_costly_dep = all_deps_costly;
      else if (! strcmp (rs6000_sched_costly_dep_str, "true_store_to_load"))
	rs6000_sched_costly_dep = true_store_to_load_dep_costly;
      else if (! strcmp (rs6000_sched_costly_dep_str, "store_to_load"))
	rs6000_sched_costly_dep = store_to_load_dep_costly;
      else
	rs6000_sched_costly_dep = ((enum rs6000_dependence_cost)
				   atoi (rs6000_sched_costly_dep_str));
    }

  /* Handle -minsert-sched-nops option.  */
  rs6000_sched_insert_nops
    = (rs6000_sched_groups ? sched_finish_regroup_exact : sched_finish_none);

  if (rs6000_sched_insert_nops_str)
    {
      if (! strcmp (rs6000_sched_insert_nops_str, "no"))
	rs6000_sched_insert_nops = sched_finish_none;
      else if (! strcmp (rs6000_sched_insert_nops_str, "pad"))
	rs6000_sched_insert_nops = sched_finish_pad_groups;
      else if (! strcmp (rs6000_sched_insert_nops_str, "regroup_exact"))
	rs6000_sched_insert_nops = sched_finish_regroup_exact;
      else
	rs6000_sched_insert_nops = ((enum rs6000_nop_insertion)
				    atoi (rs6000_sched_insert_nops_str));
    }

#ifdef TARGET_REGNAMES
  /* If the user desires alternate register names, copy in the
     alternate names now.  */
  if (TARGET_REGNAMES)
    memcpy (rs6000_reg_names, alt_reg_names, sizeof (rs6000_reg_names));
#endif

  /* Set aix_struct_return last, after the ABI is determined.
     If -maix-struct-return or -msvr4-struct-return was explicitly
     used, don't override with the ABI default.  */
  if (!rs6000_explicit_options.aix_struct_ret)
    aix_struct_return = (DEFAULT_ABI != ABI_V4 || DRAFT_V4_STRUCT_RET);

  if (TARGET_LONG_DOUBLE_128 && !TARGET_IEEEQUAD)
    REAL_MODE_FORMAT (TFmode) = &ibm_extended_format;

  if (TARGET_TOC)
    ASM_GENERATE_INTERNAL_LABEL (toc_label_name, "LCTOC", 1);

  /* We can only guarantee the availability of DI pseudo-ops when
     assembling for 64-bit targets.  */
  if (!TARGET_64BIT)
    {
      targetm.asm_out.aligned_op.di = NULL;
      targetm.asm_out.unaligned_op.di = NULL;
    }

  /* Set branch target alignment, if not optimizing for size.  */
  if (!optimize_size)
    {
      /* Cell wants to be aligned 8byte for dual issue. */
      if (rs6000_cpu == PROCESSOR_CELL)
	{
	  if (align_functions <= 0)
	    align_functions = 8;
	  if (align_jumps <= 0)
	    align_jumps = 8;
	  if (align_loops <= 0)
	    align_loops = 8;
 	}
      if (rs6000_align_branch_targets)
	{
	  if (align_functions <= 0)
	    align_functions = 16;
	  if (align_jumps <= 0)
	    align_jumps = 16;
	  if (align_loops <= 0)
	    align_loops = 16;
	}
      if (align_jumps_max_skip <= 0)
	align_jumps_max_skip = 15;
      if (align_loops_max_skip <= 0)
	align_loops_max_skip = 15;
    }

  /* Arrange to save and restore machine status around nested functions.  */
  init_machine_status = rs6000_init_machine_status;

  /* We should always be splitting complex arguments, but we can't break
     Linux and Darwin ABIs at the moment.  For now, only AIX is fixed.  */
  if (DEFAULT_ABI != ABI_AIX)
    targetm.calls.split_complex_arg = NULL;

  /* Initialize rs6000_cost with the appropriate target costs.  */
  if (optimize_size)
    rs6000_cost = TARGET_POWERPC64 ? &size64_cost : &size32_cost;
  else
    switch (rs6000_cpu)
      {
      case PROCESSOR_RIOS1:
	rs6000_cost = &rios1_cost;
	break;

      case PROCESSOR_RIOS2:
	rs6000_cost = &rios2_cost;
	break;

      case PROCESSOR_RS64A:
	rs6000_cost = &rs64a_cost;
	break;

      case PROCESSOR_MPCCORE:
	rs6000_cost = &mpccore_cost;
	break;

      case PROCESSOR_PPC403:
	rs6000_cost = &ppc403_cost;
	break;

      case PROCESSOR_PPC405:
	rs6000_cost = &ppc405_cost;
	break;

      case PROCESSOR_PPC440:
	rs6000_cost = &ppc440_cost;
	break;

      case PROCESSOR_PPC476:
	rs6000_cost = &ppc476_cost;
	break;

      case PROCESSOR_PPC601:
	rs6000_cost = &ppc601_cost;
	break;

      case PROCESSOR_PPC603:
	rs6000_cost = &ppc603_cost;
	break;

      case PROCESSOR_PPC604:
	rs6000_cost = &ppc604_cost;
	break;

      case PROCESSOR_PPC604e:
	rs6000_cost = &ppc604e_cost;
	break;

      case PROCESSOR_PPC620:
	rs6000_cost = &ppc620_cost;
	break;

      case PROCESSOR_PPC630:
	rs6000_cost = &ppc630_cost;
	break;

      case PROCESSOR_CELL:
	rs6000_cost = &ppccell_cost;
	break;

      case PROCESSOR_PPC750:
      case PROCESSOR_PPC7400:
	rs6000_cost = &ppc750_cost;
	break;

      case PROCESSOR_PPC7450:
	rs6000_cost = &ppc7450_cost;
	break;

      case PROCESSOR_PPC8540:
	rs6000_cost = &ppc8540_cost;
	break;

      case PROCESSOR_PPCE300C2:
      case PROCESSOR_PPCE300C3:
	rs6000_cost = &ppce300c2c3_cost;
	break;

      case PROCESSOR_PPCE500MC:
	rs6000_cost = &ppce500mc_cost;
	break;

      case PROCESSOR_PPCE500MC64:
	rs6000_cost = &ppce500mc64_cost;
	break;

      case PROCESSOR_POWER4:
      case PROCESSOR_POWER5:
	rs6000_cost = &power4_cost;
	break;

      case PROCESSOR_POWER6:
	rs6000_cost = &power6_cost;
	break;

      case PROCESSOR_POWER7:
	rs6000_cost = &power7_cost;
	break;

      case PROCESSOR_PPCA2:
	rs6000_cost = &ppca2_cost;
	break;

      default:
	gcc_unreachable ();
      }

  if (!PARAM_SET_P (PARAM_SIMULTANEOUS_PREFETCHES))
    set_param_value ("simultaneous-prefetches",
		     rs6000_cost->simultaneous_prefetches);
  if (!PARAM_SET_P (PARAM_L1_CACHE_SIZE))
    set_param_value ("l1-cache-size", rs6000_cost->l1_cache_size);
  if (!PARAM_SET_P (PARAM_L1_CACHE_LINE_SIZE))
    set_param_value ("l1-cache-line-size", rs6000_cost->cache_line_size);
  if (!PARAM_SET_P (PARAM_L2_CACHE_SIZE))
    set_param_value ("l2-cache-size", rs6000_cost->l2_cache_size);

  /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0)
     can be optimized to ap = __builtin_next_arg (0).  */
  if (DEFAULT_ABI != ABI_V4)
    targetm.expand_builtin_va_start = NULL;

  /* Set up single/double float flags.  
     If TARGET_HARD_FLOAT is set, but neither single or double is set, 
     then set both flags. */
  if (TARGET_HARD_FLOAT && TARGET_FPRS 
      && rs6000_single_float == 0 && rs6000_double_float == 0)
    rs6000_single_float = rs6000_double_float = 1;

  /* Reset single and double FP flags if target is E500. */
  if (TARGET_E500) 
  {
    rs6000_single_float = rs6000_double_float = 0;
    if (TARGET_E500_SINGLE)
      rs6000_single_float = 1; 
    if (TARGET_E500_DOUBLE)
      rs6000_single_float = rs6000_double_float = 1;
  }

  /* If not explicitly specified via option, decide whether to generate indexed
     load/store instructions.  */
  if (TARGET_AVOID_XFORM == -1)
    /* Avoid indexed addressing when targeting Power6 in order to avoid
     the DERAT mispredict penalty.  */
    TARGET_AVOID_XFORM = (rs6000_cpu == PROCESSOR_POWER6 && TARGET_CMPB);

  rs6000_init_hard_regno_mode_ok ();
}

/* Implement targetm.vectorize.builtin_mask_for_load.  */
static tree
rs6000_builtin_mask_for_load (void)
{
  if (TARGET_ALTIVEC || TARGET_VSX)
    return altivec_builtin_mask_for_load;
  else
    return 0;
}

/* Implement targetm.vectorize.builtin_conversion.
   Returns a decl of a function that implements conversion of an integer vector
   into a floating-point vector, or vice-versa.  DEST_TYPE is the
   destination type and SRC_TYPE the source type of the conversion.
   Return NULL_TREE if it is not available.  */
static tree
rs6000_builtin_conversion (unsigned int tcode, tree dest_type, tree src_type)
{
  enum tree_code code = (enum tree_code) tcode;

  switch (code)
    {
    case FIX_TRUNC_EXPR:
      switch (TYPE_MODE (dest_type))
	{
	case V2DImode:
	  if (!VECTOR_UNIT_VSX_P (V2DFmode))
	    return NULL_TREE;

	  return TYPE_UNSIGNED (dest_type)
	    ? rs6000_builtin_decls[VSX_BUILTIN_XVCVDPUXDS_UNS]
	    : rs6000_builtin_decls[VSX_BUILTIN_XVCVDPSXDS];

	case V4SImode:
	  if (VECTOR_UNIT_NONE_P (V4SImode) || VECTOR_UNIT_NONE_P (V4SFmode))
	    return NULL_TREE;

	  return TYPE_UNSIGNED (dest_type)
	    ? rs6000_builtin_decls[VECTOR_BUILTIN_FIXUNS_V4SF_V4SI]
	    : rs6000_builtin_decls[VECTOR_BUILTIN_FIX_V4SF_V4SI];

	default:
	  return NULL_TREE;
	}

    case FLOAT_EXPR:
      switch (TYPE_MODE (src_type))
	{
	case V2DImode:
	  if (!VECTOR_UNIT_VSX_P (V2DFmode))
	    return NULL_TREE;

	  return TYPE_UNSIGNED (src_type)
	    ? rs6000_builtin_decls[VSX_BUILTIN_XVCVUXDDP]
	    : rs6000_builtin_decls[VSX_BUILTIN_XVCVSXDDP];

	case V4SImode:
	  if (VECTOR_UNIT_NONE_P (V4SImode) || VECTOR_UNIT_NONE_P (V4SFmode))
	    return NULL_TREE;

	  return TYPE_UNSIGNED (src_type)
	    ? rs6000_builtin_decls[VECTOR_BUILTIN_UNSFLOAT_V4SI_V4SF]
	    : rs6000_builtin_decls[VECTOR_BUILTIN_FLOAT_V4SI_V4SF];

	default:
	  return NULL_TREE;
	}

    default:
      return NULL_TREE;
    }
}

/* Implement targetm.vectorize.builtin_mul_widen_even.  */
static tree
rs6000_builtin_mul_widen_even (tree type)
{
  if (!TARGET_ALTIVEC)
    return NULL_TREE;

  switch (TYPE_MODE (type))
    {
    case V8HImode:
      return TYPE_UNSIGNED (type)
            ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUH_UNS]
            : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESH];

    case V16QImode:
      return TYPE_UNSIGNED (type)
            ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULEUB_UNS]
            : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULESB];
    default:
      return NULL_TREE;
    }
}

/* Implement targetm.vectorize.builtin_mul_widen_odd.  */
static tree
rs6000_builtin_mul_widen_odd (tree type)
{
  if (!TARGET_ALTIVEC)
    return NULL_TREE;

  switch (TYPE_MODE (type))
    {
    case V8HImode:
      return TYPE_UNSIGNED (type)
            ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUH_UNS]
            : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSH];

    case V16QImode:
      return TYPE_UNSIGNED (type)
            ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOUB_UNS]
            : rs6000_builtin_decls[ALTIVEC_BUILTIN_VMULOSB];
    default:
      return NULL_TREE;
    }
}


/* Return true iff, data reference of TYPE can reach vector alignment (16)
   after applying N number of iterations.  This routine does not determine
   how may iterations are required to reach desired alignment.  */

static bool
rs6000_vector_alignment_reachable (const_tree type ATTRIBUTE_UNUSED, bool is_packed)
{
  if (is_packed)
    return false;

  if (TARGET_32BIT)
    {
      if (rs6000_alignment_flags == MASK_ALIGN_NATURAL)
        return true;

      if (rs6000_alignment_flags ==  MASK_ALIGN_POWER)
        return true;

      return false;
    }
  else
    {
      if (TARGET_MACHO)
        return false;

      /* Assuming that all other types are naturally aligned. CHECKME!  */
      return true;
    }
}

/* Return true if the vector misalignment factor is supported by the
   target.  */ 
bool
rs6000_builtin_support_vector_misalignment (enum machine_mode mode,
					    const_tree type,
					    int misalignment,
					    bool is_packed)
{
  if (TARGET_VSX)
    {
      /* Return if movmisalign pattern is not supported for this mode.  */
      if (optab_handler (movmisalign_optab, mode)->insn_code ==
          CODE_FOR_nothing)
        return false;

      if (misalignment == -1)
	{
	  /* misalignment factor is unknown at compile time but we know
	     it's word aligned.  */
	  if (rs6000_vector_alignment_reachable (type, is_packed))
	    return true;
	  return false;
	}
      /* VSX supports word-aligned vector.  */
      if (misalignment % 4 == 0)
	return true;
    }
  return false;
}

/* Implement targetm.vectorize.builtin_vec_perm.  */
tree
rs6000_builtin_vec_perm (tree type, tree *mask_element_type)
{
  tree inner_type = TREE_TYPE (type);
  bool uns_p = TYPE_UNSIGNED (inner_type);
  tree d;

  *mask_element_type = unsigned_char_type_node;

  switch (TYPE_MODE (type))
    {
    case V16QImode:
      d = (uns_p
	   ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_16QI_UNS]
	   : rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_16QI]);
      break;

    case V8HImode:
      d = (uns_p
	   ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_8HI_UNS]
	   : rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_8HI]);
      break;

    case V4SImode:
      d = (uns_p
	   ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SI_UNS]
	   : rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SI]);
      break;

    case V4SFmode:
      d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_4SF];
      break;

    case V2DFmode:
      if (!TARGET_ALLOW_DF_PERMUTE)
	return NULL_TREE;

      d = rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_2DF];
      break;

    case V2DImode:
      if (!TARGET_ALLOW_DF_PERMUTE)
	return NULL_TREE;

      d = (uns_p
	   ? rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_2DI_UNS]
	   : rs6000_builtin_decls[ALTIVEC_BUILTIN_VPERM_2DI]);
      break;

    default:
      return NULL_TREE;
    }

  gcc_assert (d);
  return d;
}

/* Handle generic options of the form -mfoo=yes/no.
   NAME is the option name.
   VALUE is the option value.
   FLAG is the pointer to the flag where to store a 1 or 0, depending on
   whether the option value is 'yes' or 'no' respectively.  */
static void
rs6000_parse_yes_no_option (const char *name, const char *value, int *flag)
{
  if (value == 0)
    return;
  else if (!strcmp (value, "yes"))
    *flag = 1;
  else if (!strcmp (value, "no"))
    *flag = 0;
  else
    error ("unknown -m%s= option specified: '%s'", name, value);
}

/* Validate and record the size specified with the -mtls-size option.  */

static void
rs6000_parse_tls_size_option (void)
{
  if (rs6000_tls_size_string == 0)
    return;
  else if (strcmp (rs6000_tls_size_string, "16") == 0)
    rs6000_tls_size = 16;
  else if (strcmp (rs6000_tls_size_string, "32") == 0)
    rs6000_tls_size = 32;
  else if (strcmp (rs6000_tls_size_string, "64") == 0)
    rs6000_tls_size = 64;
  else
    error ("bad value %qs for -mtls-size switch", rs6000_tls_size_string);
}

void
optimization_options (int level ATTRIBUTE_UNUSED, int size ATTRIBUTE_UNUSED)
{
  if (DEFAULT_ABI == ABI_DARWIN)
    /* The Darwin libraries never set errno, so we might as well
       avoid calling them when that's the only reason we would.  */
    flag_errno_math = 0;

  /* Double growth factor to counter reduced min jump length.  */
  set_param_value ("max-grow-copy-bb-insns", 16);

  /* Enable section anchors by default.
     Skip section anchors for Objective C and Objective C++
     until front-ends fixed.  */
  if (!TARGET_MACHO && lang_hooks.name[4] != 'O')
    flag_section_anchors = 2;
}

static enum fpu_type_t
rs6000_parse_fpu_option (const char *option)
{
  if (!strcmp("none", option)) return FPU_NONE;
  if (!strcmp("sp_lite", option)) return FPU_SF_LITE;
  if (!strcmp("dp_lite", option)) return FPU_DF_LITE;
  if (!strcmp("sp_full", option)) return FPU_SF_FULL;
  if (!strcmp("dp_full", option)) return FPU_DF_FULL;
  error("unknown value %s for -mfpu", option);
  return FPU_NONE;
}

/* Returns a function decl for a vectorized version of the builtin function
   with builtin function code FN and the result vector type TYPE, or NULL_TREE
   if it is not available.  */

static tree
rs6000_builtin_vectorized_function (tree fndecl, tree type_out,
				    tree type_in)
{
  enum machine_mode in_mode, out_mode;
  int in_n, out_n;
  enum built_in_function fn = DECL_FUNCTION_CODE (fndecl);

  if (TREE_CODE (type_out) != VECTOR_TYPE
      || TREE_CODE (type_in) != VECTOR_TYPE
      || !TARGET_VECTORIZE_BUILTINS
      || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
    return NULL_TREE;

  out_mode = TYPE_MODE (TREE_TYPE (type_out));
  out_n = TYPE_VECTOR_SUBPARTS (type_out);
  in_mode = TYPE_MODE (TREE_TYPE (type_in));
  in_n = TYPE_VECTOR_SUBPARTS (type_in);

  switch (fn)
    {
    case BUILT_IN_COPYSIGN:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[VSX_BUILTIN_CPSGNDP];
      break;
    case BUILT_IN_COPYSIGNF:
      if (out_mode != SFmode || out_n != 4
	  || in_mode != SFmode || in_n != 4)
	break;
      if (VECTOR_UNIT_VSX_P (V4SFmode))
	return rs6000_builtin_decls[VSX_BUILTIN_CPSGNSP];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode))
	return rs6000_builtin_decls[ALTIVEC_BUILTIN_COPYSIGN_V4SF];
      break;
    case BUILT_IN_SQRT:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[VSX_BUILTIN_XVSQRTDP];
      break;
    case BUILT_IN_SQRTF:
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[VSX_BUILTIN_XVSQRTSP];
      break;
    case BUILT_IN_CEIL:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIP];
      break;
    case BUILT_IN_CEILF:
      if (out_mode != SFmode || out_n != 4
	  || in_mode != SFmode || in_n != 4)
	break;
      if (VECTOR_UNIT_VSX_P (V4SFmode))
	return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIP];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode))
	return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIP];
      break;
    case BUILT_IN_FLOOR:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIM];
      break;
    case BUILT_IN_FLOORF:
      if (out_mode != SFmode || out_n != 4
	  || in_mode != SFmode || in_n != 4)
	break;
      if (VECTOR_UNIT_VSX_P (V4SFmode))
	return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIM];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode))
	return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIM];
      break;
    case BUILT_IN_TRUNC:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIZ];
      break;
    case BUILT_IN_TRUNCF:
      if (out_mode != SFmode || out_n != 4
	  || in_mode != SFmode || in_n != 4)
	break;
      if (VECTOR_UNIT_VSX_P (V4SFmode))
	return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIZ];
      if (VECTOR_UNIT_ALTIVEC_P (V4SFmode))
	return rs6000_builtin_decls[ALTIVEC_BUILTIN_VRFIZ];
      break;
    case BUILT_IN_NEARBYINT:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && flag_unsafe_math_optimizations
	  && out_mode == DFmode && out_n == 2
	  && in_mode == DFmode && in_n == 2)
	return rs6000_builtin_decls[VSX_BUILTIN_XVRDPI];
      break;
    case BUILT_IN_NEARBYINTF:
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && flag_unsafe_math_optimizations
	  && out_mode == SFmode && out_n == 4
	  && in_mode == SFmode && in_n == 4)
	return rs6000_builtin_decls[VSX_BUILTIN_XVRSPI];
      break;
    case BUILT_IN_RINT:
      if (VECTOR_UNIT_VSX_P (V2DFmode)
	  && !flag_trapping_math
          && out_mode == DFmode && out_n == 2
          && in_mode == DFmode && in_n == 2)
        return rs6000_builtin_decls[VSX_BUILTIN_XVRDPIC];
      break;
    case BUILT_IN_RINTF:
      if (VECTOR_UNIT_VSX_P (V4SFmode)
	  && !flag_trapping_math
          && out_mode == SFmode && out_n == 4
          && in_mode == SFmode && in_n == 4)
        return rs6000_builtin_decls[VSX_BUILTIN_XVRSPIC];
      break;
    default:
      break;
    }
  return NULL_TREE;
}


/* Implement TARGET_HANDLE_OPTION.  */

static bool
rs6000_handle_option (size_t code, const char *arg, int value)
{
  enum fpu_type_t fpu_type = FPU_NONE;
  int isel;

  switch (code)
    {
    case OPT_mno_power:
      target_flags &= ~(MASK_POWER | MASK_POWER2
			| MASK_MULTIPLE | MASK_STRING);
      target_flags_explicit |= (MASK_POWER | MASK_POWER2
				| MASK_MULTIPLE | MASK_STRING);
      break;
    case OPT_mno_powerpc:
      target_flags &= ~(MASK_POWERPC | MASK_PPC_GPOPT
			| MASK_PPC_GFXOPT | MASK_POWERPC64);
      target_flags_explicit |= (MASK_POWERPC | MASK_PPC_GPOPT
				| MASK_PPC_GFXOPT | MASK_POWERPC64);
      break;
    case OPT_mfull_toc:
      target_flags &= ~MASK_MINIMAL_TOC;
      TARGET_NO_FP_IN_TOC = 0;
      TARGET_NO_SUM_IN_TOC = 0;
      target_flags_explicit |= MASK_MINIMAL_TOC;
#ifdef TARGET_USES_SYSV4_OPT
      /* Note, V.4 no longer uses a normal TOC, so make -mfull-toc, be
	 just the same as -mminimal-toc.  */
      target_flags |= MASK_MINIMAL_TOC;
      target_flags_explicit |= MASK_MINIMAL_TOC;
#endif
      break;

#ifdef TARGET_USES_SYSV4_OPT
    case OPT_mtoc:
      /* Make -mtoc behave like -mminimal-toc.  */
      target_flags |= MASK_MINIMAL_TOC;
      target_flags_explicit |= MASK_MINIMAL_TOC;
      break;
#endif

#ifdef TARGET_USES_AIX64_OPT
    case OPT_maix64:
#else
    case OPT_m64:
#endif
      target_flags |= MASK_POWERPC64 | MASK_POWERPC;
      target_flags |= ~target_flags_explicit & MASK_PPC_GFXOPT;
      target_flags_explicit |= MASK_POWERPC64 | MASK_POWERPC;
      break;

#ifdef TARGET_USES_AIX64_OPT
    case OPT_maix32:
#else
    case OPT_m32:
#endif
      target_flags &= ~MASK_POWERPC64;
      target_flags_explicit |= MASK_POWERPC64;
      break;

    case OPT_minsert_sched_nops_:
      rs6000_sched_insert_nops_str = arg;
      break;

    case OPT_mminimal_toc:
      if (value == 1)
	{
	  TARGET_NO_FP_IN_TOC = 0;
	  TARGET_NO_SUM_IN_TOC = 0;
	}
      break;

    case OPT_mpower:
      if (value == 1)
	{
	  target_flags |= (MASK_MULTIPLE | MASK_STRING);
	  target_flags_explicit |= (MASK_MULTIPLE | MASK_STRING);
	}
      break;

    case OPT_mpower2:
      if (value == 1)
	{
	  target_flags |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
	  target_flags_explicit |= (MASK_POWER | MASK_MULTIPLE | MASK_STRING);
	}
      break;

    case OPT_mpowerpc_gpopt:
    case OPT_mpowerpc_gfxopt:
      if (value == 1)
	{
	  target_flags |= MASK_POWERPC;
	  target_flags_explicit |= MASK_POWERPC;
	}
      break;

    case OPT_maix_struct_return:
    case OPT_msvr4_struct_return:
      rs6000_explicit_options.aix_struct_ret = true;
      break;

    case OPT_mvrsave:
      rs6000_explicit_options.vrsave = true;
      TARGET_ALTIVEC_VRSAVE = value;
      break;

    case OPT_mvrsave_:
      rs6000_explicit_options.vrsave = true;
      rs6000_parse_yes_no_option ("vrsave", arg, &(TARGET_ALTIVEC_VRSAVE));
      break;

    case OPT_misel_:
      target_flags_explicit |= MASK_ISEL;
      isel = 0;
      rs6000_parse_yes_no_option ("isel", arg, &isel);
      if (isel)
	target_flags |= MASK_ISEL;
      else
	target_flags &= ~MASK_ISEL;
      break;

    case OPT_mspe:
      rs6000_explicit_options.spe = true;
      rs6000_spe = value;
      break;

    case OPT_mspe_:
      rs6000_explicit_options.spe = true;
      rs6000_parse_yes_no_option ("spe", arg, &(rs6000_spe));
      break;

    case OPT_mdebug_:
      rs6000_debug_name = arg;
      break;

#ifdef TARGET_USES_SYSV4_OPT
    case OPT_mcall_:
      rs6000_abi_name = arg;
      break;

    case OPT_msdata_:
      rs6000_sdata_name = arg;
      break;

    case OPT_mtls_size_:
      rs6000_tls_size_string = arg;
      break;

    case OPT_mrelocatable:
      if (value == 1)
	{
	  target_flags |= MASK_MINIMAL_TOC;
	  target_flags_explicit |= MASK_MINIMAL_TOC;
	  TARGET_NO_FP_IN_TOC = 1;
	}
      break;

    case OPT_mrelocatable_lib:
      if (value == 1)
	{
	  target_flags |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
	  target_flags_explicit |= MASK_RELOCATABLE | MASK_MINIMAL_TOC;
	  TARGET_NO_FP_IN_TOC = 1;
	}
      else
	{
	  target_flags &= ~MASK_RELOCATABLE;
	  target_flags_explicit |= MASK_RELOCATABLE;
	}
      break;
#endif

    case OPT_mabi_:
      if (!strcmp (arg, "altivec"))
	{
	  rs6000_explicit_options.altivec_abi = true;
	  rs6000_altivec_abi = 1;

	  /* Enabling the AltiVec ABI turns off the SPE ABI.  */
	  rs6000_spe_abi = 0;
	}
      else if (! strcmp (arg, "no-altivec"))
	{
	  rs6000_explicit_options.altivec_abi = true;
	  rs6000_altivec_abi = 0;
	}
      else if (! strcmp (arg, "spe"))
	{
	  rs6000_explicit_options.spe_abi = true;
	  rs6000_spe_abi = 1;
	  rs6000_altivec_abi = 0;
	  if (!TARGET_SPE_ABI)
	    error ("not configured for ABI: '%s'", arg);
	}
      else if (! strcmp (arg, "no-spe"))
	{
	  rs6000_explicit_options.spe_abi = true;
	  rs6000_spe_abi = 0;
	}

      /* These are here for testing during development only, do not
	 document in the manual please.  */
      else if (! strcmp (arg, "d64"))
	{
	  rs6000_darwin64_abi = 1;
	  warning (0, "Using darwin64 ABI");
	}
      else if (! strcmp (arg, "d32"))
	{
	  rs6000_darwin64_abi = 0;
	  warning (0, "Using old darwin ABI");
	}

      else if (! strcmp (arg, "ibmlongdouble"))
	{
	  rs6000_explicit_options.ieee = true;
	  rs6000_ieeequad = 0;
	  warning (0, "Using IBM extended precision long double");
	}
      else if (! strcmp (arg, "ieeelongdouble"))
	{
	  rs6000_explicit_options.ieee = true;
	  rs6000_ieeequad = 1;
	  warning (0, "Using IEEE extended precision long double");
	}

      else
	{
	  error ("unknown ABI specified: '%s'", arg);
	  return false;
	}
      break;

    case OPT_mcpu_:
      rs6000_select[1].string = arg;
      break;

    case OPT_mtune_:
      rs6000_select[2].string = arg;
      break;

    case OPT_mtraceback_:
      rs6000_traceback_name = arg;
      break;

    case OPT_mfloat_gprs_:
      rs6000_explicit_options.float_gprs = true;
      if (! strcmp (arg, "yes") || ! strcmp (arg, "single"))
	rs6000_float_gprs = 1;
      else if (! strcmp (arg, "double"))
	rs6000_float_gprs = 2;
      else if (! strcmp (arg, "no"))
	rs6000_float_gprs = 0;
      else
	{
	  error ("invalid option for -mfloat-gprs: '%s'", arg);
	  return false;
	}
      break;

    case OPT_mlong_double_:
      rs6000_explicit_options.long_double = true;
      rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
      if (value != 64 && value != 128)
	{
	  error ("Unknown switch -mlong-double-%s", arg);
	  rs6000_long_double_type_size = RS6000_DEFAULT_LONG_DOUBLE_SIZE;
	  return false;
	}
      else
	rs6000_long_double_type_size = value;
      break;

    case OPT_msched_costly_dep_:
      rs6000_sched_costly_dep_str = arg;
      break;

    case OPT_malign_:
      rs6000_explicit_options.alignment = true;
      if (! strcmp (arg, "power"))
	{
	  /* On 64-bit Darwin, power alignment is ABI-incompatible with
	     some C library functions, so warn about it. The flag may be
	     useful for performance studies from time to time though, so
	     don't disable it entirely.  */
	  if (DEFAULT_ABI == ABI_DARWIN && TARGET_64BIT)
	    warning (0, "-malign-power is not supported for 64-bit Darwin;"
		     " it is incompatible with the installed C and C++ libraries");
	  rs6000_alignment_flags = MASK_ALIGN_POWER;
	}
      else if (! strcmp (arg, "natural"))
	rs6000_alignment_flags = MASK_ALIGN_NATURAL;
      else
	{
	  error ("unknown -malign-XXXXX option specified: '%s'", arg);
	  return false;
	}
      break;

    case OPT_msingle_float:
      if (!TARGET_SINGLE_FPU) 
	warning (0, "-msingle-float option equivalent to -mhard-float");
      /* -msingle-float implies -mno-double-float and TARGET_HARD_FLOAT. */
      rs6000_double_float = 0;
      target_flags &= ~MASK_SOFT_FLOAT;
      target_flags_explicit |= MASK_SOFT_FLOAT;
      break;

    case OPT_mdouble_float:
      /* -mdouble-float implies -msingle-float and TARGET_HARD_FLOAT. */
      rs6000_single_float = 1;
      target_flags &= ~MASK_SOFT_FLOAT;
      target_flags_explicit |= MASK_SOFT_FLOAT;
      break;

    case OPT_msimple_fpu:
      if (!TARGET_SINGLE_FPU) 
	warning (0, "-msimple-fpu option ignored");
      break;

    case OPT_mhard_float:
      /* -mhard_float implies -msingle-float and -mdouble-float. */
      rs6000_single_float = rs6000_double_float = 1;
      break;

    case OPT_msoft_float:
      /* -msoft_float implies -mnosingle-float and -mnodouble-float. */
      rs6000_single_float = rs6000_double_float = 0;
      break;

    case OPT_mfpu_:
      fpu_type = rs6000_parse_fpu_option(arg);
      if (fpu_type != FPU_NONE) 
      /* If -mfpu is not none, then turn off SOFT_FLOAT, turn on HARD_FLOAT. */
      {
        target_flags &= ~MASK_SOFT_FLOAT;
        target_flags_explicit |= MASK_SOFT_FLOAT;
        rs6000_xilinx_fpu = 1;
        if (fpu_type == FPU_SF_LITE || fpu_type == FPU_SF_FULL) 
        rs6000_single_float = 1;
        if (fpu_type == FPU_DF_LITE || fpu_type == FPU_DF_FULL) 
          rs6000_single_float = rs6000_double_float = 1;
        if (fpu_type == FPU_SF_LITE || fpu_type == FPU_DF_LITE) 
          rs6000_simple_fpu = 1;
      }
      else
      {
        /* -mfpu=none is equivalent to -msoft-float */
        target_flags |= MASK_SOFT_FLOAT;
        target_flags_explicit |= MASK_SOFT_FLOAT;
        rs6000_single_float = rs6000_double_float = 0;
      }
      break;
    }
  return true;
}

/* Do anything needed at the start of the asm file.  */

static void
rs6000_file_start (void)
{
  size_t i;
  char buffer[80];
  const char *start = buffer;
  struct rs6000_cpu_select *ptr;
  const char *default_cpu = TARGET_CPU_DEFAULT;
  FILE *file = asm_out_file;

  default_file_start ();

#ifdef TARGET_BI_ARCH
  if ((TARGET_DEFAULT ^ target_flags) & MASK_64BIT)
    default_cpu = 0;
#endif

  if (flag_verbose_asm)
    {
      sprintf (buffer, "\n%s rs6000/powerpc options:", ASM_COMMENT_START);
      rs6000_select[0].string = default_cpu;

      for (i = 0; i < ARRAY_SIZE (rs6000_select); i++)
	{
	  ptr = &rs6000_select[i];
	  if (ptr->string != (char *)0 && ptr->string[0] != '\0')
	    {
	      fprintf (file, "%s %s%s", start, ptr->name, ptr->string);
	      start = "";
	    }
	}

      if (PPC405_ERRATUM77)
	{
	  fprintf (file, "%s PPC405CR_ERRATUM77", start);
	  start = "";
	}

#ifdef USING_ELFOS_H
      switch (rs6000_sdata)
	{
	case SDATA_NONE: fprintf (file, "%s -msdata=none", start); start = ""; break;
	case SDATA_DATA: fprintf (file, "%s -msdata=data", start); start = ""; break;
	case SDATA_SYSV: fprintf (file, "%s -msdata=sysv", start); start = ""; break;
	case SDATA_EABI: fprintf (file, "%s -msdata=eabi", start); start = ""; break;
	}

      if (rs6000_sdata && g_switch_value)
	{
	  fprintf (file, "%s -G " HOST_WIDE_INT_PRINT_UNSIGNED, start,
		   g_switch_value);
	  start = "";
	}
#endif

      if (*start == '\0')
	putc ('\n', file);
    }

#ifdef HAVE_AS_GNU_ATTRIBUTE
  if (TARGET_32BIT && DEFAULT_ABI == ABI_V4)
    {
      fprintf (file, "\t.gnu_attribute 4, %d\n",
	       ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT) ? 1 
	        : (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_SINGLE_FLOAT) ? 3 
	        : 2));
      fprintf (file, "\t.gnu_attribute 8, %d\n",
	       (TARGET_ALTIVEC_ABI ? 2
		: TARGET_SPE_ABI ? 3
		: 1));
      fprintf (file, "\t.gnu_attribute 12, %d\n",
	       aix_struct_return ? 2 : 1);

    }
#endif

  if (DEFAULT_ABI == ABI_AIX || (TARGET_ELF && flag_pic == 2))
    {
      switch_to_section (toc_section);
      switch_to_section (text_section);
    }
}


/* Return nonzero if this function is known to have a null epilogue.  */

int
direct_return (void)
{
  if (reload_completed)
    {
      rs6000_stack_t *info = rs6000_stack_info ();

      if (info->first_gp_reg_save == 32
	  && info->first_fp_reg_save == 64
	  && info->first_altivec_reg_save == LAST_ALTIVEC_REGNO + 1
	  && ! info->lr_save_p
	  && ! info->cr_save_p
	  && info->vrsave_mask == 0
	  && ! info->push_p)
	return 1;
    }

  return 0;
}

/* Return the number of instructions it takes to form a constant in an
   integer register.  */

int
num_insns_constant_wide (HOST_WIDE_INT value)
{
  /* signed constant loadable with {cal|addi} */
  if ((unsigned HOST_WIDE_INT) (value + 0x8000) < 0x10000)
    return 1;

  /* constant loadable with {cau|addis} */
  else if ((value & 0xffff) == 0
	   && (value >> 31 == -1 || value >> 31 == 0))
    return 1;

#if HOST_BITS_PER_WIDE_INT == 64
  else if (TARGET_POWERPC64)
    {
      HOST_WIDE_INT low  = ((value & 0xffffffff) ^ 0x80000000) - 0x80000000;
      HOST_WIDE_INT high = value >> 31;

      if (high == 0 || high == -1)
	return 2;

      high >>= 1;

      if (low == 0)
	return num_insns_constant_wide (high) + 1;
      else if (high == 0)
	return num_insns_constant_wide (low) + 1;
      else
	return (num_insns_constant_wide (high)
		+ num_insns_constant_wide (low) + 1);
    }
#endif

  else
    return 2;
}

int
num_insns_constant (rtx op, enum machine_mode mode)
{
  HOST_WIDE_INT low, high;

  switch (GET_CODE (op))
    {
    case CONST_INT:
#if HOST_BITS_PER_WIDE_INT == 64
      if ((INTVAL (op) >> 31) != 0 && (INTVAL (op) >> 31) != -1
	  && mask64_operand (op, mode))
	return 2;
      else
#endif
	return num_insns_constant_wide (INTVAL (op));

      case CONST_DOUBLE:
	if (mode == SFmode || mode == SDmode)
	  {
	    long l;
	    REAL_VALUE_TYPE rv;

	    REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
	    if (DECIMAL_FLOAT_MODE_P (mode))
	      REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
	    else
	      REAL_VALUE_TO_TARGET_SINGLE (rv, l);
	    return num_insns_constant_wide ((HOST_WIDE_INT) l);
	  }

	if (mode == VOIDmode || mode == DImode)
	  {
	    high = CONST_DOUBLE_HIGH (op);
	    low  = CONST_DOUBLE_LOW (op);
	  }
	else
	  {
	    long l[2];
	    REAL_VALUE_TYPE rv;

	    REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
	    if (DECIMAL_FLOAT_MODE_P (mode))
	      REAL_VALUE_TO_TARGET_DECIMAL64 (rv, l);
	    else
	      REAL_VALUE_TO_TARGET_DOUBLE (rv, l);
	    high = l[WORDS_BIG_ENDIAN == 0];
	    low  = l[WORDS_BIG_ENDIAN != 0];
	  }

	if (TARGET_32BIT)
	  return (num_insns_constant_wide (low)
		  + num_insns_constant_wide (high));
	else
	  {
	    if ((high == 0 && low >= 0)
		|| (high == -1 && low < 0))
	      return num_insns_constant_wide (low);

	    else if (mask64_operand (op, mode))
	      return 2;

	    else if (low == 0)
	      return num_insns_constant_wide (high) + 1;

	    else
	      return (num_insns_constant_wide (high)
		      + num_insns_constant_wide (low) + 1);
	  }

    default:
      gcc_unreachable ();
    }
}

/* Interpret element ELT of the CONST_VECTOR OP as an integer value.
   If the mode of OP is MODE_VECTOR_INT, this simply returns the
   corresponding element of the vector, but for V4SFmode and V2SFmode,
   the corresponding "float" is interpreted as an SImode integer.  */

HOST_WIDE_INT
const_vector_elt_as_int (rtx op, unsigned int elt)
{
  rtx tmp = CONST_VECTOR_ELT (op, elt);
  if (GET_MODE (op) == V4SFmode
      || GET_MODE (op) == V2SFmode)
    tmp = gen_lowpart (SImode, tmp);
  return INTVAL (tmp);
}

/* Return true if OP can be synthesized with a particular vspltisb, vspltish
   or vspltisw instruction.  OP is a CONST_VECTOR.  Which instruction is used
   depends on STEP and COPIES, one of which will be 1.  If COPIES > 1,
   all items are set to the same value and contain COPIES replicas of the
   vsplt's operand; if STEP > 1, one in STEP elements is set to the vsplt's
   operand and the others are set to the value of the operand's msb.  */

static bool
vspltis_constant (rtx op, unsigned step, unsigned copies)
{
  enum machine_mode mode = GET_MODE (op);
  enum machine_mode inner = GET_MODE_INNER (mode);

  unsigned i;
  unsigned nunits = GET_MODE_NUNITS (mode);
  unsigned bitsize = GET_MODE_BITSIZE (inner);
  unsigned mask = GET_MODE_MASK (inner);

  HOST_WIDE_INT val = const_vector_elt_as_int (op, nunits - 1);
  HOST_WIDE_INT splat_val = val;
  HOST_WIDE_INT msb_val = val > 0 ? 0 : -1;

  /* Construct the value to be splatted, if possible.  If not, return 0.  */
  for (i = 2; i <= copies; i *= 2)
    {
      HOST_WIDE_INT small_val;
      bitsize /= 2;
      small_val = splat_val >> bitsize;
      mask >>= bitsize;
      if (splat_val != ((small_val << bitsize) | (small_val & mask)))
	return false;
      splat_val = small_val;
    }

  /* Check if SPLAT_VAL can really be the operand of a vspltis[bhw].  */
  if (EASY_VECTOR_15 (splat_val))
    ;

  /* Also check if we can splat, and then add the result to itself.  Do so if
     the value is positive, of if the splat instruction is using OP's mode;
     for splat_val < 0, the splat and the add should use the same mode.  */
  else if (EASY_VECTOR_15_ADD_SELF (splat_val)
           && (splat_val >= 0 || (step == 1 && copies == 1)))
    ;

  /* Also check if are loading up the most significant bit which can be done by
     loading up -1 and shifting the value left by -1.  */
  else if (EASY_VECTOR_MSB (splat_val, inner))
    ;

  else
    return false;

  /* Check if VAL is present in every STEP-th element, and the
     other elements are filled with its most significant bit.  */
  for (i = 0; i < nunits - 1; ++i)
    {
      HOST_WIDE_INT desired_val;
      if (((i + 1) & (step - 1)) == 0)
	desired_val = val;
      else
	desired_val = msb_val;

      if (desired_val != const_vector_elt_as_int (op, i))
	return false;
    }

  return true;
}


/* Return true if OP is of the given MODE and can be synthesized
   with a vspltisb, vspltish or vspltisw.  */

bool
easy_altivec_constant (rtx op, enum machine_mode mode)
{
  unsigned step, copies;

  if (mode == VOIDmode)
    mode = GET_MODE (op);
  else if (mode != GET_MODE (op))
    return false;

  /* Start with a vspltisw.  */
  step = GET_MODE_NUNITS (mode) / 4;
  copies = 1;

  if (vspltis_constant (op, step, copies))
    return true;

  /* Then try with a vspltish.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return true;

  /* And finally a vspltisb.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return true;

  return false;
}

/* Generate a VEC_DUPLICATE representing a vspltis[bhw] instruction whose
   result is OP.  Abort if it is not possible.  */

rtx
gen_easy_altivec_constant (rtx op)
{
  enum machine_mode mode = GET_MODE (op);
  int nunits = GET_MODE_NUNITS (mode);
  rtx last = CONST_VECTOR_ELT (op, nunits - 1);
  unsigned step = nunits / 4;
  unsigned copies = 1;

  /* Start with a vspltisw.  */
  if (vspltis_constant (op, step, copies))
    return gen_rtx_VEC_DUPLICATE (V4SImode, gen_lowpart (SImode, last));

  /* Then try with a vspltish.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return gen_rtx_VEC_DUPLICATE (V8HImode, gen_lowpart (HImode, last));

  /* And finally a vspltisb.  */
  if (step == 1)
    copies <<= 1;
  else
    step >>= 1;

  if (vspltis_constant (op, step, copies))
    return gen_rtx_VEC_DUPLICATE (V16QImode, gen_lowpart (QImode, last));

  gcc_unreachable ();
}

const char *
output_vec_const_move (rtx *operands)
{
  int cst, cst2;
  enum machine_mode mode;
  rtx dest, vec;

  dest = operands[0];
  vec = operands[1];
  mode = GET_MODE (dest);

  if (TARGET_VSX && zero_constant (vec, mode))
    return "xxlxor %x0,%x0,%x0";

  if (TARGET_ALTIVEC)
    {
      rtx splat_vec;
      if (zero_constant (vec, mode))
	return "vxor %0,%0,%0";

      splat_vec = gen_easy_altivec_constant (vec);
      gcc_assert (GET_CODE (splat_vec) == VEC_DUPLICATE);
      operands[1] = XEXP (splat_vec, 0);
      if (!EASY_VECTOR_15 (INTVAL (operands[1])))
	return "#";

      switch (GET_MODE (splat_vec))
	{
	case V4SImode:
	  return "vspltisw %0,%1";

	case V8HImode:
	  return "vspltish %0,%1";

	case V16QImode:
	  return "vspltisb %0,%1";

	default:
	  gcc_unreachable ();
	}
    }

  gcc_assert (TARGET_SPE);

  /* Vector constant 0 is handled as a splitter of V2SI, and in the
     pattern of V1DI, V4HI, and V2SF.

     FIXME: We should probably return # and add post reload
     splitters for these, but this way is so easy ;-).  */
  cst = INTVAL (CONST_VECTOR_ELT (vec, 0));
  cst2 = INTVAL (CONST_VECTOR_ELT (vec, 1));
  operands[1] = CONST_VECTOR_ELT (vec, 0);
  operands[2] = CONST_VECTOR_ELT (vec, 1);
  if (cst == cst2)
    return "li %0,%1\n\tevmergelo %0,%0,%0";
  else
    return "li %0,%1\n\tevmergelo %0,%0,%0\n\tli %0,%2";
}

/* Initialize TARGET of vector PAIRED to VALS.  */

void
paired_expand_vector_init (rtx target, rtx vals)
{
  enum machine_mode mode = GET_MODE (target);
  int n_elts = GET_MODE_NUNITS (mode);
  int n_var = 0;
  rtx x, new_rtx, tmp, constant_op, op1, op2;
  int i;

  for (i = 0; i < n_elts; ++i)
    {
      x = XVECEXP (vals, 0, i);
      if (!CONSTANT_P (x))
	++n_var;
    }
  if (n_var == 0)
    {
      /* Load from constant pool.  */
      emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0)));
      return;
    }

  if (n_var == 2)
    {
      /* The vector is initialized only with non-constants.  */
      new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, XVECEXP (vals, 0, 0),
				XVECEXP (vals, 0, 1));

      emit_move_insn (target, new_rtx);
      return;
    }
  
  /* One field is non-constant and the other one is a constant.  Load the
     constant from the constant pool and use ps_merge instruction to
     construct the whole vector.  */
  op1 = XVECEXP (vals, 0, 0);
  op2 = XVECEXP (vals, 0, 1);

  constant_op = (CONSTANT_P (op1)) ? op1 : op2;

  tmp = gen_reg_rtx (GET_MODE (constant_op));
  emit_move_insn (tmp, constant_op);

  if (CONSTANT_P (op1))
    new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, tmp, op2);
  else
    new_rtx = gen_rtx_VEC_CONCAT (V2SFmode, op1, tmp);

  emit_move_insn (target, new_rtx);
}

void
paired_expand_vector_move (rtx operands[])
{
  rtx op0 = operands[0], op1 = operands[1];

  emit_move_insn (op0, op1);
}

/* Emit vector compare for code RCODE.  DEST is destination, OP1 and
   OP2 are two VEC_COND_EXPR operands, CC_OP0 and CC_OP1 are the two
   operands for the relation operation COND.  This is a recursive
   function.  */

static void
paired_emit_vector_compare (enum rtx_code rcode,
                            rtx dest, rtx op0, rtx op1,
                            rtx cc_op0, rtx cc_op1)
{
  rtx tmp = gen_reg_rtx (V2SFmode);
  rtx tmp1, max, min, equal_zero;

  gcc_assert (TARGET_PAIRED_FLOAT);
  gcc_assert (GET_MODE (op0) == GET_MODE (op1));

  switch (rcode)
    {
    case LT:
    case LTU:
      paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
      return;
    case GE:
    case GEU:
      emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
      emit_insn (gen_selv2sf4 (dest, tmp, op0, op1, CONST0_RTX (SFmode)));
      return;
    case LE:
    case LEU:
      paired_emit_vector_compare (GE, dest, op0, op1, cc_op1, cc_op0);
      return;
    case GT:
      paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
      return;
    case EQ:
      tmp1 = gen_reg_rtx (V2SFmode);
      max = gen_reg_rtx (V2SFmode);
      min = gen_reg_rtx (V2SFmode);
      equal_zero = gen_reg_rtx (V2SFmode);

      emit_insn (gen_subv2sf3 (tmp, cc_op0, cc_op1));
      emit_insn (gen_selv2sf4
                 (max, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
      emit_insn (gen_subv2sf3 (tmp, cc_op1, cc_op0));
      emit_insn (gen_selv2sf4
                 (min, tmp, cc_op0, cc_op1, CONST0_RTX (SFmode)));
      emit_insn (gen_subv2sf3 (tmp1, min, max));
      emit_insn (gen_selv2sf4 (dest, tmp1, op0, op1, CONST0_RTX (SFmode)));
      return;
    case NE:
      paired_emit_vector_compare (EQ, dest, op1, op0, cc_op0, cc_op1);
      return;
    case UNLE:
      paired_emit_vector_compare (LE, dest, op1, op0, cc_op0, cc_op1);
      return;
    case UNLT:
      paired_emit_vector_compare (LT, dest, op1, op0, cc_op0, cc_op1);
      return;
    case UNGE:
      paired_emit_vector_compare (GE, dest, op1, op0, cc_op0, cc_op1);
      return;
    case UNGT:
      paired_emit_vector_compare (GT, dest, op1, op0, cc_op0, cc_op1);
      return;
    default:
      gcc_unreachable ();
    }

  return;
}

/* Emit vector conditional expression.
   DEST is destination. OP1 and OP2 are two VEC_COND_EXPR operands.
   CC_OP0 and CC_OP1 are the two operands for the relation operation COND.  */

int
paired_emit_vector_cond_expr (rtx dest, rtx op1, rtx op2,
			      rtx cond, rtx cc_op0, rtx cc_op1)
{
  enum rtx_code rcode = GET_CODE (cond);

  if (!TARGET_PAIRED_FLOAT)
    return 0;

  paired_emit_vector_compare (rcode, dest, op1, op2, cc_op0, cc_op1);

  return 1;
}

/* Initialize vector TARGET to VALS.  */

void
rs6000_expand_vector_init (rtx target, rtx vals)
{
  enum machine_mode mode = GET_MODE (target);
  enum machine_mode inner_mode = GET_MODE_INNER (mode);
  int n_elts = GET_MODE_NUNITS (mode);
  int n_var = 0, one_var = -1;
  bool all_same = true, all_const_zero = true;
  rtx x, mem;
  int i;

  for (i = 0; i < n_elts; ++i)
    {
      x = XVECEXP (vals, 0, i);
      if (!CONSTANT_P (x))
	++n_var, one_var = i;
      else if (x != CONST0_RTX (inner_mode))
	all_const_zero = false;

      if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0)))
	all_same = false;
    }

  if (n_var == 0)
    {
      rtx const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0));
      bool int_vector_p = (GET_MODE_CLASS (mode) == MODE_VECTOR_INT);
      if ((int_vector_p || TARGET_VSX) && all_const_zero)
	{
	  /* Zero register.  */
	  emit_insn (gen_rtx_SET (VOIDmode, target,
				  gen_rtx_XOR (mode, target, target)));
	  return;
	}
      else if (int_vector_p && easy_vector_constant (const_vec, mode))
	{
	  /* Splat immediate.  */
	  emit_insn (gen_rtx_SET (VOIDmode, target, const_vec));
	  return;
	}
      else
	{
	  /* Load from constant pool.  */
	  emit_move_insn (target, const_vec);
	  return;
	}
    }

  /* Double word values on VSX can use xxpermdi or lxvdsx.  */
  if (VECTOR_MEM_VSX_P (mode) && (mode == V2DFmode || mode == V2DImode))
    {
      if (all_same)
	{
	  rtx element = XVECEXP (vals, 0, 0);
	  if (mode == V2DFmode)
	    emit_insn (gen_vsx_splat_v2df (target, element));
	  else
	    emit_insn (gen_vsx_splat_v2di (target, element));
	}
      else
	{
	  rtx op0 = copy_to_reg (XVECEXP (vals, 0, 0));
	  rtx op1 = copy_to_reg (XVECEXP (vals, 0, 1));
	  if (mode == V2DFmode)
	    emit_insn (gen_vsx_concat_v2df (target, op0, op1));
	  else
	    emit_insn (gen_vsx_concat_v2di (target, op0, op1));
	}
      return;
    }

  /* With single precision floating point on VSX, know that internally single
     precision is actually represented as a double, and either make 2 V2DF
     vectors, and convert these vectors to single precision, or do one
     conversion, and splat the result to the other elements.  */
  if (mode == V4SFmode && VECTOR_MEM_VSX_P (mode))
    {
      if (all_same)
	{
	  rtx freg = gen_reg_rtx (V4SFmode);
	  rtx sreg = copy_to_reg (XVECEXP (vals, 0, 0));

	  emit_insn (gen_vsx_xscvdpsp_scalar (freg, sreg));
	  emit_insn (gen_vsx_xxspltw_v4sf (target, freg, const0_rtx));
	}
      else
	{
	  rtx dbl_even = gen_reg_rtx (V2DFmode);
	  rtx dbl_odd  = gen_reg_rtx (V2DFmode);
	  rtx flt_even = gen_reg_rtx (V4SFmode);
	  rtx flt_odd  = gen_reg_rtx (V4SFmode);

	  emit_insn (gen_vsx_concat_v2sf (dbl_even,
					  copy_to_reg (XVECEXP (vals, 0, 0)),
					  copy_to_reg (XVECEXP (vals, 0, 1))));
	  emit_insn (gen_vsx_concat_v2sf (dbl_odd,
					  copy_to_reg (XVECEXP (vals, 0, 2)),
					  copy_to_reg (XVECEXP (vals, 0, 3))));
	  emit_insn (gen_vsx_xvcvdpsp (flt_even, dbl_even));
	  emit_insn (gen_vsx_xvcvdpsp (flt_odd, dbl_odd));
	  emit_insn (gen_vec_extract_evenv4sf (target, flt_even, flt_odd));
	}
      return;
    }

  /* Store value to stack temp.  Load vector element.  Splat.  However, splat
     of 64-bit items is not supported on Altivec.  */
  if (all_same && GET_MODE_SIZE (mode) <= 4)
    {
      mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
      emit_move_insn (adjust_address_nv (mem, inner_mode, 0),
		      XVECEXP (vals, 0, 0));
      x = gen_rtx_UNSPEC (VOIDmode,
			  gen_rtvec (1, const0_rtx), UNSPEC_LVE);
      emit_insn (gen_rtx_PARALLEL (VOIDmode,
				   gen_rtvec (2,
					      gen_rtx_SET (VOIDmode,
							   target, mem),
					      x)));
      x = gen_rtx_VEC_SELECT (inner_mode, target,
			      gen_rtx_PARALLEL (VOIDmode,
						gen_rtvec (1, const0_rtx)));
      emit_insn (gen_rtx_SET (VOIDmode, target,
			      gen_rtx_VEC_DUPLICATE (mode, x)));
      return;
    }

  /* One field is non-constant.  Load constant then overwrite
     varying field.  */
  if (n_var == 1)
    {
      rtx copy = copy_rtx (vals);

      /* Load constant part of vector, substitute neighboring value for
	 varying element.  */
      XVECEXP (copy, 0, one_var) = XVECEXP (vals, 0, (one_var + 1) % n_elts);
      rs6000_expand_vector_init (target, copy);

      /* Insert variable.  */
      rs6000_expand_vector_set (target, XVECEXP (vals, 0, one_var), one_var);
      return;
    }

  /* Construct the vector in memory one field at a time
     and load the whole vector.  */
  mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
  for (i = 0; i < n_elts; i++)
    emit_move_insn (adjust_address_nv (mem, inner_mode,
				    i * GET_MODE_SIZE (inner_mode)),
		    XVECEXP (vals, 0, i));
  emit_move_insn (target, mem);
}

/* Set field ELT of TARGET to VAL.  */

void
rs6000_expand_vector_set (rtx target, rtx val, int elt)
{
  enum machine_mode mode = GET_MODE (target);
  enum machine_mode inner_mode = GET_MODE_INNER (mode);
  rtx reg = gen_reg_rtx (mode);
  rtx mask, mem, x;
  int width = GET_MODE_SIZE (inner_mode);
  int i;

  if (VECTOR_MEM_VSX_P (mode) && (mode == V2DFmode || mode == V2DImode))
    {
      rtx (*set_func) (rtx, rtx, rtx, rtx)
	= ((mode == V2DFmode) ? gen_vsx_set_v2df : gen_vsx_set_v2di);
      emit_insn (set_func (target, target, val, GEN_INT (elt)));
      return;
    }

  /* Load single variable value.  */
  mem = assign_stack_temp (mode, GET_MODE_SIZE (inner_mode), 0);
  emit_move_insn (adjust_address_nv (mem, inner_mode, 0), val);
  x = gen_rtx_UNSPEC (VOIDmode,
		      gen_rtvec (1, const0_rtx), UNSPEC_LVE);
  emit_insn (gen_rtx_PARALLEL (VOIDmode,
			       gen_rtvec (2,
					  gen_rtx_SET (VOIDmode,
						       reg, mem),
					  x)));

  /* Linear sequence.  */
  mask = gen_rtx_PARALLEL (V16QImode, rtvec_alloc (16));
  for (i = 0; i < 16; ++i)
    XVECEXP (mask, 0, i) = GEN_INT (i);

  /* Set permute mask to insert element into target.  */
  for (i = 0; i < width; ++i)
    XVECEXP (mask, 0, elt*width + i)
      = GEN_INT (i + 0x10);
  x = gen_rtx_CONST_VECTOR (V16QImode, XVEC (mask, 0));
  x = gen_rtx_UNSPEC (mode,
		      gen_rtvec (3, target, reg,
				 force_reg (V16QImode, x)),
		      UNSPEC_VPERM);
  emit_insn (gen_rtx_SET (VOIDmode, target, x));
}

/* Extract field ELT from VEC into TARGET.  */

void
rs6000_expand_vector_extract (rtx target, rtx vec, int elt)
{
  enum machine_mode mode = GET_MODE (vec);
  enum machine_mode inner_mode = GET_MODE_INNER (mode);
  rtx mem, x;

  if (VECTOR_MEM_VSX_P (mode) && (mode == V2DFmode || mode == V2DImode))
    {
      rtx (*extract_func) (rtx, rtx, rtx)
	= ((mode == V2DFmode) ? gen_vsx_extract_v2df : gen_vsx_extract_v2di);
      emit_insn (extract_func (target, vec, GEN_INT (elt)));
      return;
    }

  /* Allocate mode-sized buffer.  */
  mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);

  /* Add offset to field within buffer matching vector element.  */
  mem = adjust_address_nv (mem, mode, elt * GET_MODE_SIZE (inner_mode));

  /* Store single field into mode-sized buffer.  */
  x = gen_rtx_UNSPEC (VOIDmode,
		      gen_rtvec (1, const0_rtx), UNSPEC_STVE);
  emit_insn (gen_rtx_PARALLEL (VOIDmode,
			       gen_rtvec (2,
					  gen_rtx_SET (VOIDmode,
						       mem, vec),
					  x)));
  emit_move_insn (target, adjust_address_nv (mem, inner_mode, 0));
}

/* Generates shifts and masks for a pair of rldicl or rldicr insns to
   implement ANDing by the mask IN.  */
void
build_mask64_2_operands (rtx in, rtx *out)
{
#if HOST_BITS_PER_WIDE_INT >= 64
  unsigned HOST_WIDE_INT c, lsb, m1, m2;
  int shift;

  gcc_assert (GET_CODE (in) == CONST_INT);

  c = INTVAL (in);
  if (c & 1)
    {
      /* Assume c initially something like 0x00fff000000fffff.  The idea
	 is to rotate the word so that the middle ^^^^^^ group of zeros
	 is at the MS end and can be cleared with an rldicl mask.  We then
	 rotate back and clear off the MS    ^^ group of zeros with a
	 second rldicl.  */
      c = ~c;			/*   c == 0xff000ffffff00000 */
      lsb = c & -c;		/* lsb == 0x0000000000100000 */
      m1 = -lsb;		/*  m1 == 0xfffffffffff00000 */
      c = ~c;			/*   c == 0x00fff000000fffff */
      c &= -lsb;		/*   c == 0x00fff00000000000 */
      lsb = c & -c;		/* lsb == 0x0000100000000000 */
      c = ~c;			/*   c == 0xff000fffffffffff */
      c &= -lsb;		/*   c == 0xff00000000000000 */
      shift = 0;
      while ((lsb >>= 1) != 0)
	shift++;		/* shift == 44 on exit from loop */
      m1 <<= 64 - shift;	/*  m1 == 0xffffff0000000000 */
      m1 = ~m1;			/*  m1 == 0x000000ffffffffff */
      m2 = ~c;			/*  m2 == 0x00ffffffffffffff */
    }
  else
    {
      /* Assume c initially something like 0xff000f0000000000.  The idea
	 is to rotate the word so that the     ^^^  middle group of zeros
	 is at the LS end and can be cleared with an rldicr mask.  We then
	 rotate back and clear off the LS group of ^^^^^^^^^^ zeros with
	 a second rldicr.  */
      lsb = c & -c;		/* lsb == 0x0000010000000000 */
      m2 = -lsb;		/*  m2 == 0xffffff0000000000 */
      c = ~c;			/*   c == 0x00fff0ffffffffff */
      c &= -lsb;		/*   c == 0x00fff00000000000 */
      lsb = c & -c;		/* lsb == 0x0000100000000000 */
      c = ~c;			/*   c == 0xff000fffffffffff */
      c &= -lsb;		/*   c == 0xff00000000000000 */
      shift = 0;
      while ((lsb >>= 1) != 0)
	shift++;		/* shift == 44 on exit from loop */
      m1 = ~c;			/*  m1 == 0x00ffffffffffffff */
      m1 >>= shift;		/*  m1 == 0x0000000000000fff */
      m1 = ~m1;			/*  m1 == 0xfffffffffffff000 */
    }

  /* Note that when we only have two 0->1 and 1->0 transitions, one of the
     masks will be all 1's.  We are guaranteed more than one transition.  */
  out[0] = GEN_INT (64 - shift);
  out[1] = GEN_INT (m1);
  out[2] = GEN_INT (shift);
  out[3] = GEN_INT (m2);
#else
  (void)in;
  (void)out;
  gcc_unreachable ();
#endif
}

/* Return TRUE if OP is an invalid SUBREG operation on the e500.  */

bool
invalid_e500_subreg (rtx op, enum machine_mode mode)
{
  if (TARGET_E500_DOUBLE)
    {
      /* Reject (subreg:SI (reg:DF)); likewise with subreg:DI or
	 subreg:TI and reg:TF.  Decimal float modes are like integer
	 modes (only low part of each register used) for this
	 purpose.  */
      if (GET_CODE (op) == SUBREG
	  && (mode == SImode || mode == DImode || mode == TImode
	      || mode == DDmode || mode == TDmode)
	  && REG_P (SUBREG_REG (op))
	  && (GET_MODE (SUBREG_REG (op)) == DFmode
	      || GET_MODE (SUBREG_REG (op)) == TFmode))
	return true;

      /* Reject (subreg:DF (reg:DI)); likewise with subreg:TF and
	 reg:TI.  */
      if (GET_CODE (op) == SUBREG
	  && (mode == DFmode || mode == TFmode)
	  && REG_P (SUBREG_REG (op))
	  && (GET_MODE (SUBREG_REG (op)) == DImode
	      || GET_MODE (SUBREG_REG (op)) == TImode
	      || GET_MODE (SUBREG_REG (op)) == DDmode
	      || GET_MODE (SUBREG_REG (op)) == TDmode))
	return true;
    }

  if (TARGET_SPE
      && GET_CODE (op) == SUBREG
      && mode == SImode
      && REG_P (SUBREG_REG (op))
      && SPE_VECTOR_MODE (GET_MODE (SUBREG_REG (op))))
    return true;

  return false;
}

/* AIX increases natural record alignment to doubleword if the first
   field is an FP double while the FP fields remain word aligned.  */

unsigned int
rs6000_special_round_type_align (tree type, unsigned int computed,
				 unsigned int specified)
{
  unsigned int align = MAX (computed, specified);
  tree field = TYPE_FIELDS (type);

  /* Skip all non field decls */
  while (field != NULL && TREE_CODE (field) != FIELD_DECL)
    field = TREE_CHAIN (field);

  if (field != NULL && field != type)
    {
      type = TREE_TYPE (field);
      while (TREE_CODE (type) == ARRAY_TYPE)
	type = TREE_TYPE (type);

      if (type != error_mark_node && TYPE_MODE (type) == DFmode)
	align = MAX (align, 64);
    }

  return align;
}

/* Darwin increases record alignment to the natural alignment of
   the first field.  */

unsigned int
darwin_rs6000_special_round_type_align (tree type, unsigned int computed,
					unsigned int specified)
{
  unsigned int align = MAX (computed, specified);

  if (TYPE_PACKED (type))
    return align;

  /* Find the first field, looking down into aggregates.  */
  do {
    tree field = TYPE_FIELDS (type);
    /* Skip all non field decls */
    while (field != NULL && TREE_CODE (field) != FIELD_DECL)
      field = TREE_CHAIN (field);
    if (! field)
      break;
    /* A packed field does not contribute any extra alignment.  */
    if (DECL_PACKED (field))
      return align;
    type = TREE_TYPE (field);
    while (TREE_CODE (type) == ARRAY_TYPE)
      type = TREE_TYPE (type);
  } while (AGGREGATE_TYPE_P (type));

  if (! AGGREGATE_TYPE_P (type) && type != error_mark_node)
    align = MAX (align, TYPE_ALIGN (type));

  return align;
}

/* Return 1 for an operand in small memory on V.4/eabi.  */

int
small_data_operand (rtx op ATTRIBUTE_UNUSED,
		    enum machine_mode mode ATTRIBUTE_UNUSED)
{
#if TARGET_ELF
  rtx sym_ref;

  if (rs6000_sdata == SDATA_NONE || rs6000_sdata == SDATA_DATA)
    return 0;

  if (DEFAULT_ABI != ABI_V4)
    return 0;

  /* Vector and float memory instructions have a limited offset on the
     SPE, so using a vector or float variable directly as an operand is
     not useful.  */
  if (TARGET_SPE
      && (SPE_VECTOR_MODE (mode) || FLOAT_MODE_P (mode)))
    return 0;

  if (GET_CODE (op) == SYMBOL_REF)
    sym_ref = op;

  else if (GET_CODE (op) != CONST
	   || GET_CODE (XEXP (op, 0)) != PLUS
	   || GET_CODE (XEXP (XEXP (op, 0), 0)) != SYMBOL_REF
	   || GET_CODE (XEXP (XEXP (op, 0), 1)) != CONST_INT)
    return 0;

  else
    {
      rtx sum = XEXP (op, 0);
      HOST_WIDE_INT summand;

      /* We have to be careful here, because it is the referenced address
	 that must be 32k from _SDA_BASE_, not just the symbol.  */
      summand = INTVAL (XEXP (sum, 1));
      if (summand < 0 || (unsigned HOST_WIDE_INT) summand > g_switch_value)
	return 0;

      sym_ref = XEXP (sum, 0);
    }

  return SYMBOL_REF_SMALL_P (sym_ref);
#else
  return 0;
#endif
}

/* Return true if either operand is a general purpose register.  */

bool
gpr_or_gpr_p (rtx op0, rtx op1)
{
  return ((REG_P (op0) && INT_REGNO_P (REGNO (op0)))
	  || (REG_P (op1) && INT_REGNO_P (REGNO (op1))));
}


/* Subroutines of rs6000_legitimize_address and rs6000_legitimate_address_p.  */

static bool
reg_offset_addressing_ok_p (enum machine_mode mode)
{
  switch (mode)
    {
    case V16QImode:
    case V8HImode:
    case V4SFmode:
    case V4SImode:
    case V2DFmode:
    case V2DImode:
      /* AltiVec/VSX vector modes.  Only reg+reg addressing is valid.  */
      if (VECTOR_MEM_ALTIVEC_OR_VSX_P (mode))
	return false;
      break;

    case V4HImode:
    case V2SImode:
    case V1DImode:
    case V2SFmode:
       /* Paired vector modes.  Only reg+reg addressing is valid.  */
      if (TARGET_PAIRED_FLOAT)
        return false;
      break;

    default:
      break;
    }

  return true;
}

static bool
virtual_stack_registers_memory_p (rtx op)
{
  int regnum;

  if (GET_CODE (op) == REG)
    regnum = REGNO (op);

  else if (GET_CODE (op) == PLUS
	   && GET_CODE (XEXP (op, 0)) == REG
	   && GET_CODE (XEXP (op, 1)) == CONST_INT)
    regnum = REGNO (XEXP (op, 0));

  else
    return false;

  return (regnum >= FIRST_VIRTUAL_REGISTER
	  && regnum <= LAST_VIRTUAL_REGISTER);
}

static bool
constant_pool_expr_p (rtx op)
{
  rtx base, offset;

  split_const (op, &base, &offset);
  return (GET_CODE (base) == SYMBOL_REF
	  && CONSTANT_POOL_ADDRESS_P (base)
	  && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (base), Pmode));
}

bool
toc_relative_expr_p (rtx op)
{
  rtx base, offset;

  if (GET_CODE (op) != CONST)
    return false;

  split_const (op, &base, &offset);
  return (GET_CODE (base) == UNSPEC
	  && XINT (base, 1) == UNSPEC_TOCREL);
}

bool
legitimate_constant_pool_address_p (rtx x)
{
  return (TARGET_TOC
	  && GET_CODE (x) == PLUS
	  && GET_CODE (XEXP (x, 0)) == REG
	  && (TARGET_MINIMAL_TOC || REGNO (XEXP (x, 0)) == TOC_REGISTER)
	  && toc_relative_expr_p (XEXP (x, 1)));
}

static bool
legitimate_small_data_p (enum machine_mode mode, rtx x)
{
  return (DEFAULT_ABI == ABI_V4
	  && !flag_pic && !TARGET_TOC
	  && (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
	  && small_data_operand (x, mode));
}

/* SPE offset addressing is limited to 5-bits worth of double words.  */
#define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)

bool
rs6000_legitimate_offset_address_p (enum machine_mode mode, rtx x, int strict)
{
  unsigned HOST_WIDE_INT offset, extra;

  if (GET_CODE (x) != PLUS)
    return false;
  if (GET_CODE (XEXP (x, 0)) != REG)
    return false;
  if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
    return false;
  if (!reg_offset_addressing_ok_p (mode))
    return virtual_stack_registers_memory_p (x);
  if (legitimate_constant_pool_address_p (x))
    return true;
  if (GET_CODE (XEXP (x, 1)) != CONST_INT)
    return false;

  offset = INTVAL (XEXP (x, 1));
  extra = 0;
  switch (mode)
    {
    case V4HImode:
    case V2SImode:
    case V1DImode:
    case V2SFmode:
      /* SPE vector modes.  */
      return SPE_CONST_OFFSET_OK (offset);

    case DFmode:
      if (TARGET_E500_DOUBLE)
	return SPE_CONST_OFFSET_OK (offset);

      /* If we are using VSX scalar loads, restrict ourselves to reg+reg
	 addressing.  */
      if (VECTOR_MEM_VSX_P (DFmode))
	return false;

    case DDmode:
    case DImode:
      /* On e500v2, we may have:

	   (subreg:DF (mem:DI (plus (reg) (const_int))) 0).

         Which gets addressed with evldd instructions.  */
      if (TARGET_E500_DOUBLE)
	return SPE_CONST_OFFSET_OK (offset);

      if (mode == DFmode || mode == DDmode || !TARGET_POWERPC64)
	extra = 4;
      else if (offset & 3)
	return false;
      break;

    case TFmode:
      if (TARGET_E500_DOUBLE)
	return (SPE_CONST_OFFSET_OK (offset)
		&& SPE_CONST_OFFSET_OK (offset + 8));

    case TDmode:
    case TImode:
      if (mode == TFmode || mode == TDmode || !TARGET_POWERPC64)
	extra = 12;
      else if (offset & 3)
	return false;
      else
	extra = 8;
      break;

    default:
      break;
    }

  offset += 0x8000;
  return (offset < 0x10000) && (offset + extra < 0x10000);
}

bool
legitimate_indexed_address_p (rtx x, int strict)
{
  rtx op0, op1;

  if (GET_CODE (x) != PLUS)
    return false;

  op0 = XEXP (x, 0);
  op1 = XEXP (x, 1);

  /* Recognize the rtl generated by reload which we know will later be
     replaced with proper base and index regs.  */
  if (!strict
      && reload_in_progress
      && (REG_P (op0) || GET_CODE (op0) == PLUS)
      && REG_P (op1))
    return true;

  return (REG_P (op0) && REG_P (op1)
	  && ((INT_REG_OK_FOR_BASE_P (op0, strict)
	       && INT_REG_OK_FOR_INDEX_P (op1, strict))
	      || (INT_REG_OK_FOR_BASE_P (op1, strict)
		  && INT_REG_OK_FOR_INDEX_P (op0, strict))));
}

bool
avoiding_indexed_address_p (enum machine_mode mode)
{
  /* Avoid indexed addressing for modes that have non-indexed
     load/store instruction forms.  */
  return (TARGET_AVOID_XFORM && VECTOR_MEM_NONE_P (mode));
}

inline bool
legitimate_indirect_address_p (rtx x, int strict)
{
  return GET_CODE (x) == REG && INT_REG_OK_FOR_BASE_P (x, strict);
}

bool
macho_lo_sum_memory_operand (rtx x, enum machine_mode mode)
{
  if (!TARGET_MACHO || !flag_pic
      || mode != SImode || GET_CODE (x) != MEM)
    return false;
  x = XEXP (x, 0);

  if (GET_CODE (x) != LO_SUM)
    return false;
  if (GET_CODE (XEXP (x, 0)) != REG)
    return false;
  if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 0))
    return false;
  x = XEXP (x, 1);

  return CONSTANT_P (x);
}

static bool
legitimate_lo_sum_address_p (enum machine_mode mode, rtx x, int strict)
{
  if (GET_CODE (x) != LO_SUM)
    return false;
  if (GET_CODE (XEXP (x, 0)) != REG)
    return false;
  if (!INT_REG_OK_FOR_BASE_P (XEXP (x, 0), strict))
    return false;
  /* Restrict addressing for DI because of our SUBREG hackery.  */
  if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
			     || mode == DDmode || mode == TDmode
			     || mode == DImode))
    return false;
  x = XEXP (x, 1);

  if (TARGET_ELF || TARGET_MACHO)
    {
      if (DEFAULT_ABI != ABI_AIX && DEFAULT_ABI != ABI_DARWIN && flag_pic)
	return false;
      if (TARGET_TOC)
	return false;
      if (GET_MODE_NUNITS (mode) != 1)
	return false;
      if (GET_MODE_BITSIZE (mode) > 64
	  || (GET_MODE_BITSIZE (mode) > 32 && !TARGET_POWERPC64
	      && !(TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT
		   && (mode == DFmode || mode == DDmode))))
	return false;

      return CONSTANT_P (x);
    }

  return false;
}


/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This is used from only one place: `memory_address' in explow.c.

   OLDX is the address as it was before break_out_memory_refs was
   called.  In some cases it is useful to look at this to decide what
   needs to be done.

   It is always safe for this function to do nothing.  It exists to
   recognize opportunities to optimize the output.

   On RS/6000, first check for the sum of a register with a constant
   integer that is out of range.  If so, generate code to add the
   constant with the low-order 16 bits masked to the register and force
   this result into another register (this can be done with `cau').
   Then generate an address of REG+(CONST&0xffff), allowing for the
   possibility of bit 16 being a one.

   Then check for the sum of a register and something not constant, try to
   load the other things into a register and return the sum.  */

static rtx
rs6000_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
			   enum machine_mode mode)
{
  unsigned int extra = 0;

  if (!reg_offset_addressing_ok_p (mode))
    {
      if (virtual_stack_registers_memory_p (x))
	return x;

      /* In theory we should not be seeing addresses of the form reg+0,
	 but just in case it is generated, optimize it away.  */
      if (GET_CODE (x) == PLUS && XEXP (x, 1) == const0_rtx)
	return force_reg (Pmode, XEXP (x, 0));

      /* Make sure both operands are registers.  */
      else if (GET_CODE (x) == PLUS)
	return gen_rtx_PLUS (Pmode,
			     force_reg (Pmode, XEXP (x, 0)),
			     force_reg (Pmode, XEXP (x, 1)));
      else
	return force_reg (Pmode, x);
    }
  if (GET_CODE (x) == SYMBOL_REF)
    {
      enum tls_model model = SYMBOL_REF_TLS_MODEL (x);
      if (model != 0)
	return rs6000_legitimize_tls_address (x, model);
    }

  switch (mode)
    {
    case DFmode:
    case DDmode:
      extra = 4;
      break;
    case DImode:
      if (!TARGET_POWERPC64)
	extra = 4;
      break;
    case TFmode:
    case TDmode:
      extra = 12;
      break;
    case TImode:
      extra = TARGET_POWERPC64 ? 8 : 12;
      break;
    default:
      break;
    }

  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 1)) + 0x8000)
	  >= 0x10000 - extra)
      && !((TARGET_POWERPC64
	    && (mode == DImode || mode == TImode)
	    && (INTVAL (XEXP (x, 1)) & 3) != 0)
	   || SPE_VECTOR_MODE (mode)
	   || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
				      || mode == DImode || mode == DDmode
				      || mode == TDmode))))
    {
      HOST_WIDE_INT high_int, low_int;
      rtx sum;
      low_int = ((INTVAL (XEXP (x, 1)) & 0xffff) ^ 0x8000) - 0x8000;
      if (low_int >= 0x8000 - extra)
	low_int = 0;
      high_int = INTVAL (XEXP (x, 1)) - low_int;
      sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (x, 0),
					 GEN_INT (high_int)), 0);
      return plus_constant (sum, low_int);
    }
  else if (GET_CODE (x) == PLUS
	   && GET_CODE (XEXP (x, 0)) == REG
	   && GET_CODE (XEXP (x, 1)) != CONST_INT
	   && GET_MODE_NUNITS (mode) == 1
	   && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
	       || TARGET_POWERPC64
	       || ((mode != DImode && mode != DFmode && mode != DDmode)
		   || (TARGET_E500_DOUBLE && mode != DDmode)))
	   && (TARGET_POWERPC64 || mode != DImode)
	   && !avoiding_indexed_address_p (mode)
	   && mode != TImode
	   && mode != TFmode
	   && mode != TDmode)
    {
      return gen_rtx_PLUS (Pmode, XEXP (x, 0),
			   force_reg (Pmode, force_operand (XEXP (x, 1), 0)));
    }
  else if (SPE_VECTOR_MODE (mode)
	   || (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
				      || mode == DDmode || mode == TDmode
				      || mode == DImode)))
    {
      if (mode == DImode)
	return x;
      /* We accept [reg + reg] and [reg + OFFSET].  */

      if (GET_CODE (x) == PLUS)
       {
         rtx op1 = XEXP (x, 0);
         rtx op2 = XEXP (x, 1);
         rtx y;

         op1 = force_reg (Pmode, op1);

         if (GET_CODE (op2) != REG
             && (GET_CODE (op2) != CONST_INT
                 || !SPE_CONST_OFFSET_OK (INTVAL (op2))
                 || (GET_MODE_SIZE (mode) > 8
                     && !SPE_CONST_OFFSET_OK (INTVAL (op2) + 8))))
           op2 = force_reg (Pmode, op2);

         /* We can't always do [reg + reg] for these, because [reg +
            reg + offset] is not a legitimate addressing mode.  */
         y = gen_rtx_PLUS (Pmode, op1, op2);

         if ((GET_MODE_SIZE (mode) > 8 || mode == DDmode) && REG_P (op2))
           return force_reg (Pmode, y);
         else
           return y;
       }

      return force_reg (Pmode, x);
    }
  else if (TARGET_ELF
	   && TARGET_32BIT
	   && TARGET_NO_TOC
	   && ! flag_pic
	   && GET_CODE (x) != CONST_INT
	   && GET_CODE (x) != CONST_DOUBLE
	   && CONSTANT_P (x)
	   && GET_MODE_NUNITS (mode) == 1
	   && (GET_MODE_BITSIZE (mode) <= 32
	       || ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
		   && (mode == DFmode || mode == DDmode))))
    {
      rtx reg = gen_reg_rtx (Pmode);
      emit_insn (gen_elf_high (reg, x));
      return gen_rtx_LO_SUM (Pmode, reg, x);
    }
  else if (TARGET_MACHO && TARGET_32BIT && TARGET_NO_TOC
	   && ! flag_pic
#if TARGET_MACHO
	   && ! MACHO_DYNAMIC_NO_PIC_P
#endif
	   && GET_CODE (x) != CONST_INT
	   && GET_CODE (x) != CONST_DOUBLE
	   && CONSTANT_P (x)
	   && GET_MODE_NUNITS (mode) == 1
	   && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
	       || (mode != DFmode && mode != DDmode))
	   && mode != DImode
	   && mode != TImode)
    {
      rtx reg = gen_reg_rtx (Pmode);
      emit_insn (gen_macho_high (reg, x));
      return gen_rtx_LO_SUM (Pmode, reg, x);
    }
  else if (TARGET_TOC
	   && GET_CODE (x) == SYMBOL_REF
	   && constant_pool_expr_p (x)
	   && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), Pmode))
    {
      return create_TOC_reference (x);
    }
  else
    return x;
}

/* Debug version of rs6000_legitimize_address.  */
static rtx
rs6000_debug_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
{
  rtx ret;
  rtx insns;

  start_sequence ();
  ret = rs6000_legitimize_address (x, oldx, mode);
  insns = get_insns ();
  end_sequence ();

  if (ret != x)
    {
      fprintf (stderr,
	       "\nrs6000_legitimize_address: mode %s, old code %s, "
	       "new code %s, modified\n",
	       GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)),
	       GET_RTX_NAME (GET_CODE (ret)));

      fprintf (stderr, "Original address:\n");
      debug_rtx (x);

      fprintf (stderr, "oldx:\n");
      debug_rtx (oldx);

      fprintf (stderr, "New address:\n");
      debug_rtx (ret);

      if (insns)
	{
	  fprintf (stderr, "Insns added:\n");
	  debug_rtx_list (insns, 20);
	}
    }
  else
    {
      fprintf (stderr,
	       "\nrs6000_legitimize_address: mode %s, code %s, no change:\n",
	       GET_MODE_NAME (mode), GET_RTX_NAME (GET_CODE (x)));

      debug_rtx (x);
    }

  if (insns)
    emit_insn (insns);

  return ret;
}

/* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
   We need to emit DTP-relative relocations.  */

static void
rs6000_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
  switch (size)
    {
    case 4:
      fputs ("\t.long\t", file);
      break;
    case 8:
      fputs (DOUBLE_INT_ASM_OP, file);
      break;
    default:
      gcc_unreachable ();
    }
  output_addr_const (file, x);
  fputs ("@dtprel+0x8000", file);
}

/* In the name of slightly smaller debug output, and to cater to
   general assembler lossage, recognize various UNSPEC sequences
   and turn them back into a direct symbol reference.  */

static rtx
rs6000_delegitimize_address (rtx orig_x)
{
  rtx x, y;

  orig_x = delegitimize_mem_from_attrs (orig_x);
  x = orig_x;
  if (MEM_P (x))
    x = XEXP (x, 0);

  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST
      && GET_CODE (XEXP (x, 0)) == REG
      && REGNO (XEXP (x, 0)) == TOC_REGISTER)
    {
      y = XEXP (XEXP (x, 1), 0);
      if (GET_CODE (y) == UNSPEC
          && XINT (y, 1) == UNSPEC_TOCREL)
	{
	  y = XVECEXP (y, 0, 0);
	  if (!MEM_P (orig_x))
	    return y;
	  else
	    return replace_equiv_address_nv (orig_x, y);
	}
      return orig_x;
    }

  if (TARGET_MACHO
      && GET_CODE (orig_x) == LO_SUM
      && GET_CODE (XEXP (x, 1)) == CONST)
    {
      y = XEXP (XEXP (x, 1), 0);
      if (GET_CODE (y) == UNSPEC
	  && XINT (y, 1) == UNSPEC_MACHOPIC_OFFSET)
	return XVECEXP (y, 0, 0);
    }

  return orig_x;
}

/* Construct the SYMBOL_REF for the tls_get_addr function.  */

static GTY(()) rtx rs6000_tls_symbol;
static rtx
rs6000_tls_get_addr (void)
{
  if (!rs6000_tls_symbol)
    rs6000_tls_symbol = init_one_libfunc ("__tls_get_addr");

  return rs6000_tls_symbol;
}

/* Construct the SYMBOL_REF for TLS GOT references.  */

static GTY(()) rtx rs6000_got_symbol;
static rtx
rs6000_got_sym (void)
{
  if (!rs6000_got_symbol)
    {
      rs6000_got_symbol = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
      SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_LOCAL;
      SYMBOL_REF_FLAGS (rs6000_got_symbol) |= SYMBOL_FLAG_EXTERNAL;
    }

  return rs6000_got_symbol;
}

/* ADDR contains a thread-local SYMBOL_REF.  Generate code to compute
   this (thread-local) address.  */

static rtx
rs6000_legitimize_tls_address (rtx addr, enum tls_model model)
{
  rtx dest, insn;

  dest = gen_reg_rtx (Pmode);
  if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 16)
    {
      rtx tlsreg;

      if (TARGET_64BIT)
	{
	  tlsreg = gen_rtx_REG (Pmode, 13);
	  insn = gen_tls_tprel_64 (dest, tlsreg, addr);
	}
      else
	{
	  tlsreg = gen_rtx_REG (Pmode, 2);
	  insn = gen_tls_tprel_32 (dest, tlsreg, addr);
	}
      emit_insn (insn);
    }
  else if (model == TLS_MODEL_LOCAL_EXEC && rs6000_tls_size == 32)
    {
      rtx tlsreg, tmp;

      tmp = gen_reg_rtx (Pmode);
      if (TARGET_64BIT)
	{
	  tlsreg = gen_rtx_REG (Pmode, 13);
	  insn = gen_tls_tprel_ha_64 (tmp, tlsreg, addr);
	}
      else
	{
	  tlsreg = gen_rtx_REG (Pmode, 2);
	  insn = gen_tls_tprel_ha_32 (tmp, tlsreg, addr);
	}
      emit_insn (insn);
      if (TARGET_64BIT)
	insn = gen_tls_tprel_lo_64 (dest, tmp, addr);
      else
	insn = gen_tls_tprel_lo_32 (dest, tmp, addr);
      emit_insn (insn);
    }
  else
    {
      rtx r3, got, tga, tmp1, tmp2, eqv;

      /* We currently use relocations like @got@tlsgd for tls, which
	 means the linker will handle allocation of tls entries, placing
	 them in the .got section.  So use a pointer to the .got section,
	 not one to secondary TOC sections used by 64-bit -mminimal-toc,
	 or to secondary GOT sections used by 32-bit -fPIC.  */
      if (TARGET_64BIT)
	got = gen_rtx_REG (Pmode, 2);
      else
	{
	  if (flag_pic == 1)
	    got = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);
	  else
	    {
	      rtx gsym = rs6000_got_sym ();
	      got = gen_reg_rtx (Pmode);
	      if (flag_pic == 0)
		rs6000_emit_move (got, gsym, Pmode);
	      else
		{
		  rtx tmp3, mem;
		  rtx first, last;

		  tmp1 = gen_reg_rtx (Pmode);
		  tmp2 = gen_reg_rtx (Pmode);
		  tmp3 = gen_reg_rtx (Pmode);
		  mem = gen_const_mem (Pmode, tmp1);

		  first = emit_insn (gen_load_toc_v4_PIC_1b (gsym));
		  emit_move_insn (tmp1,
				  gen_rtx_REG (Pmode, LR_REGNO));
		  emit_move_insn (tmp2, mem);
		  emit_insn (gen_addsi3 (tmp3, tmp1, tmp2));
		  last = emit_move_insn (got, tmp3);
		  set_unique_reg_note (last, REG_EQUAL, gsym);
		}
	    }
	}

      if (model == TLS_MODEL_GLOBAL_DYNAMIC)
	{
	  r3 = gen_rtx_REG (Pmode, 3);
	  tga = rs6000_tls_get_addr ();

	  if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
	    insn = gen_tls_gd_aix64 (r3, got, addr, tga, const0_rtx);
	  else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
	    insn = gen_tls_gd_aix32 (r3, got, addr, tga, const0_rtx);
	  else if (DEFAULT_ABI == ABI_V4)
	    insn = gen_tls_gd_sysvsi (r3, got, addr, tga, const0_rtx);
	  else
	    gcc_unreachable ();

	  start_sequence ();
	  insn = emit_call_insn (insn);
	  RTL_CONST_CALL_P (insn) = 1;
	  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
	  if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
	    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
	  insn = get_insns ();
	  end_sequence ();
	  emit_libcall_block (insn, dest, r3, addr);
	}
      else if (model == TLS_MODEL_LOCAL_DYNAMIC)
	{
	  r3 = gen_rtx_REG (Pmode, 3);
	  tga = rs6000_tls_get_addr ();

	  if (DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
	    insn = gen_tls_ld_aix64 (r3, got, tga, const0_rtx);
	  else if (DEFAULT_ABI == ABI_AIX && !TARGET_64BIT)
	    insn = gen_tls_ld_aix32 (r3, got, tga, const0_rtx);
	  else if (DEFAULT_ABI == ABI_V4)
	    insn = gen_tls_ld_sysvsi (r3, got, tga, const0_rtx);
	  else
	    gcc_unreachable ();

	  start_sequence ();
	  insn = emit_call_insn (insn);
	  RTL_CONST_CALL_P (insn) = 1;
	  use_reg (&CALL_INSN_FUNCTION_USAGE (insn), r3);
	  if (DEFAULT_ABI == ABI_V4 && TARGET_SECURE_PLT && flag_pic)
	    use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
	  insn = get_insns ();
	  end_sequence ();
	  tmp1 = gen_reg_rtx (Pmode);
	  eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
				UNSPEC_TLSLD);
	  emit_libcall_block (insn, tmp1, r3, eqv);
	  if (rs6000_tls_size == 16)
	    {
	      if (TARGET_64BIT)
		insn = gen_tls_dtprel_64 (dest, tmp1, addr);
	      else
		insn = gen_tls_dtprel_32 (dest, tmp1, addr);
	    }
	  else if (rs6000_tls_size == 32)
	    {
	      tmp2 = gen_reg_rtx (Pmode);
	      if (TARGET_64BIT)
		insn = gen_tls_dtprel_ha_64 (tmp2, tmp1, addr);
	      else
		insn = gen_tls_dtprel_ha_32 (tmp2, tmp1, addr);
	      emit_insn (insn);
	      if (TARGET_64BIT)
		insn = gen_tls_dtprel_lo_64 (dest, tmp2, addr);
	      else
		insn = gen_tls_dtprel_lo_32 (dest, tmp2, addr);
	    }
	  else
	    {
	      tmp2 = gen_reg_rtx (Pmode);
	      if (TARGET_64BIT)
		insn = gen_tls_got_dtprel_64 (tmp2, got, addr);
	      else
		insn = gen_tls_got_dtprel_32 (tmp2, got, addr);
	      emit_insn (insn);
	      insn = gen_rtx_SET (Pmode, dest,
				  gen_rtx_PLUS (Pmode, tmp2, tmp1));
	    }
	  emit_insn (insn);
	}
      else
	{
	  /* IE, or 64-bit offset LE.  */
	  tmp2 = gen_reg_rtx (Pmode);
	  if (TARGET_64BIT)
	    insn = gen_tls_got_tprel_64 (tmp2, got, addr);
	  else
	    insn = gen_tls_got_tprel_32 (tmp2, got, addr);
	  emit_insn (insn);
	  if (TARGET_64BIT)
	    insn = gen_tls_tls_64 (dest, tmp2, addr);
	  else
	    insn = gen_tls_tls_32 (dest, tmp2, addr);
	  emit_insn (insn);
	}
    }

  return dest;
}

/* Return 1 if X contains a thread-local symbol.  */

bool
rs6000_tls_referenced_p (rtx x)
{
  if (! TARGET_HAVE_TLS)
    return false;

  return for_each_rtx (&x, &rs6000_tls_symbol_ref_1, 0);
}

/* Return 1 if *X is a thread-local symbol.  This is the same as
   rs6000_tls_symbol_ref except for the type of the unused argument.  */

static int
rs6000_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
{
  return RS6000_SYMBOL_REF_TLS_P (*x);
}

/* Our implementation of LEGITIMIZE_RELOAD_ADDRESS.  Returns a value to
   replace the input X, or the original X if no replacement is called for.
   The output parameter *WIN is 1 if the calling macro should goto WIN,
   0 if it should not.

   For RS/6000, we wish to handle large displacements off a base
   register by splitting the addend across an addiu/addis and the mem insn.
   This cuts number of extra insns needed from 3 to 1.

   On Darwin, we use this to generate code for floating point constants.
   A movsf_low is generated so we wind up with 2 instructions rather than 3.
   The Darwin code is inside #if TARGET_MACHO because only then are the
   machopic_* functions defined.  */
static rtx
rs6000_legitimize_reload_address (rtx x, enum machine_mode mode,
				  int opnum, int type,
				  int ind_levels ATTRIBUTE_UNUSED, int *win)
{
  bool reg_offset_p = reg_offset_addressing_ok_p (mode);

  /* We must recognize output that we have already generated ourselves.  */
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == PLUS
      && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    {
      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
		   opnum, (enum reload_type)type);
      *win = 1;
      return x;
    }

#if TARGET_MACHO
  if (DEFAULT_ABI == ABI_DARWIN && flag_pic
      && GET_CODE (x) == LO_SUM
      && GET_CODE (XEXP (x, 0)) == PLUS
      && XEXP (XEXP (x, 0), 0) == pic_offset_table_rtx
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == HIGH
      && XEXP (XEXP (XEXP (x, 0), 1), 0) == XEXP (x, 1)
      && machopic_operand_p (XEXP (x, 1)))
    {
      /* Result of previous invocation of this function on Darwin
	 floating point constant.  */
      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
		   opnum, (enum reload_type)type);
      *win = 1;
      return x;
    }
#endif

  /* Force ld/std non-word aligned offset into base register by wrapping
     in offset 0.  */
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && REGNO (XEXP (x, 0)) < 32
      && INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 1)
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && reg_offset_p
      && (INTVAL (XEXP (x, 1)) & 3) != 0
      && VECTOR_MEM_NONE_P (mode)
      && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
      && TARGET_POWERPC64)
    {
      x = gen_rtx_PLUS (GET_MODE (x), x, GEN_INT (0));
      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
		   opnum, (enum reload_type) type);
      *win = 1;
      return x;
    }

  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
      && INT_REG_OK_FOR_BASE_P (XEXP (x, 0), 1)
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && reg_offset_p
      && !SPE_VECTOR_MODE (mode)
      && !(TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
				  || mode == DDmode || mode == TDmode
				  || mode == DImode))
      && VECTOR_MEM_NONE_P (mode))
    {
      HOST_WIDE_INT val = INTVAL (XEXP (x, 1));
      HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000;
      HOST_WIDE_INT high
	= (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000;

      /* Check for 32-bit overflow.  */
      if (high + low != val)
	{
	  *win = 0;
	  return x;
	}

      /* Reload the high part into a base reg; leave the low part
	 in the mem directly.  */

      x = gen_rtx_PLUS (GET_MODE (x),
			gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
				      GEN_INT (high)),
			GEN_INT (low));

      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   BASE_REG_CLASS, GET_MODE (x), VOIDmode, 0, 0,
		   opnum, (enum reload_type)type);
      *win = 1;
      return x;
    }

  if (GET_CODE (x) == SYMBOL_REF
      && reg_offset_p
      && VECTOR_MEM_NONE_P (mode)
      && !SPE_VECTOR_MODE (mode)
#if TARGET_MACHO
      && DEFAULT_ABI == ABI_DARWIN
      && (flag_pic || MACHO_DYNAMIC_NO_PIC_P)
#else
      && DEFAULT_ABI == ABI_V4
      && !flag_pic
#endif
      /* Don't do this for TFmode or TDmode, since the result isn't offsettable.
	 The same goes for DImode without 64-bit gprs and DFmode and DDmode
	 without fprs.  */
      && mode != TFmode
      && mode != TDmode
      && (mode != DImode || TARGET_POWERPC64)
      && ((mode != DFmode && mode != DDmode) || TARGET_POWERPC64
	  || (TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)))
    {
#if TARGET_MACHO
      if (flag_pic)
	{
	  rtx offset = machopic_gen_offset (x);
	  x = gen_rtx_LO_SUM (GET_MODE (x),
		gen_rtx_PLUS (Pmode, pic_offset_table_rtx,
		  gen_rtx_HIGH (Pmode, offset)), offset);
	}
      else
#endif
	x = gen_rtx_LO_SUM (GET_MODE (x),
	      gen_rtx_HIGH (Pmode, x), x);

      push_reload (XEXP (x, 0), NULL_RTX, &XEXP (x, 0), NULL,
		   BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
		   opnum, (enum reload_type)type);
      *win = 1;
      return x;
    }

  /* Reload an offset address wrapped by an AND that represents the
     masking of the lower bits.  Strip the outer AND and let reload
     convert the offset address into an indirect address.  For VSX,
     force reload to create the address with an AND in a separate
     register, because we can't guarantee an altivec register will
     be used.  */
  if (VECTOR_MEM_ALTIVEC_P (mode)
      && GET_CODE (x) == AND
      && GET_CODE (XEXP (x, 0)) == PLUS
      && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && INTVAL (XEXP (x, 1)) == -16)
    {
      x = XEXP (x, 0);
      *win = 1;
      return x;
    }

  if (TARGET_TOC
      && reg_offset_p
      && GET_CODE (x) == SYMBOL_REF
      && constant_pool_expr_p (x)
      && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (x), mode))
    {
      x = create_TOC_reference (x);
      *win = 1;
      return x;
    }
  *win = 0;
  return x;
}

/* Debug version of rs6000_legitimize_reload_address.  */
static rtx
rs6000_debug_legitimize_reload_address (rtx x, enum machine_mode mode,
					int opnum, int type,
					int ind_levels, int *win)
{
  rtx ret = rs6000_legitimize_reload_address (x, mode, opnum, type,
					      ind_levels, win);
  fprintf (stderr,
	   "\nrs6000_legitimize_reload_address: mode = %s, opnum = %d, "
	   "type = %d, ind_levels = %d, win = %d, original addr:\n",
	   GET_MODE_NAME (mode), opnum, type, ind_levels, *win);
  debug_rtx (x);

  if (x == ret)
    fprintf (stderr, "Same address returned\n");
  else if (!ret)
    fprintf (stderr, "NULL returned\n");
  else
    {
      fprintf (stderr, "New address:\n");
      debug_rtx (ret);
    }

  return ret;
}

/* TARGET_LEGITIMATE_ADDRESS_P recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.

   On the RS/6000, there are four valid address: a SYMBOL_REF that
   refers to a constant pool entry of an address (or the sum of it
   plus a constant), a short (16-bit signed) constant plus a register,
   the sum of two registers, or a register indirect, possibly with an
   auto-increment.  For DFmode, DDmode and DImode with a constant plus
   register, we must ensure that both words are addressable or PowerPC64
   with offset word aligned.

   For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
   32-bit DImode, TImode, TFmode, TDmode), indexed addressing cannot be used
   because adjacent memory cells are accessed by adding word-sized offsets
   during assembly output.  */
bool
rs6000_legitimate_address_p (enum machine_mode mode, rtx x, bool reg_ok_strict)
{
  bool reg_offset_p = reg_offset_addressing_ok_p (mode);

  /* If this is an unaligned stvx/ldvx type address, discard the outer AND.  */
  if (VECTOR_MEM_ALTIVEC_P (mode)
      && GET_CODE (x) == AND
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && INTVAL (XEXP (x, 1)) == -16)
    x = XEXP (x, 0);

  if (RS6000_SYMBOL_REF_TLS_P (x))
    return 0;
  if (legitimate_indirect_address_p (x, reg_ok_strict))
    return 1;
  if ((GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
      && !VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
      && !SPE_VECTOR_MODE (mode)
      && mode != TFmode
      && mode != TDmode
      /* Restrict addressing for DI because of our SUBREG hackery.  */
      && !(TARGET_E500_DOUBLE
	   && (mode == DFmode || mode == DDmode || mode == DImode))
      && TARGET_UPDATE
      && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict))
    return 1;
  if (virtual_stack_registers_memory_p (x))
    return 1;
  if (reg_offset_p && legitimate_small_data_p (mode, x))
    return 1;
  if (reg_offset_p && legitimate_constant_pool_address_p (x))
    return 1;
  /* If not REG_OK_STRICT (before reload) let pass any stack offset.  */
  if (! reg_ok_strict
      && reg_offset_p
      && GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && (XEXP (x, 0) == virtual_stack_vars_rtx
	  || XEXP (x, 0) == arg_pointer_rtx)
      && GET_CODE (XEXP (x, 1)) == CONST_INT)
    return 1;
  if (rs6000_legitimate_offset_address_p (mode, x, reg_ok_strict))
    return 1;
  if (mode != TImode
      && mode != TFmode
      && mode != TDmode
      && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
	  || TARGET_POWERPC64
	  || (mode != DFmode && mode != DDmode)
	  || (TARGET_E500_DOUBLE && mode != DDmode))
      && (TARGET_POWERPC64 || mode != DImode)
      && !avoiding_indexed_address_p (mode)
      && legitimate_indexed_address_p (x, reg_ok_strict))
    return 1;
  if (GET_CODE (x) == PRE_MODIFY
      && mode != TImode
      && mode != TFmode
      && mode != TDmode
      && ((TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT)
	  || TARGET_POWERPC64
	  || ((mode != DFmode && mode != DDmode) || TARGET_E500_DOUBLE))
      && (TARGET_POWERPC64 || mode != DImode)
      && !VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)
      && !SPE_VECTOR_MODE (mode)
      /* Restrict addressing for DI because of our SUBREG hackery.  */
      && !(TARGET_E500_DOUBLE
	   && (mode == DFmode || mode == DDmode || mode == DImode))
      && TARGET_UPDATE
      && legitimate_indirect_address_p (XEXP (x, 0), reg_ok_strict)
      && (rs6000_legitimate_offset_address_p (mode, XEXP (x, 1), reg_ok_strict)
	  || (!avoiding_indexed_address_p (mode)
	      && legitimate_indexed_address_p (XEXP (x, 1), reg_ok_strict)))
      && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
    return 1;
  if (reg_offset_p && legitimate_lo_sum_address_p (mode, x, reg_ok_strict))
    return 1;
  return 0;
}

/* Debug version of rs6000_legitimate_address_p.  */
static bool
rs6000_debug_legitimate_address_p (enum machine_mode mode, rtx x,
				   bool reg_ok_strict)
{
  bool ret = rs6000_legitimate_address_p (mode, x, reg_ok_strict);
  fprintf (stderr,
	   "\nrs6000_legitimate_address_p: return = %s, mode = %s, "
	   "strict = %d, code = %s\n",
	   ret ? "true" : "false",
	   GET_MODE_NAME (mode),
	   reg_ok_strict,
	   GET_RTX_NAME (GET_CODE (x)));
  debug_rtx (x);

  return ret;
}

/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.

   On the RS/6000 this is true of all integral offsets (since AltiVec
   and VSX modes don't allow them) or is a pre-increment or decrement.

   ??? Except that due to conceptual problems in offsettable_address_p
   we can't really report the problems of integral offsets.  So leave
   this assuming that the adjustable offset must be valid for the
   sub-words of a TFmode operand, which is what we had before.  */

static bool
rs6000_mode_dependent_address (rtx addr)
{
  switch (GET_CODE (addr))
    {
    case PLUS:
      /* Any offset from virtual_stack_vars_rtx and arg_pointer_rtx
	 is considered a legitimate address before reload, so there
	 are no offset restrictions in that case.  Note that this
	 condition is safe in strict mode because any address involving
	 virtual_stack_vars_rtx or arg_pointer_rtx would already have
	 been rejected as illegitimate.  */
      if (XEXP (addr, 0) != virtual_stack_vars_rtx
	  && XEXP (addr, 0) != arg_pointer_rtx
	  && GET_CODE (XEXP (addr, 1)) == CONST_INT)
	{
	  unsigned HOST_WIDE_INT val = INTVAL (XEXP (addr, 1));
	  return val + 12 + 0x8000 >= 0x10000;
	}
      break;

    case LO_SUM:
      return true;

    /* Auto-increment cases are now treated generically in recog.c.  */
    case PRE_MODIFY:
      return TARGET_UPDATE;

    /* AND is only allowed in Altivec loads.  */
    case AND:
      return true;

    default:
      break;
    }

  return false;
}

/* Debug version of rs6000_mode_dependent_address.  */
static bool
rs6000_debug_mode_dependent_address (rtx addr)
{
  bool ret = rs6000_mode_dependent_address (addr);

  fprintf (stderr, "\nrs6000_mode_dependent_address: ret = %s\n",
	   ret ? "true" : "false");
  debug_rtx (addr);

  return ret;
}

/* Implement FIND_BASE_TERM.  */

rtx
rs6000_find_base_term (rtx op)
{
  rtx base, offset;

  split_const (op, &base, &offset);
  if (GET_CODE (base) == UNSPEC)
    switch (XINT (base, 1))
      {
      case UNSPEC_TOCREL:
      case UNSPEC_MACHOPIC_OFFSET:
	/* OP represents SYM [+ OFFSET] - ANCHOR.  SYM is the base term
	   for aliasing purposes.  */
	return XVECEXP (base, 0, 0);
      }

  return op;
}

/* More elaborate version of recog's offsettable_memref_p predicate
   that works around the ??? note of rs6000_mode_dependent_address.
   In particular it accepts

     (mem:DI (plus:SI (reg/f:SI 31 31) (const_int 32760 [0x7ff8])))

   in 32-bit mode, that the recog predicate rejects.  */

bool
rs6000_offsettable_memref_p (rtx op)
{
  if (!MEM_P (op))
    return false;

  /* First mimic offsettable_memref_p.  */
  if (offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)))
    return true;

  /* offsettable_address_p invokes rs6000_mode_dependent_address, but
     the latter predicate knows nothing about the mode of the memory
     reference and, therefore, assumes that it is the largest supported
     mode (TFmode).  As a consequence, legitimate offsettable memory
     references are rejected.  rs6000_legitimate_offset_address_p contains
     the correct logic for the PLUS case of rs6000_mode_dependent_address.  */
  return rs6000_legitimate_offset_address_p (GET_MODE (op), XEXP (op, 0), 1);
}

/* Change register usage conditional on target flags.  */
void
rs6000_conditional_register_usage (void)
{
  int i;

  /* Set MQ register fixed (already call_used) if not POWER
     architecture (RIOS1, RIOS2, RSC, and PPC601) so that it will not
     be allocated.  */
  if (! TARGET_POWER)
    fixed_regs[64] = 1;

  /* 64-bit AIX and Linux reserve GPR13 for thread-private data.  */
  if (TARGET_64BIT)
    fixed_regs[13] = call_used_regs[13]
      = call_really_used_regs[13] = 1;

  /* Conditionally disable FPRs.  */
  if (TARGET_SOFT_FLOAT || !TARGET_FPRS)
    for (i = 32; i < 64; i++)
      fixed_regs[i] = call_used_regs[i]
	= call_really_used_regs[i] = 1;

  /* The TOC register is not killed across calls in a way that is
     visible to the compiler.  */
  if (DEFAULT_ABI == ABI_AIX)
    call_really_used_regs[2] = 0;

  if (DEFAULT_ABI == ABI_V4
      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
      && flag_pic == 2)
    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (DEFAULT_ABI == ABI_V4
      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
      && flag_pic == 1)
    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
      = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (DEFAULT_ABI == ABI_DARWIN
      && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
      fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
      = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (TARGET_TOC && TARGET_MINIMAL_TOC)
    fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM]
      = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1;

  if (TARGET_SPE)
    {
      global_regs[SPEFSCR_REGNO] = 1;
      /* We used to use r14 as FIXED_SCRATCH to address SPE 64-bit
         registers in prologues and epilogues.  We no longer use r14
         for FIXED_SCRATCH, but we're keeping r14 out of the allocation
         pool for link-compatibility with older versions of GCC.  Once
         "old" code has died out, we can return r14 to the allocation
         pool.  */
      fixed_regs[14]
	= call_used_regs[14]
	= call_really_used_regs[14] = 1;
    }

  if (!TARGET_ALTIVEC && !TARGET_VSX)
    {
      for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
	fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
      call_really_used_regs[VRSAVE_REGNO] = 1;
    }

  if (TARGET_ALTIVEC || TARGET_VSX)
    global_regs[VSCR_REGNO] = 1;

  if (TARGET_ALTIVEC_ABI)
    {
      for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)
	call_used_regs[i] = call_really_used_regs[i] = 1;

      /* AIX reserves VR20:31 in non-extended ABI mode.  */
      if (TARGET_XCOFF)
	for (i = FIRST_ALTIVEC_REGNO + 20; i < FIRST_ALTIVEC_REGNO + 32; ++i)
	  fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1;
    }
}

/* Try to output insns to set TARGET equal to the constant C if it can
   be done in less than N insns.  Do all computations in MODE.
   Returns the place where the output has been placed if it can be
   done and the insns have been emitted.  If it would take more than N
   insns, zero is returned and no insns and emitted.  */

rtx
rs6000_emit_set_const (rtx dest, enum machine_mode mode,
		       rtx source, int n ATTRIBUTE_UNUSED)
{
  rtx result, insn, set;
  HOST_WIDE_INT c0, c1;

  switch (mode)
    {
      case  QImode:
    case HImode:
      if (dest == NULL)
	dest = gen_reg_rtx (mode);
      emit_insn (gen_rtx_SET (VOIDmode, dest, source));
      return dest;

    case SImode:
      result = !can_create_pseudo_p () ? dest : gen_reg_rtx (SImode);

      emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (result),
			      GEN_INT (INTVAL (source)
				       & (~ (HOST_WIDE_INT) 0xffff))));
      emit_insn (gen_rtx_SET (VOIDmode, dest,
			      gen_rtx_IOR (SImode, copy_rtx (result),
					   GEN_INT (INTVAL (source) & 0xffff))));
      result = dest;
      break;

    case DImode:
      switch (GET_CODE (source))
	{
	case CONST_INT:
	  c0 = INTVAL (source);
	  c1 = -(c0 < 0);
	  break;

	case CONST_DOUBLE:
#if HOST_BITS_PER_WIDE_INT >= 64
	  c0 = CONST_DOUBLE_LOW (source);
	  c1 = -(c0 < 0);
#else
	  c0 = CONST_DOUBLE_LOW (source);
	  c1 = CONST_DOUBLE_HIGH (source);
#endif
	  break;

	default:
	  gcc_unreachable ();
	}

      result = rs6000_emit_set_long_const (dest, c0, c1);
      break;

    default:
      gcc_unreachable ();
    }

  insn = get_last_insn ();
  set = single_set (insn);
  if (! CONSTANT_P (SET_SRC (set)))
    set_unique_reg_note (insn, REG_EQUAL, source);

  return result;
}

/* Having failed to find a 3 insn sequence in rs6000_emit_set_const,
   fall back to a straight forward decomposition.  We do this to avoid
   exponential run times encountered when looking for longer sequences
   with rs6000_emit_set_const.  */
static rtx
rs6000_emit_set_long_const (rtx dest, HOST_WIDE_INT c1, HOST_WIDE_INT c2)
{
  if (!TARGET_POWERPC64)
    {
      rtx operand1, operand2;

      operand1 = operand_subword_force (dest, WORDS_BIG_ENDIAN == 0,
					DImode);
      operand2 = operand_subword_force (copy_rtx (dest), WORDS_BIG_ENDIAN != 0,
					DImode);
      emit_move_insn (operand1, GEN_INT (c1));
      emit_move_insn (operand2, GEN_INT (c2));
    }
  else
    {
      HOST_WIDE_INT ud1, ud2, ud3, ud4;

      ud1 = c1 & 0xffff;
      ud2 = (c1 & 0xffff0000) >> 16;
#if HOST_BITS_PER_WIDE_INT >= 64
      c2 = c1 >> 32;
#endif
      ud3 = c2 & 0xffff;
      ud4 = (c2 & 0xffff0000) >> 16;

      if ((ud4 == 0xffff && ud3 == 0xffff && ud2 == 0xffff && (ud1 & 0x8000))
	  || (ud4 == 0 && ud3 == 0 && ud2 == 0 && ! (ud1 & 0x8000)))
	{
	  if (ud1 & 0x8000)
	    emit_move_insn (dest, GEN_INT (((ud1 ^ 0x8000) -  0x8000)));
	  else
	    emit_move_insn (dest, GEN_INT (ud1));
	}

      else if ((ud4 == 0xffff && ud3 == 0xffff && (ud2 & 0x8000))
	       || (ud4 == 0 && ud3 == 0 && ! (ud2 & 0x8000)))
	{
	  if (ud2 & 0x8000)
	    emit_move_insn (dest, GEN_INT (((ud2 << 16) ^ 0x80000000)
					   - 0x80000000));
	  else
	    emit_move_insn (dest, GEN_INT (ud2 << 16));
	  if (ud1 != 0)
	    emit_move_insn (copy_rtx (dest),
			    gen_rtx_IOR (DImode, copy_rtx (dest),
					 GEN_INT (ud1)));
	}
      else if (ud3 == 0 && ud4 == 0)
	{
	  gcc_assert (ud2 & 0x8000);
	  emit_move_insn (dest, GEN_INT (((ud2 << 16) ^ 0x80000000)
					 - 0x80000000));
	  if (ud1 != 0)
	    emit_move_insn (copy_rtx (dest),
			    gen_rtx_IOR (DImode, copy_rtx (dest),
					 GEN_INT (ud1)));
	  emit_move_insn (copy_rtx (dest),
			  gen_rtx_ZERO_EXTEND (DImode,
					       gen_lowpart (SImode,
							    copy_rtx (dest))));
	}
      else if ((ud4 == 0xffff && (ud3 & 0x8000))
	       || (ud4 == 0 && ! (ud3 & 0x8000)))
	{
	  if (ud3 & 0x8000)
	    emit_move_insn (dest, GEN_INT (((ud3 << 16) ^ 0x80000000)
					   - 0x80000000));
	  else
	    emit_move_insn (dest, GEN_INT (ud3 << 16));

	  if (ud2 != 0)
	    emit_move_insn (copy_rtx (dest),
			    gen_rtx_IOR (DImode, copy_rtx (dest),
					 GEN_INT (ud2)));
	  emit_move_insn (copy_rtx (dest),
			  gen_rtx_ASHIFT (DImode, copy_rtx (dest),
					  GEN_INT (16)));
	  if (ud1 != 0)
	    emit_move_insn (copy_rtx (dest),
			    gen_rtx_IOR (DImode, copy_rtx (dest),
					 GEN_INT (ud1)));
	}
      else
	{
	  if (ud4 & 0x8000)
	    emit_move_insn (dest, GEN_INT (((ud4 << 16) ^ 0x80000000)
					   - 0x80000000));
	  else
	    emit_move_insn (dest, GEN_INT (ud4 << 16));

	  if (ud3 != 0)
	    emit_move_insn (copy_rtx (dest),
			    gen_rtx_IOR (DImode, copy_rtx (dest),
					 GEN_INT (ud3)));

	  emit_move_insn (copy_rtx (dest),
			  gen_rtx_ASHIFT (DImode, copy_rtx (dest),
					  GEN_INT (32)));
	  if (ud2 != 0)
	    emit_move_insn (copy_rtx (dest),
			    gen_rtx_IOR (DImode, copy_rtx (dest),
					 GEN_INT (ud2 << 16)));
	  if (ud1 != 0)
	    emit_move_insn (copy_rtx (dest),
			    gen_rtx_IOR (DImode, copy_rtx (dest), GEN_INT (ud1)));
	}
    }
  return dest;
}

/* Helper for the following.  Get rid of [r+r] memory refs
   in cases where it won't work (TImode, TFmode, TDmode).  */

static void
rs6000_eliminate_indexed_memrefs (rtx operands[2])
{
  if (GET_CODE (operands[0]) == MEM
      && GET_CODE (XEXP (operands[0], 0)) != REG
      && ! legitimate_constant_pool_address_p (XEXP (operands[0], 0))
      && ! reload_in_progress)
    operands[0]
      = replace_equiv_address (operands[0],
			       copy_addr_to_reg (XEXP (operands[0], 0)));

  if (GET_CODE (operands[1]) == MEM
      && GET_CODE (XEXP (operands[1], 0)) != REG
      && ! legitimate_constant_pool_address_p (XEXP (operands[1], 0))
      && ! reload_in_progress)
    operands[1]
      = replace_equiv_address (operands[1],
			       copy_addr_to_reg (XEXP (operands[1], 0)));
}

/* Emit a move from SOURCE to DEST in mode MODE.  */
void
rs6000_emit_move (rtx dest, rtx source, enum machine_mode mode)
{
  rtx operands[2];
  operands[0] = dest;
  operands[1] = source;

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr,
	       "\nrs6000_emit_move: mode = %s, reload_in_progress = %d, "
	       "reload_completed = %d, can_create_pseudos = %d.\ndest:\n",
	       GET_MODE_NAME (mode),
	       reload_in_progress,
	       reload_completed,
	       can_create_pseudo_p ());
      debug_rtx (dest);
      fprintf (stderr, "source:\n");
      debug_rtx (source);
    }

  /* Sanity checks.  Check that we get CONST_DOUBLE only when we should.  */
  if (GET_CODE (operands[1]) == CONST_DOUBLE
      && ! FLOAT_MODE_P (mode)
      && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    {
      /* FIXME.  This should never happen.  */
      /* Since it seems that it does, do the safe thing and convert
	 to a CONST_INT.  */
      operands[1] = gen_int_mode (CONST_DOUBLE_LOW (operands[1]), mode);
    }
  gcc_assert (GET_CODE (operands[1]) != CONST_DOUBLE
	      || FLOAT_MODE_P (mode)
	      || ((CONST_DOUBLE_HIGH (operands[1]) != 0
		   || CONST_DOUBLE_LOW (operands[1]) < 0)
		  && (CONST_DOUBLE_HIGH (operands[1]) != -1
		      || CONST_DOUBLE_LOW (operands[1]) >= 0)));

  /* Check if GCC is setting up a block move that will end up using FP
     registers as temporaries.  We must make sure this is acceptable.  */
  if (GET_CODE (operands[0]) == MEM
      && GET_CODE (operands[1]) == MEM
      && mode == DImode
      && (SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[0]))
	  || SLOW_UNALIGNED_ACCESS (DImode, MEM_ALIGN (operands[1])))
      && ! (SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[0]) > 32
					    ? 32 : MEM_ALIGN (operands[0])))
	    || SLOW_UNALIGNED_ACCESS (SImode, (MEM_ALIGN (operands[1]) > 32
					       ? 32
					       : MEM_ALIGN (operands[1]))))
      && ! MEM_VOLATILE_P (operands [0])
      && ! MEM_VOLATILE_P (operands [1]))
    {
      emit_move_insn (adjust_address (operands[0], SImode, 0),
		      adjust_address (operands[1], SImode, 0));
      emit_move_insn (adjust_address (copy_rtx (operands[0]), SImode, 4),
		      adjust_address (copy_rtx (operands[1]), SImode, 4));
      return;
    }

  if (can_create_pseudo_p () && GET_CODE (operands[0]) == MEM
      && !gpc_reg_operand (operands[1], mode))
    operands[1] = force_reg (mode, operands[1]);

  if (mode == SFmode && ! TARGET_POWERPC
      && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_DOUBLE_FLOAT 
      && GET_CODE (operands[0]) == MEM)
    {
      int regnum;

      if (reload_in_progress || reload_completed)
	regnum = true_regnum (operands[1]);
      else if (GET_CODE (operands[1]) == REG)
	regnum = REGNO (operands[1]);
      else
	regnum = -1;

      /* If operands[1] is a register, on POWER it may have
	 double-precision data in it, so truncate it to single
	 precision.  */
      if (FP_REGNO_P (regnum) || regnum >= FIRST_PSEUDO_REGISTER)
	{
	  rtx newreg;
	  newreg = (!can_create_pseudo_p () ? copy_rtx (operands[1])
		    : gen_reg_rtx (mode));
	  emit_insn (gen_aux_truncdfsf2 (newreg, operands[1]));
	  operands[1] = newreg;
	}
    }

  /* Recognize the case where operand[1] is a reference to thread-local
     data and load its address to a register.  */
  if (rs6000_tls_referenced_p (operands[1]))
    {
      enum tls_model model;
      rtx tmp = operands[1];
      rtx addend = NULL;

      if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
	{
          addend = XEXP (XEXP (tmp, 0), 1);
	  tmp = XEXP (XEXP (tmp, 0), 0);
	}

      gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
      model = SYMBOL_REF_TLS_MODEL (tmp);
      gcc_assert (model != 0);

      tmp = rs6000_legitimize_tls_address (tmp, model);
      if (addend)
	{
	  tmp = gen_rtx_PLUS (mode, tmp, addend);
	  tmp = force_operand (tmp, operands[0]);
	}
      operands[1] = tmp;
    }

  /* Handle the case where reload calls us with an invalid address.  */
  if (reload_in_progress && mode == Pmode
      && (! general_operand (operands[1], mode)
	  || ! nonimmediate_operand (operands[0], mode)))
    goto emit_set;

  /* 128-bit constant floating-point values on Darwin should really be
     loaded as two parts.  */
  if (!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
      && mode == TFmode && GET_CODE (operands[1]) == CONST_DOUBLE)
    {
      /* DImode is used, not DFmode, because simplify_gen_subreg doesn't
	 know how to get a DFmode SUBREG of a TFmode.  */
      enum machine_mode imode = (TARGET_E500_DOUBLE ? DFmode : DImode);
      rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode, 0),
			simplify_gen_subreg (imode, operands[1], mode, 0),
			imode);
      rs6000_emit_move (simplify_gen_subreg (imode, operands[0], mode,
					     GET_MODE_SIZE (imode)),
			simplify_gen_subreg (imode, operands[1], mode,
					     GET_MODE_SIZE (imode)),
			imode);
      return;
    }

  if (reload_in_progress && cfun->machine->sdmode_stack_slot != NULL_RTX)
    cfun->machine->sdmode_stack_slot =
      eliminate_regs (cfun->machine->sdmode_stack_slot, VOIDmode, NULL_RTX);

  if (reload_in_progress
      && mode == SDmode
      && MEM_P (operands[0])
      && rtx_equal_p (operands[0], cfun->machine->sdmode_stack_slot)
      && REG_P (operands[1]))
    {
      if (FP_REGNO_P (REGNO (operands[1])))
	{
	  rtx mem = adjust_address_nv (operands[0], DDmode, 0);
	  mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
	  emit_insn (gen_movsd_store (mem, operands[1]));
	}
      else if (INT_REGNO_P (REGNO (operands[1])))
	{
	  rtx mem = adjust_address_nv (operands[0], mode, 4);
	  mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
	  emit_insn (gen_movsd_hardfloat (mem, operands[1]));
	}
      else
	gcc_unreachable();
      return;
    }
  if (reload_in_progress
      && mode == SDmode
      && REG_P (operands[0])
      && MEM_P (operands[1])
      && rtx_equal_p (operands[1], cfun->machine->sdmode_stack_slot))
    {
      if (FP_REGNO_P (REGNO (operands[0])))
	{
	  rtx mem = adjust_address_nv (operands[1], DDmode, 0);
	  mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
	  emit_insn (gen_movsd_load (operands[0], mem));
	}
      else if (INT_REGNO_P (REGNO (operands[0])))
	{
	  rtx mem = adjust_address_nv (operands[1], mode, 4);
	  mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
	  emit_insn (gen_movsd_hardfloat (operands[0], mem));
	}
      else
	gcc_unreachable();
      return;
    }

  /* FIXME:  In the long term, this switch statement should go away
     and be replaced by a sequence of tests based on things like
     mode == Pmode.  */
  switch (mode)
    {
    case HImode:
    case QImode:
      if (CONSTANT_P (operands[1])
	  && GET_CODE (operands[1]) != CONST_INT)
	operands[1] = force_const_mem (mode, operands[1]);
      break;

    case TFmode:
    case TDmode:
      rs6000_eliminate_indexed_memrefs (operands);
      /* fall through */

    case DFmode:
    case DDmode:
    case SFmode:
    case SDmode:
      if (CONSTANT_P (operands[1])
	  && ! easy_fp_constant (operands[1], mode))
	operands[1] = force_const_mem (mode, operands[1]);
      break;

    case V16QImode:
    case V8HImode:
    case V4SFmode:
    case V4SImode:
    case V4HImode:
    case V2SFmode:
    case V2SImode:
    case V1DImode:
    case V2DFmode:
    case V2DImode:
      if (CONSTANT_P (operands[1])
	  && !easy_vector_constant (operands[1], mode))
	operands[1] = force_const_mem (mode, operands[1]);
      break;

    case SImode:
    case DImode:
      /* Use default pattern for address of ELF small data */
      if (TARGET_ELF
	  && mode == Pmode
	  && DEFAULT_ABI == ABI_V4
	  && (GET_CODE (operands[1]) == SYMBOL_REF
	      || GET_CODE (operands[1]) == CONST)
	  && small_data_operand (operands[1], mode))
	{
	  emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
	  return;
	}

      if (DEFAULT_ABI == ABI_V4
	  && mode == Pmode && mode == SImode
	  && flag_pic == 1 && got_operand (operands[1], mode))
	{
	  emit_insn (gen_movsi_got (operands[0], operands[1]));
	  return;
	}

      if ((TARGET_ELF || DEFAULT_ABI == ABI_DARWIN)
	  && TARGET_NO_TOC
	  && ! flag_pic
	  && mode == Pmode
	  && CONSTANT_P (operands[1])
	  && GET_CODE (operands[1]) != HIGH
	  && GET_CODE (operands[1]) != CONST_INT)
	{
	  rtx target = (!can_create_pseudo_p ()
			? operands[0]
			: gen_reg_rtx (mode));

	  /* If this is a function address on -mcall-aixdesc,
	     convert it to the address of the descriptor.  */
	  if (DEFAULT_ABI == ABI_AIX
	      && GET_CODE (operands[1]) == SYMBOL_REF
	      && XSTR (operands[1], 0)[0] == '.')
	    {
	      const char *name = XSTR (operands[1], 0);
	      rtx new_ref;
	      while (*name == '.')
		name++;
	      new_ref = gen_rtx_SYMBOL_REF (Pmode, name);
	      CONSTANT_POOL_ADDRESS_P (new_ref)
		= CONSTANT_POOL_ADDRESS_P (operands[1]);
	      SYMBOL_REF_FLAGS (new_ref) = SYMBOL_REF_FLAGS (operands[1]);
	      SYMBOL_REF_USED (new_ref) = SYMBOL_REF_USED (operands[1]);
	      SYMBOL_REF_DATA (new_ref) = SYMBOL_REF_DATA (operands[1]);
	      operands[1] = new_ref;
	    }

	  if (DEFAULT_ABI == ABI_DARWIN)
	    {
#if TARGET_MACHO
	      if (MACHO_DYNAMIC_NO_PIC_P)
		{
		  /* Take care of any required data indirection.  */
		  operands[1] = rs6000_machopic_legitimize_pic_address (
				  operands[1], mode, operands[0]);
		  if (operands[0] != operands[1])
		    emit_insn (gen_rtx_SET (VOIDmode,
					    operands[0], operands[1]));
		  return;
		}
#endif
	      emit_insn (gen_macho_high (target, operands[1]));
	      emit_insn (gen_macho_low (operands[0], target, operands[1]));
	      return;
	    }

	  emit_insn (gen_elf_high (target, operands[1]));
	  emit_insn (gen_elf_low (operands[0], target, operands[1]));
	  return;
	}

      /* If this is a SYMBOL_REF that refers to a constant pool entry,
	 and we have put it in the TOC, we just need to make a TOC-relative
	 reference to it.  */
      if (TARGET_TOC
	  && GET_CODE (operands[1]) == SYMBOL_REF
	  && constant_pool_expr_p (operands[1])
	  && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (operands[1]),
					      get_pool_mode (operands[1])))
	{
	  operands[1] = create_TOC_reference (operands[1]);
	}
      else if (mode == Pmode
	       && CONSTANT_P (operands[1])
	       && ((GET_CODE (operands[1]) != CONST_INT
		    && ! easy_fp_constant (operands[1], mode))
		   || (GET_CODE (operands[1]) == CONST_INT
		       && num_insns_constant (operands[1], mode) > 2)
		   || (GET_CODE (operands[0]) == REG
		       && FP_REGNO_P (REGNO (operands[0]))))
	       && GET_CODE (operands[1]) != HIGH
	       && ! legitimate_constant_pool_address_p (operands[1])
	       && ! toc_relative_expr_p (operands[1]))
	{

#if TARGET_MACHO
	  /* Darwin uses a special PIC legitimizer.  */
	  if (DEFAULT_ABI == ABI_DARWIN && MACHOPIC_INDIRECT)
	    {
	      operands[1] =
		rs6000_machopic_legitimize_pic_address (operands[1], mode,
							operands[0]);
	      if (operands[0] != operands[1])
		emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
	      return;
	    }
#endif

	  /* If we are to limit the number of things we put in the TOC and
	     this is a symbol plus a constant we can add in one insn,
	     just put the symbol in the TOC and add the constant.  Don't do
	     this if reload is in progress.  */
	  if (GET_CODE (operands[1]) == CONST
	      && TARGET_NO_SUM_IN_TOC && ! reload_in_progress
	      && GET_CODE (XEXP (operands[1], 0)) == PLUS
	      && add_operand (XEXP (XEXP (operands[1], 0), 1), mode)
	      && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
		  || GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF)
	      && ! side_effects_p (operands[0]))
	    {
	      rtx sym =
		force_const_mem (mode, XEXP (XEXP (operands[1], 0), 0));
	      rtx other = XEXP (XEXP (operands[1], 0), 1);

	      sym = force_reg (mode, sym);
	      emit_insn (gen_add3_insn (operands[0], sym, other));
	      return;
	    }

	  operands[1] = force_const_mem (mode, operands[1]);

	  if (TARGET_TOC
	      && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
	      && constant_pool_expr_p (XEXP (operands[1], 0))
	      && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (
			get_pool_constant (XEXP (operands[1], 0)),
			get_pool_mode (XEXP (operands[1], 0))))
	    {
	      operands[1]
		= gen_const_mem (mode,
				 create_TOC_reference (XEXP (operands[1], 0)));
	      set_mem_alias_set (operands[1], get_TOC_alias_set ());
	    }
	}
      break;

    case TImode:
      rs6000_eliminate_indexed_memrefs (operands);

      if (TARGET_POWER)
	{
	  emit_insn (gen_rtx_PARALLEL (VOIDmode,
		       gen_rtvec (2,
				  gen_rtx_SET (VOIDmode,
					       operands[0], operands[1]),
				  gen_rtx_CLOBBER (VOIDmode,
						   gen_rtx_SCRATCH (SImode)))));
	  return;
	}
      break;

    default:
      fatal_insn ("bad move", gen_rtx_SET (VOIDmode, dest, source));
    }

  /* Above, we may have called force_const_mem which may have returned
     an invalid address.  If we can, fix this up; otherwise, reload will
     have to deal with it.  */
  if (GET_CODE (operands[1]) == MEM && ! reload_in_progress)
    operands[1] = validize_mem (operands[1]);

 emit_set:
  emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[1]));
}

/* Nonzero if we can use a floating-point register to pass this arg.  */
#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE)		\
  (SCALAR_FLOAT_MODE_P (MODE)			\
   && (CUM)->fregno <= FP_ARG_MAX_REG		\
   && TARGET_HARD_FLOAT && TARGET_FPRS)

/* Nonzero if we can use an AltiVec register to pass this arg.  */
#define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE,NAMED)		\
  ((ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE))	\
   && (CUM)->vregno <= ALTIVEC_ARG_MAX_REG			\
   && TARGET_ALTIVEC_ABI					\
   && (NAMED))

/* Return a nonzero value to say to return the function value in
   memory, just as large structures are always returned.  TYPE will be
   the data type of the value, and FNTYPE will be the type of the
   function doing the returning, or @code{NULL} for libcalls.

   The AIX ABI for the RS/6000 specifies that all structures are
   returned in memory.  The Darwin ABI does the same.  The SVR4 ABI
   specifies that structures <= 8 bytes are returned in r3/r4, but a
   draft put them in memory, and GCC used to implement the draft
   instead of the final standard.  Therefore, aix_struct_return
   controls this instead of DEFAULT_ABI; V.4 targets needing backward
   compatibility can change DRAFT_V4_STRUCT_RET to override the
   default, and -m switches get the final word.  See
   rs6000_override_options for more details.

   The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
   long double support is enabled.  These values are returned in memory.

   int_size_in_bytes returns -1 for variable size objects, which go in
   memory always.  The cast to unsigned makes -1 > 8.  */

static bool
rs6000_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  /* In the darwin64 abi, try to use registers for larger structs
     if possible.  */
  if (rs6000_darwin64_abi
      && TREE_CODE (type) == RECORD_TYPE
      && int_size_in_bytes (type) > 0)
    {
      CUMULATIVE_ARGS valcum;
      rtx valret;

      valcum.words = 0;
      valcum.fregno = FP_ARG_MIN_REG;
      valcum.vregno = ALTIVEC_ARG_MIN_REG;
      /* Do a trial code generation as if this were going to be passed
	 as an argument; if any part goes in memory, we return NULL.  */
      valret = rs6000_darwin64_record_arg (&valcum, type, 1, true);
      if (valret)
	return false;
      /* Otherwise fall through to more conventional ABI rules.  */
    }

  if (AGGREGATE_TYPE_P (type)
      && (aix_struct_return
	  || (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 8))
    return true;

  /* Allow -maltivec -mabi=no-altivec without warning.  Altivec vector
     modes only exist for GCC vector types if -maltivec.  */
  if (TARGET_32BIT && !TARGET_ALTIVEC_ABI
      && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
    return false;

  /* Return synthetic vectors in memory.  */
  if (TREE_CODE (type) == VECTOR_TYPE
      && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
    {
      static bool warned_for_return_big_vectors = false;
      if (!warned_for_return_big_vectors)
	{
	  warning (0, "GCC vector returned by reference: "
		   "non-standard ABI extension with no compatibility guarantee");
	  warned_for_return_big_vectors = true;
	}
      return true;
    }

  if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && TYPE_MODE (type) == TFmode)
    return true;

  return false;
}

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.

   For incoming args we set the number of arguments in the prototype large
   so we never return a PARALLEL.  */

void
init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
		      rtx libname ATTRIBUTE_UNUSED, int incoming,
		      int libcall, int n_named_args)
{
  static CUMULATIVE_ARGS zero_cumulative;

  *cum = zero_cumulative;
  cum->words = 0;
  cum->fregno = FP_ARG_MIN_REG;
  cum->vregno = ALTIVEC_ARG_MIN_REG;
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
  cum->call_cookie = ((DEFAULT_ABI == ABI_V4 && libcall)
		      ? CALL_LIBCALL : CALL_NORMAL);
  cum->sysv_gregno = GP_ARG_MIN_REG;
  cum->stdarg = fntype
    && (TYPE_ARG_TYPES (fntype) != 0
	&& (TREE_VALUE (tree_last  (TYPE_ARG_TYPES (fntype)))
	    != void_type_node));

  cum->nargs_prototype = 0;
  if (incoming || cum->prototype)
    cum->nargs_prototype = n_named_args;

  /* Check for a longcall attribute.  */
  if ((!fntype && rs6000_default_long_calls)
      || (fntype
	  && lookup_attribute ("longcall", TYPE_ATTRIBUTES (fntype))
	  && !lookup_attribute ("shortcall", TYPE_ATTRIBUTES (fntype))))
    cum->call_cookie |= CALL_LONG;

  if (TARGET_DEBUG_ARG)
    {
      fprintf (stderr, "\ninit_cumulative_args:");
      if (fntype)
	{
	  tree ret_type = TREE_TYPE (fntype);
	  fprintf (stderr, " ret code = %s,",
		   tree_code_name[ (int)TREE_CODE (ret_type) ]);
	}

      if (cum->call_cookie & CALL_LONG)
	fprintf (stderr, " longcall,");

      fprintf (stderr, " proto = %d, nargs = %d\n",
	       cum->prototype, cum->nargs_prototype);
    }

  if (fntype
      && !TARGET_ALTIVEC
      && TARGET_ALTIVEC_ABI
      && ALTIVEC_VECTOR_MODE (TYPE_MODE (TREE_TYPE (fntype))))
    {
      error ("cannot return value in vector register because"
	     " altivec instructions are disabled, use -maltivec"
	     " to enable them");
    }
}

/* Return true if TYPE must be passed on the stack and not in registers.  */

static bool
rs6000_must_pass_in_stack (enum machine_mode mode, const_tree type)
{
  if (DEFAULT_ABI == ABI_AIX || TARGET_64BIT)
    return must_pass_in_stack_var_size (mode, type);
  else
    return must_pass_in_stack_var_size_or_pad (mode, type);
}

/* If defined, a C expression which determines whether, and in which
   direction, to pad out an argument with extra space.  The value
   should be of type `enum direction': either `upward' to pad above
   the argument, `downward' to pad below, or `none' to inhibit
   padding.

   For the AIX ABI structs are always stored left shifted in their
   argument slot.  */

enum direction
function_arg_padding (enum machine_mode mode, const_tree type)
{
#ifndef AGGREGATE_PADDING_FIXED
#define AGGREGATE_PADDING_FIXED 0
#endif
#ifndef AGGREGATES_PAD_UPWARD_ALWAYS
#define AGGREGATES_PAD_UPWARD_ALWAYS 0
#endif

  if (!AGGREGATE_PADDING_FIXED)
    {
      /* GCC used to pass structures of the same size as integer types as
	 if they were in fact integers, ignoring FUNCTION_ARG_PADDING.
	 i.e. Structures of size 1 or 2 (or 4 when TARGET_64BIT) were
	 passed padded downward, except that -mstrict-align further
	 muddied the water in that multi-component structures of 2 and 4
	 bytes in size were passed padded upward.

	 The following arranges for best compatibility with previous
	 versions of gcc, but removes the -mstrict-align dependency.  */
      if (BYTES_BIG_ENDIAN)
	{
	  HOST_WIDE_INT size = 0;

	  if (mode == BLKmode)
	    {
	      if (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
		size = int_size_in_bytes (type);
	    }
	  else
	    size = GET_MODE_SIZE (mode);

	  if (size == 1 || size == 2 || size == 4)
	    return downward;
	}
      return upward;
    }

  if (AGGREGATES_PAD_UPWARD_ALWAYS)
    {
      if (type != 0 && AGGREGATE_TYPE_P (type))
	return upward;
    }

  /* Fall back to the default.  */
  return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
}

/* If defined, a C expression that gives the alignment boundary, in bits,
   of an argument with the specified mode and type.  If it is not defined,
   PARM_BOUNDARY is used for all arguments.

   V.4 wants long longs and doubles to be double word aligned.  Just
   testing the mode size is a boneheaded way to do this as it means
   that other types such as complex int are also double word aligned.
   However, we're stuck with this because changing the ABI might break
   existing library interfaces.

   Doubleword align SPE vectors.
   Quadword align Altivec vectors.
   Quadword align large synthetic vector types.   */

int
function_arg_boundary (enum machine_mode mode, tree type)
{
  if (DEFAULT_ABI == ABI_V4
      && (GET_MODE_SIZE (mode) == 8
	  || (TARGET_HARD_FLOAT
	      && TARGET_FPRS
	      && (mode == TFmode || mode == TDmode))))
    return 64;
  else if (SPE_VECTOR_MODE (mode)
	   || (type && TREE_CODE (type) == VECTOR_TYPE
	       && int_size_in_bytes (type) >= 8
	       && int_size_in_bytes (type) < 16))
    return 64;
  else if ((ALTIVEC_VECTOR_MODE (mode) || VSX_VECTOR_MODE (mode))
	   || (type && TREE_CODE (type) == VECTOR_TYPE
	       && int_size_in_bytes (type) >= 16))
    return 128;
  else if (rs6000_darwin64_abi && mode == BLKmode
	   && type && TYPE_ALIGN (type) > 64)
    return 128;
  else
    return PARM_BOUNDARY;
}

/* For a function parm of MODE and TYPE, return the starting word in
   the parameter area.  NWORDS of the parameter area are already used.  */

static unsigned int
rs6000_parm_start (enum machine_mode mode, tree type, unsigned int nwords)
{
  unsigned int align;
  unsigned int parm_offset;

  align = function_arg_boundary (mode, type) / PARM_BOUNDARY - 1;
  parm_offset = DEFAULT_ABI == ABI_V4 ? 2 : 6;
  return nwords + (-(parm_offset + nwords) & align);
}

/* Compute the size (in words) of a function argument.  */

static unsigned long
rs6000_arg_size (enum machine_mode mode, tree type)
{
  unsigned long size;

  if (mode != BLKmode)
    size = GET_MODE_SIZE (mode);
  else
    size = int_size_in_bytes (type);

  if (TARGET_32BIT)
    return (size + 3) >> 2;
  else
    return (size + 7) >> 3;
}

/* Use this to flush pending int fields.  */

static void
rs6000_darwin64_record_arg_advance_flush (CUMULATIVE_ARGS *cum,
					  HOST_WIDE_INT bitpos)
{
  unsigned int startbit, endbit;
  int intregs, intoffset;
  enum machine_mode mode;

  if (cum->intoffset == -1)
    return;

  intoffset = cum->intoffset;
  cum->intoffset = -1;

  if (intoffset % BITS_PER_WORD != 0)
    {
      mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
			    MODE_INT, 0);
      if (mode == BLKmode)
	{
	  /* We couldn't find an appropriate mode, which happens,
	     e.g., in packed structs when there are 3 bytes to load.
	     Back intoffset back to the beginning of the word in this
	     case.  */
	  intoffset = intoffset & -BITS_PER_WORD;
	}
    }

  startbit = intoffset & -BITS_PER_WORD;
  endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
  intregs = (endbit - startbit) / BITS_PER_WORD;
  cum->words += intregs;
}

/* The darwin64 ABI calls for us to recurse down through structs,
   looking for elements passed in registers.  Unfortunately, we have
   to track int register count here also because of misalignments
   in powerpc alignment mode.  */

static void
rs6000_darwin64_record_arg_advance_recurse (CUMULATIVE_ARGS *cum,
					    tree type,
					    HOST_WIDE_INT startbitpos)
{
  tree f;

  for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
    if (TREE_CODE (f) == FIELD_DECL)
      {
	HOST_WIDE_INT bitpos = startbitpos;
	tree ftype = TREE_TYPE (f);
	enum machine_mode mode;
	if (ftype == error_mark_node)
	  continue;
	mode = TYPE_MODE (ftype);

	if (DECL_SIZE (f) != 0
	    && host_integerp (bit_position (f), 1))
	  bitpos += int_bit_position (f);

	/* ??? FIXME: else assume zero offset.  */

	if (TREE_CODE (ftype) == RECORD_TYPE)
	  rs6000_darwin64_record_arg_advance_recurse (cum, ftype, bitpos);
	else if (USE_FP_FOR_ARG_P (cum, mode, ftype))
	  {
	    rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
	    cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
	    cum->words += (GET_MODE_SIZE (mode) + 7) >> 3;
	  }
	else if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, 1))
	  {
	    rs6000_darwin64_record_arg_advance_flush (cum, bitpos);
	    cum->vregno++;
	    cum->words += 2;
	  }
	else if (cum->intoffset == -1)
	  cum->intoffset = bitpos;
      }
}

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)

   Note that for args passed by reference, function_arg will be called
   with MODE and TYPE set to that of the pointer to the arg, not the arg
   itself.  */

void
function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
		      tree type, int named, int depth)
{
  int size;

  /* Only tick off an argument if we're not recursing.  */
  if (depth == 0)
    cum->nargs_prototype--;

  if (TARGET_ALTIVEC_ABI
      && (ALTIVEC_VECTOR_MODE (mode)
	  || VSX_VECTOR_MODE (mode)
	  || (type && TREE_CODE (type) == VECTOR_TYPE
	      && int_size_in_bytes (type) == 16)))
    {
      bool stack = false;

      if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
	{
	  cum->vregno++;
	  if (!TARGET_ALTIVEC)
	    error ("cannot pass argument in vector register because"
		   " altivec instructions are disabled, use -maltivec"
		   " to enable them");

	  /* PowerPC64 Linux and AIX allocate GPRs for a vector argument
	     even if it is going to be passed in a vector register.
	     Darwin does the same for variable-argument functions.  */
	  if ((DEFAULT_ABI == ABI_AIX && TARGET_64BIT)
	      || (cum->stdarg && DEFAULT_ABI != ABI_V4))
	    stack = true;
	}
      else
	stack = true;

      if (stack)
	{
	  int align;

	  /* Vector parameters must be 16-byte aligned.  This places
	     them at 2 mod 4 in terms of words in 32-bit mode, since
	     the parameter save area starts at offset 24 from the
	     stack.  In 64-bit mode, they just have to start on an
	     even word, since the parameter save area is 16-byte
	     aligned.  Space for GPRs is reserved even if the argument
	     will be passed in memory.  */
	  if (TARGET_32BIT)
	    align = (2 - cum->words) & 3;
	  else
	    align = cum->words & 1;
	  cum->words += align + rs6000_arg_size (mode, type);

	  if (TARGET_DEBUG_ARG)
	    {
	      fprintf (stderr, "function_adv: words = %2d, align=%d, ",
		       cum->words, align);
	      fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s\n",
		       cum->nargs_prototype, cum->prototype,
		       GET_MODE_NAME (mode));
	    }
	}
    }
  else if (TARGET_SPE_ABI && TARGET_SPE && SPE_VECTOR_MODE (mode)
	   && !cum->stdarg
	   && cum->sysv_gregno <= GP_ARG_MAX_REG)
    cum->sysv_gregno++;

  else if (rs6000_darwin64_abi
	   && mode == BLKmode
    	   && TREE_CODE (type) == RECORD_TYPE
	   && (size = int_size_in_bytes (type)) > 0)
    {
      /* Variable sized types have size == -1 and are
	 treated as if consisting entirely of ints.
	 Pad to 16 byte boundary if needed.  */
      if (TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
	  && (cum->words % 2) != 0)
	cum->words++;
      /* For varargs, we can just go up by the size of the struct. */
      if (!named)
	cum->words += (size + 7) / 8;
      else
	{
	  /* It is tempting to say int register count just goes up by
	     sizeof(type)/8, but this is wrong in a case such as
	     { int; double; int; } [powerpc alignment].  We have to
	     grovel through the fields for these too.  */
	  cum->intoffset = 0;
	  rs6000_darwin64_record_arg_advance_recurse (cum, type, 0);
	  rs6000_darwin64_record_arg_advance_flush (cum,
						    size * BITS_PER_UNIT);
	}
    }
  else if (DEFAULT_ABI == ABI_V4)
    {
      if (TARGET_HARD_FLOAT && TARGET_FPRS
	  && ((TARGET_SINGLE_FLOAT && mode == SFmode)
	      || (TARGET_DOUBLE_FLOAT && mode == DFmode)
	      || (mode == TFmode && !TARGET_IEEEQUAD)
	      || mode == SDmode || mode == DDmode || mode == TDmode))
	{
	  /* _Decimal128 must use an even/odd register pair.  This assumes
	     that the register number is odd when fregno is odd.  */
	  if (mode == TDmode && (cum->fregno % 2) == 1)
	    cum->fregno++;

	  if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
	      <= FP_ARG_V4_MAX_REG)
	    cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
	  else
	    {
	      cum->fregno = FP_ARG_V4_MAX_REG + 1;
	      if (mode == DFmode || mode == TFmode
		  || mode == DDmode || mode == TDmode)
		cum->words += cum->words & 1;
	      cum->words += rs6000_arg_size (mode, type);
	    }
	}
      else
	{
	  int n_words = rs6000_arg_size (mode, type);
	  int gregno = cum->sysv_gregno;

	  /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
	     (r7,r8) or (r9,r10).  As does any other 2 word item such
	     as complex int due to a historical mistake.  */
	  if (n_words == 2)
	    gregno += (1 - gregno) & 1;

	  /* Multi-reg args are not split between registers and stack.  */
	  if (gregno + n_words - 1 > GP_ARG_MAX_REG)
	    {
	      /* Long long and SPE vectors are aligned on the stack.
		 So are other 2 word items such as complex int due to
		 a historical mistake.  */
	      if (n_words == 2)
		cum->words += cum->words & 1;
	      cum->words += n_words;
	    }

	  /* Note: continuing to accumulate gregno past when we've started
	     spilling to the stack indicates the fact that we've started
	     spilling to the stack to expand_builtin_saveregs.  */
	  cum->sysv_gregno = gregno + n_words;
	}

      if (TARGET_DEBUG_ARG)
	{
	  fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
		   cum->words, cum->fregno);
	  fprintf (stderr, "gregno = %2d, nargs = %4d, proto = %d, ",
		   cum->sysv_gregno, cum->nargs_prototype, cum->prototype);
	  fprintf (stderr, "mode = %4s, named = %d\n",
		   GET_MODE_NAME (mode), named);
	}
    }
  else
    {
      int n_words = rs6000_arg_size (mode, type);
      int start_words = cum->words;
      int align_words = rs6000_parm_start (mode, type, start_words);

      cum->words = align_words + n_words;

      if (SCALAR_FLOAT_MODE_P (mode)
	  && TARGET_HARD_FLOAT && TARGET_FPRS)
	{
	  /* _Decimal128 must be passed in an even/odd float register pair.
	     This assumes that the register number is odd when fregno is
	     odd.  */
	  if (mode == TDmode && (cum->fregno % 2) == 1)
	    cum->fregno++;
	  cum->fregno += (GET_MODE_SIZE (mode) + 7) >> 3;
	}

      if (TARGET_DEBUG_ARG)
	{
	  fprintf (stderr, "function_adv: words = %2d, fregno = %2d, ",
		   cum->words, cum->fregno);
	  fprintf (stderr, "nargs = %4d, proto = %d, mode = %4s, ",
		   cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode));
	  fprintf (stderr, "named = %d, align = %d, depth = %d\n",
		   named, align_words - start_words, depth);
	}
    }
}

static rtx
spe_build_register_parallel (enum machine_mode mode, int gregno)
{
  rtx r1, r3, r5, r7;

  switch (mode)
    {
    case DFmode:
      r1 = gen_rtx_REG (DImode, gregno);
      r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
      return gen_rtx_PARALLEL (mode, gen_rtvec (1, r1));

    case DCmode:
    case TFmode:
      r1 = gen_rtx_REG (DImode, gregno);
      r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
      r3 = gen_rtx_REG (DImode, gregno + 2);
      r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
      return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r3));

    case TCmode:
      r1 = gen_rtx_REG (DImode, gregno);
      r1 = gen_rtx_EXPR_LIST (VOIDmode, r1, const0_rtx);
      r3 = gen_rtx_REG (DImode, gregno + 2);
      r3 = gen_rtx_EXPR_LIST (VOIDmode, r3, GEN_INT (8));
      r5 = gen_rtx_REG (DImode, gregno + 4);
      r5 = gen_rtx_EXPR_LIST (VOIDmode, r5, GEN_INT (16));
      r7 = gen_rtx_REG (DImode, gregno + 6);
      r7 = gen_rtx_EXPR_LIST (VOIDmode, r7, GEN_INT (24));
      return gen_rtx_PARALLEL (mode, gen_rtvec (4, r1, r3, r5, r7));

    default:
      gcc_unreachable ();
    }
}

/* Determine where to put a SIMD argument on the SPE.  */
static rtx
rs6000_spe_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
			 tree type)
{
  int gregno = cum->sysv_gregno;

  /* On E500 v2, double arithmetic is done on the full 64-bit GPR, but
     are passed and returned in a pair of GPRs for ABI compatibility.  */
  if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode
			     || mode == DCmode || mode == TCmode))
    {
      int n_words = rs6000_arg_size (mode, type);

      /* Doubles go in an odd/even register pair (r5/r6, etc).  */
      if (mode == DFmode)
	gregno += (1 - gregno) & 1;

      /* Multi-reg args are not split between registers and stack.  */
      if (gregno + n_words - 1 > GP_ARG_MAX_REG)
	return NULL_RTX;

      return spe_build_register_parallel (mode, gregno);
    }
  if (cum->stdarg)
    {
      int n_words = rs6000_arg_size (mode, type);

      /* SPE vectors are put in odd registers.  */
      if (n_words == 2 && (gregno & 1) == 0)
	gregno += 1;

      if (gregno + n_words - 1 <= GP_ARG_MAX_REG)
	{
	  rtx r1, r2;
	  enum machine_mode m = SImode;

	  r1 = gen_rtx_REG (m, gregno);
	  r1 = gen_rtx_EXPR_LIST (m, r1, const0_rtx);
	  r2 = gen_rtx_REG (m, gregno + 1);
	  r2 = gen_rtx_EXPR_LIST (m, r2, GEN_INT (4));
	  return gen_rtx_PARALLEL (mode, gen_rtvec (2, r1, r2));
	}
      else
	return NULL_RTX;
    }
  else
    {
      if (gregno <= GP_ARG_MAX_REG)
	return gen_rtx_REG (mode, gregno);
      else
	return NULL_RTX;
    }
}

/* A subroutine of rs6000_darwin64_record_arg.  Assign the bits of the
   structure between cum->intoffset and bitpos to integer registers.  */

static void
rs6000_darwin64_record_arg_flush (CUMULATIVE_ARGS *cum,
				  HOST_WIDE_INT bitpos, rtx rvec[], int *k)
{
  enum machine_mode mode;
  unsigned int regno;
  unsigned int startbit, endbit;
  int this_regno, intregs, intoffset;
  rtx reg;

  if (cum->intoffset == -1)
    return;

  intoffset = cum->intoffset;
  cum->intoffset = -1;

  /* If this is the trailing part of a word, try to only load that
     much into the register.  Otherwise load the whole register.  Note
     that in the latter case we may pick up unwanted bits.  It's not a
     problem at the moment but may wish to revisit.  */

  if (intoffset % BITS_PER_WORD != 0)
    {
      mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
			  MODE_INT, 0);
      if (mode == BLKmode)
	{
	  /* We couldn't find an appropriate mode, which happens,
	     e.g., in packed structs when there are 3 bytes to load.
	     Back intoffset back to the beginning of the word in this
	     case.  */
	 intoffset = intoffset & -BITS_PER_WORD;
	 mode = word_mode;
	}
    }
  else
    mode = word_mode;

  startbit = intoffset & -BITS_PER_WORD;
  endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
  intregs = (endbit - startbit) / BITS_PER_WORD;
  this_regno = cum->words + intoffset / BITS_PER_WORD;

  if (intregs > 0 && intregs > GP_ARG_NUM_REG - this_regno)
    cum->use_stack = 1;

  intregs = MIN (intregs, GP_ARG_NUM_REG - this_regno);
  if (intregs <= 0)
    return;

  intoffset /= BITS_PER_UNIT;
  do
    {
      regno = GP_ARG_MIN_REG + this_regno;
      reg = gen_rtx_REG (mode, regno);
      rvec[(*k)++] =
	gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));

      this_regno += 1;
      intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
      mode = word_mode;
      intregs -= 1;
    }
  while (intregs > 0);
}

/* Recursive workhorse for the following.  */

static void
rs6000_darwin64_record_arg_recurse (CUMULATIVE_ARGS *cum, const_tree type,
				    HOST_WIDE_INT startbitpos, rtx rvec[],
				    int *k)
{
  tree f;

  for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
    if (TREE_CODE (f) == FIELD_DECL)
      {
	HOST_WIDE_INT bitpos = startbitpos;
	tree ftype = TREE_TYPE (f);
	enum machine_mode mode;
	if (ftype == error_mark_node)
	  continue;
	mode = TYPE_MODE (ftype);

	if (DECL_SIZE (f) != 0
	    && host_integerp (bit_position (f), 1))
	  bitpos += int_bit_position (f);

	/* ??? FIXME: else assume zero offset.  */

	if (TREE_CODE (ftype) == RECORD_TYPE)
	  rs6000_darwin64_record_arg_recurse (cum, ftype, bitpos, rvec, k);
	else if (cum->named && USE_FP_FOR_ARG_P (cum, mode, ftype))
	  {
#if 0
	    switch (mode)
	      {
	      case SCmode: mode = SFmode; break;
	      case DCmode: mode = DFmode; break;
	      case TCmode: mode = TFmode; break;
	      default: break;
	      }
#endif
	    rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
	    rvec[(*k)++]
	      = gen_rtx_EXPR_LIST (VOIDmode,
				   gen_rtx_REG (mode, cum->fregno++),
				   GEN_INT (bitpos / BITS_PER_UNIT));
	    if (mode == TFmode || mode == TDmode)
	      cum->fregno++;
	  }
	else if (cum->named && USE_ALTIVEC_FOR_ARG_P (cum, mode, ftype, 1))
	  {
	    rs6000_darwin64_record_arg_flush (cum, bitpos, rvec, k);
	    rvec[(*k)++]
	      = gen_rtx_EXPR_LIST (VOIDmode,
				   gen_rtx_REG (mode, cum->vregno++),
				   GEN_INT (bitpos / BITS_PER_UNIT));
	  }
	else if (cum->intoffset == -1)
	  cum->intoffset = bitpos;
      }
}

/* For the darwin64 ABI, we want to construct a PARALLEL consisting of
   the register(s) to be used for each field and subfield of a struct
   being passed by value, along with the offset of where the
   register's value may be found in the block.  FP fields go in FP
   register, vector fields go in vector registers, and everything
   else goes in int registers, packed as in memory.

   This code is also used for function return values.  RETVAL indicates
   whether this is the case.

   Much of this is taken from the SPARC V9 port, which has a similar
   calling convention.  */

static rtx
rs6000_darwin64_record_arg (CUMULATIVE_ARGS *orig_cum, const_tree type,
			    int named, bool retval)
{
  rtx rvec[FIRST_PSEUDO_REGISTER];
  int k = 1, kbase = 1;
  HOST_WIDE_INT typesize = int_size_in_bytes (type);
  /* This is a copy; modifications are not visible to our caller.  */
  CUMULATIVE_ARGS copy_cum = *orig_cum;
  CUMULATIVE_ARGS *cum = &copy_cum;

  /* Pad to 16 byte boundary if needed.  */
  if (!retval && TYPE_ALIGN (type) >= 2 * BITS_PER_WORD
      && (cum->words % 2) != 0)
    cum->words++;

  cum->intoffset = 0;
  cum->use_stack = 0;
  cum->named = named;

  /* Put entries into rvec[] for individual FP and vector fields, and
     for the chunks of memory that go in int regs.  Note we start at
     element 1; 0 is reserved for an indication of using memory, and
     may or may not be filled in below. */
  rs6000_darwin64_record_arg_recurse (cum, type, 0, rvec, &k);
  rs6000_darwin64_record_arg_flush (cum, typesize * BITS_PER_UNIT, rvec, &k);

  /* If any part of the struct went on the stack put all of it there.
     This hack is because the generic code for
     FUNCTION_ARG_PARTIAL_NREGS cannot handle cases where the register
     parts of the struct are not at the beginning.  */
  if (cum->use_stack)
    {
      if (retval)
	return NULL_RTX;    /* doesn't go in registers at all */
      kbase = 0;
      rvec[0] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
    }
  if (k > 1 || cum->use_stack)
    return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (k - kbase, &rvec[kbase]));
  else
    return NULL_RTX;
}

/* Determine where to place an argument in 64-bit mode with 32-bit ABI.  */

static rtx
rs6000_mixed_function_arg (enum machine_mode mode, tree type, int align_words)
{
  int n_units;
  int i, k;
  rtx rvec[GP_ARG_NUM_REG + 1];

  if (align_words >= GP_ARG_NUM_REG)
    return NULL_RTX;

  n_units = rs6000_arg_size (mode, type);

  /* Optimize the simple case where the arg fits in one gpr, except in
     the case of BLKmode due to assign_parms assuming that registers are
     BITS_PER_WORD wide.  */
  if (n_units == 0
      || (n_units == 1 && mode != BLKmode))
    return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);

  k = 0;
  if (align_words + n_units > GP_ARG_NUM_REG)
    /* Not all of the arg fits in gprs.  Say that it goes in memory too,
       using a magic NULL_RTX component.
       This is not strictly correct.  Only some of the arg belongs in
       memory, not all of it.  However, the normal scheme using
       function_arg_partial_nregs can result in unusual subregs, eg.
       (subreg:SI (reg:DF) 4), which are not handled well.  The code to
       store the whole arg to memory is often more efficient than code
       to store pieces, and we know that space is available in the right
       place for the whole arg.  */
    rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);

  i = 0;
  do
    {
      rtx r = gen_rtx_REG (SImode, GP_ARG_MIN_REG + align_words);
      rtx off = GEN_INT (i++ * 4);
      rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
    }
  while (++align_words < GP_ARG_NUM_REG && --n_units != 0);

  return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
}

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.  It is
    not modified in this routine.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).

   On RS/6000 the first eight words of non-FP are normally in registers
   and the rest are pushed.  Under AIX, the first 13 FP args are in registers.
   Under V.4, the first 8 FP args are in registers.

   If this is floating-point and no prototype is specified, we use
   both an FP and integer register (or possibly FP reg and stack).  Library
   functions (when CALL_LIBCALL is set) always have the proper types for args,
   so we can pass the FP value just in one register.  emit_library_function
   doesn't support PARALLEL anyway.

   Note that for args passed by reference, function_arg will be called
   with MODE and TYPE set to that of the pointer to the arg, not the arg
   itself.  */

rtx
function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
	      tree type, int named)
{
  enum rs6000_abi abi = DEFAULT_ABI;

  /* Return a marker to indicate whether CR1 needs to set or clear the
     bit that V.4 uses to say fp args were passed in registers.
     Assume that we don't need the marker for software floating point,
     or compiler generated library calls.  */
  if (mode == VOIDmode)
    {
      if (abi == ABI_V4
	  && (cum->call_cookie & CALL_LIBCALL) == 0
	  && (cum->stdarg
	      || (cum->nargs_prototype < 0
		  && (cum->prototype || TARGET_NO_PROTOTYPE))))
	{
	  /* For the SPE, we need to crxor CR6 always.  */
	  if (TARGET_SPE_ABI)
	    return GEN_INT (cum->call_cookie | CALL_V4_SET_FP_ARGS);
	  else if (TARGET_HARD_FLOAT && TARGET_FPRS)
	    return GEN_INT (cum->call_cookie
			    | ((cum->fregno == FP_ARG_MIN_REG)
			       ? CALL_V4_SET_FP_ARGS
			       : CALL_V4_CLEAR_FP_ARGS));
	}

      return GEN_INT (cum->call_cookie);
    }

  if (rs6000_darwin64_abi && mode == BLKmode
      && TREE_CODE (type) == RECORD_TYPE)
    {
      rtx rslt = rs6000_darwin64_record_arg (cum, type, named, false);
      if (rslt != NULL_RTX)
	return rslt;
      /* Else fall through to usual handling.  */
    }

  if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named))
    if (TARGET_64BIT && ! cum->prototype)
      {
	/* Vector parameters get passed in vector register
	   and also in GPRs or memory, in absence of prototype.  */
	int align_words;
	rtx slot;
	align_words = (cum->words + 1) & ~1;

	if (align_words >= GP_ARG_NUM_REG)
	  {
	    slot = NULL_RTX;
	  }
	else
	  {
	    slot = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
	  }
	return gen_rtx_PARALLEL (mode,
		 gen_rtvec (2,
			    gen_rtx_EXPR_LIST (VOIDmode,
					       slot, const0_rtx),
			    gen_rtx_EXPR_LIST (VOIDmode,
					       gen_rtx_REG (mode, cum->vregno),
					       const0_rtx)));
      }
    else
      return gen_rtx_REG (mode, cum->vregno);
  else if (TARGET_ALTIVEC_ABI
	   && (ALTIVEC_VECTOR_MODE (mode)
	       || VSX_VECTOR_MODE (mode)
	       || (type && TREE_CODE (type) == VECTOR_TYPE
		   && int_size_in_bytes (type) == 16)))
    {
      if (named || abi == ABI_V4)
	return NULL_RTX;
      else
	{
	  /* Vector parameters to varargs functions under AIX or Darwin
	     get passed in memory and possibly also in GPRs.  */
	  int align, align_words, n_words;
	  enum machine_mode part_mode;

	  /* Vector parameters must be 16-byte aligned.  This places them at
	     2 mod 4 in terms of words in 32-bit mode, since the parameter
	     save area starts at offset 24 from the stack.  In 64-bit mode,
	     they just have to start on an even word, since the parameter
	     save area is 16-byte aligned.  */
	  if (TARGET_32BIT)
	    align = (2 - cum->words) & 3;
	  else
	    align = cum->words & 1;
	  align_words = cum->words + align;

	  /* Out of registers?  Memory, then.  */
	  if (align_words >= GP_ARG_NUM_REG)
	    return NULL_RTX;

	  if (TARGET_32BIT && TARGET_POWERPC64)
	    return rs6000_mixed_function_arg (mode, type, align_words);

	  /* The vector value goes in GPRs.  Only the part of the
	     value in GPRs is reported here.  */
	  part_mode = mode;
	  n_words = rs6000_arg_size (mode, type);
	  if (align_words + n_words > GP_ARG_NUM_REG)
	    /* Fortunately, there are only two possibilities, the value
	       is either wholly in GPRs or half in GPRs and half not.  */
	    part_mode = DImode;

	  return gen_rtx_REG (part_mode, GP_ARG_MIN_REG + align_words);
	}
    }
  else if (TARGET_SPE_ABI && TARGET_SPE
	   && (SPE_VECTOR_MODE (mode)
	       || (TARGET_E500_DOUBLE && (mode == DFmode
					  || mode == DCmode
					  || mode == TFmode
					  || mode == TCmode))))
    return rs6000_spe_function_arg (cum, mode, type);

  else if (abi == ABI_V4)
    {
      if (TARGET_HARD_FLOAT && TARGET_FPRS
	  && ((TARGET_SINGLE_FLOAT && mode == SFmode)
	      || (TARGET_DOUBLE_FLOAT && mode == DFmode)
	      || (mode == TFmode && !TARGET_IEEEQUAD)
	      || mode == SDmode || mode == DDmode || mode == TDmode))
	{
	  /* _Decimal128 must use an even/odd register pair.  This assumes
	     that the register number is odd when fregno is odd.  */
	  if (mode == TDmode && (cum->fregno % 2) == 1)
	    cum->fregno++;

	  if (cum->fregno + (mode == TFmode || mode == TDmode ? 1 : 0)
	      <= FP_ARG_V4_MAX_REG)
	    return gen_rtx_REG (mode, cum->fregno);
	  else
	    return NULL_RTX;
	}
      else
	{
	  int n_words = rs6000_arg_size (mode, type);
	  int gregno = cum->sysv_gregno;

	  /* Long long and SPE vectors are put in (r3,r4), (r5,r6),
	     (r7,r8) or (r9,r10).  As does any other 2 word item such
	     as complex int due to a historical mistake.  */
	  if (n_words == 2)
	    gregno += (1 - gregno) & 1;

	  /* Multi-reg args are not split between registers and stack.  */
	  if (gregno + n_words - 1 > GP_ARG_MAX_REG)
	    return NULL_RTX;

	  if (TARGET_32BIT && TARGET_POWERPC64)
	    return rs6000_mixed_function_arg (mode, type,
					      gregno - GP_ARG_MIN_REG);
	  return gen_rtx_REG (mode, gregno);
	}
    }
  else
    {
      int align_words = rs6000_parm_start (mode, type, cum->words);

      /* _Decimal128 must be passed in an even/odd float register pair.
	 This assumes that the register number is odd when fregno is odd.  */
      if (mode == TDmode && (cum->fregno % 2) == 1)
	cum->fregno++;

      if (USE_FP_FOR_ARG_P (cum, mode, type))
	{
	  rtx rvec[GP_ARG_NUM_REG + 1];
	  rtx r;
	  int k;
	  bool needs_psave;
	  enum machine_mode fmode = mode;
	  unsigned long n_fpreg = (GET_MODE_SIZE (mode) + 7) >> 3;

	  if (cum->fregno + n_fpreg > FP_ARG_MAX_REG + 1)
	    {
	      /* Currently, we only ever need one reg here because complex
		 doubles are split.  */
	      gcc_assert (cum->fregno == FP_ARG_MAX_REG
			  && (fmode == TFmode || fmode == TDmode));

	      /* Long double or _Decimal128 split over regs and memory.  */
	      fmode = DECIMAL_FLOAT_MODE_P (fmode) ? DDmode : DFmode;
	    }

	  /* Do we also need to pass this arg in the parameter save
	     area?  */
	  needs_psave = (type
			 && (cum->nargs_prototype <= 0
			     || (DEFAULT_ABI == ABI_AIX
				 && TARGET_XL_COMPAT
				 && align_words >= GP_ARG_NUM_REG)));

	  if (!needs_psave && mode == fmode)
	    return gen_rtx_REG (fmode, cum->fregno);

	  k = 0;
	  if (needs_psave)
	    {
	      /* Describe the part that goes in gprs or the stack.
		 This piece must come first, before the fprs.  */
	      if (align_words < GP_ARG_NUM_REG)
		{
		  unsigned long n_words = rs6000_arg_size (mode, type);

		  if (align_words + n_words > GP_ARG_NUM_REG
		      || (TARGET_32BIT && TARGET_POWERPC64))
		    {
		      /* If this is partially on the stack, then we only
			 include the portion actually in registers here.  */
		      enum machine_mode rmode = TARGET_32BIT ? SImode : DImode;
		      rtx off;
		      int i = 0;
		      if (align_words + n_words > GP_ARG_NUM_REG)
			/* Not all of the arg fits in gprs.  Say that it
			   goes in memory too, using a magic NULL_RTX
			   component.  Also see comment in
			   rs6000_mixed_function_arg for why the normal
			   function_arg_partial_nregs scheme doesn't work
			   in this case. */
			rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX,
						       const0_rtx);
		      do
			{
			  r = gen_rtx_REG (rmode,
					   GP_ARG_MIN_REG + align_words);
			  off = GEN_INT (i++ * GET_MODE_SIZE (rmode));
			  rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, off);
			}
		      while (++align_words < GP_ARG_NUM_REG && --n_words != 0);
		    }
		  else
		    {
		      /* The whole arg fits in gprs.  */
		      r = gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
		      rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);
		    }
		}
	      else
		/* It's entirely in memory.  */
		rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
	    }

	  /* Describe where this piece goes in the fprs.  */
	  r = gen_rtx_REG (fmode, cum->fregno);
	  rvec[k++] = gen_rtx_EXPR_LIST (VOIDmode, r, const0_rtx);

	  return gen_rtx_PARALLEL (mode, gen_rtvec_v (k, rvec));
	}
      else if (align_words < GP_ARG_NUM_REG)
	{
	  if (TARGET_32BIT && TARGET_POWERPC64)
	    return rs6000_mixed_function_arg (mode, type, align_words);

	  if (mode == BLKmode)
	    mode = Pmode;

	  return gen_rtx_REG (mode, GP_ARG_MIN_REG + align_words);
	}
      else
	return NULL_RTX;
    }
}

/* For an arg passed partly in registers and partly in memory, this is
   the number of bytes passed in registers.  For args passed entirely in
   registers or entirely in memory, zero.  When an arg is described by a
   PARALLEL, perhaps using more than one register type, this function
   returns the number of bytes used by the first element of the PARALLEL.  */

static int
rs6000_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
			  tree type, bool named)
{
  int ret = 0;
  int align_words;

  if (DEFAULT_ABI == ABI_V4)
    return 0;

  if (USE_ALTIVEC_FOR_ARG_P (cum, mode, type, named)
      && cum->nargs_prototype >= 0)
    return 0;

  /* In this complicated case we just disable the partial_nregs code.  */
  if (rs6000_darwin64_abi && mode == BLKmode
      && TREE_CODE (type) == RECORD_TYPE
      && int_size_in_bytes (type) > 0)
    return 0;

  align_words = rs6000_parm_start (mode, type, cum->words);

  if (USE_FP_FOR_ARG_P (cum, mode, type))
    {
      /* If we are passing this arg in the fixed parameter save area
	 (gprs or memory) as well as fprs, then this function should
	 return the number of partial bytes passed in the parameter
	 save area rather than partial bytes passed in fprs.  */
      if (type
	  && (cum->nargs_prototype <= 0
	      || (DEFAULT_ABI == ABI_AIX
		  && TARGET_XL_COMPAT
		  && align_words >= GP_ARG_NUM_REG)))
	return 0;
      else if (cum->fregno + ((GET_MODE_SIZE (mode) + 7) >> 3)
	       > FP_ARG_MAX_REG + 1)
	ret = (FP_ARG_MAX_REG + 1 - cum->fregno) * 8;
      else if (cum->nargs_prototype >= 0)
	return 0;
    }

  if (align_words < GP_ARG_NUM_REG
      && GP_ARG_NUM_REG < align_words + rs6000_arg_size (mode, type))
    ret = (GP_ARG_NUM_REG - align_words) * (TARGET_32BIT ? 4 : 8);

  if (ret != 0 && TARGET_DEBUG_ARG)
    fprintf (stderr, "rs6000_arg_partial_bytes: %d\n", ret);

  return ret;
}

/* A C expression that indicates when an argument must be passed by
   reference.  If nonzero for an argument, a copy of that argument is
   made in memory and a pointer to the argument is passed instead of
   the argument itself.  The pointer is passed in whatever way is
   appropriate for passing a pointer to that type.

   Under V.4, aggregates and long double are passed by reference.

   As an extension to all 32-bit ABIs, AltiVec vectors are passed by
   reference unless the AltiVec vector extension ABI is in force.

   As an extension to all ABIs, variable sized types are passed by
   reference.  */

static bool
rs6000_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
			  enum machine_mode mode, const_tree type,
			  bool named ATTRIBUTE_UNUSED)
{
  if (DEFAULT_ABI == ABI_V4 && TARGET_IEEEQUAD && mode == TFmode)
    {
      if (TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_pass_by_reference: V4 long double\n");
      return 1;
    }

  if (!type)
    return 0;

  if (DEFAULT_ABI == ABI_V4 && AGGREGATE_TYPE_P (type))
    {
      if (TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_pass_by_reference: V4 aggregate\n");
      return 1;
    }

  if (int_size_in_bytes (type) < 0)
    {
      if (TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_pass_by_reference: variable size\n");
      return 1;
    }

  /* Allow -maltivec -mabi=no-altivec without warning.  Altivec vector
     modes only exist for GCC vector types if -maltivec.  */
  if (TARGET_32BIT && !TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
    {
      if (TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_pass_by_reference: AltiVec\n");
      return 1;
    }

  /* Pass synthetic vectors in memory.  */
  if (TREE_CODE (type) == VECTOR_TYPE
      && int_size_in_bytes (type) > (TARGET_ALTIVEC_ABI ? 16 : 8))
    {
      static bool warned_for_pass_big_vectors = false;
      if (TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_pass_by_reference: synthetic vector\n");
      if (!warned_for_pass_big_vectors)
	{
	  warning (0, "GCC vector passed by reference: "
		   "non-standard ABI extension with no compatibility guarantee");
	  warned_for_pass_big_vectors = true;
	}
      return 1;
    }

  return 0;
}

static void
rs6000_move_block_from_reg (int regno, rtx x, int nregs)
{
  int i;
  enum machine_mode reg_mode = TARGET_32BIT ? SImode : DImode;

  if (nregs == 0)
    return;

  for (i = 0; i < nregs; i++)
    {
      rtx tem = adjust_address_nv (x, reg_mode, i * GET_MODE_SIZE (reg_mode));
      if (reload_completed)
	{
	  if (! strict_memory_address_p (reg_mode, XEXP (tem, 0)))
	    tem = NULL_RTX;
	  else
	    tem = simplify_gen_subreg (reg_mode, x, BLKmode,
				       i * GET_MODE_SIZE (reg_mode));
	}
      else
	tem = replace_equiv_address (tem, XEXP (tem, 0));

      gcc_assert (tem);

      emit_move_insn (tem, gen_rtx_REG (reg_mode, regno + i));
    }
}

/* Perform any needed actions needed for a function that is receiving a
   variable number of arguments.

   CUM is as above.

   MODE and TYPE are the mode and type of the current parameter.

   PRETEND_SIZE is a variable that should be set to the amount of stack
   that must be pushed by the prolog to pretend that our caller pushed
   it.

   Normally, this macro will push all remaining incoming registers on the
   stack and set PRETEND_SIZE to the length of the registers pushed.  */

static void
setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
			tree type, int *pretend_size ATTRIBUTE_UNUSED,
			int no_rtl)
{
  CUMULATIVE_ARGS next_cum;
  int reg_size = TARGET_32BIT ? 4 : 8;
  rtx save_area = NULL_RTX, mem;
  int first_reg_offset;
  alias_set_type set;

  /* Skip the last named argument.  */
  next_cum = *cum;
  function_arg_advance (&next_cum, mode, type, 1, 0);

  if (DEFAULT_ABI == ABI_V4)
    {
      first_reg_offset = next_cum.sysv_gregno - GP_ARG_MIN_REG;

      if (! no_rtl)
	{
	  int gpr_reg_num = 0, gpr_size = 0, fpr_size = 0;
	  HOST_WIDE_INT offset = 0;

	  /* Try to optimize the size of the varargs save area.
	     The ABI requires that ap.reg_save_area is doubleword
	     aligned, but we don't need to allocate space for all
	     the bytes, only those to which we actually will save
	     anything.  */
	  if (cfun->va_list_gpr_size && first_reg_offset < GP_ARG_NUM_REG)
	    gpr_reg_num = GP_ARG_NUM_REG - first_reg_offset;
	  if (TARGET_HARD_FLOAT && TARGET_FPRS
	      && next_cum.fregno <= FP_ARG_V4_MAX_REG
	      && cfun->va_list_fpr_size)
	    {
	      if (gpr_reg_num)
		fpr_size = (next_cum.fregno - FP_ARG_MIN_REG)
			   * UNITS_PER_FP_WORD;
	      if (cfun->va_list_fpr_size
		  < FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
		fpr_size += cfun->va_list_fpr_size * UNITS_PER_FP_WORD;
	      else
		fpr_size += (FP_ARG_V4_MAX_REG + 1 - next_cum.fregno)
			    * UNITS_PER_FP_WORD;
	    }
	  if (gpr_reg_num)
	    {
	      offset = -((first_reg_offset * reg_size) & ~7);
	      if (!fpr_size && gpr_reg_num > cfun->va_list_gpr_size)
		{
		  gpr_reg_num = cfun->va_list_gpr_size;
		  if (reg_size == 4 && (first_reg_offset & 1))
		    gpr_reg_num++;
		}
	      gpr_size = (gpr_reg_num * reg_size + 7) & ~7;
	    }
	  else if (fpr_size)
	    offset = - (int) (next_cum.fregno - FP_ARG_MIN_REG)
		       * UNITS_PER_FP_WORD
		     - (int) (GP_ARG_NUM_REG * reg_size);

	  if (gpr_size + fpr_size)
	    {
	      rtx reg_save_area
		= assign_stack_local (BLKmode, gpr_size + fpr_size, 64);
	      gcc_assert (GET_CODE (reg_save_area) == MEM);
	      reg_save_area = XEXP (reg_save_area, 0);
	      if (GET_CODE (reg_save_area) == PLUS)
		{
		  gcc_assert (XEXP (reg_save_area, 0)
			      == virtual_stack_vars_rtx);
		  gcc_assert (GET_CODE (XEXP (reg_save_area, 1)) == CONST_INT);
		  offset += INTVAL (XEXP (reg_save_area, 1));
		}
	      else
		gcc_assert (reg_save_area == virtual_stack_vars_rtx);
	    }

	  cfun->machine->varargs_save_offset = offset;
	  save_area = plus_constant (virtual_stack_vars_rtx, offset);
	}
    }
  else
    {
      first_reg_offset = next_cum.words;
      save_area = virtual_incoming_args_rtx;

      if (targetm.calls.must_pass_in_stack (mode, type))
	first_reg_offset += rs6000_arg_size (TYPE_MODE (type), type);
    }

  set = get_varargs_alias_set ();
  if (! no_rtl && first_reg_offset < GP_ARG_NUM_REG
      && cfun->va_list_gpr_size)
    {
      int nregs = GP_ARG_NUM_REG - first_reg_offset;

      if (va_list_gpr_counter_field)
	{
	  /* V4 va_list_gpr_size counts number of registers needed.  */
	  if (nregs > cfun->va_list_gpr_size)
	    nregs = cfun->va_list_gpr_size;
	}
      else
	{
	  /* char * va_list instead counts number of bytes needed.  */
	  if (nregs > cfun->va_list_gpr_size / reg_size)
	    nregs = cfun->va_list_gpr_size / reg_size;
	}

      mem = gen_rtx_MEM (BLKmode,
			 plus_constant (save_area,
					first_reg_offset * reg_size));
      MEM_NOTRAP_P (mem) = 1;
      set_mem_alias_set (mem, set);
      set_mem_align (mem, BITS_PER_WORD);

      rs6000_move_block_from_reg (GP_ARG_MIN_REG + first_reg_offset, mem,
				  nregs);
    }

  /* Save FP registers if needed.  */
  if (DEFAULT_ABI == ABI_V4
      && TARGET_HARD_FLOAT && TARGET_FPRS
      && ! no_rtl
      && next_cum.fregno <= FP_ARG_V4_MAX_REG
      && cfun->va_list_fpr_size)
    {
      int fregno = next_cum.fregno, nregs;
      rtx cr1 = gen_rtx_REG (CCmode, CR1_REGNO);
      rtx lab = gen_label_rtx ();
      int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG)
					       * UNITS_PER_FP_WORD);

      emit_jump_insn
	(gen_rtx_SET (VOIDmode,
		      pc_rtx,
		      gen_rtx_IF_THEN_ELSE (VOIDmode,
					    gen_rtx_NE (VOIDmode, cr1,
							const0_rtx),
					    gen_rtx_LABEL_REF (VOIDmode, lab),
					    pc_rtx)));

      for (nregs = 0;
	   fregno <= FP_ARG_V4_MAX_REG && nregs < cfun->va_list_fpr_size;
	   fregno++, off += UNITS_PER_FP_WORD, nregs++)
	{
	  mem = gen_rtx_MEM ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
			      ? DFmode : SFmode, 
                             plus_constant (save_area, off));
  	  MEM_NOTRAP_P (mem) = 1;
  	  set_mem_alias_set (mem, set);
	  set_mem_align (mem, GET_MODE_ALIGNMENT (
			 (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
			  ? DFmode : SFmode));
	  emit_move_insn (mem, gen_rtx_REG (
                          (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
			   ? DFmode : SFmode, fregno));
	}

      emit_label (lab);
    }
}

/* Create the va_list data type.  */

static tree
rs6000_build_builtin_va_list (void)
{
  tree f_gpr, f_fpr, f_res, f_ovf, f_sav, record, type_decl;

  /* For AIX, prefer 'char *' because that's what the system
     header files like.  */
  if (DEFAULT_ABI != ABI_V4)
    return build_pointer_type (char_type_node);

  record = (*lang_hooks.types.make_type) (RECORD_TYPE);
  type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
      			  get_identifier ("__va_list_tag"), record);

  f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("gpr"),
		      unsigned_char_type_node);
  f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("fpr"),
		      unsigned_char_type_node);
  /* Give the two bytes of padding a name, so that -Wpadded won't warn on
     every user file.  */
  f_res = build_decl (BUILTINS_LOCATION, FIELD_DECL,
      		      get_identifier ("reserved"), short_unsigned_type_node);
  f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL,
      		      get_identifier ("overflow_arg_area"),
		      ptr_type_node);
  f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL,
      		      get_identifier ("reg_save_area"),
		      ptr_type_node);

  va_list_gpr_counter_field = f_gpr;
  va_list_fpr_counter_field = f_fpr;

  DECL_FIELD_CONTEXT (f_gpr) = record;
  DECL_FIELD_CONTEXT (f_fpr) = record;
  DECL_FIELD_CONTEXT (f_res) = record;
  DECL_FIELD_CONTEXT (f_ovf) = record;
  DECL_FIELD_CONTEXT (f_sav) = record;

  TREE_CHAIN (record) = type_decl;
  TYPE_NAME (record) = type_decl;
  TYPE_FIELDS (record) = f_gpr;
  TREE_CHAIN (f_gpr) = f_fpr;
  TREE_CHAIN (f_fpr) = f_res;
  TREE_CHAIN (f_res) = f_ovf;
  TREE_CHAIN (f_ovf) = f_sav;

  layout_type (record);

  /* The correct type is an array type of one element.  */
  return build_array_type (record, build_index_type (size_zero_node));
}

/* Implement va_start.  */

static void
rs6000_va_start (tree valist, rtx nextarg)
{
  HOST_WIDE_INT words, n_gpr, n_fpr;
  tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
  tree gpr, fpr, ovf, sav, t;

  /* Only SVR4 needs something special.  */
  if (DEFAULT_ABI != ABI_V4)
    {
      std_expand_builtin_va_start (valist, nextarg);
      return;
    }

  f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
  f_fpr = TREE_CHAIN (f_gpr);
  f_res = TREE_CHAIN (f_fpr);
  f_ovf = TREE_CHAIN (f_res);
  f_sav = TREE_CHAIN (f_ovf);

  valist = build_va_arg_indirect_ref (valist);
  gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
  fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
		f_fpr, NULL_TREE);
  ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
		f_ovf, NULL_TREE);
  sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
		f_sav, NULL_TREE);

  /* Count number of gp and fp argument registers used.  */
  words = crtl->args.info.words;
  n_gpr = MIN (crtl->args.info.sysv_gregno - GP_ARG_MIN_REG,
	       GP_ARG_NUM_REG);
  n_fpr = MIN (crtl->args.info.fregno - FP_ARG_MIN_REG,
	       FP_ARG_NUM_REG);

  if (TARGET_DEBUG_ARG)
    fprintf (stderr, "va_start: words = "HOST_WIDE_INT_PRINT_DEC", n_gpr = "
	     HOST_WIDE_INT_PRINT_DEC", n_fpr = "HOST_WIDE_INT_PRINT_DEC"\n",
	     words, n_gpr, n_fpr);

  if (cfun->va_list_gpr_size)
    {
      t = build2 (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
		  build_int_cst (NULL_TREE, n_gpr));
      TREE_SIDE_EFFECTS (t) = 1;
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
    }

  if (cfun->va_list_fpr_size)
    {
      t = build2 (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
		  build_int_cst (NULL_TREE, n_fpr));
      TREE_SIDE_EFFECTS (t) = 1;
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
    }

  /* Find the overflow area.  */
  t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
  if (words != 0)
    t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovf), t,
	        size_int (words * UNITS_PER_WORD));
  t = build2 (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* If there were no va_arg invocations, don't set up the register
     save area.  */
  if (!cfun->va_list_gpr_size
      && !cfun->va_list_fpr_size
      && n_gpr < GP_ARG_NUM_REG
      && n_fpr < FP_ARG_V4_MAX_REG)
    return;

  /* Find the register save area.  */
  t = make_tree (TREE_TYPE (sav), virtual_stack_vars_rtx);
  if (cfun->machine->varargs_save_offset)
    t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (sav), t,
	        size_int (cfun->machine->varargs_save_offset));
  t = build2 (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}

/* Implement va_arg.  */

tree
rs6000_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p,
			gimple_seq *post_p)
{
  tree f_gpr, f_fpr, f_res, f_ovf, f_sav;
  tree gpr, fpr, ovf, sav, reg, t, u;
  int size, rsize, n_reg, sav_ofs, sav_scale;
  tree lab_false, lab_over, addr;
  int align;
  tree ptrtype = build_pointer_type_for_mode (type, ptr_mode, true);
  int regalign = 0;
  gimple stmt;

  if (pass_by_reference (NULL, TYPE_MODE (type), type, false))
    {
      t = rs6000_gimplify_va_arg (valist, ptrtype, pre_p, post_p);
      return build_va_arg_indirect_ref (t);
    }

  if (DEFAULT_ABI != ABI_V4)
    {
      if (targetm.calls.split_complex_arg && TREE_CODE (type) == COMPLEX_TYPE)
	{
	  tree elem_type = TREE_TYPE (type);
	  enum machine_mode elem_mode = TYPE_MODE (elem_type);
	  int elem_size = GET_MODE_SIZE (elem_mode);

	  if (elem_size < UNITS_PER_WORD)
	    {
	      tree real_part, imag_part;
	      gimple_seq post = NULL;

	      real_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
						  &post);
	      /* Copy the value into a temporary, lest the formal temporary
		 be reused out from under us.  */
	      real_part = get_initialized_tmp_var (real_part, pre_p, &post);
	      gimple_seq_add_seq (pre_p, post);

	      imag_part = rs6000_gimplify_va_arg (valist, elem_type, pre_p,
						  post_p);

	      return build2 (COMPLEX_EXPR, type, real_part, imag_part);
	    }
	}

      return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
    }

  f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
  f_fpr = TREE_CHAIN (f_gpr);
  f_res = TREE_CHAIN (f_fpr);
  f_ovf = TREE_CHAIN (f_res);
  f_sav = TREE_CHAIN (f_ovf);

  valist = build_va_arg_indirect_ref (valist);
  gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE);
  fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), unshare_expr (valist),
		f_fpr, NULL_TREE);
  ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), unshare_expr (valist),
		f_ovf, NULL_TREE);
  sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), unshare_expr (valist),
		f_sav, NULL_TREE);

  size = int_size_in_bytes (type);
  rsize = (size + 3) / 4;
  align = 1;

  if (TARGET_HARD_FLOAT && TARGET_FPRS
      && ((TARGET_SINGLE_FLOAT && TYPE_MODE (type) == SFmode)
          || (TARGET_DOUBLE_FLOAT 
              && (TYPE_MODE (type) == DFmode 
 	          || TYPE_MODE (type) == TFmode
	          || TYPE_MODE (type) == SDmode
	          || TYPE_MODE (type) == DDmode
	          || TYPE_MODE (type) == TDmode))))
    {
      /* FP args go in FP registers, if present.  */
      reg = fpr;
      n_reg = (size + 7) / 8;
      sav_ofs = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4) * 4;
      sav_scale = ((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? 8 : 4);
      if (TYPE_MODE (type) != SFmode && TYPE_MODE (type) != SDmode)
	align = 8;
    }
  else
    {
      /* Otherwise into GP registers.  */
      reg = gpr;
      n_reg = rsize;
      sav_ofs = 0;
      sav_scale = 4;
      if (n_reg == 2)
	align = 8;
    }

  /* Pull the value out of the saved registers....  */

  lab_over = NULL;
  addr = create_tmp_var (ptr_type_node, "addr");

  /*  AltiVec vectors never go in registers when -mabi=altivec.  */
  if (TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (TYPE_MODE (type)))
    align = 16;
  else
    {
      lab_false = create_artificial_label (input_location);
      lab_over = create_artificial_label (input_location);

      /* Long long and SPE vectors are aligned in the registers.
	 As are any other 2 gpr item such as complex int due to a
	 historical mistake.  */
      u = reg;
      if (n_reg == 2 && reg == gpr)
	{
	  regalign = 1;
	  u = build2 (BIT_AND_EXPR, TREE_TYPE (reg), unshare_expr (reg),
		     build_int_cst (TREE_TYPE (reg), n_reg - 1));
	  u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg),
		      unshare_expr (reg), u);
	}
      /* _Decimal128 is passed in even/odd fpr pairs; the stored
	 reg number is 0 for f1, so we want to make it odd.  */
      else if (reg == fpr && TYPE_MODE (type) == TDmode)
	{
	  t = build2 (BIT_IOR_EXPR, TREE_TYPE (reg), unshare_expr (reg),
		      build_int_cst (TREE_TYPE (reg), 1));
	  u = build2 (MODIFY_EXPR, void_type_node, unshare_expr (reg), t);
	}

      t = fold_convert (TREE_TYPE (reg), size_int (8 - n_reg + 1));
      t = build2 (GE_EXPR, boolean_type_node, u, t);
      u = build1 (GOTO_EXPR, void_type_node, lab_false);
      t = build3 (COND_EXPR, void_type_node, t, u, NULL_TREE);
      gimplify_and_add (t, pre_p);

      t = sav;
      if (sav_ofs)
	t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, size_int (sav_ofs));

      u = build2 (POSTINCREMENT_EXPR, TREE_TYPE (reg), unshare_expr (reg),
		  build_int_cst (TREE_TYPE (reg), n_reg));
      u = fold_convert (sizetype, u);
      u = build2 (MULT_EXPR, sizetype, u, size_int (sav_scale));
      t = build2 (POINTER_PLUS_EXPR, ptr_type_node, t, u);

      /* _Decimal32 varargs are located in the second word of the 64-bit
	 FP register for 32-bit binaries.  */
      if (!TARGET_POWERPC64
	  && TARGET_HARD_FLOAT && TARGET_FPRS
	  && TYPE_MODE (type) == SDmode)
	t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));

      gimplify_assign (addr, t, pre_p);

      gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over));

      stmt = gimple_build_label (lab_false);
      gimple_seq_add_stmt (pre_p, stmt);

      if ((n_reg == 2 && !regalign) || n_reg > 2)
	{
	  /* Ensure that we don't find any more args in regs.
	     Alignment has taken care of for special cases.  */
	  gimplify_assign (reg, build_int_cst (TREE_TYPE (reg), 8), pre_p);
	}
    }

  /* ... otherwise out of the overflow area.  */

  /* Care for on-stack alignment if needed.  */
  t = ovf;
  if (align != 1)
    {
      t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (align - 1));
      t = fold_convert (sizetype, t);
      t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t,
		  size_int (-align));
      t = fold_convert (TREE_TYPE (ovf), t);
    }
  gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue);

  gimplify_assign (unshare_expr (addr), t, pre_p);

  t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (size));
  gimplify_assign (unshare_expr (ovf), t, pre_p);

  if (lab_over)
    {
      stmt = gimple_build_label (lab_over);
      gimple_seq_add_stmt (pre_p, stmt);
    }

  if (STRICT_ALIGNMENT
      && (TYPE_ALIGN (type)
	  > (unsigned) BITS_PER_UNIT * (align < 4 ? 4 : align)))
    {
      /* The value (of type complex double, for example) may not be
	 aligned in memory in the saved registers, so copy via a
	 temporary.  (This is the same code as used for SPARC.)  */
      tree tmp = create_tmp_var (type, "va_arg_tmp");
      tree dest_addr = build_fold_addr_expr (tmp);

      tree copy = build_call_expr (implicit_built_in_decls[BUILT_IN_MEMCPY],
				   3, dest_addr, addr, size_int (rsize * 4));

      gimplify_and_add (copy, pre_p);
      addr = dest_addr;
    }

  addr = fold_convert (ptrtype, addr);
  return build_va_arg_indirect_ref (addr);
}

/* Builtins.  */

static void
def_builtin (int mask, const char *name, tree type, int code)
{
  if ((mask & target_flags) || TARGET_PAIRED_FLOAT)
    {
      tree t;
      if (rs6000_builtin_decls[code])
	fatal_error ("internal error: builtin function to %s already processed.",
		     name);

      rs6000_builtin_decls[code] = t =
        add_builtin_function (name, type, code, BUILT_IN_MD,
			      NULL, NULL_TREE);

      gcc_assert (code >= 0 && code < (int)RS6000_BUILTIN_COUNT);
      switch (builtin_classify[code])
	{
	default:
	  gcc_unreachable ();

	  /* assume builtin can do anything.  */
	case RS6000_BTC_MISC:
	  break;

	  /* const function, function only depends on the inputs.  */
	case RS6000_BTC_CONST:
	  TREE_READONLY (t) = 1;
	  TREE_NOTHROW (t) = 1;
	  break;

	  /* pure function, function can read global memory.  */
	case RS6000_BTC_PURE:
	  DECL_PURE_P (t) = 1;
	  TREE_NOTHROW (t) = 1;
	  break;

	  /* Function is a math function.  If rounding mode is on, then treat
	     the function as not reading global memory, but it can have
	     arbitrary side effects.  If it is off, then assume the function is
	     a const function.  This mimics the ATTR_MATHFN_FPROUNDING
	     attribute in builtin-attribute.def that is used for the math
	     functions. */
	case RS6000_BTC_FP_PURE:
	  TREE_NOTHROW (t) = 1;
	  if (flag_rounding_math)
	    {
	      DECL_PURE_P (t) = 1;
	      DECL_IS_NOVOPS (t) = 1;
	    }
	  else
	    TREE_READONLY (t) = 1;
	  break;
	}
    }
}

/* Simple ternary operations: VECd = foo (VECa, VECb, VECc).  */

static const struct builtin_description bdesc_3arg[] =
{
  { MASK_ALTIVEC, CODE_FOR_altivec_vmaddfp, "__builtin_altivec_vmaddfp", ALTIVEC_BUILTIN_VMADDFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmhaddshs, "__builtin_altivec_vmhaddshs", ALTIVEC_BUILTIN_VMHADDSHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmhraddshs, "__builtin_altivec_vmhraddshs", ALTIVEC_BUILTIN_VMHRADDSHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmladduhm, "__builtin_altivec_vmladduhm", ALTIVEC_BUILTIN_VMLADDUHM},
  { MASK_ALTIVEC, CODE_FOR_altivec_vmsumubm, "__builtin_altivec_vmsumubm", ALTIVEC_BUILTIN_VMSUMUBM },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmsummbm, "__builtin_altivec_vmsummbm", ALTIVEC_BUILTIN_VMSUMMBM },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhm, "__builtin_altivec_vmsumuhm", ALTIVEC_BUILTIN_VMSUMUHM },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshm, "__builtin_altivec_vmsumshm", ALTIVEC_BUILTIN_VMSUMSHM },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmsumuhs, "__builtin_altivec_vmsumuhs", ALTIVEC_BUILTIN_VMSUMUHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmsumshs, "__builtin_altivec_vmsumshs", ALTIVEC_BUILTIN_VMSUMSHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vnmsubfp, "__builtin_altivec_vnmsubfp", ALTIVEC_BUILTIN_VNMSUBFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v2df, "__builtin_altivec_vperm_2df", ALTIVEC_BUILTIN_VPERM_2DF },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v2di, "__builtin_altivec_vperm_2di", ALTIVEC_BUILTIN_VPERM_2DI },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4sf, "__builtin_altivec_vperm_4sf", ALTIVEC_BUILTIN_VPERM_4SF },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4si, "__builtin_altivec_vperm_4si", ALTIVEC_BUILTIN_VPERM_4SI },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v8hi, "__builtin_altivec_vperm_8hi", ALTIVEC_BUILTIN_VPERM_8HI },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v16qi_uns, "__builtin_altivec_vperm_16qi", ALTIVEC_BUILTIN_VPERM_16QI },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v2di_uns, "__builtin_altivec_vperm_2di_uns", ALTIVEC_BUILTIN_VPERM_2DI_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v4si_uns, "__builtin_altivec_vperm_4si_uns", ALTIVEC_BUILTIN_VPERM_4SI_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v8hi_uns, "__builtin_altivec_vperm_8hi_uns", ALTIVEC_BUILTIN_VPERM_8HI_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vperm_v16qi_uns, "__builtin_altivec_vperm_16qi_uns", ALTIVEC_BUILTIN_VPERM_16QI_UNS },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v4sf, "__builtin_altivec_vsel_4sf", ALTIVEC_BUILTIN_VSEL_4SF },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v4si, "__builtin_altivec_vsel_4si", ALTIVEC_BUILTIN_VSEL_4SI },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v8hi, "__builtin_altivec_vsel_8hi", ALTIVEC_BUILTIN_VSEL_8HI },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v16qi, "__builtin_altivec_vsel_16qi", ALTIVEC_BUILTIN_VSEL_16QI },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v2df, "__builtin_altivec_vsel_2df", ALTIVEC_BUILTIN_VSEL_2DF },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v2di, "__builtin_altivec_vsel_2di", ALTIVEC_BUILTIN_VSEL_2DI },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v4si_uns, "__builtin_altivec_vsel_4si_uns", ALTIVEC_BUILTIN_VSEL_4SI_UNS },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v8hi_uns, "__builtin_altivec_vsel_8hi_uns", ALTIVEC_BUILTIN_VSEL_8HI_UNS },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v16qi_uns, "__builtin_altivec_vsel_16qi_uns", ALTIVEC_BUILTIN_VSEL_16QI_UNS },
  { MASK_ALTIVEC, CODE_FOR_vector_select_v2di_uns, "__builtin_altivec_vsel_2di_uns", ALTIVEC_BUILTIN_VSEL_2DI_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v16qi, "__builtin_altivec_vsldoi_16qi", ALTIVEC_BUILTIN_VSLDOI_16QI },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v8hi, "__builtin_altivec_vsldoi_8hi", ALTIVEC_BUILTIN_VSLDOI_8HI },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4si, "__builtin_altivec_vsldoi_4si", ALTIVEC_BUILTIN_VSLDOI_4SI },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsldoi_v4sf, "__builtin_altivec_vsldoi_4sf", ALTIVEC_BUILTIN_VSLDOI_4SF },

  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madd", ALTIVEC_BUILTIN_VEC_MADD },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_madds", ALTIVEC_BUILTIN_VEC_MADDS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mladd", ALTIVEC_BUILTIN_VEC_MLADD },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mradds", ALTIVEC_BUILTIN_VEC_MRADDS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msum", ALTIVEC_BUILTIN_VEC_MSUM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshm", ALTIVEC_BUILTIN_VEC_VMSUMSHM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhm", ALTIVEC_BUILTIN_VEC_VMSUMUHM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsummbm", ALTIVEC_BUILTIN_VEC_VMSUMMBM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumubm", ALTIVEC_BUILTIN_VEC_VMSUMUBM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msums", ALTIVEC_BUILTIN_VEC_MSUMS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumshs", ALTIVEC_BUILTIN_VEC_VMSUMSHS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmsumuhs", ALTIVEC_BUILTIN_VEC_VMSUMUHS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nmsub", ALTIVEC_BUILTIN_VEC_NMSUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_perm", ALTIVEC_BUILTIN_VEC_PERM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sel", ALTIVEC_BUILTIN_VEC_SEL },

  { MASK_VSX, CODE_FOR_vsx_fmaddv2df4, "__builtin_vsx_xvmadddp", VSX_BUILTIN_XVMADDDP },
  { MASK_VSX, CODE_FOR_vsx_fmsubv2df4, "__builtin_vsx_xvmsubdp", VSX_BUILTIN_XVMSUBDP },
  { MASK_VSX, CODE_FOR_vsx_fnmaddv2df4, "__builtin_vsx_xvnmadddp", VSX_BUILTIN_XVNMADDDP },
  { MASK_VSX, CODE_FOR_vsx_fnmsubv2df4, "__builtin_vsx_xvnmsubdp", VSX_BUILTIN_XVNMSUBDP },

  { MASK_VSX, CODE_FOR_vsx_fmaddv4sf4, "__builtin_vsx_xvmaddsp", VSX_BUILTIN_XVMADDSP },
  { MASK_VSX, CODE_FOR_vsx_fmsubv4sf4, "__builtin_vsx_xvmsubsp", VSX_BUILTIN_XVMSUBSP },
  { MASK_VSX, CODE_FOR_vsx_fnmaddv4sf4, "__builtin_vsx_xvnmaddsp", VSX_BUILTIN_XVNMADDSP },
  { MASK_VSX, CODE_FOR_vsx_fnmsubv4sf4, "__builtin_vsx_xvnmsubsp", VSX_BUILTIN_XVNMSUBSP },

  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_msub", VSX_BUILTIN_VEC_MSUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_nmadd", VSX_BUILTIN_VEC_NMADD },

  { MASK_VSX, CODE_FOR_vector_select_v2di, "__builtin_vsx_xxsel_2di", VSX_BUILTIN_XXSEL_2DI },
  { MASK_VSX, CODE_FOR_vector_select_v2df, "__builtin_vsx_xxsel_2df", VSX_BUILTIN_XXSEL_2DF },
  { MASK_VSX, CODE_FOR_vector_select_v4sf, "__builtin_vsx_xxsel_4sf", VSX_BUILTIN_XXSEL_4SF },
  { MASK_VSX, CODE_FOR_vector_select_v4si, "__builtin_vsx_xxsel_4si", VSX_BUILTIN_XXSEL_4SI },
  { MASK_VSX, CODE_FOR_vector_select_v8hi, "__builtin_vsx_xxsel_8hi", VSX_BUILTIN_XXSEL_8HI },
  { MASK_VSX, CODE_FOR_vector_select_v16qi, "__builtin_vsx_xxsel_16qi", VSX_BUILTIN_XXSEL_16QI },
  { MASK_VSX, CODE_FOR_vector_select_v2di_uns, "__builtin_vsx_xxsel_2di_uns", VSX_BUILTIN_XXSEL_2DI_UNS },
  { MASK_VSX, CODE_FOR_vector_select_v4si_uns, "__builtin_vsx_xxsel_4si_uns", VSX_BUILTIN_XXSEL_4SI_UNS },
  { MASK_VSX, CODE_FOR_vector_select_v8hi_uns, "__builtin_vsx_xxsel_8hi_uns", VSX_BUILTIN_XXSEL_8HI_UNS },
  { MASK_VSX, CODE_FOR_vector_select_v16qi_uns, "__builtin_vsx_xxsel_16qi_uns", VSX_BUILTIN_XXSEL_16QI_UNS },

  { MASK_VSX, CODE_FOR_altivec_vperm_v2di, "__builtin_vsx_vperm_2di", VSX_BUILTIN_VPERM_2DI },
  { MASK_VSX, CODE_FOR_altivec_vperm_v2df, "__builtin_vsx_vperm_2df", VSX_BUILTIN_VPERM_2DF },
  { MASK_VSX, CODE_FOR_altivec_vperm_v4sf, "__builtin_vsx_vperm_4sf", VSX_BUILTIN_VPERM_4SF },
  { MASK_VSX, CODE_FOR_altivec_vperm_v4si, "__builtin_vsx_vperm_4si", VSX_BUILTIN_VPERM_4SI },
  { MASK_VSX, CODE_FOR_altivec_vperm_v8hi, "__builtin_vsx_vperm_8hi", VSX_BUILTIN_VPERM_8HI },
  { MASK_VSX, CODE_FOR_altivec_vperm_v16qi, "__builtin_vsx_vperm_16qi", VSX_BUILTIN_VPERM_16QI },
  { MASK_VSX, CODE_FOR_altivec_vperm_v2di_uns, "__builtin_vsx_vperm_2di_uns", VSX_BUILTIN_VPERM_2DI_UNS },
  { MASK_VSX, CODE_FOR_altivec_vperm_v4si_uns, "__builtin_vsx_vperm_4si_uns", VSX_BUILTIN_VPERM_4SI_UNS },
  { MASK_VSX, CODE_FOR_altivec_vperm_v8hi_uns, "__builtin_vsx_vperm_8hi_uns", VSX_BUILTIN_VPERM_8HI_UNS },
  { MASK_VSX, CODE_FOR_altivec_vperm_v16qi_uns, "__builtin_vsx_vperm_16qi_uns", VSX_BUILTIN_VPERM_16QI_UNS },

  { MASK_VSX, CODE_FOR_vsx_xxpermdi_v2df, "__builtin_vsx_xxpermdi_2df", VSX_BUILTIN_XXPERMDI_2DF },
  { MASK_VSX, CODE_FOR_vsx_xxpermdi_v2di, "__builtin_vsx_xxpermdi_2di", VSX_BUILTIN_XXPERMDI_2DI },
  { MASK_VSX, CODE_FOR_vsx_xxpermdi_v4sf, "__builtin_vsx_xxpermdi_4sf", VSX_BUILTIN_XXPERMDI_4SF },
  { MASK_VSX, CODE_FOR_vsx_xxpermdi_v4si, "__builtin_vsx_xxpermdi_4si", VSX_BUILTIN_XXPERMDI_4SI },
  { MASK_VSX, CODE_FOR_vsx_xxpermdi_v8hi, "__builtin_vsx_xxpermdi_8hi", VSX_BUILTIN_XXPERMDI_8HI },
  { MASK_VSX, CODE_FOR_vsx_xxpermdi_v16qi, "__builtin_vsx_xxpermdi_16qi", VSX_BUILTIN_XXPERMDI_16QI },
  { MASK_VSX, CODE_FOR_nothing, "__builtin_vsx_xxpermdi", VSX_BUILTIN_VEC_XXPERMDI },
  { MASK_VSX, CODE_FOR_vsx_set_v2df, "__builtin_vsx_set_2df", VSX_BUILTIN_SET_2DF },
  { MASK_VSX, CODE_FOR_vsx_set_v2di, "__builtin_vsx_set_2di", VSX_BUILTIN_SET_2DI },

  { MASK_VSX, CODE_FOR_vsx_xxsldwi_v2di, "__builtin_vsx_xxsldwi_2di", VSX_BUILTIN_XXSLDWI_2DI },
  { MASK_VSX, CODE_FOR_vsx_xxsldwi_v2df, "__builtin_vsx_xxsldwi_2df", VSX_BUILTIN_XXSLDWI_2DF },
  { MASK_VSX, CODE_FOR_vsx_xxsldwi_v4sf, "__builtin_vsx_xxsldwi_4sf", VSX_BUILTIN_XXSLDWI_4SF },
  { MASK_VSX, CODE_FOR_vsx_xxsldwi_v4si, "__builtin_vsx_xxsldwi_4si", VSX_BUILTIN_XXSLDWI_4SI },
  { MASK_VSX, CODE_FOR_vsx_xxsldwi_v8hi, "__builtin_vsx_xxsldwi_8hi", VSX_BUILTIN_XXSLDWI_8HI },
  { MASK_VSX, CODE_FOR_vsx_xxsldwi_v16qi, "__builtin_vsx_xxsldwi_16qi", VSX_BUILTIN_XXSLDWI_16QI },
  { MASK_VSX, CODE_FOR_nothing, "__builtin_vsx_xxsldwi", VSX_BUILTIN_VEC_XXSLDWI },

  { 0, CODE_FOR_paired_msub, "__builtin_paired_msub", PAIRED_BUILTIN_MSUB },
  { 0, CODE_FOR_paired_madd, "__builtin_paired_madd", PAIRED_BUILTIN_MADD },
  { 0, CODE_FOR_paired_madds0, "__builtin_paired_madds0", PAIRED_BUILTIN_MADDS0 },
  { 0, CODE_FOR_paired_madds1, "__builtin_paired_madds1", PAIRED_BUILTIN_MADDS1 },
  { 0, CODE_FOR_paired_nmsub, "__builtin_paired_nmsub", PAIRED_BUILTIN_NMSUB },
  { 0, CODE_FOR_paired_nmadd, "__builtin_paired_nmadd", PAIRED_BUILTIN_NMADD },
  { 0, CODE_FOR_paired_sum0, "__builtin_paired_sum0", PAIRED_BUILTIN_SUM0 },
  { 0, CODE_FOR_paired_sum1, "__builtin_paired_sum1", PAIRED_BUILTIN_SUM1 },
  { 0, CODE_FOR_selv2sf4, "__builtin_paired_selv2sf4", PAIRED_BUILTIN_SELV2SF4 },
};

/* DST operations: void foo (void *, const int, const char).  */

static const struct builtin_description bdesc_dst[] =
{
  { MASK_ALTIVEC, CODE_FOR_altivec_dst, "__builtin_altivec_dst", ALTIVEC_BUILTIN_DST },
  { MASK_ALTIVEC, CODE_FOR_altivec_dstt, "__builtin_altivec_dstt", ALTIVEC_BUILTIN_DSTT },
  { MASK_ALTIVEC, CODE_FOR_altivec_dstst, "__builtin_altivec_dstst", ALTIVEC_BUILTIN_DSTST },
  { MASK_ALTIVEC, CODE_FOR_altivec_dststt, "__builtin_altivec_dststt", ALTIVEC_BUILTIN_DSTSTT },

  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dst", ALTIVEC_BUILTIN_VEC_DST },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstt", ALTIVEC_BUILTIN_VEC_DSTT },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dstst", ALTIVEC_BUILTIN_VEC_DSTST },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_dststt", ALTIVEC_BUILTIN_VEC_DSTSTT }
};

/* Simple binary operations: VECc = foo (VECa, VECb).  */

static struct builtin_description bdesc_2arg[] =
{
  { MASK_ALTIVEC, CODE_FOR_addv16qi3, "__builtin_altivec_vaddubm", ALTIVEC_BUILTIN_VADDUBM },
  { MASK_ALTIVEC, CODE_FOR_addv8hi3, "__builtin_altivec_vadduhm", ALTIVEC_BUILTIN_VADDUHM },
  { MASK_ALTIVEC, CODE_FOR_addv4si3, "__builtin_altivec_vadduwm", ALTIVEC_BUILTIN_VADDUWM },
  { MASK_ALTIVEC, CODE_FOR_addv4sf3, "__builtin_altivec_vaddfp", ALTIVEC_BUILTIN_VADDFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vaddcuw, "__builtin_altivec_vaddcuw", ALTIVEC_BUILTIN_VADDCUW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vaddubs, "__builtin_altivec_vaddubs", ALTIVEC_BUILTIN_VADDUBS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vaddsbs, "__builtin_altivec_vaddsbs", ALTIVEC_BUILTIN_VADDSBS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vadduhs, "__builtin_altivec_vadduhs", ALTIVEC_BUILTIN_VADDUHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vaddshs, "__builtin_altivec_vaddshs", ALTIVEC_BUILTIN_VADDSHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vadduws, "__builtin_altivec_vadduws", ALTIVEC_BUILTIN_VADDUWS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vaddsws, "__builtin_altivec_vaddsws", ALTIVEC_BUILTIN_VADDSWS },
  { MASK_ALTIVEC, CODE_FOR_andv4si3, "__builtin_altivec_vand", ALTIVEC_BUILTIN_VAND },
  { MASK_ALTIVEC, CODE_FOR_andcv4si3, "__builtin_altivec_vandc", ALTIVEC_BUILTIN_VANDC },
  { MASK_ALTIVEC, CODE_FOR_altivec_vavgub, "__builtin_altivec_vavgub", ALTIVEC_BUILTIN_VAVGUB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vavgsb, "__builtin_altivec_vavgsb", ALTIVEC_BUILTIN_VAVGSB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vavguh, "__builtin_altivec_vavguh", ALTIVEC_BUILTIN_VAVGUH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vavgsh, "__builtin_altivec_vavgsh", ALTIVEC_BUILTIN_VAVGSH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vavguw, "__builtin_altivec_vavguw", ALTIVEC_BUILTIN_VAVGUW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vavgsw, "__builtin_altivec_vavgsw", ALTIVEC_BUILTIN_VAVGSW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vcfux, "__builtin_altivec_vcfux", ALTIVEC_BUILTIN_VCFUX },
  { MASK_ALTIVEC, CODE_FOR_altivec_vcfsx, "__builtin_altivec_vcfsx", ALTIVEC_BUILTIN_VCFSX },
  { MASK_ALTIVEC, CODE_FOR_altivec_vcmpbfp, "__builtin_altivec_vcmpbfp", ALTIVEC_BUILTIN_VCMPBFP },
  { MASK_ALTIVEC, CODE_FOR_vector_eqv16qi, "__builtin_altivec_vcmpequb", ALTIVEC_BUILTIN_VCMPEQUB },
  { MASK_ALTIVEC, CODE_FOR_vector_eqv8hi, "__builtin_altivec_vcmpequh", ALTIVEC_BUILTIN_VCMPEQUH },
  { MASK_ALTIVEC, CODE_FOR_vector_eqv4si, "__builtin_altivec_vcmpequw", ALTIVEC_BUILTIN_VCMPEQUW },
  { MASK_ALTIVEC, CODE_FOR_vector_eqv4sf, "__builtin_altivec_vcmpeqfp", ALTIVEC_BUILTIN_VCMPEQFP },
  { MASK_ALTIVEC, CODE_FOR_vector_gev4sf, "__builtin_altivec_vcmpgefp", ALTIVEC_BUILTIN_VCMPGEFP },
  { MASK_ALTIVEC, CODE_FOR_vector_gtuv16qi, "__builtin_altivec_vcmpgtub", ALTIVEC_BUILTIN_VCMPGTUB },
  { MASK_ALTIVEC, CODE_FOR_vector_gtv16qi, "__builtin_altivec_vcmpgtsb", ALTIVEC_BUILTIN_VCMPGTSB },
  { MASK_ALTIVEC, CODE_FOR_vector_gtuv8hi, "__builtin_altivec_vcmpgtuh", ALTIVEC_BUILTIN_VCMPGTUH },
  { MASK_ALTIVEC, CODE_FOR_vector_gtv8hi, "__builtin_altivec_vcmpgtsh", ALTIVEC_BUILTIN_VCMPGTSH },
  { MASK_ALTIVEC, CODE_FOR_vector_gtuv4si, "__builtin_altivec_vcmpgtuw", ALTIVEC_BUILTIN_VCMPGTUW },
  { MASK_ALTIVEC, CODE_FOR_vector_gtv4si, "__builtin_altivec_vcmpgtsw", ALTIVEC_BUILTIN_VCMPGTSW },
  { MASK_ALTIVEC, CODE_FOR_vector_gtv4sf, "__builtin_altivec_vcmpgtfp", ALTIVEC_BUILTIN_VCMPGTFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vctsxs, "__builtin_altivec_vctsxs", ALTIVEC_BUILTIN_VCTSXS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vctuxs, "__builtin_altivec_vctuxs", ALTIVEC_BUILTIN_VCTUXS },
  { MASK_ALTIVEC, CODE_FOR_umaxv16qi3, "__builtin_altivec_vmaxub", ALTIVEC_BUILTIN_VMAXUB },
  { MASK_ALTIVEC, CODE_FOR_smaxv16qi3, "__builtin_altivec_vmaxsb", ALTIVEC_BUILTIN_VMAXSB },
  { MASK_ALTIVEC, CODE_FOR_umaxv8hi3, "__builtin_altivec_vmaxuh", ALTIVEC_BUILTIN_VMAXUH },
  { MASK_ALTIVEC, CODE_FOR_smaxv8hi3, "__builtin_altivec_vmaxsh", ALTIVEC_BUILTIN_VMAXSH },
  { MASK_ALTIVEC, CODE_FOR_umaxv4si3, "__builtin_altivec_vmaxuw", ALTIVEC_BUILTIN_VMAXUW },
  { MASK_ALTIVEC, CODE_FOR_smaxv4si3, "__builtin_altivec_vmaxsw", ALTIVEC_BUILTIN_VMAXSW },
  { MASK_ALTIVEC, CODE_FOR_smaxv4sf3, "__builtin_altivec_vmaxfp", ALTIVEC_BUILTIN_VMAXFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmrghb, "__builtin_altivec_vmrghb", ALTIVEC_BUILTIN_VMRGHB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmrghh, "__builtin_altivec_vmrghh", ALTIVEC_BUILTIN_VMRGHH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmrghw, "__builtin_altivec_vmrghw", ALTIVEC_BUILTIN_VMRGHW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmrglb, "__builtin_altivec_vmrglb", ALTIVEC_BUILTIN_VMRGLB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmrglh, "__builtin_altivec_vmrglh", ALTIVEC_BUILTIN_VMRGLH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmrglw, "__builtin_altivec_vmrglw", ALTIVEC_BUILTIN_VMRGLW },
  { MASK_ALTIVEC, CODE_FOR_uminv16qi3, "__builtin_altivec_vminub", ALTIVEC_BUILTIN_VMINUB },
  { MASK_ALTIVEC, CODE_FOR_sminv16qi3, "__builtin_altivec_vminsb", ALTIVEC_BUILTIN_VMINSB },
  { MASK_ALTIVEC, CODE_FOR_uminv8hi3, "__builtin_altivec_vminuh", ALTIVEC_BUILTIN_VMINUH },
  { MASK_ALTIVEC, CODE_FOR_sminv8hi3, "__builtin_altivec_vminsh", ALTIVEC_BUILTIN_VMINSH },
  { MASK_ALTIVEC, CODE_FOR_uminv4si3, "__builtin_altivec_vminuw", ALTIVEC_BUILTIN_VMINUW },
  { MASK_ALTIVEC, CODE_FOR_sminv4si3, "__builtin_altivec_vminsw", ALTIVEC_BUILTIN_VMINSW },
  { MASK_ALTIVEC, CODE_FOR_sminv4sf3, "__builtin_altivec_vminfp", ALTIVEC_BUILTIN_VMINFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmuleub, "__builtin_altivec_vmuleub", ALTIVEC_BUILTIN_VMULEUB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmuleub, "__builtin_altivec_vmuleub_uns", ALTIVEC_BUILTIN_VMULEUB_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmulesb, "__builtin_altivec_vmulesb", ALTIVEC_BUILTIN_VMULESB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmuleuh, "__builtin_altivec_vmuleuh", ALTIVEC_BUILTIN_VMULEUH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmuleuh, "__builtin_altivec_vmuleuh_uns", ALTIVEC_BUILTIN_VMULEUH_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmulesh, "__builtin_altivec_vmulesh", ALTIVEC_BUILTIN_VMULESH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmuloub, "__builtin_altivec_vmuloub", ALTIVEC_BUILTIN_VMULOUB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmuloub, "__builtin_altivec_vmuloub_uns", ALTIVEC_BUILTIN_VMULOUB_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmulosb, "__builtin_altivec_vmulosb", ALTIVEC_BUILTIN_VMULOSB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmulouh, "__builtin_altivec_vmulouh", ALTIVEC_BUILTIN_VMULOUH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmulouh, "__builtin_altivec_vmulouh_uns", ALTIVEC_BUILTIN_VMULOUH_UNS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vmulosh, "__builtin_altivec_vmulosh", ALTIVEC_BUILTIN_VMULOSH },
  { MASK_ALTIVEC, CODE_FOR_norv4si3, "__builtin_altivec_vnor", ALTIVEC_BUILTIN_VNOR },
  { MASK_ALTIVEC, CODE_FOR_iorv4si3, "__builtin_altivec_vor", ALTIVEC_BUILTIN_VOR },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhum, "__builtin_altivec_vpkuhum", ALTIVEC_BUILTIN_VPKUHUM },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwum, "__builtin_altivec_vpkuwum", ALTIVEC_BUILTIN_VPKUWUM },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkpx, "__builtin_altivec_vpkpx", ALTIVEC_BUILTIN_VPKPX },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkshss, "__builtin_altivec_vpkshss", ALTIVEC_BUILTIN_VPKSHSS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkswss, "__builtin_altivec_vpkswss", ALTIVEC_BUILTIN_VPKSWSS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkuhus, "__builtin_altivec_vpkuhus", ALTIVEC_BUILTIN_VPKUHUS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkshus, "__builtin_altivec_vpkshus", ALTIVEC_BUILTIN_VPKSHUS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkuwus, "__builtin_altivec_vpkuwus", ALTIVEC_BUILTIN_VPKUWUS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vpkswus, "__builtin_altivec_vpkswus", ALTIVEC_BUILTIN_VPKSWUS },
  { MASK_ALTIVEC, CODE_FOR_vrotlv16qi3, "__builtin_altivec_vrlb", ALTIVEC_BUILTIN_VRLB },
  { MASK_ALTIVEC, CODE_FOR_vrotlv8hi3, "__builtin_altivec_vrlh", ALTIVEC_BUILTIN_VRLH },
  { MASK_ALTIVEC, CODE_FOR_vrotlv4si3, "__builtin_altivec_vrlw", ALTIVEC_BUILTIN_VRLW },
  { MASK_ALTIVEC, CODE_FOR_vashlv16qi3, "__builtin_altivec_vslb", ALTIVEC_BUILTIN_VSLB },
  { MASK_ALTIVEC, CODE_FOR_vashlv8hi3, "__builtin_altivec_vslh", ALTIVEC_BUILTIN_VSLH },
  { MASK_ALTIVEC, CODE_FOR_vashlv4si3, "__builtin_altivec_vslw", ALTIVEC_BUILTIN_VSLW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsl, "__builtin_altivec_vsl", ALTIVEC_BUILTIN_VSL },
  { MASK_ALTIVEC, CODE_FOR_altivec_vslo, "__builtin_altivec_vslo", ALTIVEC_BUILTIN_VSLO },
  { MASK_ALTIVEC, CODE_FOR_altivec_vspltb, "__builtin_altivec_vspltb", ALTIVEC_BUILTIN_VSPLTB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsplth, "__builtin_altivec_vsplth", ALTIVEC_BUILTIN_VSPLTH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vspltw, "__builtin_altivec_vspltw", ALTIVEC_BUILTIN_VSPLTW },
  { MASK_ALTIVEC, CODE_FOR_vlshrv16qi3, "__builtin_altivec_vsrb", ALTIVEC_BUILTIN_VSRB },
  { MASK_ALTIVEC, CODE_FOR_vlshrv8hi3, "__builtin_altivec_vsrh", ALTIVEC_BUILTIN_VSRH },
  { MASK_ALTIVEC, CODE_FOR_vlshrv4si3, "__builtin_altivec_vsrw", ALTIVEC_BUILTIN_VSRW },
  { MASK_ALTIVEC, CODE_FOR_vashrv16qi3, "__builtin_altivec_vsrab", ALTIVEC_BUILTIN_VSRAB },
  { MASK_ALTIVEC, CODE_FOR_vashrv8hi3, "__builtin_altivec_vsrah", ALTIVEC_BUILTIN_VSRAH },
  { MASK_ALTIVEC, CODE_FOR_vashrv4si3, "__builtin_altivec_vsraw", ALTIVEC_BUILTIN_VSRAW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsr, "__builtin_altivec_vsr", ALTIVEC_BUILTIN_VSR },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsro, "__builtin_altivec_vsro", ALTIVEC_BUILTIN_VSRO },
  { MASK_ALTIVEC, CODE_FOR_subv16qi3, "__builtin_altivec_vsububm", ALTIVEC_BUILTIN_VSUBUBM },
  { MASK_ALTIVEC, CODE_FOR_subv8hi3, "__builtin_altivec_vsubuhm", ALTIVEC_BUILTIN_VSUBUHM },
  { MASK_ALTIVEC, CODE_FOR_subv4si3, "__builtin_altivec_vsubuwm", ALTIVEC_BUILTIN_VSUBUWM },
  { MASK_ALTIVEC, CODE_FOR_subv4sf3, "__builtin_altivec_vsubfp", ALTIVEC_BUILTIN_VSUBFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsubcuw, "__builtin_altivec_vsubcuw", ALTIVEC_BUILTIN_VSUBCUW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsububs, "__builtin_altivec_vsububs", ALTIVEC_BUILTIN_VSUBUBS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsubsbs, "__builtin_altivec_vsubsbs", ALTIVEC_BUILTIN_VSUBSBS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsubuhs, "__builtin_altivec_vsubuhs", ALTIVEC_BUILTIN_VSUBUHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsubshs, "__builtin_altivec_vsubshs", ALTIVEC_BUILTIN_VSUBSHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsubuws, "__builtin_altivec_vsubuws", ALTIVEC_BUILTIN_VSUBUWS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsubsws, "__builtin_altivec_vsubsws", ALTIVEC_BUILTIN_VSUBSWS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsum4ubs, "__builtin_altivec_vsum4ubs", ALTIVEC_BUILTIN_VSUM4UBS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsum4sbs, "__builtin_altivec_vsum4sbs", ALTIVEC_BUILTIN_VSUM4SBS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsum4shs, "__builtin_altivec_vsum4shs", ALTIVEC_BUILTIN_VSUM4SHS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsum2sws, "__builtin_altivec_vsum2sws", ALTIVEC_BUILTIN_VSUM2SWS },
  { MASK_ALTIVEC, CODE_FOR_altivec_vsumsws, "__builtin_altivec_vsumsws", ALTIVEC_BUILTIN_VSUMSWS },
  { MASK_ALTIVEC, CODE_FOR_xorv4si3, "__builtin_altivec_vxor", ALTIVEC_BUILTIN_VXOR },
  { MASK_ALTIVEC, CODE_FOR_vector_copysignv4sf3, "__builtin_altivec_copysignfp", ALTIVEC_BUILTIN_COPYSIGN_V4SF },

  { MASK_VSX, CODE_FOR_addv2df3, "__builtin_vsx_xvadddp", VSX_BUILTIN_XVADDDP },
  { MASK_VSX, CODE_FOR_subv2df3, "__builtin_vsx_xvsubdp", VSX_BUILTIN_XVSUBDP },
  { MASK_VSX, CODE_FOR_mulv2df3, "__builtin_vsx_xvmuldp", VSX_BUILTIN_XVMULDP },
  { MASK_VSX, CODE_FOR_divv2df3, "__builtin_vsx_xvdivdp", VSX_BUILTIN_XVDIVDP },
  { MASK_VSX, CODE_FOR_sminv2df3, "__builtin_vsx_xvmindp", VSX_BUILTIN_XVMINDP },
  { MASK_VSX, CODE_FOR_smaxv2df3, "__builtin_vsx_xvmaxdp", VSX_BUILTIN_XVMAXDP },
  { MASK_VSX, CODE_FOR_vsx_tdivv2df3_fe, "__builtin_vsx_xvtdivdp_fe", VSX_BUILTIN_XVTDIVDP_FE },
  { MASK_VSX, CODE_FOR_vsx_tdivv2df3_fg, "__builtin_vsx_xvtdivdp_fg", VSX_BUILTIN_XVTDIVDP_FG },
  { MASK_VSX, CODE_FOR_vector_eqv2df, "__builtin_vsx_xvcmpeqdp", VSX_BUILTIN_XVCMPEQDP },
  { MASK_VSX, CODE_FOR_vector_gtv2df, "__builtin_vsx_xvcmpgtdp", VSX_BUILTIN_XVCMPGTDP },
  { MASK_VSX, CODE_FOR_vector_gev2df, "__builtin_vsx_xvcmpgedp", VSX_BUILTIN_XVCMPGEDP },

  { MASK_VSX, CODE_FOR_addv4sf3, "__builtin_vsx_xvaddsp", VSX_BUILTIN_XVADDSP },
  { MASK_VSX, CODE_FOR_subv4sf3, "__builtin_vsx_xvsubsp", VSX_BUILTIN_XVSUBSP },
  { MASK_VSX, CODE_FOR_mulv4sf3, "__builtin_vsx_xvmulsp", VSX_BUILTIN_XVMULSP },
  { MASK_VSX, CODE_FOR_divv4sf3, "__builtin_vsx_xvdivsp", VSX_BUILTIN_XVDIVSP },
  { MASK_VSX, CODE_FOR_sminv4sf3, "__builtin_vsx_xvminsp", VSX_BUILTIN_XVMINSP },
  { MASK_VSX, CODE_FOR_smaxv4sf3, "__builtin_vsx_xvmaxsp", VSX_BUILTIN_XVMAXSP },
  { MASK_VSX, CODE_FOR_vsx_tdivv4sf3_fe, "__builtin_vsx_xvtdivsp_fe", VSX_BUILTIN_XVTDIVSP_FE },
  { MASK_VSX, CODE_FOR_vsx_tdivv4sf3_fg, "__builtin_vsx_xvtdivsp_fg", VSX_BUILTIN_XVTDIVSP_FG },
  { MASK_VSX, CODE_FOR_vector_eqv4sf, "__builtin_vsx_xvcmpeqsp", VSX_BUILTIN_XVCMPEQSP },
  { MASK_VSX, CODE_FOR_vector_gtv4sf, "__builtin_vsx_xvcmpgtsp", VSX_BUILTIN_XVCMPGTSP },
  { MASK_VSX, CODE_FOR_vector_gev4sf, "__builtin_vsx_xvcmpgesp", VSX_BUILTIN_XVCMPGESP },

  { MASK_VSX, CODE_FOR_smindf3, "__builtin_vsx_xsmindp", VSX_BUILTIN_XSMINDP },
  { MASK_VSX, CODE_FOR_smaxdf3, "__builtin_vsx_xsmaxdp", VSX_BUILTIN_XSMAXDP },
  { MASK_VSX, CODE_FOR_vsx_tdivdf3_fe, "__builtin_vsx_xstdivdp_fe", VSX_BUILTIN_XSTDIVDP_FE },
  { MASK_VSX, CODE_FOR_vsx_tdivdf3_fg, "__builtin_vsx_xstdivdp_fg", VSX_BUILTIN_XSTDIVDP_FG },
  { MASK_VSX, CODE_FOR_vector_copysignv2df3, "__builtin_vsx_cpsgndp", VSX_BUILTIN_CPSGNDP },
  { MASK_VSX, CODE_FOR_vector_copysignv4sf3, "__builtin_vsx_cpsgnsp", VSX_BUILTIN_CPSGNSP },

  { MASK_VSX, CODE_FOR_vsx_concat_v2df, "__builtin_vsx_concat_2df", VSX_BUILTIN_CONCAT_2DF },
  { MASK_VSX, CODE_FOR_vsx_concat_v2di, "__builtin_vsx_concat_2di", VSX_BUILTIN_CONCAT_2DI },
  { MASK_VSX, CODE_FOR_vsx_splat_v2df, "__builtin_vsx_splat_2df", VSX_BUILTIN_SPLAT_2DF },
  { MASK_VSX, CODE_FOR_vsx_splat_v2di, "__builtin_vsx_splat_2di", VSX_BUILTIN_SPLAT_2DI },
  { MASK_VSX, CODE_FOR_vsx_xxmrghw_v4sf, "__builtin_vsx_xxmrghw", VSX_BUILTIN_XXMRGHW_4SF },
  { MASK_VSX, CODE_FOR_vsx_xxmrghw_v4si, "__builtin_vsx_xxmrghw_4si", VSX_BUILTIN_XXMRGHW_4SI },
  { MASK_VSX, CODE_FOR_vsx_xxmrglw_v4sf, "__builtin_vsx_xxmrglw", VSX_BUILTIN_XXMRGLW_4SF },
  { MASK_VSX, CODE_FOR_vsx_xxmrglw_v4si, "__builtin_vsx_xxmrglw_4si", VSX_BUILTIN_XXMRGLW_4SI },
  { MASK_VSX, CODE_FOR_vec_interleave_lowv2df, "__builtin_vsx_mergel_2df", VSX_BUILTIN_VEC_MERGEL_V2DF },
  { MASK_VSX, CODE_FOR_vec_interleave_lowv2di, "__builtin_vsx_mergel_2di", VSX_BUILTIN_VEC_MERGEL_V2DI },
  { MASK_VSX, CODE_FOR_vec_interleave_highv2df, "__builtin_vsx_mergeh_2df", VSX_BUILTIN_VEC_MERGEH_V2DF },
  { MASK_VSX, CODE_FOR_vec_interleave_highv2di, "__builtin_vsx_mergeh_2di", VSX_BUILTIN_VEC_MERGEH_V2DI },

  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_add", ALTIVEC_BUILTIN_VEC_ADD },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_vaddfp", ALTIVEC_BUILTIN_VEC_VADDFP },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduwm", ALTIVEC_BUILTIN_VEC_VADDUWM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhm", ALTIVEC_BUILTIN_VEC_VADDUHM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubm", ALTIVEC_BUILTIN_VEC_VADDUBM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_addc", ALTIVEC_BUILTIN_VEC_ADDC },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_adds", ALTIVEC_BUILTIN_VEC_ADDS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsws", ALTIVEC_BUILTIN_VEC_VADDSWS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduws", ALTIVEC_BUILTIN_VEC_VADDUWS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddshs", ALTIVEC_BUILTIN_VEC_VADDSHS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vadduhs", ALTIVEC_BUILTIN_VEC_VADDUHS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddsbs", ALTIVEC_BUILTIN_VEC_VADDSBS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vaddubs", ALTIVEC_BUILTIN_VEC_VADDUBS },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_and", ALTIVEC_BUILTIN_VEC_AND },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_andc", ALTIVEC_BUILTIN_VEC_ANDC },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_avg", ALTIVEC_BUILTIN_VEC_AVG },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsw", ALTIVEC_BUILTIN_VEC_VAVGSW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguw", ALTIVEC_BUILTIN_VEC_VAVGUW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsh", ALTIVEC_BUILTIN_VEC_VAVGSH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavguh", ALTIVEC_BUILTIN_VEC_VAVGUH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgsb", ALTIVEC_BUILTIN_VEC_VAVGSB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vavgub", ALTIVEC_BUILTIN_VEC_VAVGUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpb", ALTIVEC_BUILTIN_VEC_CMPB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpeq", ALTIVEC_BUILTIN_VEC_CMPEQ },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpeqfp", ALTIVEC_BUILTIN_VEC_VCMPEQFP },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequw", ALTIVEC_BUILTIN_VEC_VCMPEQUW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequh", ALTIVEC_BUILTIN_VEC_VCMPEQUH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpequb", ALTIVEC_BUILTIN_VEC_VCMPEQUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpge", ALTIVEC_BUILTIN_VEC_CMPGE },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmpgt", ALTIVEC_BUILTIN_VEC_CMPGT },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtfp", ALTIVEC_BUILTIN_VEC_VCMPGTFP },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsw", ALTIVEC_BUILTIN_VEC_VCMPGTSW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuw", ALTIVEC_BUILTIN_VEC_VCMPGTUW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsh", ALTIVEC_BUILTIN_VEC_VCMPGTSH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtuh", ALTIVEC_BUILTIN_VEC_VCMPGTUH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtsb", ALTIVEC_BUILTIN_VEC_VCMPGTSB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vcmpgtub", ALTIVEC_BUILTIN_VEC_VCMPGTUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmple", ALTIVEC_BUILTIN_VEC_CMPLE },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_cmplt", ALTIVEC_BUILTIN_VEC_CMPLT },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_copysign", ALTIVEC_BUILTIN_VEC_COPYSIGN },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_max", ALTIVEC_BUILTIN_VEC_MAX },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_vmaxfp", ALTIVEC_BUILTIN_VEC_VMAXFP },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsw", ALTIVEC_BUILTIN_VEC_VMAXSW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuw", ALTIVEC_BUILTIN_VEC_VMAXUW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsh", ALTIVEC_BUILTIN_VEC_VMAXSH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxuh", ALTIVEC_BUILTIN_VEC_VMAXUH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxsb", ALTIVEC_BUILTIN_VEC_VMAXSB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmaxub", ALTIVEC_BUILTIN_VEC_VMAXUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergeh", ALTIVEC_BUILTIN_VEC_MERGEH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghw", ALTIVEC_BUILTIN_VEC_VMRGHW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghh", ALTIVEC_BUILTIN_VEC_VMRGHH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrghb", ALTIVEC_BUILTIN_VEC_VMRGHB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mergel", ALTIVEC_BUILTIN_VEC_MERGEL },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglw", ALTIVEC_BUILTIN_VEC_VMRGLW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglh", ALTIVEC_BUILTIN_VEC_VMRGLH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmrglb", ALTIVEC_BUILTIN_VEC_VMRGLB },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_min", ALTIVEC_BUILTIN_VEC_MIN },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_vminfp", ALTIVEC_BUILTIN_VEC_VMINFP },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsw", ALTIVEC_BUILTIN_VEC_VMINSW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuw", ALTIVEC_BUILTIN_VEC_VMINUW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsh", ALTIVEC_BUILTIN_VEC_VMINSH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminuh", ALTIVEC_BUILTIN_VEC_VMINUH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminsb", ALTIVEC_BUILTIN_VEC_VMINSB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vminub", ALTIVEC_BUILTIN_VEC_VMINUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mule", ALTIVEC_BUILTIN_VEC_MULE },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleub", ALTIVEC_BUILTIN_VEC_VMULEUB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesb", ALTIVEC_BUILTIN_VEC_VMULESB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuleuh", ALTIVEC_BUILTIN_VEC_VMULEUH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulesh", ALTIVEC_BUILTIN_VEC_VMULESH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mulo", ALTIVEC_BUILTIN_VEC_MULO },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosh", ALTIVEC_BUILTIN_VEC_VMULOSH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulouh", ALTIVEC_BUILTIN_VEC_VMULOUH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmulosb", ALTIVEC_BUILTIN_VEC_VMULOSB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vmuloub", ALTIVEC_BUILTIN_VEC_VMULOUB },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_nor", ALTIVEC_BUILTIN_VEC_NOR },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_or", ALTIVEC_BUILTIN_VEC_OR },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_pack", ALTIVEC_BUILTIN_VEC_PACK },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwum", ALTIVEC_BUILTIN_VEC_VPKUWUM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhum", ALTIVEC_BUILTIN_VEC_VPKUHUM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packpx", ALTIVEC_BUILTIN_VEC_PACKPX },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packs", ALTIVEC_BUILTIN_VEC_PACKS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswss", ALTIVEC_BUILTIN_VEC_VPKSWSS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuwus", ALTIVEC_BUILTIN_VEC_VPKUWUS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshss", ALTIVEC_BUILTIN_VEC_VPKSHSS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkuhus", ALTIVEC_BUILTIN_VEC_VPKUHUS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_packsu", ALTIVEC_BUILTIN_VEC_PACKSU },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkswus", ALTIVEC_BUILTIN_VEC_VPKSWUS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vpkshus", ALTIVEC_BUILTIN_VEC_VPKSHUS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rl", ALTIVEC_BUILTIN_VEC_RL },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlw", ALTIVEC_BUILTIN_VEC_VRLW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlh", ALTIVEC_BUILTIN_VEC_VRLH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vrlb", ALTIVEC_BUILTIN_VEC_VRLB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sl", ALTIVEC_BUILTIN_VEC_SL },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslw", ALTIVEC_BUILTIN_VEC_VSLW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslh", ALTIVEC_BUILTIN_VEC_VSLH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vslb", ALTIVEC_BUILTIN_VEC_VSLB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sll", ALTIVEC_BUILTIN_VEC_SLL },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_slo", ALTIVEC_BUILTIN_VEC_SLO },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sr", ALTIVEC_BUILTIN_VEC_SR },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrw", ALTIVEC_BUILTIN_VEC_VSRW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrh", ALTIVEC_BUILTIN_VEC_VSRH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrb", ALTIVEC_BUILTIN_VEC_VSRB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sra", ALTIVEC_BUILTIN_VEC_SRA },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsraw", ALTIVEC_BUILTIN_VEC_VSRAW },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrah", ALTIVEC_BUILTIN_VEC_VSRAH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsrab", ALTIVEC_BUILTIN_VEC_VSRAB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_srl", ALTIVEC_BUILTIN_VEC_SRL },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sro", ALTIVEC_BUILTIN_VEC_SRO },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_sub", ALTIVEC_BUILTIN_VEC_SUB },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_vsubfp", ALTIVEC_BUILTIN_VEC_VSUBFP },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuwm", ALTIVEC_BUILTIN_VEC_VSUBUWM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhm", ALTIVEC_BUILTIN_VEC_VSUBUHM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububm", ALTIVEC_BUILTIN_VEC_VSUBUBM },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subc", ALTIVEC_BUILTIN_VEC_SUBC },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_subs", ALTIVEC_BUILTIN_VEC_SUBS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsws", ALTIVEC_BUILTIN_VEC_VSUBSWS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuws", ALTIVEC_BUILTIN_VEC_VSUBUWS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubshs", ALTIVEC_BUILTIN_VEC_VSUBSHS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubuhs", ALTIVEC_BUILTIN_VEC_VSUBUHS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsubsbs", ALTIVEC_BUILTIN_VEC_VSUBSBS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsububs", ALTIVEC_BUILTIN_VEC_VSUBUBS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum4s", ALTIVEC_BUILTIN_VEC_SUM4S },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4shs", ALTIVEC_BUILTIN_VEC_VSUM4SHS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4sbs", ALTIVEC_BUILTIN_VEC_VSUM4SBS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vsum4ubs", ALTIVEC_BUILTIN_VEC_VSUM4UBS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sum2s", ALTIVEC_BUILTIN_VEC_SUM2S },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_sums", ALTIVEC_BUILTIN_VEC_SUMS },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_xor", ALTIVEC_BUILTIN_VEC_XOR },

  { MASK_VSX, CODE_FOR_nothing, "__builtin_vec_mul", VSX_BUILTIN_VEC_MUL },
  { MASK_VSX, CODE_FOR_nothing, "__builtin_vec_div", VSX_BUILTIN_VEC_DIV },

  { 0, CODE_FOR_paired_divv2sf3, "__builtin_paired_divv2sf3", PAIRED_BUILTIN_DIVV2SF3 },
  { 0, CODE_FOR_paired_addv2sf3, "__builtin_paired_addv2sf3", PAIRED_BUILTIN_ADDV2SF3 },
  { 0, CODE_FOR_paired_subv2sf3, "__builtin_paired_subv2sf3", PAIRED_BUILTIN_SUBV2SF3 },
  { 0, CODE_FOR_paired_mulv2sf3, "__builtin_paired_mulv2sf3", PAIRED_BUILTIN_MULV2SF3 },
  { 0, CODE_FOR_paired_muls0, "__builtin_paired_muls0", PAIRED_BUILTIN_MULS0 },
  { 0, CODE_FOR_paired_muls1, "__builtin_paired_muls1", PAIRED_BUILTIN_MULS1 },
  { 0, CODE_FOR_paired_merge00, "__builtin_paired_merge00", PAIRED_BUILTIN_MERGE00 },
  { 0, CODE_FOR_paired_merge01, "__builtin_paired_merge01", PAIRED_BUILTIN_MERGE01 },
  { 0, CODE_FOR_paired_merge10, "__builtin_paired_merge10", PAIRED_BUILTIN_MERGE10 },
  { 0, CODE_FOR_paired_merge11, "__builtin_paired_merge11", PAIRED_BUILTIN_MERGE11 },

  /* Place holder, leave as first spe builtin.  */
  { 0, CODE_FOR_addv2si3, "__builtin_spe_evaddw", SPE_BUILTIN_EVADDW },
  { 0, CODE_FOR_andv2si3, "__builtin_spe_evand", SPE_BUILTIN_EVAND },
  { 0, CODE_FOR_spe_evandc, "__builtin_spe_evandc", SPE_BUILTIN_EVANDC },
  { 0, CODE_FOR_divv2si3, "__builtin_spe_evdivws", SPE_BUILTIN_EVDIVWS },
  { 0, CODE_FOR_spe_evdivwu, "__builtin_spe_evdivwu", SPE_BUILTIN_EVDIVWU },
  { 0, CODE_FOR_spe_eveqv, "__builtin_spe_eveqv", SPE_BUILTIN_EVEQV },
  { 0, CODE_FOR_spe_evfsadd, "__builtin_spe_evfsadd", SPE_BUILTIN_EVFSADD },
  { 0, CODE_FOR_spe_evfsdiv, "__builtin_spe_evfsdiv", SPE_BUILTIN_EVFSDIV },
  { 0, CODE_FOR_spe_evfsmul, "__builtin_spe_evfsmul", SPE_BUILTIN_EVFSMUL },
  { 0, CODE_FOR_spe_evfssub, "__builtin_spe_evfssub", SPE_BUILTIN_EVFSSUB },
  { 0, CODE_FOR_spe_evmergehi, "__builtin_spe_evmergehi", SPE_BUILTIN_EVMERGEHI },
  { 0, CODE_FOR_spe_evmergehilo, "__builtin_spe_evmergehilo", SPE_BUILTIN_EVMERGEHILO },
  { 0, CODE_FOR_spe_evmergelo, "__builtin_spe_evmergelo", SPE_BUILTIN_EVMERGELO },
  { 0, CODE_FOR_spe_evmergelohi, "__builtin_spe_evmergelohi", SPE_BUILTIN_EVMERGELOHI },
  { 0, CODE_FOR_spe_evmhegsmfaa, "__builtin_spe_evmhegsmfaa", SPE_BUILTIN_EVMHEGSMFAA },
  { 0, CODE_FOR_spe_evmhegsmfan, "__builtin_spe_evmhegsmfan", SPE_BUILTIN_EVMHEGSMFAN },
  { 0, CODE_FOR_spe_evmhegsmiaa, "__builtin_spe_evmhegsmiaa", SPE_BUILTIN_EVMHEGSMIAA },
  { 0, CODE_FOR_spe_evmhegsmian, "__builtin_spe_evmhegsmian", SPE_BUILTIN_EVMHEGSMIAN },
  { 0, CODE_FOR_spe_evmhegumiaa, "__builtin_spe_evmhegumiaa", SPE_BUILTIN_EVMHEGUMIAA },
  { 0, CODE_FOR_spe_evmhegumian, "__builtin_spe_evmhegumian", SPE_BUILTIN_EVMHEGUMIAN },
  { 0, CODE_FOR_spe_evmhesmf, "__builtin_spe_evmhesmf", SPE_BUILTIN_EVMHESMF },
  { 0, CODE_FOR_spe_evmhesmfa, "__builtin_spe_evmhesmfa", SPE_BUILTIN_EVMHESMFA },
  { 0, CODE_FOR_spe_evmhesmfaaw, "__builtin_spe_evmhesmfaaw", SPE_BUILTIN_EVMHESMFAAW },
  { 0, CODE_FOR_spe_evmhesmfanw, "__builtin_spe_evmhesmfanw", SPE_BUILTIN_EVMHESMFANW },
  { 0, CODE_FOR_spe_evmhesmi, "__builtin_spe_evmhesmi", SPE_BUILTIN_EVMHESMI },
  { 0, CODE_FOR_spe_evmhesmia, "__builtin_spe_evmhesmia", SPE_BUILTIN_EVMHESMIA },
  { 0, CODE_FOR_spe_evmhesmiaaw, "__builtin_spe_evmhesmiaaw", SPE_BUILTIN_EVMHESMIAAW },
  { 0, CODE_FOR_spe_evmhesmianw, "__builtin_spe_evmhesmianw", SPE_BUILTIN_EVMHESMIANW },
  { 0, CODE_FOR_spe_evmhessf, "__builtin_spe_evmhessf", SPE_BUILTIN_EVMHESSF },
  { 0, CODE_FOR_spe_evmhessfa, "__builtin_spe_evmhessfa", SPE_BUILTIN_EVMHESSFA },
  { 0, CODE_FOR_spe_evmhessfaaw, "__builtin_spe_evmhessfaaw", SPE_BUILTIN_EVMHESSFAAW },
  { 0, CODE_FOR_spe_evmhessfanw, "__builtin_spe_evmhessfanw", SPE_BUILTIN_EVMHESSFANW },
  { 0, CODE_FOR_spe_evmhessiaaw, "__builtin_spe_evmhessiaaw", SPE_BUILTIN_EVMHESSIAAW },
  { 0, CODE_FOR_spe_evmhessianw, "__builtin_spe_evmhessianw", SPE_BUILTIN_EVMHESSIANW },
  { 0, CODE_FOR_spe_evmheumi, "__builtin_spe_evmheumi", SPE_BUILTIN_EVMHEUMI },
  { 0, CODE_FOR_spe_evmheumia, "__builtin_spe_evmheumia", SPE_BUILTIN_EVMHEUMIA },
  { 0, CODE_FOR_spe_evmheumiaaw, "__builtin_spe_evmheumiaaw", SPE_BUILTIN_EVMHEUMIAAW },
  { 0, CODE_FOR_spe_evmheumianw, "__builtin_spe_evmheumianw", SPE_BUILTIN_EVMHEUMIANW },
  { 0, CODE_FOR_spe_evmheusiaaw, "__builtin_spe_evmheusiaaw", SPE_BUILTIN_EVMHEUSIAAW },
  { 0, CODE_FOR_spe_evmheusianw, "__builtin_spe_evmheusianw", SPE_BUILTIN_EVMHEUSIANW },
  { 0, CODE_FOR_spe_evmhogsmfaa, "__builtin_spe_evmhogsmfaa", SPE_BUILTIN_EVMHOGSMFAA },
  { 0, CODE_FOR_spe_evmhogsmfan, "__builtin_spe_evmhogsmfan", SPE_BUILTIN_EVMHOGSMFAN },
  { 0, CODE_FOR_spe_evmhogsmiaa, "__builtin_spe_evmhogsmiaa", SPE_BUILTIN_EVMHOGSMIAA },
  { 0, CODE_FOR_spe_evmhogsmian, "__builtin_spe_evmhogsmian", SPE_BUILTIN_EVMHOGSMIAN },
  { 0, CODE_FOR_spe_evmhogumiaa, "__builtin_spe_evmhogumiaa", SPE_BUILTIN_EVMHOGUMIAA },
  { 0, CODE_FOR_spe_evmhogumian, "__builtin_spe_evmhogumian", SPE_BUILTIN_EVMHOGUMIAN },
  { 0, CODE_FOR_spe_evmhosmf, "__builtin_spe_evmhosmf", SPE_BUILTIN_EVMHOSMF },
  { 0, CODE_FOR_spe_evmhosmfa, "__builtin_spe_evmhosmfa", SPE_BUILTIN_EVMHOSMFA },
  { 0, CODE_FOR_spe_evmhosmfaaw, "__builtin_spe_evmhosmfaaw", SPE_BUILTIN_EVMHOSMFAAW },
  { 0, CODE_FOR_spe_evmhosmfanw, "__builtin_spe_evmhosmfanw", SPE_BUILTIN_EVMHOSMFANW },
  { 0, CODE_FOR_spe_evmhosmi, "__builtin_spe_evmhosmi", SPE_BUILTIN_EVMHOSMI },
  { 0, CODE_FOR_spe_evmhosmia, "__builtin_spe_evmhosmia", SPE_BUILTIN_EVMHOSMIA },
  { 0, CODE_FOR_spe_evmhosmiaaw, "__builtin_spe_evmhosmiaaw", SPE_BUILTIN_EVMHOSMIAAW },
  { 0, CODE_FOR_spe_evmhosmianw, "__builtin_spe_evmhosmianw", SPE_BUILTIN_EVMHOSMIANW },
  { 0, CODE_FOR_spe_evmhossf, "__builtin_spe_evmhossf", SPE_BUILTIN_EVMHOSSF },
  { 0, CODE_FOR_spe_evmhossfa, "__builtin_spe_evmhossfa", SPE_BUILTIN_EVMHOSSFA },
  { 0, CODE_FOR_spe_evmhossfaaw, "__builtin_spe_evmhossfaaw", SPE_BUILTIN_EVMHOSSFAAW },
  { 0, CODE_FOR_spe_evmhossfanw, "__builtin_spe_evmhossfanw", SPE_BUILTIN_EVMHOSSFANW },
  { 0, CODE_FOR_spe_evmhossiaaw, "__builtin_spe_evmhossiaaw", SPE_BUILTIN_EVMHOSSIAAW },
  { 0, CODE_FOR_spe_evmhossianw, "__builtin_spe_evmhossianw", SPE_BUILTIN_EVMHOSSIANW },
  { 0, CODE_FOR_spe_evmhoumi, "__builtin_spe_evmhoumi", SPE_BUILTIN_EVMHOUMI },
  { 0, CODE_FOR_spe_evmhoumia, "__builtin_spe_evmhoumia", SPE_BUILTIN_EVMHOUMIA },
  { 0, CODE_FOR_spe_evmhoumiaaw, "__builtin_spe_evmhoumiaaw", SPE_BUILTIN_EVMHOUMIAAW },
  { 0, CODE_FOR_spe_evmhoumianw, "__builtin_spe_evmhoumianw", SPE_BUILTIN_EVMHOUMIANW },
  { 0, CODE_FOR_spe_evmhousiaaw, "__builtin_spe_evmhousiaaw", SPE_BUILTIN_EVMHOUSIAAW },
  { 0, CODE_FOR_spe_evmhousianw, "__builtin_spe_evmhousianw", SPE_BUILTIN_EVMHOUSIANW },
  { 0, CODE_FOR_spe_evmwhsmf, "__builtin_spe_evmwhsmf", SPE_BUILTIN_EVMWHSMF },
  { 0, CODE_FOR_spe_evmwhsmfa, "__builtin_spe_evmwhsmfa", SPE_BUILTIN_EVMWHSMFA },
  { 0, CODE_FOR_spe_evmwhsmi, "__builtin_spe_evmwhsmi", SPE_BUILTIN_EVMWHSMI },
  { 0, CODE_FOR_spe_evmwhsmia, "__builtin_spe_evmwhsmia", SPE_BUILTIN_EVMWHSMIA },
  { 0, CODE_FOR_spe_evmwhssf, "__builtin_spe_evmwhssf", SPE_BUILTIN_EVMWHSSF },
  { 0, CODE_FOR_spe_evmwhssfa, "__builtin_spe_evmwhssfa", SPE_BUILTIN_EVMWHSSFA },
  { 0, CODE_FOR_spe_evmwhumi, "__builtin_spe_evmwhumi", SPE_BUILTIN_EVMWHUMI },
  { 0, CODE_FOR_spe_evmwhumia, "__builtin_spe_evmwhumia", SPE_BUILTIN_EVMWHUMIA },
  { 0, CODE_FOR_spe_evmwlsmiaaw, "__builtin_spe_evmwlsmiaaw", SPE_BUILTIN_EVMWLSMIAAW },
  { 0, CODE_FOR_spe_evmwlsmianw, "__builtin_spe_evmwlsmianw", SPE_BUILTIN_EVMWLSMIANW },
  { 0, CODE_FOR_spe_evmwlssiaaw, "__builtin_spe_evmwlssiaaw", SPE_BUILTIN_EVMWLSSIAAW },
  { 0, CODE_FOR_spe_evmwlssianw, "__builtin_spe_evmwlssianw", SPE_BUILTIN_EVMWLSSIANW },
  { 0, CODE_FOR_spe_evmwlumi, "__builtin_spe_evmwlumi", SPE_BUILTIN_EVMWLUMI },
  { 0, CODE_FOR_spe_evmwlumia, "__builtin_spe_evmwlumia", SPE_BUILTIN_EVMWLUMIA },
  { 0, CODE_FOR_spe_evmwlumiaaw, "__builtin_spe_evmwlumiaaw", SPE_BUILTIN_EVMWLUMIAAW },
  { 0, CODE_FOR_spe_evmwlumianw, "__builtin_spe_evmwlumianw", SPE_BUILTIN_EVMWLUMIANW },
  { 0, CODE_FOR_spe_evmwlusiaaw, "__builtin_spe_evmwlusiaaw", SPE_BUILTIN_EVMWLUSIAAW },
  { 0, CODE_FOR_spe_evmwlusianw, "__builtin_spe_evmwlusianw", SPE_BUILTIN_EVMWLUSIANW },
  { 0, CODE_FOR_spe_evmwsmf, "__builtin_spe_evmwsmf", SPE_BUILTIN_EVMWSMF },
  { 0, CODE_FOR_spe_evmwsmfa, "__builtin_spe_evmwsmfa", SPE_BUILTIN_EVMWSMFA },
  { 0, CODE_FOR_spe_evmwsmfaa, "__builtin_spe_evmwsmfaa", SPE_BUILTIN_EVMWSMFAA },
  { 0, CODE_FOR_spe_evmwsmfan, "__builtin_spe_evmwsmfan", SPE_BUILTIN_EVMWSMFAN },
  { 0, CODE_FOR_spe_evmwsmi, "__builtin_spe_evmwsmi", SPE_BUILTIN_EVMWSMI },
  { 0, CODE_FOR_spe_evmwsmia, "__builtin_spe_evmwsmia", SPE_BUILTIN_EVMWSMIA },
  { 0, CODE_FOR_spe_evmwsmiaa, "__builtin_spe_evmwsmiaa", SPE_BUILTIN_EVMWSMIAA },
  { 0, CODE_FOR_spe_evmwsmian, "__builtin_spe_evmwsmian", SPE_BUILTIN_EVMWSMIAN },
  { 0, CODE_FOR_spe_evmwssf, "__builtin_spe_evmwssf", SPE_BUILTIN_EVMWSSF },
  { 0, CODE_FOR_spe_evmwssfa, "__builtin_spe_evmwssfa", SPE_BUILTIN_EVMWSSFA },
  { 0, CODE_FOR_spe_evmwssfaa, "__builtin_spe_evmwssfaa", SPE_BUILTIN_EVMWSSFAA },
  { 0, CODE_FOR_spe_evmwssfan, "__builtin_spe_evmwssfan", SPE_BUILTIN_EVMWSSFAN },
  { 0, CODE_FOR_spe_evmwumi, "__builtin_spe_evmwumi", SPE_BUILTIN_EVMWUMI },
  { 0, CODE_FOR_spe_evmwumia, "__builtin_spe_evmwumia", SPE_BUILTIN_EVMWUMIA },
  { 0, CODE_FOR_spe_evmwumiaa, "__builtin_spe_evmwumiaa", SPE_BUILTIN_EVMWUMIAA },
  { 0, CODE_FOR_spe_evmwumian, "__builtin_spe_evmwumian", SPE_BUILTIN_EVMWUMIAN },
  { 0, CODE_FOR_spe_evnand, "__builtin_spe_evnand", SPE_BUILTIN_EVNAND },
  { 0, CODE_FOR_spe_evnor, "__builtin_spe_evnor", SPE_BUILTIN_EVNOR },
  { 0, CODE_FOR_spe_evor, "__builtin_spe_evor", SPE_BUILTIN_EVOR },
  { 0, CODE_FOR_spe_evorc, "__builtin_spe_evorc", SPE_BUILTIN_EVORC },
  { 0, CODE_FOR_spe_evrlw, "__builtin_spe_evrlw", SPE_BUILTIN_EVRLW },
  { 0, CODE_FOR_spe_evslw, "__builtin_spe_evslw", SPE_BUILTIN_EVSLW },
  { 0, CODE_FOR_spe_evsrws, "__builtin_spe_evsrws", SPE_BUILTIN_EVSRWS },
  { 0, CODE_FOR_spe_evsrwu, "__builtin_spe_evsrwu", SPE_BUILTIN_EVSRWU },
  { 0, CODE_FOR_subv2si3, "__builtin_spe_evsubfw", SPE_BUILTIN_EVSUBFW },

  /* SPE binary operations expecting a 5-bit unsigned literal.  */
  { 0, CODE_FOR_spe_evaddiw, "__builtin_spe_evaddiw", SPE_BUILTIN_EVADDIW },

  { 0, CODE_FOR_spe_evrlwi, "__builtin_spe_evrlwi", SPE_BUILTIN_EVRLWI },
  { 0, CODE_FOR_spe_evslwi, "__builtin_spe_evslwi", SPE_BUILTIN_EVSLWI },
  { 0, CODE_FOR_spe_evsrwis, "__builtin_spe_evsrwis", SPE_BUILTIN_EVSRWIS },
  { 0, CODE_FOR_spe_evsrwiu, "__builtin_spe_evsrwiu", SPE_BUILTIN_EVSRWIU },
  { 0, CODE_FOR_spe_evsubifw, "__builtin_spe_evsubifw", SPE_BUILTIN_EVSUBIFW },
  { 0, CODE_FOR_spe_evmwhssfaa, "__builtin_spe_evmwhssfaa", SPE_BUILTIN_EVMWHSSFAA },
  { 0, CODE_FOR_spe_evmwhssmaa, "__builtin_spe_evmwhssmaa", SPE_BUILTIN_EVMWHSSMAA },
  { 0, CODE_FOR_spe_evmwhsmfaa, "__builtin_spe_evmwhsmfaa", SPE_BUILTIN_EVMWHSMFAA },
  { 0, CODE_FOR_spe_evmwhsmiaa, "__builtin_spe_evmwhsmiaa", SPE_BUILTIN_EVMWHSMIAA },
  { 0, CODE_FOR_spe_evmwhusiaa, "__builtin_spe_evmwhusiaa", SPE_BUILTIN_EVMWHUSIAA },
  { 0, CODE_FOR_spe_evmwhumiaa, "__builtin_spe_evmwhumiaa", SPE_BUILTIN_EVMWHUMIAA },
  { 0, CODE_FOR_spe_evmwhssfan, "__builtin_spe_evmwhssfan", SPE_BUILTIN_EVMWHSSFAN },
  { 0, CODE_FOR_spe_evmwhssian, "__builtin_spe_evmwhssian", SPE_BUILTIN_EVMWHSSIAN },
  { 0, CODE_FOR_spe_evmwhsmfan, "__builtin_spe_evmwhsmfan", SPE_BUILTIN_EVMWHSMFAN },
  { 0, CODE_FOR_spe_evmwhsmian, "__builtin_spe_evmwhsmian", SPE_BUILTIN_EVMWHSMIAN },
  { 0, CODE_FOR_spe_evmwhusian, "__builtin_spe_evmwhusian", SPE_BUILTIN_EVMWHUSIAN },
  { 0, CODE_FOR_spe_evmwhumian, "__builtin_spe_evmwhumian", SPE_BUILTIN_EVMWHUMIAN },
  { 0, CODE_FOR_spe_evmwhgssfaa, "__builtin_spe_evmwhgssfaa", SPE_BUILTIN_EVMWHGSSFAA },
  { 0, CODE_FOR_spe_evmwhgsmfaa, "__builtin_spe_evmwhgsmfaa", SPE_BUILTIN_EVMWHGSMFAA },
  { 0, CODE_FOR_spe_evmwhgsmiaa, "__builtin_spe_evmwhgsmiaa", SPE_BUILTIN_EVMWHGSMIAA },
  { 0, CODE_FOR_spe_evmwhgumiaa, "__builtin_spe_evmwhgumiaa", SPE_BUILTIN_EVMWHGUMIAA },
  { 0, CODE_FOR_spe_evmwhgssfan, "__builtin_spe_evmwhgssfan", SPE_BUILTIN_EVMWHGSSFAN },
  { 0, CODE_FOR_spe_evmwhgsmfan, "__builtin_spe_evmwhgsmfan", SPE_BUILTIN_EVMWHGSMFAN },
  { 0, CODE_FOR_spe_evmwhgsmian, "__builtin_spe_evmwhgsmian", SPE_BUILTIN_EVMWHGSMIAN },
  { 0, CODE_FOR_spe_evmwhgumian, "__builtin_spe_evmwhgumian", SPE_BUILTIN_EVMWHGUMIAN },
  { 0, CODE_FOR_spe_brinc, "__builtin_spe_brinc", SPE_BUILTIN_BRINC },

  /* Place-holder.  Leave as last binary SPE builtin.  */
  { 0, CODE_FOR_xorv2si3, "__builtin_spe_evxor", SPE_BUILTIN_EVXOR }
};

/* AltiVec predicates.  */

struct builtin_description_predicates
{
  const unsigned int mask;
  const enum insn_code icode;
  const char *const name;
  const enum rs6000_builtins code;
};

static const struct builtin_description_predicates bdesc_altivec_preds[] =
{
  { MASK_ALTIVEC, CODE_FOR_altivec_vcmpbfp_p, "__builtin_altivec_vcmpbfp_p",
    ALTIVEC_BUILTIN_VCMPBFP_P },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_vector_eq_v4sf_p,
    "__builtin_altivec_vcmpeqfp_p", ALTIVEC_BUILTIN_VCMPEQFP_P },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_vector_ge_v4sf_p,
    "__builtin_altivec_vcmpgefp_p", ALTIVEC_BUILTIN_VCMPGEFP_P },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_vector_gt_v4sf_p,
    "__builtin_altivec_vcmpgtfp_p", ALTIVEC_BUILTIN_VCMPGTFP_P },
  { MASK_ALTIVEC, CODE_FOR_vector_eq_v4si_p, "__builtin_altivec_vcmpequw_p",
    ALTIVEC_BUILTIN_VCMPEQUW_P },
  { MASK_ALTIVEC, CODE_FOR_vector_gt_v4si_p, "__builtin_altivec_vcmpgtsw_p",
    ALTIVEC_BUILTIN_VCMPGTSW_P },
  { MASK_ALTIVEC, CODE_FOR_vector_gtu_v4si_p, "__builtin_altivec_vcmpgtuw_p",
    ALTIVEC_BUILTIN_VCMPGTUW_P },
  { MASK_ALTIVEC, CODE_FOR_vector_eq_v8hi_p, "__builtin_altivec_vcmpequh_p",
    ALTIVEC_BUILTIN_VCMPEQUH_P },
  { MASK_ALTIVEC, CODE_FOR_vector_gt_v8hi_p, "__builtin_altivec_vcmpgtsh_p",
    ALTIVEC_BUILTIN_VCMPGTSH_P },
  { MASK_ALTIVEC, CODE_FOR_vector_gtu_v8hi_p, "__builtin_altivec_vcmpgtuh_p",
    ALTIVEC_BUILTIN_VCMPGTUH_P },
  { MASK_ALTIVEC, CODE_FOR_vector_eq_v16qi_p, "__builtin_altivec_vcmpequb_p",
    ALTIVEC_BUILTIN_VCMPEQUB_P },
  { MASK_ALTIVEC, CODE_FOR_vector_gt_v16qi_p, "__builtin_altivec_vcmpgtsb_p",
    ALTIVEC_BUILTIN_VCMPGTSB_P },
  { MASK_ALTIVEC, CODE_FOR_vector_gtu_v16qi_p, "__builtin_altivec_vcmpgtub_p",
    ALTIVEC_BUILTIN_VCMPGTUB_P },

  { MASK_VSX, CODE_FOR_vector_eq_v4sf_p, "__builtin_vsx_xvcmpeqsp_p",
    VSX_BUILTIN_XVCMPEQSP_P },
  { MASK_VSX, CODE_FOR_vector_ge_v4sf_p, "__builtin_vsx_xvcmpgesp_p",
    VSX_BUILTIN_XVCMPGESP_P },
  { MASK_VSX, CODE_FOR_vector_gt_v4sf_p, "__builtin_vsx_xvcmpgtsp_p",
    VSX_BUILTIN_XVCMPGTSP_P },
  { MASK_VSX, CODE_FOR_vector_eq_v2df_p, "__builtin_vsx_xvcmpeqdp_p",
    VSX_BUILTIN_XVCMPEQDP_P },
  { MASK_VSX, CODE_FOR_vector_ge_v2df_p, "__builtin_vsx_xvcmpgedp_p",
    VSX_BUILTIN_XVCMPGEDP_P },
  { MASK_VSX, CODE_FOR_vector_gt_v2df_p, "__builtin_vsx_xvcmpgtdp_p",
    VSX_BUILTIN_XVCMPGTDP_P },

  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_vcmpeq_p",
    ALTIVEC_BUILTIN_VCMPEQ_P },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_vcmpgt_p",
    ALTIVEC_BUILTIN_VCMPGT_P },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_nothing, "__builtin_vec_vcmpge_p",
    ALTIVEC_BUILTIN_VCMPGE_P }
};

/* SPE predicates.  */
static struct builtin_description bdesc_spe_predicates[] =
{
  /* Place-holder.  Leave as first.  */
  { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evcmpeq", SPE_BUILTIN_EVCMPEQ },
  { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evcmpgts", SPE_BUILTIN_EVCMPGTS },
  { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evcmpgtu", SPE_BUILTIN_EVCMPGTU },
  { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evcmplts", SPE_BUILTIN_EVCMPLTS },
  { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evcmpltu", SPE_BUILTIN_EVCMPLTU },
  { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evfscmpeq", SPE_BUILTIN_EVFSCMPEQ },
  { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evfscmpgt", SPE_BUILTIN_EVFSCMPGT },
  { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evfscmplt", SPE_BUILTIN_EVFSCMPLT },
  { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evfststeq", SPE_BUILTIN_EVFSTSTEQ },
  { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evfststgt", SPE_BUILTIN_EVFSTSTGT },
  /* Place-holder.  Leave as last.  */
  { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evfststlt", SPE_BUILTIN_EVFSTSTLT },
};

/* SPE evsel predicates.  */
static struct builtin_description bdesc_spe_evsel[] =
{
  /* Place-holder.  Leave as first.  */
  { 0, CODE_FOR_spe_evcmpgts, "__builtin_spe_evsel_gts", SPE_BUILTIN_EVSEL_CMPGTS },
  { 0, CODE_FOR_spe_evcmpgtu, "__builtin_spe_evsel_gtu", SPE_BUILTIN_EVSEL_CMPGTU },
  { 0, CODE_FOR_spe_evcmplts, "__builtin_spe_evsel_lts", SPE_BUILTIN_EVSEL_CMPLTS },
  { 0, CODE_FOR_spe_evcmpltu, "__builtin_spe_evsel_ltu", SPE_BUILTIN_EVSEL_CMPLTU },
  { 0, CODE_FOR_spe_evcmpeq, "__builtin_spe_evsel_eq", SPE_BUILTIN_EVSEL_CMPEQ },
  { 0, CODE_FOR_spe_evfscmpgt, "__builtin_spe_evsel_fsgt", SPE_BUILTIN_EVSEL_FSCMPGT },
  { 0, CODE_FOR_spe_evfscmplt, "__builtin_spe_evsel_fslt", SPE_BUILTIN_EVSEL_FSCMPLT },
  { 0, CODE_FOR_spe_evfscmpeq, "__builtin_spe_evsel_fseq", SPE_BUILTIN_EVSEL_FSCMPEQ },
  { 0, CODE_FOR_spe_evfststgt, "__builtin_spe_evsel_fststgt", SPE_BUILTIN_EVSEL_FSTSTGT },
  { 0, CODE_FOR_spe_evfststlt, "__builtin_spe_evsel_fststlt", SPE_BUILTIN_EVSEL_FSTSTLT },
  /* Place-holder.  Leave as last.  */
  { 0, CODE_FOR_spe_evfststeq, "__builtin_spe_evsel_fststeq", SPE_BUILTIN_EVSEL_FSTSTEQ },
};

/* PAIRED predicates.  */
static const struct builtin_description bdesc_paired_preds[] =
{
  /* Place-holder.  Leave as first.  */
  { 0, CODE_FOR_paired_cmpu0, "__builtin_paired_cmpu0", PAIRED_BUILTIN_CMPU0 },
  /* Place-holder.  Leave as last.  */
  { 0, CODE_FOR_paired_cmpu1, "__builtin_paired_cmpu1", PAIRED_BUILTIN_CMPU1 },
};

/* ABS* operations.  */

static const struct builtin_description bdesc_abs[] =
{
  { MASK_ALTIVEC, CODE_FOR_absv4si2, "__builtin_altivec_abs_v4si", ALTIVEC_BUILTIN_ABS_V4SI },
  { MASK_ALTIVEC, CODE_FOR_absv8hi2, "__builtin_altivec_abs_v8hi", ALTIVEC_BUILTIN_ABS_V8HI },
  { MASK_ALTIVEC, CODE_FOR_absv4sf2, "__builtin_altivec_abs_v4sf", ALTIVEC_BUILTIN_ABS_V4SF },
  { MASK_ALTIVEC, CODE_FOR_absv16qi2, "__builtin_altivec_abs_v16qi", ALTIVEC_BUILTIN_ABS_V16QI },
  { MASK_ALTIVEC, CODE_FOR_altivec_abss_v4si, "__builtin_altivec_abss_v4si", ALTIVEC_BUILTIN_ABSS_V4SI },
  { MASK_ALTIVEC, CODE_FOR_altivec_abss_v8hi, "__builtin_altivec_abss_v8hi", ALTIVEC_BUILTIN_ABSS_V8HI },
  { MASK_ALTIVEC, CODE_FOR_altivec_abss_v16qi, "__builtin_altivec_abss_v16qi", ALTIVEC_BUILTIN_ABSS_V16QI },
  { MASK_VSX, CODE_FOR_absv2df2, "__builtin_vsx_xvabsdp", VSX_BUILTIN_XVABSDP },
  { MASK_VSX, CODE_FOR_vsx_nabsv2df2, "__builtin_vsx_xvnabsdp", VSX_BUILTIN_XVNABSDP },
  { MASK_VSX, CODE_FOR_absv4sf2, "__builtin_vsx_xvabssp", VSX_BUILTIN_XVABSSP },
  { MASK_VSX, CODE_FOR_vsx_nabsv4sf2, "__builtin_vsx_xvnabssp", VSX_BUILTIN_XVNABSSP },
};

/* Simple unary operations: VECb = foo (unsigned literal) or VECb =
   foo (VECa).  */

static struct builtin_description bdesc_1arg[] =
{
  { MASK_ALTIVEC, CODE_FOR_altivec_vexptefp, "__builtin_altivec_vexptefp", ALTIVEC_BUILTIN_VEXPTEFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vlogefp, "__builtin_altivec_vlogefp", ALTIVEC_BUILTIN_VLOGEFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vrefp, "__builtin_altivec_vrefp", ALTIVEC_BUILTIN_VREFP },
  { MASK_ALTIVEC, CODE_FOR_vector_floorv4sf2, "__builtin_altivec_vrfim", ALTIVEC_BUILTIN_VRFIM },
  { MASK_ALTIVEC, CODE_FOR_altivec_vrfin, "__builtin_altivec_vrfin", ALTIVEC_BUILTIN_VRFIN },
  { MASK_ALTIVEC, CODE_FOR_vector_ceilv4sf2, "__builtin_altivec_vrfip", ALTIVEC_BUILTIN_VRFIP },
  { MASK_ALTIVEC, CODE_FOR_vector_btruncv4sf2, "__builtin_altivec_vrfiz", ALTIVEC_BUILTIN_VRFIZ },
  { MASK_ALTIVEC, CODE_FOR_altivec_vrsqrtefp, "__builtin_altivec_vrsqrtefp", ALTIVEC_BUILTIN_VRSQRTEFP },
  { MASK_ALTIVEC, CODE_FOR_altivec_vspltisb, "__builtin_altivec_vspltisb", ALTIVEC_BUILTIN_VSPLTISB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vspltish, "__builtin_altivec_vspltish", ALTIVEC_BUILTIN_VSPLTISH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vspltisw, "__builtin_altivec_vspltisw", ALTIVEC_BUILTIN_VSPLTISW },
  { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsb, "__builtin_altivec_vupkhsb", ALTIVEC_BUILTIN_VUPKHSB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vupkhpx, "__builtin_altivec_vupkhpx", ALTIVEC_BUILTIN_VUPKHPX },
  { MASK_ALTIVEC, CODE_FOR_altivec_vupkhsh, "__builtin_altivec_vupkhsh", ALTIVEC_BUILTIN_VUPKHSH },
  { MASK_ALTIVEC, CODE_FOR_altivec_vupklsb, "__builtin_altivec_vupklsb", ALTIVEC_BUILTIN_VUPKLSB },
  { MASK_ALTIVEC, CODE_FOR_altivec_vupklpx, "__builtin_altivec_vupklpx", ALTIVEC_BUILTIN_VUPKLPX },
  { MASK_ALTIVEC, CODE_FOR_altivec_vupklsh, "__builtin_altivec_vupklsh", ALTIVEC_BUILTIN_VUPKLSH },

  { MASK_VSX, CODE_FOR_negv2df2, "__builtin_vsx_xvnegdp", VSX_BUILTIN_XVNEGDP },
  { MASK_VSX, CODE_FOR_sqrtv2df2, "__builtin_vsx_xvsqrtdp", VSX_BUILTIN_XVSQRTDP },
  { MASK_VSX, CODE_FOR_vsx_rsqrtev2df2, "__builtin_vsx_xvrsqrtedp", VSX_BUILTIN_XVRSQRTEDP },
  { MASK_VSX, CODE_FOR_vsx_tsqrtv2df2_fe, "__builtin_vsx_xvtsqrtdp_fe", VSX_BUILTIN_XVTSQRTDP_FE },
  { MASK_VSX, CODE_FOR_vsx_tsqrtv2df2_fg, "__builtin_vsx_xvtsqrtdp_fg", VSX_BUILTIN_XVTSQRTDP_FG },
  { MASK_VSX, CODE_FOR_vsx_frev2df2, "__builtin_vsx_xvredp", VSX_BUILTIN_XVREDP },

  { MASK_VSX, CODE_FOR_negv4sf2, "__builtin_vsx_xvnegsp", VSX_BUILTIN_XVNEGSP },
  { MASK_VSX, CODE_FOR_sqrtv4sf2, "__builtin_vsx_xvsqrtsp", VSX_BUILTIN_XVSQRTSP },
  { MASK_VSX, CODE_FOR_vsx_rsqrtev4sf2, "__builtin_vsx_xvrsqrtesp", VSX_BUILTIN_XVRSQRTESP },
  { MASK_VSX, CODE_FOR_vsx_tsqrtv4sf2_fe, "__builtin_vsx_xvtsqrtsp_fe", VSX_BUILTIN_XVTSQRTSP_FE },
  { MASK_VSX, CODE_FOR_vsx_tsqrtv4sf2_fg, "__builtin_vsx_xvtsqrtsp_fg", VSX_BUILTIN_XVTSQRTSP_FG },
  { MASK_VSX, CODE_FOR_vsx_frev4sf2, "__builtin_vsx_xvresp", VSX_BUILTIN_XVRESP },

  { MASK_VSX, CODE_FOR_vsx_xscvdpsp, "__builtin_vsx_xscvdpsp", VSX_BUILTIN_XSCVDPSP },
  { MASK_VSX, CODE_FOR_vsx_xscvdpsp, "__builtin_vsx_xscvspdp", VSX_BUILTIN_XSCVSPDP },
  { MASK_VSX, CODE_FOR_vsx_xvcvdpsp, "__builtin_vsx_xvcvdpsp", VSX_BUILTIN_XVCVDPSP },
  { MASK_VSX, CODE_FOR_vsx_xvcvspdp, "__builtin_vsx_xvcvspdp", VSX_BUILTIN_XVCVSPDP },
  { MASK_VSX, CODE_FOR_vsx_tsqrtdf2_fe, "__builtin_vsx_xstsqrtdp_fe", VSX_BUILTIN_XSTSQRTDP_FE },
  { MASK_VSX, CODE_FOR_vsx_tsqrtdf2_fg, "__builtin_vsx_xstsqrtdp_fg", VSX_BUILTIN_XSTSQRTDP_FG },

  { MASK_VSX, CODE_FOR_vsx_fix_truncv2dfv2di2, "__builtin_vsx_xvcvdpsxds", VSX_BUILTIN_XVCVDPSXDS },
  { MASK_VSX, CODE_FOR_vsx_fixuns_truncv2dfv2di2, "__builtin_vsx_xvcvdpuxds", VSX_BUILTIN_XVCVDPUXDS },
  { MASK_VSX, CODE_FOR_vsx_fixuns_truncv2dfv2di2, "__builtin_vsx_xvcvdpuxds_uns", VSX_BUILTIN_XVCVDPUXDS_UNS },
  { MASK_VSX, CODE_FOR_vsx_floatv2div2df2, "__builtin_vsx_xvcvsxddp", VSX_BUILTIN_XVCVSXDDP },
  { MASK_VSX, CODE_FOR_vsx_floatunsv2div2df2, "__builtin_vsx_xvcvuxddp", VSX_BUILTIN_XVCVUXDDP },
  { MASK_VSX, CODE_FOR_vsx_floatunsv2div2df2, "__builtin_vsx_xvcvuxddp_uns", VSX_BUILTIN_XVCVUXDDP_UNS },

  { MASK_VSX, CODE_FOR_vsx_fix_truncv4sfv4si2, "__builtin_vsx_xvcvspsxws", VSX_BUILTIN_XVCVSPSXWS },
  { MASK_VSX, CODE_FOR_vsx_fixuns_truncv4sfv4si2, "__builtin_vsx_xvcvspuxws", VSX_BUILTIN_XVCVSPUXWS },
  { MASK_VSX, CODE_FOR_vsx_floatv4siv4sf2, "__builtin_vsx_xvcvsxwsp", VSX_BUILTIN_XVCVSXWSP },
  { MASK_VSX, CODE_FOR_vsx_floatunsv4siv4sf2, "__builtin_vsx_xvcvuxwsp", VSX_BUILTIN_XVCVUXWSP },

  { MASK_VSX, CODE_FOR_vsx_xvcvdpsxws, "__builtin_vsx_xvcvdpsxws", VSX_BUILTIN_XVCVDPSXWS },
  { MASK_VSX, CODE_FOR_vsx_xvcvdpuxws, "__builtin_vsx_xvcvdpuxws", VSX_BUILTIN_XVCVDPUXWS },
  { MASK_VSX, CODE_FOR_vsx_xvcvsxwdp, "__builtin_vsx_xvcvsxwdp", VSX_BUILTIN_XVCVSXWDP },
  { MASK_VSX, CODE_FOR_vsx_xvcvuxwdp, "__builtin_vsx_xvcvuxwdp", VSX_BUILTIN_XVCVUXWDP },
  { MASK_VSX, CODE_FOR_vsx_xvrdpi, "__builtin_vsx_xvrdpi", VSX_BUILTIN_XVRDPI },
  { MASK_VSX, CODE_FOR_vsx_xvrdpic, "__builtin_vsx_xvrdpic", VSX_BUILTIN_XVRDPIC },
  { MASK_VSX, CODE_FOR_vsx_floorv2df2, "__builtin_vsx_xvrdpim", VSX_BUILTIN_XVRDPIM },
  { MASK_VSX, CODE_FOR_vsx_ceilv2df2, "__builtin_vsx_xvrdpip", VSX_BUILTIN_XVRDPIP },
  { MASK_VSX, CODE_FOR_vsx_btruncv2df2, "__builtin_vsx_xvrdpiz", VSX_BUILTIN_XVRDPIZ },

  { MASK_VSX, CODE_FOR_vsx_xvcvspsxds, "__builtin_vsx_xvcvspsxds", VSX_BUILTIN_XVCVSPSXDS },
  { MASK_VSX, CODE_FOR_vsx_xvcvspuxds, "__builtin_vsx_xvcvspuxds", VSX_BUILTIN_XVCVSPUXDS },
  { MASK_VSX, CODE_FOR_vsx_xvcvsxdsp, "__builtin_vsx_xvcvsxdsp", VSX_BUILTIN_XVCVSXDSP },
  { MASK_VSX, CODE_FOR_vsx_xvcvuxdsp, "__builtin_vsx_xvcvuxdsp", VSX_BUILTIN_XVCVUXDSP },
  { MASK_VSX, CODE_FOR_vsx_xvrspi, "__builtin_vsx_xvrspi", VSX_BUILTIN_XVRSPI },
  { MASK_VSX, CODE_FOR_vsx_xvrspic, "__builtin_vsx_xvrspic", VSX_BUILTIN_XVRSPIC },
  { MASK_VSX, CODE_FOR_vsx_floorv4sf2, "__builtin_vsx_xvrspim", VSX_BUILTIN_XVRSPIM },
  { MASK_VSX, CODE_FOR_vsx_ceilv4sf2, "__builtin_vsx_xvrspip", VSX_BUILTIN_XVRSPIP },
  { MASK_VSX, CODE_FOR_vsx_btruncv4sf2, "__builtin_vsx_xvrspiz", VSX_BUILTIN_XVRSPIZ },

  { MASK_VSX, CODE_FOR_vsx_xsrdpi, "__builtin_vsx_xsrdpi", VSX_BUILTIN_XSRDPI },
  { MASK_VSX, CODE_FOR_vsx_xsrdpic, "__builtin_vsx_xsrdpic", VSX_BUILTIN_XSRDPIC },
  { MASK_VSX, CODE_FOR_vsx_floordf2, "__builtin_vsx_xsrdpim", VSX_BUILTIN_XSRDPIM },
  { MASK_VSX, CODE_FOR_vsx_ceildf2, "__builtin_vsx_xsrdpip", VSX_BUILTIN_XSRDPIP },
  { MASK_VSX, CODE_FOR_vsx_btruncdf2, "__builtin_vsx_xsrdpiz", VSX_BUILTIN_XSRDPIZ },

  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abs", ALTIVEC_BUILTIN_VEC_ABS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_abss", ALTIVEC_BUILTIN_VEC_ABSS },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_ceil", ALTIVEC_BUILTIN_VEC_CEIL },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_expte", ALTIVEC_BUILTIN_VEC_EXPTE },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_floor", ALTIVEC_BUILTIN_VEC_FLOOR },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_loge", ALTIVEC_BUILTIN_VEC_LOGE },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_mtvscr", ALTIVEC_BUILTIN_VEC_MTVSCR },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_re", ALTIVEC_BUILTIN_VEC_RE },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_round", ALTIVEC_BUILTIN_VEC_ROUND },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_rsqrte", ALTIVEC_BUILTIN_VEC_RSQRTE },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_trunc", ALTIVEC_BUILTIN_VEC_TRUNC },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackh", ALTIVEC_BUILTIN_VEC_UNPACKH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsh", ALTIVEC_BUILTIN_VEC_VUPKHSH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhpx", ALTIVEC_BUILTIN_VEC_VUPKHPX },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupkhsb", ALTIVEC_BUILTIN_VEC_VUPKHSB },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_unpackl", ALTIVEC_BUILTIN_VEC_UNPACKL },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklpx", ALTIVEC_BUILTIN_VEC_VUPKLPX },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsh", ALTIVEC_BUILTIN_VEC_VUPKLSH },
  { MASK_ALTIVEC, CODE_FOR_nothing, "__builtin_vec_vupklsb", ALTIVEC_BUILTIN_VEC_VUPKLSB },

  { MASK_VSX, CODE_FOR_nothing, "__builtin_vec_nearbyint", ALTIVEC_BUILTIN_VEC_NEARBYINT },
  { MASK_VSX, CODE_FOR_nothing, "__builtin_vec_rint", ALTIVEC_BUILTIN_VEC_RINT },
  { MASK_VSX, CODE_FOR_nothing, "__builtin_vec_sqrt", ALTIVEC_BUILTIN_VEC_SQRT },

  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_floatv4siv4sf2, "__builtin_vec_float_sisf", VECTOR_BUILTIN_FLOAT_V4SI_V4SF },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_unsigned_floatv4siv4sf2, "__builtin_vec_uns_float_sisf", VECTOR_BUILTIN_UNSFLOAT_V4SI_V4SF },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_fix_truncv4sfv4si2, "__builtin_vec_fix_sfsi", VECTOR_BUILTIN_FIX_V4SF_V4SI },
  { MASK_ALTIVEC|MASK_VSX, CODE_FOR_fixuns_truncv4sfv4si2, "__builtin_vec_fixuns_sfsi", VECTOR_BUILTIN_FIXUNS_V4SF_V4SI },

  /* The SPE unary builtins must start with SPE_BUILTIN_EVABS and
     end with SPE_BUILTIN_EVSUBFUSIAAW.  */
  { 0, CODE_FOR_absv2si2, "__builtin_spe_evabs", SPE_BUILTIN_EVABS },
  { 0, CODE_FOR_spe_evaddsmiaaw, "__builtin_spe_evaddsmiaaw", SPE_BUILTIN_EVADDSMIAAW },
  { 0, CODE_FOR_spe_evaddssiaaw, "__builtin_spe_evaddssiaaw", SPE_BUILTIN_EVADDSSIAAW },
  { 0, CODE_FOR_spe_evaddumiaaw, "__builtin_spe_evaddumiaaw", SPE_BUILTIN_EVADDUMIAAW },
  { 0, CODE_FOR_spe_evaddusiaaw, "__builtin_spe_evaddusiaaw", SPE_BUILTIN_EVADDUSIAAW },
  { 0, CODE_FOR_spe_evcntlsw, "__builtin_spe_evcntlsw", SPE_BUILTIN_EVCNTLSW },
  { 0, CODE_FOR_spe_evcntlzw, "__builtin_spe_evcntlzw", SPE_BUILTIN_EVCNTLZW },
  { 0, CODE_FOR_spe_evextsb, "__builtin_spe_evextsb", SPE_BUILTIN_EVEXTSB },
  { 0, CODE_FOR_spe_evextsh, "__builtin_spe_evextsh", SPE_BUILTIN_EVEXTSH },
  { 0, CODE_FOR_spe_evfsabs, "__builtin_spe_evfsabs", SPE_BUILTIN_EVFSABS },
  { 0, CODE_FOR_spe_evfscfsf, "__builtin_spe_evfscfsf", SPE_BUILTIN_EVFSCFSF },
  { 0, CODE_FOR_spe_evfscfsi, "__builtin_spe_evfscfsi", SPE_BUILTIN_EVFSCFSI },
  { 0, CODE_FOR_spe_evfscfuf, "__builtin_spe_evfscfuf", SPE_BUILTIN_EVFSCFUF },
  { 0, CODE_FOR_spe_evfscfui, "__builtin_spe_evfscfui", SPE_BUILTIN_EVFSCFUI },
  { 0, CODE_FOR_spe_evfsctsf, "__builtin_spe_evfsctsf", SPE_BUILTIN_EVFSCTSF },
  { 0, CODE_FOR_spe_evfsctsi, "__builtin_spe_evfsctsi", SPE_BUILTIN_EVFSCTSI },
  { 0, CODE_FOR_spe_evfsctsiz, "__builtin_spe_evfsctsiz", SPE_BUILTIN_EVFSCTSIZ },
  { 0, CODE_FOR_spe_evfsctuf, "__builtin_spe_evfsctuf", SPE_BUILTIN_EVFSCTUF },
  { 0, CODE_FOR_spe_evfsctui, "__builtin_spe_evfsctui", SPE_BUILTIN_EVFSCTUI },
  { 0, CODE_FOR_spe_evfsctuiz, "__builtin_spe_evfsctuiz", SPE_BUILTIN_EVFSCTUIZ },
  { 0, CODE_FOR_spe_evfsnabs, "__builtin_spe_evfsnabs", SPE_BUILTIN_EVFSNABS },
  { 0, CODE_FOR_spe_evfsneg, "__builtin_spe_evfsneg", SPE_BUILTIN_EVFSNEG },
  { 0, CODE_FOR_spe_evmra, "__builtin_spe_evmra", SPE_BUILTIN_EVMRA },
  { 0, CODE_FOR_negv2si2, "__builtin_spe_evneg", SPE_BUILTIN_EVNEG },
  { 0, CODE_FOR_spe_evrndw, "__builtin_spe_evrndw", SPE_BUILTIN_EVRNDW },
  { 0, CODE_FOR_spe_evsubfsmiaaw, "__builtin_spe_evsubfsmiaaw", SPE_BUILTIN_EVSUBFSMIAAW },
  { 0, CODE_FOR_spe_evsubfssiaaw, "__builtin_spe_evsubfssiaaw", SPE_BUILTIN_EVSUBFSSIAAW },
  { 0, CODE_FOR_spe_evsubfumiaaw, "__builtin_spe_evsubfumiaaw", SPE_BUILTIN_EVSUBFUMIAAW },

  /* Place-holder.  Leave as last unary SPE builtin.  */
  { 0, CODE_FOR_spe_evsubfusiaaw, "__builtin_spe_evsubfusiaaw", SPE_BUILTIN_EVSUBFUSIAAW },

  { 0, CODE_FOR_paired_absv2sf2, "__builtin_paired_absv2sf2", PAIRED_BUILTIN_ABSV2SF2 },
  { 0, CODE_FOR_nabsv2sf2, "__builtin_paired_nabsv2sf2", PAIRED_BUILTIN_NABSV2SF2 },
  { 0, CODE_FOR_paired_negv2sf2, "__builtin_paired_negv2sf2", PAIRED_BUILTIN_NEGV2SF2 },
  { 0, CODE_FOR_sqrtv2sf2, "__builtin_paired_sqrtv2sf2", PAIRED_BUILTIN_SQRTV2SF2 },
  { 0, CODE_FOR_resv2sf2, "__builtin_paired_resv2sf2", PAIRED_BUILTIN_RESV2SF2 }
};

static rtx
rs6000_expand_unop_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  rtx op0 = expand_normal (arg0);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;

  if (icode == CODE_FOR_nothing)
    /* Builtin not supported on this processor.  */
    return 0;

  /* If we got invalid arguments bail out before generating bad rtl.  */
  if (arg0 == error_mark_node)
    return const0_rtx;

  if (icode == CODE_FOR_altivec_vspltisb
      || icode == CODE_FOR_altivec_vspltish
      || icode == CODE_FOR_altivec_vspltisw
      || icode == CODE_FOR_spe_evsplatfi
      || icode == CODE_FOR_spe_evsplati)
    {
      /* Only allow 5-bit *signed* literals.  */
      if (GET_CODE (op0) != CONST_INT
	  || INTVAL (op0) > 15
	  || INTVAL (op0) < -16)
	{
	  error ("argument 1 must be a 5-bit signed literal");
	  return const0_rtx;
	}
    }

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);

  pat = GEN_FCN (icode) (target, op0);
  if (! pat)
    return 0;
  emit_insn (pat);

  return target;
}

static rtx
altivec_expand_abs_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat, scratch1, scratch2;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  rtx op0 = expand_normal (arg0);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;

  /* If we have invalid arguments, bail out before generating bad rtl.  */
  if (arg0 == error_mark_node)
    return const0_rtx;

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);

  scratch1 = gen_reg_rtx (mode0);
  scratch2 = gen_reg_rtx (mode0);

  pat = GEN_FCN (icode) (target, op0, scratch1, scratch2);
  if (! pat)
    return 0;
  emit_insn (pat);

  return target;
}

static rtx
rs6000_expand_binop_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;

  if (icode == CODE_FOR_nothing)
    /* Builtin not supported on this processor.  */
    return 0;

  /* If we got invalid arguments bail out before generating bad rtl.  */
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  if (icode == CODE_FOR_altivec_vcfux
      || icode == CODE_FOR_altivec_vcfsx
      || icode == CODE_FOR_altivec_vctsxs
      || icode == CODE_FOR_altivec_vctuxs
      || icode == CODE_FOR_altivec_vspltb
      || icode == CODE_FOR_altivec_vsplth
      || icode == CODE_FOR_altivec_vspltw
      || icode == CODE_FOR_spe_evaddiw
      || icode == CODE_FOR_spe_evldd
      || icode == CODE_FOR_spe_evldh
      || icode == CODE_FOR_spe_evldw
      || icode == CODE_FOR_spe_evlhhesplat
      || icode == CODE_FOR_spe_evlhhossplat
      || icode == CODE_FOR_spe_evlhhousplat
      || icode == CODE_FOR_spe_evlwhe
      || icode == CODE_FOR_spe_evlwhos
      || icode == CODE_FOR_spe_evlwhou
      || icode == CODE_FOR_spe_evlwhsplat
      || icode == CODE_FOR_spe_evlwwsplat
      || icode == CODE_FOR_spe_evrlwi
      || icode == CODE_FOR_spe_evslwi
      || icode == CODE_FOR_spe_evsrwis
      || icode == CODE_FOR_spe_evsubifw
      || icode == CODE_FOR_spe_evsrwiu)
    {
      /* Only allow 5-bit unsigned literals.  */
      STRIP_NOPS (arg1);
      if (TREE_CODE (arg1) != INTEGER_CST
	  || TREE_INT_CST_LOW (arg1) & ~0x1f)
	{
	  error ("argument 2 must be a 5-bit unsigned literal");
	  return const0_rtx;
	}
    }

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  pat = GEN_FCN (icode) (target, op0, op1);
  if (! pat)
    return 0;
  emit_insn (pat);

  return target;
}

static rtx
altivec_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat, scratch;
  tree cr6_form = CALL_EXPR_ARG (exp, 0);
  tree arg0 = CALL_EXPR_ARG (exp, 1);
  tree arg1 = CALL_EXPR_ARG (exp, 2);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  enum machine_mode tmode = SImode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;
  int cr6_form_int;

  if (TREE_CODE (cr6_form) != INTEGER_CST)
    {
      error ("argument 1 of __builtin_altivec_predicate must be a constant");
      return const0_rtx;
    }
  else
    cr6_form_int = TREE_INT_CST_LOW (cr6_form);

  gcc_assert (mode0 == mode1);

  /* If we have invalid arguments, bail out before generating bad rtl.  */
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  scratch = gen_reg_rtx (mode0);

  pat = GEN_FCN (icode) (scratch, op0, op1);
  if (! pat)
    return 0;
  emit_insn (pat);

  /* The vec_any* and vec_all* predicates use the same opcodes for two
     different operations, but the bits in CR6 will be different
     depending on what information we want.  So we have to play tricks
     with CR6 to get the right bits out.

     If you think this is disgusting, look at the specs for the
     AltiVec predicates.  */

  switch (cr6_form_int)
    {
    case 0:
      emit_insn (gen_cr6_test_for_zero (target));
      break;
    case 1:
      emit_insn (gen_cr6_test_for_zero_reverse (target));
      break;
    case 2:
      emit_insn (gen_cr6_test_for_lt (target));
      break;
    case 3:
      emit_insn (gen_cr6_test_for_lt_reverse (target));
      break;
    default:
      error ("argument 1 of __builtin_altivec_predicate is out of range");
      break;
    }

  return target;
}

static rtx
paired_expand_lv_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat, addr;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = Pmode;
  enum machine_mode mode1 = Pmode;
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);

  if (icode == CODE_FOR_nothing)
    /* Builtin not supported on this processor.  */
    return 0;

  /* If we got invalid arguments bail out before generating bad rtl.  */
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  op1 = copy_to_mode_reg (mode1, op1);

  if (op0 == const0_rtx)
    {
      addr = gen_rtx_MEM (tmode, op1);
    }
  else
    {
      op0 = copy_to_mode_reg (mode0, op0);
      addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op0, op1));
    }

  pat = GEN_FCN (icode) (target, addr);

  if (! pat)
    return 0;
  emit_insn (pat);

  return target;
}

static rtx
altivec_expand_lv_builtin (enum insn_code icode, tree exp, rtx target, bool blk)
{
  rtx pat, addr;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = Pmode;
  enum machine_mode mode1 = Pmode;
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);

  if (icode == CODE_FOR_nothing)
    /* Builtin not supported on this processor.  */
    return 0;

  /* If we got invalid arguments bail out before generating bad rtl.  */
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  op1 = copy_to_mode_reg (mode1, op1);

  if (op0 == const0_rtx)
    {
      addr = gen_rtx_MEM (blk ? BLKmode : tmode, op1);
    }
  else
    {
      op0 = copy_to_mode_reg (mode0, op0);
      addr = gen_rtx_MEM (blk ? BLKmode : tmode, gen_rtx_PLUS (Pmode, op0, op1));
    }

  pat = GEN_FCN (icode) (target, addr);

  if (! pat)
    return 0;
  emit_insn (pat);

  return target;
}

static rtx
spe_expand_stv_builtin (enum insn_code icode, tree exp)
{
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  tree arg2 = CALL_EXPR_ARG (exp, 2);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  rtx op2 = expand_normal (arg2);
  rtx pat;
  enum machine_mode mode0 = insn_data[icode].operand[0].mode;
  enum machine_mode mode1 = insn_data[icode].operand[1].mode;
  enum machine_mode mode2 = insn_data[icode].operand[2].mode;

  /* Invalid arguments.  Bail before doing anything stoopid!  */
  if (arg0 == error_mark_node
      || arg1 == error_mark_node
      || arg2 == error_mark_node)
    return const0_rtx;

  if (! (*insn_data[icode].operand[2].predicate) (op0, mode2))
    op0 = copy_to_mode_reg (mode2, op0);
  if (! (*insn_data[icode].operand[0].predicate) (op1, mode0))
    op1 = copy_to_mode_reg (mode0, op1);
  if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
    op2 = copy_to_mode_reg (mode1, op2);

  pat = GEN_FCN (icode) (op1, op2, op0);
  if (pat)
    emit_insn (pat);
  return NULL_RTX;
}

static rtx
paired_expand_stv_builtin (enum insn_code icode, tree exp)
{
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  tree arg2 = CALL_EXPR_ARG (exp, 2);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  rtx op2 = expand_normal (arg2);
  rtx pat, addr;
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode1 = Pmode;
  enum machine_mode mode2 = Pmode;

  /* Invalid arguments.  Bail before doing anything stoopid!  */
  if (arg0 == error_mark_node
      || arg1 == error_mark_node
      || arg2 == error_mark_node)
    return const0_rtx;

  if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
    op0 = copy_to_mode_reg (tmode, op0);

  op2 = copy_to_mode_reg (mode2, op2);

  if (op1 == const0_rtx)
    {
      addr = gen_rtx_MEM (tmode, op2);
    }
  else
    {
      op1 = copy_to_mode_reg (mode1, op1);
      addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
    }

  pat = GEN_FCN (icode) (addr, op0);
  if (pat)
    emit_insn (pat);
  return NULL_RTX;
}

static rtx
altivec_expand_stv_builtin (enum insn_code icode, tree exp)
{
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  tree arg2 = CALL_EXPR_ARG (exp, 2);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  rtx op2 = expand_normal (arg2);
  rtx pat, addr;
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode1 = Pmode;
  enum machine_mode mode2 = Pmode;

  /* Invalid arguments.  Bail before doing anything stoopid!  */
  if (arg0 == error_mark_node
      || arg1 == error_mark_node
      || arg2 == error_mark_node)
    return const0_rtx;

  if (! (*insn_data[icode].operand[1].predicate) (op0, tmode))
    op0 = copy_to_mode_reg (tmode, op0);

  op2 = copy_to_mode_reg (mode2, op2);

  if (op1 == const0_rtx)
    {
      addr = gen_rtx_MEM (tmode, op2);
    }
  else
    {
      op1 = copy_to_mode_reg (mode1, op1);
      addr = gen_rtx_MEM (tmode, gen_rtx_PLUS (Pmode, op1, op2));
    }

  pat = GEN_FCN (icode) (addr, op0);
  if (pat)
    emit_insn (pat);
  return NULL_RTX;
}

static rtx
rs6000_expand_ternop_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  tree arg2 = CALL_EXPR_ARG (exp, 2);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  rtx op2 = expand_normal (arg2);
  enum machine_mode tmode = insn_data[icode].operand[0].mode;
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;
  enum machine_mode mode2 = insn_data[icode].operand[3].mode;

  if (icode == CODE_FOR_nothing)
    /* Builtin not supported on this processor.  */
    return 0;

  /* If we got invalid arguments bail out before generating bad rtl.  */
  if (arg0 == error_mark_node
      || arg1 == error_mark_node
      || arg2 == error_mark_node)
    return const0_rtx;

  switch (icode)
    {
    case CODE_FOR_altivec_vsldoi_v4sf:
    case CODE_FOR_altivec_vsldoi_v4si:
    case CODE_FOR_altivec_vsldoi_v8hi:
    case CODE_FOR_altivec_vsldoi_v16qi:
      /* Only allow 4-bit unsigned literals.  */
      STRIP_NOPS (arg2);
      if (TREE_CODE (arg2) != INTEGER_CST
	  || TREE_INT_CST_LOW (arg2) & ~0xf)
	{
	  error ("argument 3 must be a 4-bit unsigned literal");
	  return const0_rtx;
	}
      break;

    case CODE_FOR_vsx_xxpermdi_v2df:
    case CODE_FOR_vsx_xxpermdi_v2di:
    case CODE_FOR_vsx_xxsldwi_v16qi:
    case CODE_FOR_vsx_xxsldwi_v8hi:
    case CODE_FOR_vsx_xxsldwi_v4si:
    case CODE_FOR_vsx_xxsldwi_v4sf:
    case CODE_FOR_vsx_xxsldwi_v2di:
    case CODE_FOR_vsx_xxsldwi_v2df:
      /* Only allow 2-bit unsigned literals.  */
      STRIP_NOPS (arg2);
      if (TREE_CODE (arg2) != INTEGER_CST
	  || TREE_INT_CST_LOW (arg2) & ~0x3)
	{
	  error ("argument 3 must be a 2-bit unsigned literal");
	  return const0_rtx;
	}
      break;

    case CODE_FOR_vsx_set_v2df:
    case CODE_FOR_vsx_set_v2di:
      /* Only allow 1-bit unsigned literals.  */
      STRIP_NOPS (arg2);
      if (TREE_CODE (arg2) != INTEGER_CST
	  || TREE_INT_CST_LOW (arg2) & ~0x1)
	{
	  error ("argument 3 must be a 1-bit unsigned literal");
	  return const0_rtx;
	}
      break;

    default:
      break;
    }

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);
  if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
    op2 = copy_to_mode_reg (mode2, op2);

  if (TARGET_PAIRED_FLOAT && icode == CODE_FOR_selv2sf4)
    pat = GEN_FCN (icode) (target, op0, op1, op2, CONST0_RTX (SFmode));
  else 
    pat = GEN_FCN (icode) (target, op0, op1, op2);
  if (! pat)
    return 0;
  emit_insn (pat);

  return target;
}

/* Expand the lvx builtins.  */
static rtx
altivec_expand_ld_builtin (tree exp, rtx target, bool *expandedp)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  tree arg0;
  enum machine_mode tmode, mode0;
  rtx pat, op0;
  enum insn_code icode;

  switch (fcode)
    {
    case ALTIVEC_BUILTIN_LD_INTERNAL_16qi:
      icode = CODE_FOR_vector_load_v16qi;
      break;
    case ALTIVEC_BUILTIN_LD_INTERNAL_8hi:
      icode = CODE_FOR_vector_load_v8hi;
      break;
    case ALTIVEC_BUILTIN_LD_INTERNAL_4si:
      icode = CODE_FOR_vector_load_v4si;
      break;
    case ALTIVEC_BUILTIN_LD_INTERNAL_4sf:
      icode = CODE_FOR_vector_load_v4sf;
      break;
    default:
      *expandedp = false;
      return NULL_RTX;
    }

  *expandedp = true;

  arg0 = CALL_EXPR_ARG (exp, 0);
  op0 = expand_normal (arg0);
  tmode = insn_data[icode].operand[0].mode;
  mode0 = insn_data[icode].operand[1].mode;

  if (target == 0
      || GET_MODE (target) != tmode
      || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
    target = gen_reg_rtx (tmode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));

  pat = GEN_FCN (icode) (target, op0);
  if (! pat)
    return 0;
  emit_insn (pat);
  return target;
}

/* Expand the stvx builtins.  */
static rtx
altivec_expand_st_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
			   bool *expandedp)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  tree arg0, arg1;
  enum machine_mode mode0, mode1;
  rtx pat, op0, op1;
  enum insn_code icode;

  switch (fcode)
    {
    case ALTIVEC_BUILTIN_ST_INTERNAL_16qi:
      icode = CODE_FOR_vector_store_v16qi;
      break;
    case ALTIVEC_BUILTIN_ST_INTERNAL_8hi:
      icode = CODE_FOR_vector_store_v8hi;
      break;
    case ALTIVEC_BUILTIN_ST_INTERNAL_4si:
      icode = CODE_FOR_vector_store_v4si;
      break;
    case ALTIVEC_BUILTIN_ST_INTERNAL_4sf:
      icode = CODE_FOR_vector_store_v4sf;
      break;
    default:
      *expandedp = false;
      return NULL_RTX;
    }

  arg0 = CALL_EXPR_ARG (exp, 0);
  arg1 = CALL_EXPR_ARG (exp, 1);
  op0 = expand_normal (arg0);
  op1 = expand_normal (arg1);
  mode0 = insn_data[icode].operand[0].mode;
  mode1 = insn_data[icode].operand[1].mode;

  if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
    op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
  if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  pat = GEN_FCN (icode) (op0, op1);
  if (pat)
    emit_insn (pat);

  *expandedp = true;
  return NULL_RTX;
}

/* Expand the dst builtins.  */
static rtx
altivec_expand_dst_builtin (tree exp, rtx target ATTRIBUTE_UNUSED,
			    bool *expandedp)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  tree arg0, arg1, arg2;
  enum machine_mode mode0, mode1, mode2;
  rtx pat, op0, op1, op2;
  const struct builtin_description *d;
  size_t i;

  *expandedp = false;

  /* Handle DST variants.  */
  d = bdesc_dst;
  for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
    if (d->code == fcode)
      {
	arg0 = CALL_EXPR_ARG (exp, 0);
	arg1 = CALL_EXPR_ARG (exp, 1);
	arg2 = CALL_EXPR_ARG (exp, 2);
	op0 = expand_normal (arg0);
	op1 = expand_normal (arg1);
	op2 = expand_normal (arg2);
	mode0 = insn_data[d->icode].operand[0].mode;
	mode1 = insn_data[d->icode].operand[1].mode;
	mode2 = insn_data[d->icode].operand[2].mode;

	/* Invalid arguments, bail out before generating bad rtl.  */
	if (arg0 == error_mark_node
	    || arg1 == error_mark_node
	    || arg2 == error_mark_node)
	  return const0_rtx;

	*expandedp = true;
	STRIP_NOPS (arg2);
	if (TREE_CODE (arg2) != INTEGER_CST
	    || TREE_INT_CST_LOW (arg2) & ~0x3)
	  {
	    error ("argument to %qs must be a 2-bit unsigned literal", d->name);
	    return const0_rtx;
	  }

	if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
	  op0 = copy_to_mode_reg (Pmode, op0);
	if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
	  op1 = copy_to_mode_reg (mode1, op1);

	pat = GEN_FCN (d->icode) (op0, op1, op2);
	if (pat != 0)
	  emit_insn (pat);

	return NULL_RTX;
      }

  return NULL_RTX;
}

/* Expand vec_init builtin.  */
static rtx
altivec_expand_vec_init_builtin (tree type, tree exp, rtx target)
{
  enum machine_mode tmode = TYPE_MODE (type);
  enum machine_mode inner_mode = GET_MODE_INNER (tmode);
  int i, n_elt = GET_MODE_NUNITS (tmode);
  rtvec v = rtvec_alloc (n_elt);

  gcc_assert (VECTOR_MODE_P (tmode));
  gcc_assert (n_elt == call_expr_nargs (exp));

  for (i = 0; i < n_elt; ++i)
    {
      rtx x = expand_normal (CALL_EXPR_ARG (exp, i));
      RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x);
    }

  if (!target || !register_operand (target, tmode))
    target = gen_reg_rtx (tmode);

  rs6000_expand_vector_init (target, gen_rtx_PARALLEL (tmode, v));
  return target;
}

/* Return the integer constant in ARG.  Constrain it to be in the range
   of the subparts of VEC_TYPE; issue an error if not.  */

static int
get_element_number (tree vec_type, tree arg)
{
  unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1;

  if (!host_integerp (arg, 1)
      || (elt = tree_low_cst (arg, 1), elt > max))
    {
      error ("selector must be an integer constant in the range 0..%wi", max);
      return 0;
    }

  return elt;
}

/* Expand vec_set builtin.  */
static rtx
altivec_expand_vec_set_builtin (tree exp)
{
  enum machine_mode tmode, mode1;
  tree arg0, arg1, arg2;
  int elt;
  rtx op0, op1;

  arg0 = CALL_EXPR_ARG (exp, 0);
  arg1 = CALL_EXPR_ARG (exp, 1);
  arg2 = CALL_EXPR_ARG (exp, 2);

  tmode = TYPE_MODE (TREE_TYPE (arg0));
  mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
  gcc_assert (VECTOR_MODE_P (tmode));

  op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL);
  op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL);
  elt = get_element_number (TREE_TYPE (arg0), arg2);

  if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode)
    op1 = convert_modes (mode1, GET_MODE (op1), op1, true);

  op0 = force_reg (tmode, op0);
  op1 = force_reg (mode1, op1);

  rs6000_expand_vector_set (op0, op1, elt);

  return op0;
}

/* Expand vec_ext builtin.  */
static rtx
altivec_expand_vec_ext_builtin (tree exp, rtx target)
{
  enum machine_mode tmode, mode0;
  tree arg0, arg1;
  int elt;
  rtx op0;

  arg0 = CALL_EXPR_ARG (exp, 0);
  arg1 = CALL_EXPR_ARG (exp, 1);

  op0 = expand_normal (arg0);
  elt = get_element_number (TREE_TYPE (arg0), arg1);

  tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0)));
  mode0 = TYPE_MODE (TREE_TYPE (arg0));
  gcc_assert (VECTOR_MODE_P (mode0));

  op0 = force_reg (mode0, op0);

  if (optimize || !target || !register_operand (target, tmode))
    target = gen_reg_rtx (tmode);

  rs6000_expand_vector_extract (target, op0, elt);

  return target;
}

/* Expand the builtin in EXP and store the result in TARGET.  Store
   true in *EXPANDEDP if we found a builtin to expand.  */
static rtx
altivec_expand_builtin (tree exp, rtx target, bool *expandedp)
{
  const struct builtin_description *d;
  const struct builtin_description_predicates *dp;
  size_t i;
  enum insn_code icode;
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  tree arg0;
  rtx op0, pat;
  enum machine_mode tmode, mode0;
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);

  if ((fcode >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
       && fcode <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
      || (fcode >= VSX_BUILTIN_OVERLOADED_FIRST
	  && fcode <= VSX_BUILTIN_OVERLOADED_LAST))
    {
      *expandedp = true;
      error ("unresolved overload for Altivec builtin %qF", fndecl);
      return const0_rtx;
    }

  target = altivec_expand_ld_builtin (exp, target, expandedp);
  if (*expandedp)
    return target;

  target = altivec_expand_st_builtin (exp, target, expandedp);
  if (*expandedp)
    return target;

  target = altivec_expand_dst_builtin (exp, target, expandedp);
  if (*expandedp)
    return target;

  *expandedp = true;

  switch (fcode)
    {
    case ALTIVEC_BUILTIN_STVX:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvx, exp);
    case ALTIVEC_BUILTIN_STVEBX:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvebx, exp);
    case ALTIVEC_BUILTIN_STVEHX:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvehx, exp);
    case ALTIVEC_BUILTIN_STVEWX:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvewx, exp);
    case ALTIVEC_BUILTIN_STVXL:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvxl, exp);

    case ALTIVEC_BUILTIN_STVLX:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlx, exp);
    case ALTIVEC_BUILTIN_STVLXL:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvlxl, exp);
    case ALTIVEC_BUILTIN_STVRX:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrx, exp);
    case ALTIVEC_BUILTIN_STVRXL:
      return altivec_expand_stv_builtin (CODE_FOR_altivec_stvrxl, exp);

    case ALTIVEC_BUILTIN_MFVSCR:
      icode = CODE_FOR_altivec_mfvscr;
      tmode = insn_data[icode].operand[0].mode;

      if (target == 0
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);

      pat = GEN_FCN (icode) (target);
      if (! pat)
	return 0;
      emit_insn (pat);
      return target;

    case ALTIVEC_BUILTIN_MTVSCR:
      icode = CODE_FOR_altivec_mtvscr;
      arg0 = CALL_EXPR_ARG (exp, 0);
      op0 = expand_normal (arg0);
      mode0 = insn_data[icode].operand[0].mode;

      /* If we got invalid arguments bail out before generating bad rtl.  */
      if (arg0 == error_mark_node)
	return const0_rtx;

      if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);

      pat = GEN_FCN (icode) (op0);
      if (pat)
	emit_insn (pat);
      return NULL_RTX;

    case ALTIVEC_BUILTIN_DSSALL:
      emit_insn (gen_altivec_dssall ());
      return NULL_RTX;

    case ALTIVEC_BUILTIN_DSS:
      icode = CODE_FOR_altivec_dss;
      arg0 = CALL_EXPR_ARG (exp, 0);
      STRIP_NOPS (arg0);
      op0 = expand_normal (arg0);
      mode0 = insn_data[icode].operand[0].mode;

      /* If we got invalid arguments bail out before generating bad rtl.  */
      if (arg0 == error_mark_node)
	return const0_rtx;

      if (TREE_CODE (arg0) != INTEGER_CST
	  || TREE_INT_CST_LOW (arg0) & ~0x3)
	{
	  error ("argument to dss must be a 2-bit unsigned literal");
	  return const0_rtx;
	}

      if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);

      emit_insn (gen_altivec_dss (op0));
      return NULL_RTX;

    case ALTIVEC_BUILTIN_VEC_INIT_V4SI:
    case ALTIVEC_BUILTIN_VEC_INIT_V8HI:
    case ALTIVEC_BUILTIN_VEC_INIT_V16QI:
    case ALTIVEC_BUILTIN_VEC_INIT_V4SF:
    case VSX_BUILTIN_VEC_INIT_V2DF:
    case VSX_BUILTIN_VEC_INIT_V2DI:
      return altivec_expand_vec_init_builtin (TREE_TYPE (exp), exp, target);

    case ALTIVEC_BUILTIN_VEC_SET_V4SI:
    case ALTIVEC_BUILTIN_VEC_SET_V8HI:
    case ALTIVEC_BUILTIN_VEC_SET_V16QI:
    case ALTIVEC_BUILTIN_VEC_SET_V4SF:
    case VSX_BUILTIN_VEC_SET_V2DF:
    case VSX_BUILTIN_VEC_SET_V2DI:
      return altivec_expand_vec_set_builtin (exp);

    case ALTIVEC_BUILTIN_VEC_EXT_V4SI:
    case ALTIVEC_BUILTIN_VEC_EXT_V8HI:
    case ALTIVEC_BUILTIN_VEC_EXT_V16QI:
    case ALTIVEC_BUILTIN_VEC_EXT_V4SF:
    case VSX_BUILTIN_VEC_EXT_V2DF:
    case VSX_BUILTIN_VEC_EXT_V2DI:
      return altivec_expand_vec_ext_builtin (exp, target);

    default:
      break;
      /* Fall through.  */
    }

  /* Expand abs* operations.  */
  d = bdesc_abs;
  for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
    if (d->code == fcode)
      return altivec_expand_abs_builtin (d->icode, exp, target);

  /* Expand the AltiVec predicates.  */
  dp = bdesc_altivec_preds;
  for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
    if (dp->code == fcode)
      return altivec_expand_predicate_builtin (dp->icode, exp, target);

  /* LV* are funky.  We initialized them differently.  */
  switch (fcode)
    {
    case ALTIVEC_BUILTIN_LVSL:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsl,
					exp, target, false);
    case ALTIVEC_BUILTIN_LVSR:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvsr,
					exp, target, false);
    case ALTIVEC_BUILTIN_LVEBX:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvebx,
					exp, target, false);
    case ALTIVEC_BUILTIN_LVEHX:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvehx,
					exp, target, false);
    case ALTIVEC_BUILTIN_LVEWX:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvewx,
					exp, target, false);
    case ALTIVEC_BUILTIN_LVXL:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvxl,
					exp, target, false);
    case ALTIVEC_BUILTIN_LVX:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvx,
					exp, target, false);
    case ALTIVEC_BUILTIN_LVLX:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlx,
					exp, target, true);
    case ALTIVEC_BUILTIN_LVLXL:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvlxl,
					exp, target, true);
    case ALTIVEC_BUILTIN_LVRX:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrx,
					exp, target, true);
    case ALTIVEC_BUILTIN_LVRXL:
      return altivec_expand_lv_builtin (CODE_FOR_altivec_lvrxl,
					exp, target, true);
    default:
      break;
      /* Fall through.  */
    }

  *expandedp = false;
  return NULL_RTX;
}

/* Expand the builtin in EXP and store the result in TARGET.  Store
   true in *EXPANDEDP if we found a builtin to expand.  */
static rtx
paired_expand_builtin (tree exp, rtx target, bool * expandedp)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  const struct builtin_description *d;
  size_t i;

  *expandedp = true;

  switch (fcode)
    {
    case PAIRED_BUILTIN_STX:
      return paired_expand_stv_builtin (CODE_FOR_paired_stx, exp);
    case PAIRED_BUILTIN_LX:
      return paired_expand_lv_builtin (CODE_FOR_paired_lx, exp, target);
    default:
      break;
      /* Fall through.  */
    }

  /* Expand the paired predicates.  */
  d = bdesc_paired_preds;
  for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); i++, d++)
    if (d->code == fcode)
      return paired_expand_predicate_builtin (d->icode, exp, target);

  *expandedp = false;
  return NULL_RTX;
}

/* Binops that need to be initialized manually, but can be expanded
   automagically by rs6000_expand_binop_builtin.  */
static struct builtin_description bdesc_2arg_spe[] =
{
  { 0, CODE_FOR_spe_evlddx, "__builtin_spe_evlddx", SPE_BUILTIN_EVLDDX },
  { 0, CODE_FOR_spe_evldwx, "__builtin_spe_evldwx", SPE_BUILTIN_EVLDWX },
  { 0, CODE_FOR_spe_evldhx, "__builtin_spe_evldhx", SPE_BUILTIN_EVLDHX },
  { 0, CODE_FOR_spe_evlwhex, "__builtin_spe_evlwhex", SPE_BUILTIN_EVLWHEX },
  { 0, CODE_FOR_spe_evlwhoux, "__builtin_spe_evlwhoux", SPE_BUILTIN_EVLWHOUX },
  { 0, CODE_FOR_spe_evlwhosx, "__builtin_spe_evlwhosx", SPE_BUILTIN_EVLWHOSX },
  { 0, CODE_FOR_spe_evlwwsplatx, "__builtin_spe_evlwwsplatx", SPE_BUILTIN_EVLWWSPLATX },
  { 0, CODE_FOR_spe_evlwhsplatx, "__builtin_spe_evlwhsplatx", SPE_BUILTIN_EVLWHSPLATX },
  { 0, CODE_FOR_spe_evlhhesplatx, "__builtin_spe_evlhhesplatx", SPE_BUILTIN_EVLHHESPLATX },
  { 0, CODE_FOR_spe_evlhhousplatx, "__builtin_spe_evlhhousplatx", SPE_BUILTIN_EVLHHOUSPLATX },
  { 0, CODE_FOR_spe_evlhhossplatx, "__builtin_spe_evlhhossplatx", SPE_BUILTIN_EVLHHOSSPLATX },
  { 0, CODE_FOR_spe_evldd, "__builtin_spe_evldd", SPE_BUILTIN_EVLDD },
  { 0, CODE_FOR_spe_evldw, "__builtin_spe_evldw", SPE_BUILTIN_EVLDW },
  { 0, CODE_FOR_spe_evldh, "__builtin_spe_evldh", SPE_BUILTIN_EVLDH },
  { 0, CODE_FOR_spe_evlwhe, "__builtin_spe_evlwhe", SPE_BUILTIN_EVLWHE },
  { 0, CODE_FOR_spe_evlwhou, "__builtin_spe_evlwhou", SPE_BUILTIN_EVLWHOU },
  { 0, CODE_FOR_spe_evlwhos, "__builtin_spe_evlwhos", SPE_BUILTIN_EVLWHOS },
  { 0, CODE_FOR_spe_evlwwsplat, "__builtin_spe_evlwwsplat", SPE_BUILTIN_EVLWWSPLAT },
  { 0, CODE_FOR_spe_evlwhsplat, "__builtin_spe_evlwhsplat", SPE_BUILTIN_EVLWHSPLAT },
  { 0, CODE_FOR_spe_evlhhesplat, "__builtin_spe_evlhhesplat", SPE_BUILTIN_EVLHHESPLAT },
  { 0, CODE_FOR_spe_evlhhousplat, "__builtin_spe_evlhhousplat", SPE_BUILTIN_EVLHHOUSPLAT },
  { 0, CODE_FOR_spe_evlhhossplat, "__builtin_spe_evlhhossplat", SPE_BUILTIN_EVLHHOSSPLAT }
};

/* Expand the builtin in EXP and store the result in TARGET.  Store
   true in *EXPANDEDP if we found a builtin to expand.

   This expands the SPE builtins that are not simple unary and binary
   operations.  */
static rtx
spe_expand_builtin (tree exp, rtx target, bool *expandedp)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  tree arg1, arg0;
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  enum insn_code icode;
  enum machine_mode tmode, mode0;
  rtx pat, op0;
  struct builtin_description *d;
  size_t i;

  *expandedp = true;

  /* Syntax check for a 5-bit unsigned immediate.  */
  switch (fcode)
    {
    case SPE_BUILTIN_EVSTDD:
    case SPE_BUILTIN_EVSTDH:
    case SPE_BUILTIN_EVSTDW:
    case SPE_BUILTIN_EVSTWHE:
    case SPE_BUILTIN_EVSTWHO:
    case SPE_BUILTIN_EVSTWWE:
    case SPE_BUILTIN_EVSTWWO:
      arg1 = CALL_EXPR_ARG (exp, 2);
      if (TREE_CODE (arg1) != INTEGER_CST
	  || TREE_INT_CST_LOW (arg1) & ~0x1f)
	{
	  error ("argument 2 must be a 5-bit unsigned literal");
	  return const0_rtx;
	}
      break;
    default:
      break;
    }

  /* The evsplat*i instructions are not quite generic.  */
  switch (fcode)
    {
    case SPE_BUILTIN_EVSPLATFI:
      return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplatfi,
					 exp, target);
    case SPE_BUILTIN_EVSPLATI:
      return rs6000_expand_unop_builtin (CODE_FOR_spe_evsplati,
					 exp, target);
    default:
      break;
    }

  d = (struct builtin_description *) bdesc_2arg_spe;
  for (i = 0; i < ARRAY_SIZE (bdesc_2arg_spe); ++i, ++d)
    if (d->code == fcode)
      return rs6000_expand_binop_builtin (d->icode, exp, target);

  d = (struct builtin_description *) bdesc_spe_predicates;
  for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, ++d)
    if (d->code == fcode)
      return spe_expand_predicate_builtin (d->icode, exp, target);

  d = (struct builtin_description *) bdesc_spe_evsel;
  for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, ++d)
    if (d->code == fcode)
      return spe_expand_evsel_builtin (d->icode, exp, target);

  switch (fcode)
    {
    case SPE_BUILTIN_EVSTDDX:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstddx, exp);
    case SPE_BUILTIN_EVSTDHX:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstdhx, exp);
    case SPE_BUILTIN_EVSTDWX:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstdwx, exp);
    case SPE_BUILTIN_EVSTWHEX:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwhex, exp);
    case SPE_BUILTIN_EVSTWHOX:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwhox, exp);
    case SPE_BUILTIN_EVSTWWEX:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwwex, exp);
    case SPE_BUILTIN_EVSTWWOX:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwwox, exp);
    case SPE_BUILTIN_EVSTDD:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstdd, exp);
    case SPE_BUILTIN_EVSTDH:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstdh, exp);
    case SPE_BUILTIN_EVSTDW:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstdw, exp);
    case SPE_BUILTIN_EVSTWHE:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwhe, exp);
    case SPE_BUILTIN_EVSTWHO:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwho, exp);
    case SPE_BUILTIN_EVSTWWE:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwwe, exp);
    case SPE_BUILTIN_EVSTWWO:
      return spe_expand_stv_builtin (CODE_FOR_spe_evstwwo, exp);
    case SPE_BUILTIN_MFSPEFSCR:
      icode = CODE_FOR_spe_mfspefscr;
      tmode = insn_data[icode].operand[0].mode;

      if (target == 0
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);

      pat = GEN_FCN (icode) (target);
      if (! pat)
	return 0;
      emit_insn (pat);
      return target;
    case SPE_BUILTIN_MTSPEFSCR:
      icode = CODE_FOR_spe_mtspefscr;
      arg0 = CALL_EXPR_ARG (exp, 0);
      op0 = expand_normal (arg0);
      mode0 = insn_data[icode].operand[0].mode;

      if (arg0 == error_mark_node)
	return const0_rtx;

      if (! (*insn_data[icode].operand[0].predicate) (op0, mode0))
	op0 = copy_to_mode_reg (mode0, op0);

      pat = GEN_FCN (icode) (op0);
      if (pat)
	emit_insn (pat);
      return NULL_RTX;
    default:
      break;
    }

  *expandedp = false;
  return NULL_RTX;
}

static rtx
paired_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat, scratch, tmp;
  tree form = CALL_EXPR_ARG (exp, 0);
  tree arg0 = CALL_EXPR_ARG (exp, 1);
  tree arg1 = CALL_EXPR_ARG (exp, 2);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;
  int form_int;
  enum rtx_code code;

  if (TREE_CODE (form) != INTEGER_CST)
    {
      error ("argument 1 of __builtin_paired_predicate must be a constant");
      return const0_rtx;
    }
  else
    form_int = TREE_INT_CST_LOW (form);

  gcc_assert (mode0 == mode1);

  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  if (target == 0
      || GET_MODE (target) != SImode
      || !(*insn_data[icode].operand[0].predicate) (target, SImode))
    target = gen_reg_rtx (SImode);
  if (!(*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (!(*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  scratch = gen_reg_rtx (CCFPmode);

  pat = GEN_FCN (icode) (scratch, op0, op1);
  if (!pat)
    return const0_rtx;

  emit_insn (pat);

  switch (form_int)
    {
      /* LT bit.  */
    case 0:
      code = LT;
      break;
      /* GT bit.  */
    case 1:
      code = GT;
      break;
      /* EQ bit.  */
    case 2:
      code = EQ;
      break;
      /* UN bit.  */
    case 3:
      emit_insn (gen_move_from_CR_ov_bit (target, scratch));
      return target;
    default:
      error ("argument 1 of __builtin_paired_predicate is out of range");
      return const0_rtx;
    }

  tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
  emit_move_insn (target, tmp);
  return target;
}

static rtx
spe_expand_predicate_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat, scratch, tmp;
  tree form = CALL_EXPR_ARG (exp, 0);
  tree arg0 = CALL_EXPR_ARG (exp, 1);
  tree arg1 = CALL_EXPR_ARG (exp, 2);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;
  int form_int;
  enum rtx_code code;

  if (TREE_CODE (form) != INTEGER_CST)
    {
      error ("argument 1 of __builtin_spe_predicate must be a constant");
      return const0_rtx;
    }
  else
    form_int = TREE_INT_CST_LOW (form);

  gcc_assert (mode0 == mode1);

  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  if (target == 0
      || GET_MODE (target) != SImode
      || ! (*insn_data[icode].operand[0].predicate) (target, SImode))
    target = gen_reg_rtx (SImode);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode1, op1);

  scratch = gen_reg_rtx (CCmode);

  pat = GEN_FCN (icode) (scratch, op0, op1);
  if (! pat)
    return const0_rtx;
  emit_insn (pat);

  /* There are 4 variants for each predicate: _any_, _all_, _upper_,
     _lower_.  We use one compare, but look in different bits of the
     CR for each variant.

     There are 2 elements in each SPE simd type (upper/lower).  The CR
     bits are set as follows:

     BIT0  | BIT 1  | BIT 2   | BIT 3
     U     |   L    | (U | L) | (U & L)

     So, for an "all" relationship, BIT 3 would be set.
     For an "any" relationship, BIT 2 would be set.  Etc.

     Following traditional nomenclature, these bits map to:

     BIT0  | BIT 1  | BIT 2   | BIT 3
     LT    | GT     | EQ      | OV

     Later, we will generate rtl to look in the LT/EQ/EQ/OV bits.
  */

  switch (form_int)
    {
      /* All variant.  OV bit.  */
    case 0:
      /* We need to get to the OV bit, which is the ORDERED bit.  We
	 could generate (ordered:SI (reg:CC xx) (const_int 0)), but
	 that's ugly and will make validate_condition_mode die.
	 So let's just use another pattern.  */
      emit_insn (gen_move_from_CR_ov_bit (target, scratch));
      return target;
      /* Any variant.  EQ bit.  */
    case 1:
      code = EQ;
      break;
      /* Upper variant.  LT bit.  */
    case 2:
      code = LT;
      break;
      /* Lower variant.  GT bit.  */
    case 3:
      code = GT;
      break;
    default:
      error ("argument 1 of __builtin_spe_predicate is out of range");
      return const0_rtx;
    }

  tmp = gen_rtx_fmt_ee (code, SImode, scratch, const0_rtx);
  emit_move_insn (target, tmp);

  return target;
}

/* The evsel builtins look like this:

     e = __builtin_spe_evsel_OP (a, b, c, d);

   and work like this:

     e[upper] = a[upper] *OP* b[upper] ? c[upper] : d[upper];
     e[lower] = a[lower] *OP* b[lower] ? c[lower] : d[lower];
*/

static rtx
spe_expand_evsel_builtin (enum insn_code icode, tree exp, rtx target)
{
  rtx pat, scratch;
  tree arg0 = CALL_EXPR_ARG (exp, 0);
  tree arg1 = CALL_EXPR_ARG (exp, 1);
  tree arg2 = CALL_EXPR_ARG (exp, 2);
  tree arg3 = CALL_EXPR_ARG (exp, 3);
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  rtx op2 = expand_normal (arg2);
  rtx op3 = expand_normal (arg3);
  enum machine_mode mode0 = insn_data[icode].operand[1].mode;
  enum machine_mode mode1 = insn_data[icode].operand[2].mode;

  gcc_assert (mode0 == mode1);

  if (arg0 == error_mark_node || arg1 == error_mark_node
      || arg2 == error_mark_node || arg3 == error_mark_node)
    return const0_rtx;

  if (target == 0
      || GET_MODE (target) != mode0
      || ! (*insn_data[icode].operand[0].predicate) (target, mode0))
    target = gen_reg_rtx (mode0);

  if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
    op0 = copy_to_mode_reg (mode0, op0);
  if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
    op1 = copy_to_mode_reg (mode0, op1);
  if (! (*insn_data[icode].operand[1].predicate) (op2, mode1))
    op2 = copy_to_mode_reg (mode0, op2);
  if (! (*insn_data[icode].operand[1].predicate) (op3, mode1))
    op3 = copy_to_mode_reg (mode0, op3);

  /* Generate the compare.  */
  scratch = gen_reg_rtx (CCmode);
  pat = GEN_FCN (icode) (scratch, op0, op1);
  if (! pat)
    return const0_rtx;
  emit_insn (pat);

  if (mode0 == V2SImode)
    emit_insn (gen_spe_evsel (target, op2, op3, scratch));
  else
    emit_insn (gen_spe_evsel_fs (target, op2, op3, scratch));

  return target;
}

/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */

static rtx
rs6000_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
		       enum machine_mode mode ATTRIBUTE_UNUSED,
		       int ignore ATTRIBUTE_UNUSED)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
  const struct builtin_description *d;
  size_t i;
  rtx ret;
  bool success;

  if (fcode == RS6000_BUILTIN_RECIP)
      return rs6000_expand_binop_builtin (CODE_FOR_recipdf3, exp, target);

  if (fcode == RS6000_BUILTIN_RECIPF)
      return rs6000_expand_binop_builtin (CODE_FOR_recipsf3, exp, target);

  if (fcode == RS6000_BUILTIN_RSQRTF)
      return rs6000_expand_unop_builtin (CODE_FOR_rsqrtsf2, exp, target);

  if (fcode == RS6000_BUILTIN_BSWAP_HI)
    return rs6000_expand_unop_builtin (CODE_FOR_bswaphi2, exp, target);

  if (fcode == POWER7_BUILTIN_BPERMD)
    return rs6000_expand_binop_builtin (((TARGET_64BIT)
					 ? CODE_FOR_bpermd_di
					 : CODE_FOR_bpermd_si), exp, target);

  if (fcode == ALTIVEC_BUILTIN_MASK_FOR_LOAD
      || fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
    {
      int icode = (int) CODE_FOR_altivec_lvsr;
      enum machine_mode tmode = insn_data[icode].operand[0].mode;
      enum machine_mode mode = insn_data[icode].operand[1].mode;
      tree arg;
      rtx op, addr, pat;

      gcc_assert (TARGET_ALTIVEC);

      arg = CALL_EXPR_ARG (exp, 0);
      gcc_assert (TREE_CODE (TREE_TYPE (arg)) == POINTER_TYPE);
      op = expand_expr (arg, NULL_RTX, Pmode, EXPAND_NORMAL);
      addr = memory_address (mode, op);
      if (fcode == ALTIVEC_BUILTIN_MASK_FOR_STORE)
	op = addr;
      else
	{
	  /* For the load case need to negate the address.  */
	  op = gen_reg_rtx (GET_MODE (addr));
	  emit_insn (gen_rtx_SET (VOIDmode, op,
			 gen_rtx_NEG (GET_MODE (addr), addr)));
	}
      op = gen_rtx_MEM (mode, op);

      if (target == 0
	  || GET_MODE (target) != tmode
	  || ! (*insn_data[icode].operand[0].predicate) (target, tmode))
	target = gen_reg_rtx (tmode);

      /*pat = gen_altivec_lvsr (target, op);*/
      pat = GEN_FCN (icode) (target, op);
      if (!pat)
	return 0;
      emit_insn (pat);

      return target;
    }

  /* FIXME: There's got to be a nicer way to handle this case than
     constructing a new CALL_EXPR.  */
  if (fcode == ALTIVEC_BUILTIN_VCFUX
      || fcode == ALTIVEC_BUILTIN_VCFSX
      || fcode == ALTIVEC_BUILTIN_VCTUXS
      || fcode == ALTIVEC_BUILTIN_VCTSXS)
    {
      if (call_expr_nargs (exp) == 1)
	exp = build_call_nary (TREE_TYPE (exp), CALL_EXPR_FN (exp),
			       2, CALL_EXPR_ARG (exp, 0), integer_zero_node);
    }

  if (TARGET_ALTIVEC)
    {
      ret = altivec_expand_builtin (exp, target, &success);

      if (success)
	return ret;
    }
  if (TARGET_SPE)
    {
      ret = spe_expand_builtin (exp, target, &success);

      if (success)
	return ret;
    }
  if (TARGET_PAIRED_FLOAT)
    {
      ret = paired_expand_builtin (exp, target, &success);

      if (success)
	return ret;
    }  

  gcc_assert (TARGET_ALTIVEC || TARGET_VSX || TARGET_SPE || TARGET_PAIRED_FLOAT);

  /* Handle simple unary operations.  */
  d = (struct builtin_description *) bdesc_1arg;
  for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
    if (d->code == fcode)
      return rs6000_expand_unop_builtin (d->icode, exp, target);

  /* Handle simple binary operations.  */
  d = (struct builtin_description *) bdesc_2arg;
  for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
    if (d->code == fcode)
      return rs6000_expand_binop_builtin (d->icode, exp, target);

  /* Handle simple ternary operations.  */
  d = bdesc_3arg;
  for (i = 0; i < ARRAY_SIZE  (bdesc_3arg); i++, d++)
    if (d->code == fcode)
      return rs6000_expand_ternop_builtin (d->icode, exp, target);

  gcc_unreachable ();
}

static void
rs6000_init_builtins (void)
{
  tree tdecl;

  V2SI_type_node = build_vector_type (intSI_type_node, 2);
  V2SF_type_node = build_vector_type (float_type_node, 2);
  V2DI_type_node = build_vector_type (intDI_type_node, 2);
  V2DF_type_node = build_vector_type (double_type_node, 2);
  V4HI_type_node = build_vector_type (intHI_type_node, 4);
  V4SI_type_node = build_vector_type (intSI_type_node, 4);
  V4SF_type_node = build_vector_type (float_type_node, 4);
  V8HI_type_node = build_vector_type (intHI_type_node, 8);
  V16QI_type_node = build_vector_type (intQI_type_node, 16);

  unsigned_V16QI_type_node = build_vector_type (unsigned_intQI_type_node, 16);
  unsigned_V8HI_type_node = build_vector_type (unsigned_intHI_type_node, 8);
  unsigned_V4SI_type_node = build_vector_type (unsigned_intSI_type_node, 4);
  unsigned_V2DI_type_node = build_vector_type (unsigned_intDI_type_node, 2);

  opaque_V2SF_type_node = build_opaque_vector_type (float_type_node, 2);
  opaque_V2SI_type_node = build_opaque_vector_type (intSI_type_node, 2);
  opaque_p_V2SI_type_node = build_pointer_type (opaque_V2SI_type_node);
  opaque_V4SI_type_node = build_opaque_vector_type (intSI_type_node, 4);

  /* The 'vector bool ...' types must be kept distinct from 'vector unsigned ...'
     types, especially in C++ land.  Similarly, 'vector pixel' is distinct from
     'vector unsigned short'.  */

  bool_char_type_node = build_distinct_type_copy (unsigned_intQI_type_node);
  bool_short_type_node = build_distinct_type_copy (unsigned_intHI_type_node);
  bool_int_type_node = build_distinct_type_copy (unsigned_intSI_type_node);
  bool_long_type_node = build_distinct_type_copy (unsigned_intDI_type_node);
  pixel_type_node = build_distinct_type_copy (unsigned_intHI_type_node);

  long_integer_type_internal_node = long_integer_type_node;
  long_unsigned_type_internal_node = long_unsigned_type_node;
  intQI_type_internal_node = intQI_type_node;
  uintQI_type_internal_node = unsigned_intQI_type_node;
  intHI_type_internal_node = intHI_type_node;
  uintHI_type_internal_node = unsigned_intHI_type_node;
  intSI_type_internal_node = intSI_type_node;
  uintSI_type_internal_node = unsigned_intSI_type_node;
  intDI_type_internal_node = intDI_type_node;
  uintDI_type_internal_node = unsigned_intDI_type_node;
  float_type_internal_node = float_type_node;
  double_type_internal_node = float_type_node;
  void_type_internal_node = void_type_node;

  /* Initialize the modes for builtin_function_type, mapping a machine mode to
     tree type node.  */
  builtin_mode_to_type[QImode][0] = integer_type_node;
  builtin_mode_to_type[HImode][0] = integer_type_node;
  builtin_mode_to_type[SImode][0] = intSI_type_node;
  builtin_mode_to_type[SImode][1] = unsigned_intSI_type_node;
  builtin_mode_to_type[DImode][0] = intDI_type_node;
  builtin_mode_to_type[DImode][1] = unsigned_intDI_type_node;
  builtin_mode_to_type[SFmode][0] = float_type_node;
  builtin_mode_to_type[DFmode][0] = double_type_node;
  builtin_mode_to_type[V2SImode][0] = V2SI_type_node;
  builtin_mode_to_type[V2SFmode][0] = V2SF_type_node;
  builtin_mode_to_type[V2DImode][0] = V2DI_type_node;
  builtin_mode_to_type[V2DImode][1] = unsigned_V2DI_type_node;
  builtin_mode_to_type[V2DFmode][0] = V2DF_type_node;
  builtin_mode_to_type[V4HImode][0] = V4HI_type_node;
  builtin_mode_to_type[V4SImode][0] = V4SI_type_node;
  builtin_mode_to_type[V4SImode][1] = unsigned_V4SI_type_node;
  builtin_mode_to_type[V4SFmode][0] = V4SF_type_node;
  builtin_mode_to_type[V8HImode][0] = V8HI_type_node;
  builtin_mode_to_type[V8HImode][1] = unsigned_V8HI_type_node;
  builtin_mode_to_type[V16QImode][0] = V16QI_type_node;
  builtin_mode_to_type[V16QImode][1] = unsigned_V16QI_type_node;

  tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
      		      get_identifier ("__bool char"),
		      bool_char_type_node);
  TYPE_NAME (bool_char_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
      		      get_identifier ("__bool short"),
		      bool_short_type_node);
  TYPE_NAME (bool_short_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
      		      get_identifier ("__bool int"),
		      bool_int_type_node);
  TYPE_NAME (bool_int_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__pixel"),
		      pixel_type_node);
  TYPE_NAME (pixel_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);

  bool_V16QI_type_node = build_vector_type (bool_char_type_node, 16);
  bool_V8HI_type_node = build_vector_type (bool_short_type_node, 8);
  bool_V4SI_type_node = build_vector_type (bool_int_type_node, 4);
  bool_V2DI_type_node = build_vector_type (bool_long_type_node, 2);
  pixel_V8HI_type_node = build_vector_type (pixel_type_node, 8);

  tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
      		      get_identifier ("__vector unsigned char"),
		      unsigned_V16QI_type_node);
  TYPE_NAME (unsigned_V16QI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector signed char"),
		      V16QI_type_node);
  TYPE_NAME (V16QI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector __bool char"),
		      bool_V16QI_type_node);
  TYPE_NAME ( bool_V16QI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);

  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector unsigned short"),
		      unsigned_V8HI_type_node);
  TYPE_NAME (unsigned_V8HI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector signed short"),
		      V8HI_type_node);
  TYPE_NAME (V8HI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
      		      get_identifier ("__vector __bool short"),
		      bool_V8HI_type_node);
  TYPE_NAME (bool_V8HI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);

  tdecl = build_decl (BUILTINS_LOCATION, TYPE_DECL,
      		      get_identifier ("__vector unsigned int"),
		      unsigned_V4SI_type_node);
  TYPE_NAME (unsigned_V4SI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector signed int"),
		      V4SI_type_node);
  TYPE_NAME (V4SI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector __bool int"),
		      bool_V4SI_type_node);
  TYPE_NAME (bool_V4SI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);

  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector float"),
		      V4SF_type_node);
  TYPE_NAME (V4SF_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);
  tdecl = build_decl (BUILTINS_LOCATION,
      		      TYPE_DECL, get_identifier ("__vector __pixel"),
		      pixel_V8HI_type_node);
  TYPE_NAME (pixel_V8HI_type_node) = tdecl;
  (*lang_hooks.decls.pushdecl) (tdecl);

  if (TARGET_VSX)
    {
      tdecl = build_decl (BUILTINS_LOCATION,
			  TYPE_DECL, get_identifier ("__vector double"),
			  V2DF_type_node);
      TYPE_NAME (V2DF_type_node) = tdecl;
      (*lang_hooks.decls.pushdecl) (tdecl);

      tdecl = build_decl (BUILTINS_LOCATION,
			  TYPE_DECL, get_identifier ("__vector long"),
			  V2DI_type_node);
      TYPE_NAME (V2DI_type_node) = tdecl;
      (*lang_hooks.decls.pushdecl) (tdecl);

      tdecl = build_decl (BUILTINS_LOCATION,
			  TYPE_DECL, get_identifier ("__vector unsigned long"),
			  unsigned_V2DI_type_node);
      TYPE_NAME (unsigned_V2DI_type_node) = tdecl;
      (*lang_hooks.decls.pushdecl) (tdecl);

      tdecl = build_decl (BUILTINS_LOCATION,
			  TYPE_DECL, get_identifier ("__vector __bool long"),
			  bool_V2DI_type_node);
      TYPE_NAME (bool_V2DI_type_node) = tdecl;
      (*lang_hooks.decls.pushdecl) (tdecl);
    }

  if (TARGET_PAIRED_FLOAT)
    paired_init_builtins ();
  if (TARGET_SPE)
    spe_init_builtins ();
  if (TARGET_ALTIVEC)
    altivec_init_builtins ();
  if (TARGET_ALTIVEC || TARGET_SPE || TARGET_PAIRED_FLOAT || TARGET_VSX)
    rs6000_common_init_builtins ();
  if (TARGET_PPC_GFXOPT)
    {
      tree ftype = builtin_function_type (SFmode, SFmode, SFmode, VOIDmode,
					  RS6000_BUILTIN_RECIPF,
					  "__builtin_recipdivf");
      def_builtin (MASK_PPC_GFXOPT, "__builtin_recipdivf", ftype,
		   RS6000_BUILTIN_RECIPF);

      ftype = builtin_function_type (SFmode, SFmode, VOIDmode, VOIDmode,
				     RS6000_BUILTIN_RSQRTF,
				     "__builtin_rsqrtf");
      def_builtin (MASK_PPC_GFXOPT, "__builtin_rsqrtf", ftype,
		   RS6000_BUILTIN_RSQRTF);
    }
  if (TARGET_POPCNTB)
    {
      tree ftype = builtin_function_type (DFmode, DFmode, DFmode, VOIDmode,
					  RS6000_BUILTIN_RECIP,
					  "__builtin_recipdiv");
      def_builtin (MASK_POPCNTB, "__builtin_recipdiv", ftype,
		   RS6000_BUILTIN_RECIP);

    }
  if (TARGET_POPCNTD)
    {
      enum machine_mode mode = (TARGET_64BIT) ? DImode : SImode;
      tree ftype = builtin_function_type (mode, mode, mode, VOIDmode,
					  POWER7_BUILTIN_BPERMD,
					  "__builtin_bpermd");
      def_builtin (MASK_POPCNTD, "__builtin_bpermd", ftype,
		   POWER7_BUILTIN_BPERMD);
    }
  if (TARGET_POWERPC)
    {
      /* Don't use builtin_function_type here, as it maps HI/QI to SI.  */
      tree ftype = build_function_type_list (unsigned_intHI_type_node,
					     unsigned_intHI_type_node,
					     NULL_TREE);
      def_builtin (MASK_POWERPC, "__builtin_bswap16", ftype,
		   RS6000_BUILTIN_BSWAP_HI);
    }

#if TARGET_XCOFF
  /* AIX libm provides clog as __clog.  */
  if (built_in_decls [BUILT_IN_CLOG])
    set_user_assembler_name (built_in_decls [BUILT_IN_CLOG], "__clog");
#endif

#ifdef SUBTARGET_INIT_BUILTINS
  SUBTARGET_INIT_BUILTINS;
#endif
}

/* Returns the rs6000 builtin decl for CODE.  */

static tree
rs6000_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED)
{
  if (code >= RS6000_BUILTIN_COUNT)
    return error_mark_node;

  return rs6000_builtin_decls[code];
}

/* Search through a set of builtins and enable the mask bits.
   DESC is an array of builtins.
   SIZE is the total number of builtins.
   START is the builtin enum at which to start.
   END is the builtin enum at which to end.  */
static void
enable_mask_for_builtins (struct builtin_description *desc, int size,
			  enum rs6000_builtins start,
			  enum rs6000_builtins end)
{
  int i;

  for (i = 0; i < size; ++i)
    if (desc[i].code == start)
      break;

  if (i == size)
    return;

  for (; i < size; ++i)
    {
      /* Flip all the bits on.  */
      desc[i].mask = target_flags;
      if (desc[i].code == end)
	break;
    }
}

static void
spe_init_builtins (void)
{
  tree endlink = void_list_node;
  tree puint_type_node = build_pointer_type (unsigned_type_node);
  tree pushort_type_node = build_pointer_type (short_unsigned_type_node);
  struct builtin_description *d;
  size_t i;

  tree v2si_ftype_4_v2si
    = build_function_type
    (opaque_V2SI_type_node,
     tree_cons (NULL_TREE, opaque_V2SI_type_node,
		tree_cons (NULL_TREE, opaque_V2SI_type_node,
			   tree_cons (NULL_TREE, opaque_V2SI_type_node,
				      tree_cons (NULL_TREE, opaque_V2SI_type_node,
						 endlink)))));

  tree v2sf_ftype_4_v2sf
    = build_function_type
    (opaque_V2SF_type_node,
     tree_cons (NULL_TREE, opaque_V2SF_type_node,
		tree_cons (NULL_TREE, opaque_V2SF_type_node,
			   tree_cons (NULL_TREE, opaque_V2SF_type_node,
				      tree_cons (NULL_TREE, opaque_V2SF_type_node,
						 endlink)))));

  tree int_ftype_int_v2si_v2si
    = build_function_type
    (integer_type_node,
     tree_cons (NULL_TREE, integer_type_node,
		tree_cons (NULL_TREE, opaque_V2SI_type_node,
			   tree_cons (NULL_TREE, opaque_V2SI_type_node,
				      endlink))));

  tree int_ftype_int_v2sf_v2sf
    = build_function_type
    (integer_type_node,
     tree_cons (NULL_TREE, integer_type_node,
		tree_cons (NULL_TREE, opaque_V2SF_type_node,
			   tree_cons (NULL_TREE, opaque_V2SF_type_node,
				      endlink))));

  tree void_ftype_v2si_puint_int
    = build_function_type (void_type_node,
			   tree_cons (NULL_TREE, opaque_V2SI_type_node,
				      tree_cons (NULL_TREE, puint_type_node,
						 tree_cons (NULL_TREE,
							    integer_type_node,
							    endlink))));

  tree void_ftype_v2si_puint_char
    = build_function_type (void_type_node,
			   tree_cons (NULL_TREE, opaque_V2SI_type_node,
				      tree_cons (NULL_TREE, puint_type_node,
						 tree_cons (NULL_TREE,
							    char_type_node,
							    endlink))));

  tree void_ftype_v2si_pv2si_int
    = build_function_type (void_type_node,
			   tree_cons (NULL_TREE, opaque_V2SI_type_node,
				      tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
						 tree_cons (NULL_TREE,
							    integer_type_node,
							    endlink))));

  tree void_ftype_v2si_pv2si_char
    = build_function_type (void_type_node,
			   tree_cons (NULL_TREE, opaque_V2SI_type_node,
				      tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
						 tree_cons (NULL_TREE,
							    char_type_node,
							    endlink))));

  tree void_ftype_int
    = build_function_type (void_type_node,
			   tree_cons (NULL_TREE, integer_type_node, endlink));

  tree int_ftype_void
    = build_function_type (integer_type_node, endlink);

  tree v2si_ftype_pv2si_int
    = build_function_type (opaque_V2SI_type_node,
			   tree_cons (NULL_TREE, opaque_p_V2SI_type_node,
				      tree_cons (NULL_TREE, integer_type_node,
						 endlink)));

  tree v2si_ftype_puint_int
    = build_function_type (opaque_V2SI_type_node,
			   tree_cons (NULL_TREE, puint_type_node,
				      tree_cons (NULL_TREE, integer_type_node,
						 endlink)));

  tree v2si_ftype_pushort_int
    = build_function_type (opaque_V2SI_type_node,
			   tree_cons (NULL_TREE, pushort_type_node,
				      tree_cons (NULL_TREE, integer_type_node,
						 endlink)));

  tree v2si_ftype_signed_char
    = build_function_type (opaque_V2SI_type_node,
			   tree_cons (NULL_TREE, signed_char_type_node,
				      endlink));

  /* The initialization of the simple binary and unary builtins is
     done in rs6000_common_init_builtins, but we have to enable the
     mask bits here manually because we have run out of `target_flags'
     bits.  We really need to redesign this mask business.  */

  enable_mask_for_builtins ((struct builtin_description *) bdesc_2arg,
			    ARRAY_SIZE (bdesc_2arg),
			    SPE_BUILTIN_EVADDW,
			    SPE_BUILTIN_EVXOR);
  enable_mask_for_builtins ((struct builtin_description *) bdesc_1arg,
			    ARRAY_SIZE (bdesc_1arg),
			    SPE_BUILTIN_EVABS,
			    SPE_BUILTIN_EVSUBFUSIAAW);
  enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_predicates,
			    ARRAY_SIZE (bdesc_spe_predicates),
			    SPE_BUILTIN_EVCMPEQ,
			    SPE_BUILTIN_EVFSTSTLT);
  enable_mask_for_builtins ((struct builtin_description *) bdesc_spe_evsel,
			    ARRAY_SIZE (bdesc_spe_evsel),
			    SPE_BUILTIN_EVSEL_CMPGTS,
			    SPE_BUILTIN_EVSEL_FSTSTEQ);

  (*lang_hooks.decls.pushdecl)
    (build_decl (BUILTINS_LOCATION, TYPE_DECL,
		 get_identifier ("__ev64_opaque__"),
		 opaque_V2SI_type_node));

  /* Initialize irregular SPE builtins.  */

  def_builtin (target_flags, "__builtin_spe_mtspefscr", void_ftype_int, SPE_BUILTIN_MTSPEFSCR);
  def_builtin (target_flags, "__builtin_spe_mfspefscr", int_ftype_void, SPE_BUILTIN_MFSPEFSCR);
  def_builtin (target_flags, "__builtin_spe_evstddx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDDX);
  def_builtin (target_flags, "__builtin_spe_evstdhx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDHX);
  def_builtin (target_flags, "__builtin_spe_evstdwx", void_ftype_v2si_pv2si_int, SPE_BUILTIN_EVSTDWX);
  def_builtin (target_flags, "__builtin_spe_evstwhex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHEX);
  def_builtin (target_flags, "__builtin_spe_evstwhox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWHOX);
  def_builtin (target_flags, "__builtin_spe_evstwwex", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWEX);
  def_builtin (target_flags, "__builtin_spe_evstwwox", void_ftype_v2si_puint_int, SPE_BUILTIN_EVSTWWOX);
  def_builtin (target_flags, "__builtin_spe_evstdd", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDD);
  def_builtin (target_flags, "__builtin_spe_evstdh", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDH);
  def_builtin (target_flags, "__builtin_spe_evstdw", void_ftype_v2si_pv2si_char, SPE_BUILTIN_EVSTDW);
  def_builtin (target_flags, "__builtin_spe_evstwhe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHE);
  def_builtin (target_flags, "__builtin_spe_evstwho", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWHO);
  def_builtin (target_flags, "__builtin_spe_evstwwe", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWE);
  def_builtin (target_flags, "__builtin_spe_evstwwo", void_ftype_v2si_puint_char, SPE_BUILTIN_EVSTWWO);
  def_builtin (target_flags, "__builtin_spe_evsplatfi", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATFI);
  def_builtin (target_flags, "__builtin_spe_evsplati", v2si_ftype_signed_char, SPE_BUILTIN_EVSPLATI);

  /* Loads.  */
  def_builtin (target_flags, "__builtin_spe_evlddx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDDX);
  def_builtin (target_flags, "__builtin_spe_evldwx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDWX);
  def_builtin (target_flags, "__builtin_spe_evldhx", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDHX);
  def_builtin (target_flags, "__builtin_spe_evlwhex", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHEX);
  def_builtin (target_flags, "__builtin_spe_evlwhoux", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOUX);
  def_builtin (target_flags, "__builtin_spe_evlwhosx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOSX);
  def_builtin (target_flags, "__builtin_spe_evlwwsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLATX);
  def_builtin (target_flags, "__builtin_spe_evlwhsplatx", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLATX);
  def_builtin (target_flags, "__builtin_spe_evlhhesplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLATX);
  def_builtin (target_flags, "__builtin_spe_evlhhousplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLATX);
  def_builtin (target_flags, "__builtin_spe_evlhhossplatx", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLATX);
  def_builtin (target_flags, "__builtin_spe_evldd", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDD);
  def_builtin (target_flags, "__builtin_spe_evldw", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDW);
  def_builtin (target_flags, "__builtin_spe_evldh", v2si_ftype_pv2si_int, SPE_BUILTIN_EVLDH);
  def_builtin (target_flags, "__builtin_spe_evlhhesplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHESPLAT);
  def_builtin (target_flags, "__builtin_spe_evlhhossplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOSSPLAT);
  def_builtin (target_flags, "__builtin_spe_evlhhousplat", v2si_ftype_pushort_int, SPE_BUILTIN_EVLHHOUSPLAT);
  def_builtin (target_flags, "__builtin_spe_evlwhe", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHE);
  def_builtin (target_flags, "__builtin_spe_evlwhos", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOS);
  def_builtin (target_flags, "__builtin_spe_evlwhou", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHOU);
  def_builtin (target_flags, "__builtin_spe_evlwhsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWHSPLAT);
  def_builtin (target_flags, "__builtin_spe_evlwwsplat", v2si_ftype_puint_int, SPE_BUILTIN_EVLWWSPLAT);

  /* Predicates.  */
  d = (struct builtin_description *) bdesc_spe_predicates;
  for (i = 0; i < ARRAY_SIZE (bdesc_spe_predicates); ++i, d++)
    {
      tree type;

      switch (insn_data[d->icode].operand[1].mode)
	{
	case V2SImode:
	  type = int_ftype_int_v2si_v2si;
	  break;
	case V2SFmode:
	  type = int_ftype_int_v2sf_v2sf;
	  break;
	default:
	  gcc_unreachable ();
	}

      def_builtin (d->mask, d->name, type, d->code);
    }

  /* Evsel predicates.  */
  d = (struct builtin_description *) bdesc_spe_evsel;
  for (i = 0; i < ARRAY_SIZE (bdesc_spe_evsel); ++i, d++)
    {
      tree type;

      switch (insn_data[d->icode].operand[1].mode)
	{
	case V2SImode:
	  type = v2si_ftype_4_v2si;
	  break;
	case V2SFmode:
	  type = v2sf_ftype_4_v2sf;
	  break;
	default:
	  gcc_unreachable ();
	}

      def_builtin (d->mask, d->name, type, d->code);
    }
}

static void
paired_init_builtins (void)
{
  const struct builtin_description *d;
  size_t i;
  tree endlink = void_list_node;

   tree int_ftype_int_v2sf_v2sf
    = build_function_type
    (integer_type_node,
     tree_cons (NULL_TREE, integer_type_node,
                tree_cons (NULL_TREE, V2SF_type_node,
                           tree_cons (NULL_TREE, V2SF_type_node,
                                      endlink))));
  tree pcfloat_type_node =
    build_pointer_type (build_qualified_type
			(float_type_node, TYPE_QUAL_CONST));

  tree v2sf_ftype_long_pcfloat = build_function_type_list (V2SF_type_node,
							   long_integer_type_node,
							   pcfloat_type_node,
							   NULL_TREE);
  tree void_ftype_v2sf_long_pcfloat =
    build_function_type_list (void_type_node,
			      V2SF_type_node,
			      long_integer_type_node,
			      pcfloat_type_node,
			      NULL_TREE);


  def_builtin (0, "__builtin_paired_lx", v2sf_ftype_long_pcfloat,
	       PAIRED_BUILTIN_LX);


  def_builtin (0, "__builtin_paired_stx", void_ftype_v2sf_long_pcfloat,
	       PAIRED_BUILTIN_STX);

  /* Predicates.  */
  d = bdesc_paired_preds;
  for (i = 0; i < ARRAY_SIZE (bdesc_paired_preds); ++i, d++)
    {
      tree type;

      switch (insn_data[d->icode].operand[1].mode)
	{
	case V2SFmode:
	  type = int_ftype_int_v2sf_v2sf;
	  break;
	default:
	  gcc_unreachable ();
	}

      def_builtin (d->mask, d->name, type, d->code);
    }
}

static void
altivec_init_builtins (void)
{
  const struct builtin_description *d;
  const struct builtin_description_predicates *dp;
  size_t i;
  tree ftype;

  tree pfloat_type_node = build_pointer_type (float_type_node);
  tree pint_type_node = build_pointer_type (integer_type_node);
  tree pshort_type_node = build_pointer_type (short_integer_type_node);
  tree pchar_type_node = build_pointer_type (char_type_node);

  tree pvoid_type_node = build_pointer_type (void_type_node);

  tree pcfloat_type_node = build_pointer_type (build_qualified_type (float_type_node, TYPE_QUAL_CONST));
  tree pcint_type_node = build_pointer_type (build_qualified_type (integer_type_node, TYPE_QUAL_CONST));
  tree pcshort_type_node = build_pointer_type (build_qualified_type (short_integer_type_node, TYPE_QUAL_CONST));
  tree pcchar_type_node = build_pointer_type (build_qualified_type (char_type_node, TYPE_QUAL_CONST));

  tree pcvoid_type_node = build_pointer_type (build_qualified_type (void_type_node, TYPE_QUAL_CONST));

  tree int_ftype_opaque
    = build_function_type_list (integer_type_node,
				opaque_V4SI_type_node, NULL_TREE);
  tree opaque_ftype_opaque
    = build_function_type (integer_type_node,
				NULL_TREE);
  tree opaque_ftype_opaque_int
    = build_function_type_list (opaque_V4SI_type_node,
				opaque_V4SI_type_node, integer_type_node, NULL_TREE);
  tree opaque_ftype_opaque_opaque_int
    = build_function_type_list (opaque_V4SI_type_node,
				opaque_V4SI_type_node, opaque_V4SI_type_node,
				integer_type_node, NULL_TREE);
  tree int_ftype_int_opaque_opaque
    = build_function_type_list (integer_type_node,
                                integer_type_node, opaque_V4SI_type_node,
                                opaque_V4SI_type_node, NULL_TREE);
  tree int_ftype_int_v4si_v4si
    = build_function_type_list (integer_type_node,
				integer_type_node, V4SI_type_node,
				V4SI_type_node, NULL_TREE);
  tree v4sf_ftype_pcfloat
    = build_function_type_list (V4SF_type_node, pcfloat_type_node, NULL_TREE);
  tree void_ftype_pfloat_v4sf
    = build_function_type_list (void_type_node,
				pfloat_type_node, V4SF_type_node, NULL_TREE);
  tree v4si_ftype_pcint
    = build_function_type_list (V4SI_type_node, pcint_type_node, NULL_TREE);
  tree void_ftype_pint_v4si
    = build_function_type_list (void_type_node,
				pint_type_node, V4SI_type_node, NULL_TREE);
  tree v8hi_ftype_pcshort
    = build_function_type_list (V8HI_type_node, pcshort_type_node, NULL_TREE);
  tree void_ftype_pshort_v8hi
    = build_function_type_list (void_type_node,
				pshort_type_node, V8HI_type_node, NULL_TREE);
  tree v16qi_ftype_pcchar
    = build_function_type_list (V16QI_type_node, pcchar_type_node, NULL_TREE);
  tree void_ftype_pchar_v16qi
    = build_function_type_list (void_type_node,
				pchar_type_node, V16QI_type_node, NULL_TREE);
  tree void_ftype_v4si
    = build_function_type_list (void_type_node, V4SI_type_node, NULL_TREE);
  tree v8hi_ftype_void
    = build_function_type (V8HI_type_node, void_list_node);
  tree void_ftype_void
    = build_function_type (void_type_node, void_list_node);
  tree void_ftype_int
    = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);

  tree opaque_ftype_long_pcvoid
    = build_function_type_list (opaque_V4SI_type_node,
				long_integer_type_node, pcvoid_type_node, NULL_TREE);
  tree v16qi_ftype_long_pcvoid
    = build_function_type_list (V16QI_type_node,
				long_integer_type_node, pcvoid_type_node, NULL_TREE);
  tree v8hi_ftype_long_pcvoid
    = build_function_type_list (V8HI_type_node,
				long_integer_type_node, pcvoid_type_node, NULL_TREE);
  tree v4si_ftype_long_pcvoid
    = build_function_type_list (V4SI_type_node,
				long_integer_type_node, pcvoid_type_node, NULL_TREE);

  tree void_ftype_opaque_long_pvoid
    = build_function_type_list (void_type_node,
				opaque_V4SI_type_node, long_integer_type_node,
				pvoid_type_node, NULL_TREE);
  tree void_ftype_v4si_long_pvoid
    = build_function_type_list (void_type_node,
				V4SI_type_node, long_integer_type_node,
				pvoid_type_node, NULL_TREE);
  tree void_ftype_v16qi_long_pvoid
    = build_function_type_list (void_type_node,
				V16QI_type_node, long_integer_type_node,
				pvoid_type_node, NULL_TREE);
  tree void_ftype_v8hi_long_pvoid
    = build_function_type_list (void_type_node,
				V8HI_type_node, long_integer_type_node,
				pvoid_type_node, NULL_TREE);
  tree int_ftype_int_v8hi_v8hi
    = build_function_type_list (integer_type_node,
				integer_type_node, V8HI_type_node,
				V8HI_type_node, NULL_TREE);
  tree int_ftype_int_v16qi_v16qi
    = build_function_type_list (integer_type_node,
				integer_type_node, V16QI_type_node,
				V16QI_type_node, NULL_TREE);
  tree int_ftype_int_v4sf_v4sf
    = build_function_type_list (integer_type_node,
				integer_type_node, V4SF_type_node,
				V4SF_type_node, NULL_TREE);
  tree int_ftype_int_v2df_v2df
    = build_function_type_list (integer_type_node,
				integer_type_node, V2DF_type_node,
				V2DF_type_node, NULL_TREE);
  tree v4si_ftype_v4si
    = build_function_type_list (V4SI_type_node, V4SI_type_node, NULL_TREE);
  tree v8hi_ftype_v8hi
    = build_function_type_list (V8HI_type_node, V8HI_type_node, NULL_TREE);
  tree v16qi_ftype_v16qi
    = build_function_type_list (V16QI_type_node, V16QI_type_node, NULL_TREE);
  tree v4sf_ftype_v4sf
    = build_function_type_list (V4SF_type_node, V4SF_type_node, NULL_TREE);
  tree v2df_ftype_v2df
    = build_function_type_list (V2DF_type_node, V2DF_type_node, NULL_TREE);
  tree void_ftype_pcvoid_int_int
    = build_function_type_list (void_type_node,
				pcvoid_type_node, integer_type_node,
				integer_type_node, NULL_TREE);

  def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4sf", v4sf_ftype_pcfloat,
	       ALTIVEC_BUILTIN_LD_INTERNAL_4sf);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4sf", void_ftype_pfloat_v4sf,
	       ALTIVEC_BUILTIN_ST_INTERNAL_4sf);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_4si", v4si_ftype_pcint,
	       ALTIVEC_BUILTIN_LD_INTERNAL_4si);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_4si", void_ftype_pint_v4si,
	       ALTIVEC_BUILTIN_ST_INTERNAL_4si);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_8hi", v8hi_ftype_pcshort,
	       ALTIVEC_BUILTIN_LD_INTERNAL_8hi);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_8hi", void_ftype_pshort_v8hi,
	       ALTIVEC_BUILTIN_ST_INTERNAL_8hi);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_ld_internal_16qi", v16qi_ftype_pcchar,
	       ALTIVEC_BUILTIN_LD_INTERNAL_16qi);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_st_internal_16qi", void_ftype_pchar_v16qi,
	       ALTIVEC_BUILTIN_ST_INTERNAL_16qi);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_mtvscr", void_ftype_v4si, ALTIVEC_BUILTIN_MTVSCR);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_mfvscr", v8hi_ftype_void, ALTIVEC_BUILTIN_MFVSCR);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_dssall", void_ftype_void, ALTIVEC_BUILTIN_DSSALL);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_dss", void_ftype_int, ALTIVEC_BUILTIN_DSS);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSL);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVSR);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEBX);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEHX);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVEWX);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvxl", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVXL);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVX);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVX);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvewx", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVEWX);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvxl", void_ftype_v4si_long_pvoid, ALTIVEC_BUILTIN_STVXL);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvebx", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVEBX);
  def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvehx", void_ftype_v8hi_long_pvoid, ALTIVEC_BUILTIN_STVEHX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ld", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LD);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_lde", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ldl", opaque_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LDL);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSL);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_lvsr", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVSR);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_lvebx", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEBX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_lvehx", v8hi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEHX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_lvewx", v4si_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVEWX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_st", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_ST);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ste", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_stl", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STL);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_stvewx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEWX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_stvebx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEBX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_stvehx", void_ftype_opaque_long_pvoid, ALTIVEC_BUILTIN_VEC_STVEHX);

  if (rs6000_cpu == PROCESSOR_CELL)
    {
      def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlx",  v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLX);
      def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVLXL);
      def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrx",  v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRX);
      def_builtin (MASK_ALTIVEC, "__builtin_altivec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_LVRXL);

      def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlx",  v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLX);
      def_builtin (MASK_ALTIVEC, "__builtin_vec_lvlxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVLXL);
      def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrx",  v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRX);
      def_builtin (MASK_ALTIVEC, "__builtin_vec_lvrxl", v16qi_ftype_long_pcvoid, ALTIVEC_BUILTIN_VEC_LVRXL);

      def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlx",  void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLX);
      def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVLXL);
      def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrx",  void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRX);
      def_builtin (MASK_ALTIVEC, "__builtin_altivec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_STVRXL);

      def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlx",  void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLX);
      def_builtin (MASK_ALTIVEC, "__builtin_vec_stvlxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVLXL);
      def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrx",  void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRX);
      def_builtin (MASK_ALTIVEC, "__builtin_vec_stvrxl", void_ftype_v16qi_long_pvoid, ALTIVEC_BUILTIN_VEC_STVRXL);
    }
  def_builtin (MASK_ALTIVEC, "__builtin_vec_step", int_ftype_opaque, ALTIVEC_BUILTIN_VEC_STEP);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_splats", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_SPLATS);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_promote", opaque_ftype_opaque, ALTIVEC_BUILTIN_VEC_PROMOTE);

  def_builtin (MASK_ALTIVEC, "__builtin_vec_sld", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_SLD);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_splat", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_SPLAT);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_extract", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_EXTRACT);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_insert", opaque_ftype_opaque_opaque_int, ALTIVEC_BUILTIN_VEC_INSERT);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltw", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTW);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_vsplth", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTH);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_vspltb", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VSPLTB);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ctf", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTF);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfsx", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFSX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_vcfux", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_VCFUX);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_cts", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTS);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ctu", opaque_ftype_opaque_int, ALTIVEC_BUILTIN_VEC_CTU);

  /* Add the DST variants.  */
  d = bdesc_dst;
  for (i = 0; i < ARRAY_SIZE (bdesc_dst); i++, d++)
    def_builtin (d->mask, d->name, void_ftype_pcvoid_int_int, d->code);

  /* Initialize the predicates.  */
  dp = bdesc_altivec_preds;
  for (i = 0; i < ARRAY_SIZE (bdesc_altivec_preds); i++, dp++)
    {
      enum machine_mode mode1;
      tree type;
      bool is_overloaded = ((dp->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
			     && dp->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
			    || (dp->code >= VSX_BUILTIN_OVERLOADED_FIRST
				&& dp->code <= VSX_BUILTIN_OVERLOADED_LAST));

      if (is_overloaded)
	mode1 = VOIDmode;
      else
	mode1 = insn_data[dp->icode].operand[1].mode;

      switch (mode1)
	{
	case VOIDmode:
	  type = int_ftype_int_opaque_opaque;
	  break;
	case V4SImode:
	  type = int_ftype_int_v4si_v4si;
	  break;
	case V8HImode:
	  type = int_ftype_int_v8hi_v8hi;
	  break;
	case V16QImode:
	  type = int_ftype_int_v16qi_v16qi;
	  break;
	case V4SFmode:
	  type = int_ftype_int_v4sf_v4sf;
	  break;
	case V2DFmode:
	  type = int_ftype_int_v2df_v2df;
	  break;
	default:
	  gcc_unreachable ();
	}

      def_builtin (dp->mask, dp->name, type, dp->code);
    }

  /* Initialize the abs* operators.  */
  d = bdesc_abs;
  for (i = 0; i < ARRAY_SIZE (bdesc_abs); i++, d++)
    {
      enum machine_mode mode0;
      tree type;

      mode0 = insn_data[d->icode].operand[0].mode;

      switch (mode0)
	{
	case V4SImode:
	  type = v4si_ftype_v4si;
	  break;
	case V8HImode:
	  type = v8hi_ftype_v8hi;
	  break;
	case V16QImode:
	  type = v16qi_ftype_v16qi;
	  break;
	case V4SFmode:
	  type = v4sf_ftype_v4sf;
	  break;
	case V2DFmode:
	  type = v2df_ftype_v2df;
	  break;
	default:
	  gcc_unreachable ();
	}

      def_builtin (d->mask, d->name, type, d->code);
    }

  if (TARGET_ALTIVEC)
    {
      tree decl;

      /* Initialize target builtin that implements
         targetm.vectorize.builtin_mask_for_load.  */

      decl = add_builtin_function ("__builtin_altivec_mask_for_load",
				   v16qi_ftype_long_pcvoid,
				   ALTIVEC_BUILTIN_MASK_FOR_LOAD,
				   BUILT_IN_MD, NULL, NULL_TREE);
      TREE_READONLY (decl) = 1;
      /* Record the decl. Will be used by rs6000_builtin_mask_for_load.  */
      altivec_builtin_mask_for_load = decl;
    }

  /* Access to the vec_init patterns.  */
  ftype = build_function_type_list (V4SI_type_node, integer_type_node,
				    integer_type_node, integer_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4si", ftype,
	       ALTIVEC_BUILTIN_VEC_INIT_V4SI);

  ftype = build_function_type_list (V8HI_type_node, short_integer_type_node,
				    short_integer_type_node,
				    short_integer_type_node,
				    short_integer_type_node,
				    short_integer_type_node,
				    short_integer_type_node,
				    short_integer_type_node,
				    short_integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v8hi", ftype,
	       ALTIVEC_BUILTIN_VEC_INIT_V8HI);

  ftype = build_function_type_list (V16QI_type_node, char_type_node,
				    char_type_node, char_type_node,
				    char_type_node, char_type_node,
				    char_type_node, char_type_node,
				    char_type_node, char_type_node,
				    char_type_node, char_type_node,
				    char_type_node, char_type_node,
				    char_type_node, char_type_node,
				    char_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v16qi", ftype,
	       ALTIVEC_BUILTIN_VEC_INIT_V16QI);

  ftype = build_function_type_list (V4SF_type_node, float_type_node,
				    float_type_node, float_type_node,
				    float_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_init_v4sf", ftype,
	       ALTIVEC_BUILTIN_VEC_INIT_V4SF);

  if (TARGET_VSX)
    {
      ftype = build_function_type_list (V2DF_type_node, double_type_node,
					double_type_node, NULL_TREE);
      def_builtin (MASK_VSX, "__builtin_vec_init_v2df", ftype,
		   VSX_BUILTIN_VEC_INIT_V2DF);

      ftype = build_function_type_list (V2DI_type_node, intDI_type_node,
					intDI_type_node, NULL_TREE);
      def_builtin (MASK_VSX, "__builtin_vec_init_v2di", ftype,
		   VSX_BUILTIN_VEC_INIT_V2DI);
    }

  /* Access to the vec_set patterns.  */
  ftype = build_function_type_list (V4SI_type_node, V4SI_type_node,
				    intSI_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v4si", ftype,
	       ALTIVEC_BUILTIN_VEC_SET_V4SI);

  ftype = build_function_type_list (V8HI_type_node, V8HI_type_node,
				    intHI_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v8hi", ftype,
	       ALTIVEC_BUILTIN_VEC_SET_V8HI);

  ftype = build_function_type_list (V16QI_type_node, V16QI_type_node,
				    intQI_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_set_v16qi", ftype,
	       ALTIVEC_BUILTIN_VEC_SET_V16QI);

  ftype = build_function_type_list (V4SF_type_node, V4SF_type_node,
				    float_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC|MASK_VSX, "__builtin_vec_set_v4sf", ftype,
	       ALTIVEC_BUILTIN_VEC_SET_V4SF);

  if (TARGET_VSX)
    {
      ftype = build_function_type_list (V2DF_type_node, V2DF_type_node,
					double_type_node,
					integer_type_node, NULL_TREE);
      def_builtin (MASK_VSX, "__builtin_vec_set_v2df", ftype,
		   VSX_BUILTIN_VEC_SET_V2DF);

      ftype = build_function_type_list (V2DI_type_node, V2DI_type_node,
					intDI_type_node,
					integer_type_node, NULL_TREE);
      def_builtin (MASK_VSX, "__builtin_vec_set_v2di", ftype,
		   VSX_BUILTIN_VEC_SET_V2DI);
    }

  /* Access to the vec_extract patterns.  */
  ftype = build_function_type_list (intSI_type_node, V4SI_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v4si", ftype,
	       ALTIVEC_BUILTIN_VEC_EXT_V4SI);

  ftype = build_function_type_list (intHI_type_node, V8HI_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v8hi", ftype,
	       ALTIVEC_BUILTIN_VEC_EXT_V8HI);

  ftype = build_function_type_list (intQI_type_node, V16QI_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC, "__builtin_vec_ext_v16qi", ftype,
	       ALTIVEC_BUILTIN_VEC_EXT_V16QI);

  ftype = build_function_type_list (float_type_node, V4SF_type_node,
				    integer_type_node, NULL_TREE);
  def_builtin (MASK_ALTIVEC|MASK_VSX, "__builtin_vec_ext_v4sf", ftype,
	       ALTIVEC_BUILTIN_VEC_EXT_V4SF);

  if (TARGET_VSX)
    {
      ftype = build_function_type_list (double_type_node, V2DF_type_node,
					integer_type_node, NULL_TREE);
      def_builtin (MASK_VSX, "__builtin_vec_ext_v2df", ftype,
		   VSX_BUILTIN_VEC_EXT_V2DF);

      ftype = build_function_type_list (intDI_type_node, V2DI_type_node,
					integer_type_node, NULL_TREE);
      def_builtin (MASK_VSX, "__builtin_vec_ext_v2di", ftype,
		   VSX_BUILTIN_VEC_EXT_V2DI);
    }
}

/* Hash function for builtin functions with up to 3 arguments and a return
   type.  */
static unsigned
builtin_hash_function (const void *hash_entry)
{
  unsigned ret = 0;
  int i;
  const struct builtin_hash_struct *bh =
    (const struct builtin_hash_struct *) hash_entry;

  for (i = 0; i < 4; i++)
    {
      ret = (ret * (unsigned)MAX_MACHINE_MODE) + ((unsigned)bh->mode[i]);
      ret = (ret * 2) + bh->uns_p[i];
    }

  return ret;
}

/* Compare builtin hash entries H1 and H2 for equivalence.  */
static int
builtin_hash_eq (const void *h1, const void *h2)
{
  const struct builtin_hash_struct *p1 = (const struct builtin_hash_struct *) h1;
  const struct builtin_hash_struct *p2 = (const struct builtin_hash_struct *) h2;

  return ((p1->mode[0] == p2->mode[0])
	  && (p1->mode[1] == p2->mode[1])
	  && (p1->mode[2] == p2->mode[2])
	  && (p1->mode[3] == p2->mode[3])
	  && (p1->uns_p[0] == p2->uns_p[0])
	  && (p1->uns_p[1] == p2->uns_p[1])
	  && (p1->uns_p[2] == p2->uns_p[2])
	  && (p1->uns_p[3] == p2->uns_p[3]));
}

/* Map types for builtin functions with an explicit return type and up to 3
   arguments.  Functions with fewer than 3 arguments use VOIDmode as the type
   of the argument.  */
static tree
builtin_function_type (enum machine_mode mode_ret, enum machine_mode mode_arg0,
		       enum machine_mode mode_arg1, enum machine_mode mode_arg2,
		       enum rs6000_builtins builtin, const char *name)
{
  struct builtin_hash_struct h;
  struct builtin_hash_struct *h2;
  void **found;
  int num_args = 3;
  int i;
  tree ret_type = NULL_TREE;
  tree arg_type[3] = { NULL_TREE, NULL_TREE, NULL_TREE };
  tree args;

  /* Create builtin_hash_table.  */
  if (builtin_hash_table == NULL)
    builtin_hash_table = htab_create_ggc (1500, builtin_hash_function,
					  builtin_hash_eq, NULL);

  h.type = NULL_TREE;
  h.mode[0] = mode_ret;
  h.mode[1] = mode_arg0;
  h.mode[2] = mode_arg1;
  h.mode[3] = mode_arg2;
  h.uns_p[0] = 0;
  h.uns_p[1] = 0;
  h.uns_p[2] = 0;
  h.uns_p[3] = 0;

  /* If the builtin is a type that produces unsigned results or takes unsigned
     arguments, and it is returned as a decl for the vectorizer (such as
     widening multiplies, permute), make sure the arguments and return value
     are type correct.  */
  switch (builtin)
    {
      /* unsigned 2 argument functions.  */
    case ALTIVEC_BUILTIN_VMULEUB_UNS:
    case ALTIVEC_BUILTIN_VMULEUH_UNS:
    case ALTIVEC_BUILTIN_VMULOUB_UNS:
    case ALTIVEC_BUILTIN_VMULOUH_UNS:
      h.uns_p[0] = 1;
      h.uns_p[1] = 1;
      h.uns_p[2] = 1;
      break;

      /* unsigned 3 argument functions.  */
    case ALTIVEC_BUILTIN_VPERM_16QI_UNS:
    case ALTIVEC_BUILTIN_VPERM_8HI_UNS:
    case ALTIVEC_BUILTIN_VPERM_4SI_UNS:
    case ALTIVEC_BUILTIN_VPERM_2DI_UNS:
    case ALTIVEC_BUILTIN_VSEL_16QI_UNS:
    case ALTIVEC_BUILTIN_VSEL_8HI_UNS:
    case ALTIVEC_BUILTIN_VSEL_4SI_UNS:
    case ALTIVEC_BUILTIN_VSEL_2DI_UNS:
    case VSX_BUILTIN_VPERM_16QI_UNS:
    case VSX_BUILTIN_VPERM_8HI_UNS:
    case VSX_BUILTIN_VPERM_4SI_UNS:
    case VSX_BUILTIN_VPERM_2DI_UNS:
    case VSX_BUILTIN_XXSEL_16QI_UNS:
    case VSX_BUILTIN_XXSEL_8HI_UNS:
    case VSX_BUILTIN_XXSEL_4SI_UNS:
    case VSX_BUILTIN_XXSEL_2DI_UNS:
      h.uns_p[0] = 1;
      h.uns_p[1] = 1;
      h.uns_p[2] = 1;
      h.uns_p[3] = 1;
      break;

      /* signed permute functions with unsigned char mask.  */
    case ALTIVEC_BUILTIN_VPERM_16QI:
    case ALTIVEC_BUILTIN_VPERM_8HI:
    case ALTIVEC_BUILTIN_VPERM_4SI:
    case ALTIVEC_BUILTIN_VPERM_4SF:
    case ALTIVEC_BUILTIN_VPERM_2DI:
    case ALTIVEC_BUILTIN_VPERM_2DF:
    case VSX_BUILTIN_VPERM_16QI:
    case VSX_BUILTIN_VPERM_8HI:
    case VSX_BUILTIN_VPERM_4SI:
    case VSX_BUILTIN_VPERM_4SF:
    case VSX_BUILTIN_VPERM_2DI:
    case VSX_BUILTIN_VPERM_2DF:
      h.uns_p[3] = 1;
      break;

      /* unsigned args, signed return.  */
    case VSX_BUILTIN_XVCVUXDDP_UNS:
    case VECTOR_BUILTIN_UNSFLOAT_V4SI_V4SF:
      h.uns_p[1] = 1;
      break;

      /* signed args, unsigned return.  */
    case VSX_BUILTIN_XVCVDPUXDS_UNS:
    case VECTOR_BUILTIN_FIXUNS_V4SF_V4SI:
      h.uns_p[0] = 1;
      break;

    default:
      break;
    }

  /* Figure out how many args are present.  */
  while (num_args > 0 && h.mode[num_args] == VOIDmode)
    num_args--;

  if (num_args == 0)
    fatal_error ("internal error: builtin function %s had no type", name);

  ret_type = builtin_mode_to_type[h.mode[0]][h.uns_p[0]];
  if (!ret_type && h.uns_p[0])
    ret_type = builtin_mode_to_type[h.mode[0]][0];

  if (!ret_type)
    fatal_error ("internal error: builtin function %s had an unexpected "
		 "return type %s", name, GET_MODE_NAME (h.mode[0]));

  for (i = 0; i < num_args; i++)
    {
      int m = (int) h.mode[i+1];
      int uns_p = h.uns_p[i+1];

      arg_type[i] = builtin_mode_to_type[m][uns_p];
      if (!arg_type[i] && uns_p)
	arg_type[i] = builtin_mode_to_type[m][0];

      if (!arg_type[i])
	fatal_error ("internal error: builtin function %s, argument %d "
		     "had unexpected argument type %s", name, i,
		     GET_MODE_NAME (m));
    }

  found = htab_find_slot (builtin_hash_table, &h, INSERT);
  if (*found == NULL)
    {
      h2 = GGC_NEW (struct builtin_hash_struct);
      *h2 = h;
      *found = (void *)h2;
      args = void_list_node;

      for (i = num_args - 1; i >= 0; i--)
	args = tree_cons (NULL_TREE, arg_type[i], args);

      h2->type = build_function_type (ret_type, args);
    }

  return ((struct builtin_hash_struct *)(*found))->type;
}

static void
rs6000_common_init_builtins (void)
{
  const struct builtin_description *d;
  size_t i;

  tree opaque_ftype_opaque = NULL_TREE;
  tree opaque_ftype_opaque_opaque = NULL_TREE;
  tree opaque_ftype_opaque_opaque_opaque = NULL_TREE;
  tree v2si_ftype_qi = NULL_TREE;
  tree v2si_ftype_v2si_qi = NULL_TREE;
  tree v2si_ftype_int_qi = NULL_TREE;

  if (!TARGET_PAIRED_FLOAT)
    {
      builtin_mode_to_type[V2SImode][0] = opaque_V2SI_type_node;
      builtin_mode_to_type[V2SFmode][0] = opaque_V2SF_type_node;
    }

  /* Add the ternary operators.  */
  d = bdesc_3arg;
  for (i = 0; i < ARRAY_SIZE (bdesc_3arg); i++, d++)
    {
      tree type;
      int mask = d->mask;

      if ((mask != 0 && (mask & target_flags) == 0)
	  || (mask == 0 && !TARGET_PAIRED_FLOAT))
	continue;

      if ((d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
	   && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
	  || (d->code >= VSX_BUILTIN_OVERLOADED_FIRST
	      && d->code <= VSX_BUILTIN_OVERLOADED_LAST))
	{
	  if (! (type = opaque_ftype_opaque_opaque_opaque))
	    type = opaque_ftype_opaque_opaque_opaque
	      = build_function_type_list (opaque_V4SI_type_node,
					  opaque_V4SI_type_node,
					  opaque_V4SI_type_node,
					  opaque_V4SI_type_node,
					  NULL_TREE);
	}
      else
	{
	  enum insn_code icode = d->icode;
          if (d->name == 0 || icode == CODE_FOR_nothing)
	    continue;

	  type = builtin_function_type (insn_data[icode].operand[0].mode,
					insn_data[icode].operand[1].mode,
					insn_data[icode].operand[2].mode,
					insn_data[icode].operand[3].mode,
					d->code, d->name);
	}

      def_builtin (d->mask, d->name, type, d->code);
    }

  /* Add the binary operators.  */
  d = bdesc_2arg;
  for (i = 0; i < ARRAY_SIZE (bdesc_2arg); i++, d++)
    {
      enum machine_mode mode0, mode1, mode2;
      tree type;
      int mask = d->mask;

      if ((mask != 0 && (mask & target_flags) == 0)
	  || (mask == 0 && !TARGET_PAIRED_FLOAT))
	continue;

      if ((d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
	   && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
	  || (d->code >= VSX_BUILTIN_OVERLOADED_FIRST
	      && d->code <= VSX_BUILTIN_OVERLOADED_LAST))
	{
	  if (! (type = opaque_ftype_opaque_opaque))
	    type = opaque_ftype_opaque_opaque
	      = build_function_type_list (opaque_V4SI_type_node,
					  opaque_V4SI_type_node,
					  opaque_V4SI_type_node,
					  NULL_TREE);
	}
      else
	{
	  enum insn_code icode = d->icode;
          if (d->name == 0 || icode == CODE_FOR_nothing)
	    continue;

          mode0 = insn_data[icode].operand[0].mode;
          mode1 = insn_data[icode].operand[1].mode;
          mode2 = insn_data[icode].operand[2].mode;

	  if (mode0 == V2SImode && mode1 == V2SImode && mode2 == QImode)
	    {
	      if (! (type = v2si_ftype_v2si_qi))
		type = v2si_ftype_v2si_qi
		  = build_function_type_list (opaque_V2SI_type_node,
					      opaque_V2SI_type_node,
					      char_type_node,
					      NULL_TREE);
	    }

	  else if (mode0 == V2SImode && GET_MODE_CLASS (mode1) == MODE_INT
		   && mode2 == QImode)
	    {
	      if (! (type = v2si_ftype_int_qi))
		type = v2si_ftype_int_qi
		  = build_function_type_list (opaque_V2SI_type_node,
					      integer_type_node,
					      char_type_node,
					      NULL_TREE);
	    }

	  else
	    type = builtin_function_type (mode0, mode1, mode2, VOIDmode,
					  d->code, d->name);
	}

      def_builtin (d->mask, d->name, type, d->code);
    }

  /* Add the simple unary operators.  */
  d = (struct builtin_description *) bdesc_1arg;
  for (i = 0; i < ARRAY_SIZE (bdesc_1arg); i++, d++)
    {
      enum machine_mode mode0, mode1;
      tree type;
      int mask = d->mask;

      if ((mask != 0 && (mask & target_flags) == 0)
	  || (mask == 0 && !TARGET_PAIRED_FLOAT))
	continue;

      if ((d->code >= ALTIVEC_BUILTIN_OVERLOADED_FIRST
	   && d->code <= ALTIVEC_BUILTIN_OVERLOADED_LAST)
	  || (d->code >= VSX_BUILTIN_OVERLOADED_FIRST
	      && d->code <= VSX_BUILTIN_OVERLOADED_LAST))
	{
	  if (! (type = opaque_ftype_opaque))
	    type = opaque_ftype_opaque
	      = build_function_type_list (opaque_V4SI_type_node,
					  opaque_V4SI_type_node,
					  NULL_TREE);
	}
      else
        {
	  enum insn_code icode = d->icode;
          if (d->name == 0 || icode == CODE_FOR_nothing)
	    continue;

          mode0 = insn_data[icode].operand[0].mode;
          mode1 = insn_data[icode].operand[1].mode;

	  if (mode0 == V2SImode && mode1 == QImode)
	    {
	      if (! (type = v2si_ftype_qi))
		type = v2si_ftype_qi
		  = build_function_type_list (opaque_V2SI_type_node,
					      char_type_node,
					      NULL_TREE);
	    }

	  else
	    type = builtin_function_type (mode0, mode1, VOIDmode, VOIDmode,
					  d->code, d->name);
	}

      def_builtin (d->mask, d->name, type, d->code);
    }
}

static void
rs6000_init_libfuncs (void)
{
  if (DEFAULT_ABI != ABI_V4 && TARGET_XCOFF
      && !TARGET_POWER2 && !TARGET_POWERPC)
    {
      /* AIX library routines for float->int conversion.  */
      set_conv_libfunc (sfix_optab, SImode, DFmode, "__itrunc");
      set_conv_libfunc (ufix_optab, SImode, DFmode, "__uitrunc");
      set_conv_libfunc (sfix_optab, SImode, TFmode, "_qitrunc");
      set_conv_libfunc (ufix_optab, SImode, TFmode, "_quitrunc");
    }

  if (!TARGET_IEEEQUAD)
      /* AIX/Darwin/64-bit Linux quad floating point routines.  */
    if (!TARGET_XL_COMPAT)
      {
	set_optab_libfunc (add_optab, TFmode, "__gcc_qadd");
	set_optab_libfunc (sub_optab, TFmode, "__gcc_qsub");
	set_optab_libfunc (smul_optab, TFmode, "__gcc_qmul");
	set_optab_libfunc (sdiv_optab, TFmode, "__gcc_qdiv");

	if (!(TARGET_HARD_FLOAT && (TARGET_FPRS || TARGET_E500_DOUBLE)))
	  {
	    set_optab_libfunc (neg_optab, TFmode, "__gcc_qneg");
	    set_optab_libfunc (eq_optab, TFmode, "__gcc_qeq");
	    set_optab_libfunc (ne_optab, TFmode, "__gcc_qne");
	    set_optab_libfunc (gt_optab, TFmode, "__gcc_qgt");
	    set_optab_libfunc (ge_optab, TFmode, "__gcc_qge");
	    set_optab_libfunc (lt_optab, TFmode, "__gcc_qlt");
	    set_optab_libfunc (le_optab, TFmode, "__gcc_qle");

	    set_conv_libfunc (sext_optab, TFmode, SFmode, "__gcc_stoq");
	    set_conv_libfunc (sext_optab, TFmode, DFmode, "__gcc_dtoq");
	    set_conv_libfunc (trunc_optab, SFmode, TFmode, "__gcc_qtos");
	    set_conv_libfunc (trunc_optab, DFmode, TFmode, "__gcc_qtod");
	    set_conv_libfunc (sfix_optab, SImode, TFmode, "__gcc_qtoi");
	    set_conv_libfunc (ufix_optab, SImode, TFmode, "__gcc_qtou");
	    set_conv_libfunc (sfloat_optab, TFmode, SImode, "__gcc_itoq");
	    set_conv_libfunc (ufloat_optab, TFmode, SImode, "__gcc_utoq");
	  }

	if (!(TARGET_HARD_FLOAT && TARGET_FPRS))
	  set_optab_libfunc (unord_optab, TFmode, "__gcc_qunord");
      }
    else
      {
	set_optab_libfunc (add_optab, TFmode, "_xlqadd");
	set_optab_libfunc (sub_optab, TFmode, "_xlqsub");
	set_optab_libfunc (smul_optab, TFmode, "_xlqmul");
	set_optab_libfunc (sdiv_optab, TFmode, "_xlqdiv");
      }
  else
    {
      /* 32-bit SVR4 quad floating point routines.  */

      set_optab_libfunc (add_optab, TFmode, "_q_add");
      set_optab_libfunc (sub_optab, TFmode, "_q_sub");
      set_optab_libfunc (neg_optab, TFmode, "_q_neg");
      set_optab_libfunc (smul_optab, TFmode, "_q_mul");
      set_optab_libfunc (sdiv_optab, TFmode, "_q_div");
      if (TARGET_PPC_GPOPT || TARGET_POWER2)
	set_optab_libfunc (sqrt_optab, TFmode, "_q_sqrt");

      set_optab_libfunc (eq_optab, TFmode, "_q_feq");
      set_optab_libfunc (ne_optab, TFmode, "_q_fne");
      set_optab_libfunc (gt_optab, TFmode, "_q_fgt");
      set_optab_libfunc (ge_optab, TFmode, "_q_fge");
      set_optab_libfunc (lt_optab, TFmode, "_q_flt");
      set_optab_libfunc (le_optab, TFmode, "_q_fle");

      set_conv_libfunc (sext_optab, TFmode, SFmode, "_q_stoq");
      set_conv_libfunc (sext_optab, TFmode, DFmode, "_q_dtoq");
      set_conv_libfunc (trunc_optab, SFmode, TFmode, "_q_qtos");
      set_conv_libfunc (trunc_optab, DFmode, TFmode, "_q_qtod");
      set_conv_libfunc (sfix_optab, SImode, TFmode, "_q_qtoi");
      set_conv_libfunc (ufix_optab, SImode, TFmode, "_q_qtou");
      set_conv_libfunc (sfloat_optab, TFmode, SImode, "_q_itoq");
      set_conv_libfunc (ufloat_optab, TFmode, SImode, "_q_utoq");
    }
}


/* Expand a block clear operation, and return 1 if successful.  Return 0
   if we should let the compiler generate normal code.

   operands[0] is the destination
   operands[1] is the length
   operands[3] is the alignment */

int
expand_block_clear (rtx operands[])
{
  rtx orig_dest = operands[0];
  rtx bytes_rtx	= operands[1];
  rtx align_rtx = operands[3];
  bool constp	= (GET_CODE (bytes_rtx) == CONST_INT);
  HOST_WIDE_INT align;
  HOST_WIDE_INT bytes;
  int offset;
  int clear_bytes;
  int clear_step;

  /* If this is not a fixed size move, just call memcpy */
  if (! constp)
    return 0;

  /* This must be a fixed size alignment  */
  gcc_assert (GET_CODE (align_rtx) == CONST_INT);
  align = INTVAL (align_rtx) * BITS_PER_UNIT;

  /* Anything to clear? */
  bytes = INTVAL (bytes_rtx);
  if (bytes <= 0)
    return 1;

  /* Use the builtin memset after a point, to avoid huge code bloat.
     When optimize_size, avoid any significant code bloat; calling
     memset is about 4 instructions, so allow for one instruction to
     load zero and three to do clearing.  */
  if (TARGET_ALTIVEC && align >= 128)
    clear_step = 16;
  else if (TARGET_POWERPC64 && align >= 32)
    clear_step = 8;
  else if (TARGET_SPE && align >= 64)
    clear_step = 8;
  else
    clear_step = 4;

  if (optimize_size && bytes > 3 * clear_step)
    return 0;
  if (! optimize_size && bytes > 8 * clear_step)
    return 0;

  for (offset = 0; bytes > 0; offset += clear_bytes, bytes -= clear_bytes)
    {
      enum machine_mode mode = BLKmode;
      rtx dest;

      if (bytes >= 16 && TARGET_ALTIVEC && align >= 128)
	{
	  clear_bytes = 16;
	  mode = V4SImode;
	}
      else if (bytes >= 8 && TARGET_SPE && align >= 64)
        {
          clear_bytes = 8;
          mode = V2SImode;
        }
      else if (bytes >= 8 && TARGET_POWERPC64
	       /* 64-bit loads and stores require word-aligned
		  displacements.  */
	       && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
	{
	  clear_bytes = 8;
	  mode = DImode;
	}
      else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
	{			/* move 4 bytes */
	  clear_bytes = 4;
	  mode = SImode;
	}
      else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
	{			/* move 2 bytes */
	  clear_bytes = 2;
	  mode = HImode;
	}
      else /* move 1 byte at a time */
	{
	  clear_bytes = 1;
	  mode = QImode;
	}

      dest = adjust_address (orig_dest, mode, offset);

      emit_move_insn (dest, CONST0_RTX (mode));
    }

  return 1;
}


/* Expand a block move operation, and return 1 if successful.  Return 0
   if we should let the compiler generate normal code.

   operands[0] is the destination
   operands[1] is the source
   operands[2] is the length
   operands[3] is the alignment */

#define MAX_MOVE_REG 4

int
expand_block_move (rtx operands[])
{
  rtx orig_dest = operands[0];
  rtx orig_src	= operands[1];
  rtx bytes_rtx	= operands[2];
  rtx align_rtx = operands[3];
  int constp	= (GET_CODE (bytes_rtx) == CONST_INT);
  int align;
  int bytes;
  int offset;
  int move_bytes;
  rtx stores[MAX_MOVE_REG];
  int num_reg = 0;

  /* If this is not a fixed size move, just call memcpy */
  if (! constp)
    return 0;

  /* This must be a fixed size alignment */
  gcc_assert (GET_CODE (align_rtx) == CONST_INT);
  align = INTVAL (align_rtx) * BITS_PER_UNIT;

  /* Anything to move? */
  bytes = INTVAL (bytes_rtx);
  if (bytes <= 0)
    return 1;

  /* store_one_arg depends on expand_block_move to handle at least the size of
     reg_parm_stack_space.  */
  if (bytes > (TARGET_POWERPC64 ? 64 : 32))
    return 0;

  for (offset = 0; bytes > 0; offset += move_bytes, bytes -= move_bytes)
    {
      union {
	rtx (*movmemsi) (rtx, rtx, rtx, rtx);
	rtx (*mov) (rtx, rtx);
      } gen_func;
      enum machine_mode mode = BLKmode;
      rtx src, dest;

      /* Altivec first, since it will be faster than a string move
	 when it applies, and usually not significantly larger.  */
      if (TARGET_ALTIVEC && bytes >= 16 && align >= 128)
	{
	  move_bytes = 16;
	  mode = V4SImode;
	  gen_func.mov = gen_movv4si;
	}
      else if (TARGET_SPE && bytes >= 8 && align >= 64)
        {
          move_bytes = 8;
          mode = V2SImode;
          gen_func.mov = gen_movv2si;
        }
      else if (TARGET_STRING
	  && bytes > 24		/* move up to 32 bytes at a time */
	  && ! fixed_regs[5]
	  && ! fixed_regs[6]
	  && ! fixed_regs[7]
	  && ! fixed_regs[8]
	  && ! fixed_regs[9]
	  && ! fixed_regs[10]
	  && ! fixed_regs[11]
	  && ! fixed_regs[12])
	{
	  move_bytes = (bytes > 32) ? 32 : bytes;
	  gen_func.movmemsi = gen_movmemsi_8reg;
	}
      else if (TARGET_STRING
	       && bytes > 16	/* move up to 24 bytes at a time */
	       && ! fixed_regs[5]
	       && ! fixed_regs[6]
	       && ! fixed_regs[7]
	       && ! fixed_regs[8]
	       && ! fixed_regs[9]
	       && ! fixed_regs[10])
	{
	  move_bytes = (bytes > 24) ? 24 : bytes;
	  gen_func.movmemsi = gen_movmemsi_6reg;
	}
      else if (TARGET_STRING
	       && bytes > 8	/* move up to 16 bytes at a time */
	       && ! fixed_regs[5]
	       && ! fixed_regs[6]
	       && ! fixed_regs[7]
	       && ! fixed_regs[8])
	{
	  move_bytes = (bytes > 16) ? 16 : bytes;
	  gen_func.movmemsi = gen_movmemsi_4reg;
	}
      else if (bytes >= 8 && TARGET_POWERPC64
	       /* 64-bit loads and stores require word-aligned
		  displacements.  */
	       && (align >= 64 || (!STRICT_ALIGNMENT && align >= 32)))
	{
	  move_bytes = 8;
	  mode = DImode;
	  gen_func.mov = gen_movdi;
	}
      else if (TARGET_STRING && bytes > 4 && !TARGET_POWERPC64)
	{			/* move up to 8 bytes at a time */
	  move_bytes = (bytes > 8) ? 8 : bytes;
	  gen_func.movmemsi = gen_movmemsi_2reg;
	}
      else if (bytes >= 4 && (align >= 32 || !STRICT_ALIGNMENT))
	{			/* move 4 bytes */
	  move_bytes = 4;
	  mode = SImode;
	  gen_func.mov = gen_movsi;
	}
      else if (bytes >= 2 && (align >= 16 || !STRICT_ALIGNMENT))
	{			/* move 2 bytes */
	  move_bytes = 2;
	  mode = HImode;
	  gen_func.mov = gen_movhi;
	}
      else if (TARGET_STRING && bytes > 1)
	{			/* move up to 4 bytes at a time */
	  move_bytes = (bytes > 4) ? 4 : bytes;
	  gen_func.movmemsi = gen_movmemsi_1reg;
	}
      else /* move 1 byte at a time */
	{
	  move_bytes = 1;
	  mode = QImode;
	  gen_func.mov = gen_movqi;
	}

      src = adjust_address (orig_src, mode, offset);
      dest = adjust_address (orig_dest, mode, offset);

      if (mode != BLKmode)
	{
	  rtx tmp_reg = gen_reg_rtx (mode);

	  emit_insn ((*gen_func.mov) (tmp_reg, src));
	  stores[num_reg++] = (*gen_func.mov) (dest, tmp_reg);
	}

      if (mode == BLKmode || num_reg >= MAX_MOVE_REG || bytes == move_bytes)
	{
	  int i;
	  for (i = 0; i < num_reg; i++)
	    emit_insn (stores[i]);
	  num_reg = 0;
	}

      if (mode == BLKmode)
	{
	  /* Move the address into scratch registers.  The movmemsi
	     patterns require zero offset.  */
	  if (!REG_P (XEXP (src, 0)))
	    {
	      rtx src_reg = copy_addr_to_reg (XEXP (src, 0));
	      src = replace_equiv_address (src, src_reg);
	    }
	  set_mem_size (src, GEN_INT (move_bytes));

	  if (!REG_P (XEXP (dest, 0)))
	    {
	      rtx dest_reg = copy_addr_to_reg (XEXP (dest, 0));
	      dest = replace_equiv_address (dest, dest_reg);
	    }
	  set_mem_size (dest, GEN_INT (move_bytes));

	  emit_insn ((*gen_func.movmemsi) (dest, src,
					   GEN_INT (move_bytes & 31),
					   align_rtx));
	}
    }

  return 1;
}


/* Return a string to perform a load_multiple operation.
   operands[0] is the vector.
   operands[1] is the source address.
   operands[2] is the first destination register.  */

const char *
rs6000_output_load_multiple (rtx operands[3])
{
  /* We have to handle the case where the pseudo used to contain the address
     is assigned to one of the output registers.  */
  int i, j;
  int words = XVECLEN (operands[0], 0);
  rtx xop[10];

  if (XVECLEN (operands[0], 0) == 1)
    return "{l|lwz} %2,0(%1)";

  for (i = 0; i < words; i++)
    if (refers_to_regno_p (REGNO (operands[2]) + i,
			   REGNO (operands[2]) + i + 1, operands[1], 0))
      {
	if (i == words-1)
	  {
	    xop[0] = GEN_INT (4 * (words-1));
	    xop[1] = operands[1];
	    xop[2] = operands[2];
	    output_asm_insn ("{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,%0(%1)", xop);
	    return "";
	  }
	else if (i == 0)
	  {
	    xop[0] = GEN_INT (4 * (words-1));
	    xop[1] = operands[1];
	    xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + 1);
	    output_asm_insn ("{cal %1,4(%1)|addi %1,%1,4}\n\t{lsi|lswi} %2,%1,%0\n\t{l|lwz} %1,-4(%1)", xop);
	    return "";
	  }
	else
	  {
	    for (j = 0; j < words; j++)
	      if (j != i)
		{
		  xop[0] = GEN_INT (j * 4);
		  xop[1] = operands[1];
		  xop[2] = gen_rtx_REG (SImode, REGNO (operands[2]) + j);
		  output_asm_insn ("{l|lwz} %2,%0(%1)", xop);
		}
	    xop[0] = GEN_INT (i * 4);
	    xop[1] = operands[1];
	    output_asm_insn ("{l|lwz} %1,%0(%1)", xop);
	    return "";
	  }
      }

  return "{lsi|lswi} %2,%1,%N0";
}


/* A validation routine: say whether CODE, a condition code, and MODE
   match.  The other alternatives either don't make sense or should
   never be generated.  */

void
validate_condition_mode (enum rtx_code code, enum machine_mode mode)
{
  gcc_assert ((GET_RTX_CLASS (code) == RTX_COMPARE
	       || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
	      && GET_MODE_CLASS (mode) == MODE_CC);

  /* These don't make sense.  */
  gcc_assert ((code != GT && code != LT && code != GE && code != LE)
	      || mode != CCUNSmode);

  gcc_assert ((code != GTU && code != LTU && code != GEU && code != LEU)
	      || mode == CCUNSmode);

  gcc_assert (mode == CCFPmode
	      || (code != ORDERED && code != UNORDERED
		  && code != UNEQ && code != LTGT
		  && code != UNGT && code != UNLT
		  && code != UNGE && code != UNLE));

  /* These should never be generated except for
     flag_finite_math_only.  */
  gcc_assert (mode != CCFPmode
	      || flag_finite_math_only
	      || (code != LE && code != GE
		  && code != UNEQ && code != LTGT
		  && code != UNGT && code != UNLT));

  /* These are invalid; the information is not there.  */
  gcc_assert (mode != CCEQmode || code == EQ || code == NE);
}


/* Return 1 if ANDOP is a mask that has no bits on that are not in the
   mask required to convert the result of a rotate insn into a shift
   left insn of SHIFTOP bits.  Both are known to be SImode CONST_INT.  */

int
includes_lshift_p (rtx shiftop, rtx andop)
{
  unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;

  shift_mask <<= INTVAL (shiftop);

  return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
}

/* Similar, but for right shift.  */

int
includes_rshift_p (rtx shiftop, rtx andop)
{
  unsigned HOST_WIDE_INT shift_mask = ~(unsigned HOST_WIDE_INT) 0;

  shift_mask >>= INTVAL (shiftop);

  return (INTVAL (andop) & 0xffffffff & ~shift_mask) == 0;
}

/* Return 1 if ANDOP is a mask suitable for use with an rldic insn
   to perform a left shift.  It must have exactly SHIFTOP least
   significant 0's, then one or more 1's, then zero or more 0's.  */

int
includes_rldic_lshift_p (rtx shiftop, rtx andop)
{
  if (GET_CODE (andop) == CONST_INT)
    {
      HOST_WIDE_INT c, lsb, shift_mask;

      c = INTVAL (andop);
      if (c == 0 || c == ~0)
	return 0;

      shift_mask = ~0;
      shift_mask <<= INTVAL (shiftop);

      /* Find the least significant one bit.  */
      lsb = c & -c;

      /* It must coincide with the LSB of the shift mask.  */
      if (-lsb != shift_mask)
	return 0;

      /* Invert to look for the next transition (if any).  */
      c = ~c;

      /* Remove the low group of ones (originally low group of zeros).  */
      c &= -lsb;

      /* Again find the lsb, and check we have all 1's above.  */
      lsb = c & -c;
      return c == -lsb;
    }
  else if (GET_CODE (andop) == CONST_DOUBLE
	   && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
    {
      HOST_WIDE_INT low, high, lsb;
      HOST_WIDE_INT shift_mask_low, shift_mask_high;

      low = CONST_DOUBLE_LOW (andop);
      if (HOST_BITS_PER_WIDE_INT < 64)
	high = CONST_DOUBLE_HIGH (andop);

      if ((low == 0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == 0))
	  || (low == ~0 && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0)))
	return 0;

      if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
	{
	  shift_mask_high = ~0;
	  if (INTVAL (shiftop) > 32)
	    shift_mask_high <<= INTVAL (shiftop) - 32;

	  lsb = high & -high;

	  if (-lsb != shift_mask_high || INTVAL (shiftop) < 32)
	    return 0;

	  high = ~high;
	  high &= -lsb;

	  lsb = high & -high;
	  return high == -lsb;
	}

      shift_mask_low = ~0;
      shift_mask_low <<= INTVAL (shiftop);

      lsb = low & -low;

      if (-lsb != shift_mask_low)
	return 0;

      if (HOST_BITS_PER_WIDE_INT < 64)
	high = ~high;
      low = ~low;
      low &= -lsb;

      if (HOST_BITS_PER_WIDE_INT < 64 && low == 0)
	{
	  lsb = high & -high;
	  return high == -lsb;
	}

      lsb = low & -low;
      return low == -lsb && (HOST_BITS_PER_WIDE_INT >= 64 || high == ~0);
    }
  else
    return 0;
}

/* Return 1 if ANDOP is a mask suitable for use with an rldicr insn
   to perform a left shift.  It must have SHIFTOP or more least
   significant 0's, with the remainder of the word 1's.  */

int
includes_rldicr_lshift_p (rtx shiftop, rtx andop)
{
  if (GET_CODE (andop) == CONST_INT)
    {
      HOST_WIDE_INT c, lsb, shift_mask;

      shift_mask = ~0;
      shift_mask <<= INTVAL (shiftop);
      c = INTVAL (andop);

      /* Find the least significant one bit.  */
      lsb = c & -c;

      /* It must be covered by the shift mask.
	 This test also rejects c == 0.  */
      if ((lsb & shift_mask) == 0)
	return 0;

      /* Check we have all 1's above the transition, and reject all 1's.  */
      return c == -lsb && lsb != 1;
    }
  else if (GET_CODE (andop) == CONST_DOUBLE
	   && (GET_MODE (andop) == VOIDmode || GET_MODE (andop) == DImode))
    {
      HOST_WIDE_INT low, lsb, shift_mask_low;

      low = CONST_DOUBLE_LOW (andop);

      if (HOST_BITS_PER_WIDE_INT < 64)
	{
	  HOST_WIDE_INT high, shift_mask_high;

	  high = CONST_DOUBLE_HIGH (andop);

	  if (low == 0)
	    {
	      shift_mask_high = ~0;
	      if (INTVAL (shiftop) > 32)
		shift_mask_high <<= INTVAL (shiftop) - 32;

	      lsb = high & -high;

	      if ((lsb & shift_mask_high) == 0)
		return 0;

	      return high == -lsb;
	    }
	  if (high != ~0)
	    return 0;
	}

      shift_mask_low = ~0;
      shift_mask_low <<= INTVAL (shiftop);

      lsb = low & -low;

      if ((lsb & shift_mask_low) == 0)
	return 0;

      return low == -lsb && lsb != 1;
    }
  else
    return 0;
}

/* Return 1 if operands will generate a valid arguments to rlwimi
instruction for insert with right shift in 64-bit mode.  The mask may
not start on the first bit or stop on the last bit because wrap-around
effects of instruction do not correspond to semantics of RTL insn.  */

int
insvdi_rshift_rlwimi_p (rtx sizeop, rtx startop, rtx shiftop)
{
  if (INTVAL (startop) > 32
      && INTVAL (startop) < 64
      && INTVAL (sizeop) > 1
      && INTVAL (sizeop) + INTVAL (startop) < 64
      && INTVAL (shiftop) > 0
      && INTVAL (sizeop) + INTVAL (shiftop) < 32
      && (64 - (INTVAL (shiftop) & 63)) >= INTVAL (sizeop))
    return 1;

  return 0;
}

/* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
   for lfq and stfq insns iff the registers are hard registers.   */

int
registers_ok_for_quad_peep (rtx reg1, rtx reg2)
{
  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
    return 0;

  /* We might have been passed non floating point registers.  */
  if (!FP_REGNO_P (REGNO (reg1))
      || !FP_REGNO_P (REGNO (reg2)))
    return 0;

  return (REGNO (reg1) == REGNO (reg2) - 1);
}

/* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.
   addr1 and addr2 must be in consecutive memory locations
   (addr2 == addr1 + 8).  */

int
mems_ok_for_quad_peep (rtx mem1, rtx mem2)
{
  rtx addr1, addr2;
  unsigned int reg1, reg2;
  int offset1, offset2;

  /* The mems cannot be volatile.  */
  if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
    return 0;

  addr1 = XEXP (mem1, 0);
  addr2 = XEXP (mem2, 0);

  /* Extract an offset (if used) from the first addr.  */
  if (GET_CODE (addr1) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (GET_CODE (XEXP (addr1, 0)) != REG)
	return 0;
      else
	{
	  reg1 = REGNO (XEXP (addr1, 0));
	  /* The offset must be constant!  */
	  if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
	    return 0;
	  offset1 = INTVAL (XEXP (addr1, 1));
	}
    }
  else if (GET_CODE (addr1) != REG)
    return 0;
  else
    {
      reg1 = REGNO (addr1);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset1 = 0;
    }

  /* And now for the second addr.  */
  if (GET_CODE (addr2) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (GET_CODE (XEXP (addr2, 0)) != REG)
	return 0;
      else
	{
	  reg2 = REGNO (XEXP (addr2, 0));
	  /* The offset must be constant. */
	  if (GET_CODE (XEXP (addr2, 1)) != CONST_INT)
	    return 0;
	  offset2 = INTVAL (XEXP (addr2, 1));
	}
    }
  else if (GET_CODE (addr2) != REG)
    return 0;
  else
    {
      reg2 = REGNO (addr2);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset2 = 0;
    }

  /* Both of these must have the same base register.  */
  if (reg1 != reg2)
    return 0;

  /* The offset for the second addr must be 8 more than the first addr.  */
  if (offset2 != offset1 + 8)
    return 0;

  /* All the tests passed.  addr1 and addr2 are valid for lfq or stfq
     instructions.  */
  return 1;
}


rtx
rs6000_secondary_memory_needed_rtx (enum machine_mode mode)
{
  static bool eliminated = false;
  rtx ret;

  if (mode != SDmode)
    ret = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
  else
    {
      rtx mem = cfun->machine->sdmode_stack_slot;
      gcc_assert (mem != NULL_RTX);

      if (!eliminated)
	{
	  mem = eliminate_regs (mem, VOIDmode, NULL_RTX);
	  cfun->machine->sdmode_stack_slot = mem;
	  eliminated = true;
	}
      ret = mem;
    }

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr, "\nrs6000_secondary_memory_needed_rtx, mode %s, rtx:\n",
	       GET_MODE_NAME (mode));
      if (!ret)
	fprintf (stderr, "\tNULL_RTX\n");
      else
	debug_rtx (ret);
    }

  return ret;
}

static tree
rs6000_check_sdmode (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
  /* Don't walk into types.  */
  if (*tp == NULL_TREE || *tp == error_mark_node || TYPE_P (*tp))
    {
      *walk_subtrees = 0;
      return NULL_TREE;
    }

  switch (TREE_CODE (*tp))
    {
    case VAR_DECL:
    case PARM_DECL:
    case FIELD_DECL:
    case RESULT_DECL:
    case SSA_NAME:
    case REAL_CST:
    case INDIRECT_REF:
    case ALIGN_INDIRECT_REF:
    case MISALIGNED_INDIRECT_REF:
    case VIEW_CONVERT_EXPR:
      if (TYPE_MODE (TREE_TYPE (*tp)) == SDmode)
	return *tp;
      break;
    default:
      break;
    }

  return NULL_TREE;
}

enum reload_reg_type {
  GPR_REGISTER_TYPE,
  VECTOR_REGISTER_TYPE,
  OTHER_REGISTER_TYPE
};

static enum reload_reg_type
rs6000_reload_register_type (enum reg_class rclass)
{
  switch (rclass)
    {
    case GENERAL_REGS:
    case BASE_REGS:
      return GPR_REGISTER_TYPE;

    case FLOAT_REGS:
    case ALTIVEC_REGS:
    case VSX_REGS:
      return VECTOR_REGISTER_TYPE;

    default:
      return OTHER_REGISTER_TYPE;
    }
}

/* Inform reload about cases where moving X with a mode MODE to a register in
   RCLASS requires an extra scratch or immediate register.  Return the class
   needed for the immediate register.

   For VSX and Altivec, we may need a register to convert sp+offset into
   reg+sp.  */

static enum reg_class
rs6000_secondary_reload (bool in_p,
			 rtx x,
			 enum reg_class rclass,
			 enum machine_mode mode,
			 secondary_reload_info *sri)
{
  enum reg_class ret = ALL_REGS;
  enum insn_code icode;
  bool default_p = false;

  sri->icode = CODE_FOR_nothing;

  /* Convert vector loads and stores into gprs to use an additional base
     register.  */
  icode = rs6000_vector_reload[mode][in_p != false];
  if (icode != CODE_FOR_nothing)
    {
      ret = NO_REGS;
      sri->icode = CODE_FOR_nothing;
      sri->extra_cost = 0;

      if (GET_CODE (x) == MEM)
	{
	  rtx addr = XEXP (x, 0);

	  /* Loads to and stores from gprs can do reg+offset, and wouldn't need
	     an extra register in that case, but it would need an extra
	     register if the addressing is reg+reg or (reg+reg)&(-16).  */
	  if (rclass == GENERAL_REGS || rclass == BASE_REGS)
	    {
	      if (!legitimate_indirect_address_p (addr, false)
		  && !rs6000_legitimate_offset_address_p (TImode, addr, false))
		{
		  sri->icode = icode;
		  /* account for splitting the loads, and converting the
		     address from reg+reg to reg.  */
		  sri->extra_cost = (((TARGET_64BIT) ? 3 : 5)
				     + ((GET_CODE (addr) == AND) ? 1 : 0));
		}
	    }
	  /* Loads to and stores from vector registers can only do reg+reg
	     addressing.  Altivec registers can also do (reg+reg)&(-16).  */
	  else if (rclass == VSX_REGS || rclass == ALTIVEC_REGS
		   || rclass == FLOAT_REGS || rclass == NO_REGS)
	    {
	      if (!VECTOR_MEM_ALTIVEC_P (mode)
		  && GET_CODE (addr) == AND
		  && GET_CODE (XEXP (addr, 1)) == CONST_INT
		  && INTVAL (XEXP (addr, 1)) == -16
		  && (legitimate_indirect_address_p (XEXP (addr, 0), false)
		      || legitimate_indexed_address_p (XEXP (addr, 0), false)))
		{
		  sri->icode = icode;
		  sri->extra_cost = ((GET_CODE (XEXP (addr, 0)) == PLUS)
				     ? 2 : 1);
		}
	      else if (!legitimate_indirect_address_p (addr, false)
		       && (rclass == NO_REGS
			   || !legitimate_indexed_address_p (addr, false)))
		{
		  sri->icode = icode;
		  sri->extra_cost = 1;
		}
	      else
		icode = CODE_FOR_nothing;
	    }
	  /* Any other loads, including to pseudo registers which haven't been
	     assigned to a register yet, default to require a scratch
	     register.  */
	  else
	    {
	      sri->icode = icode;
	      sri->extra_cost = 2;
	    }
	}
      else if (REG_P (x))
	{
	  int regno = true_regnum (x);

	  icode = CODE_FOR_nothing;
	  if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
	    default_p = true;
	  else
	    {
	      enum reg_class xclass = REGNO_REG_CLASS (regno);
	      enum reload_reg_type rtype1 = rs6000_reload_register_type (rclass);
	      enum reload_reg_type rtype2 = rs6000_reload_register_type (xclass);

	      /* If memory is needed, use default_secondary_reload to create the
		 stack slot.  */
	      if (rtype1 != rtype2 || rtype1 == OTHER_REGISTER_TYPE)
		default_p = true;
	      else
		ret = NO_REGS;
	    }
	}
      else
	default_p = true;
    }
  else
    default_p = true;

  if (default_p)
    ret = default_secondary_reload (in_p, x, rclass, mode, sri);

  gcc_assert (ret != ALL_REGS);

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr,
	       "\nrs6000_secondary_reload, return %s, in_p = %s, rclass = %s, "
	       "mode = %s",
	       reg_class_names[ret],
	       in_p ? "true" : "false",
	       reg_class_names[rclass],
	       GET_MODE_NAME (mode));

      if (default_p)
	fprintf (stderr, ", default secondary reload");

      if (sri->icode != CODE_FOR_nothing)
	fprintf (stderr, ", reload func = %s, extra cost = %d\n",
		 insn_data[sri->icode].name, sri->extra_cost);
      else
	fprintf (stderr, "\n");

      debug_rtx (x);
    }

  return ret;
}

/* Fixup reload addresses for Altivec or VSX loads/stores to change SP+offset
   to SP+reg addressing.  */

void
rs6000_secondary_reload_inner (rtx reg, rtx mem, rtx scratch, bool store_p)
{
  int regno = true_regnum (reg);
  enum machine_mode mode = GET_MODE (reg);
  enum reg_class rclass;
  rtx addr;
  rtx and_op2 = NULL_RTX;
  rtx addr_op1;
  rtx addr_op2;
  rtx scratch_or_premodify = scratch;
  rtx and_rtx;
  rtx cc_clobber;

  if (TARGET_DEBUG_ADDR)
    {
      fprintf (stderr, "\nrs6000_secondary_reload_inner, type = %s\n",
	       store_p ? "store" : "load");
      fprintf (stderr, "reg:\n");
      debug_rtx (reg);
      fprintf (stderr, "mem:\n");
      debug_rtx (mem);
      fprintf (stderr, "scratch:\n");
      debug_rtx (scratch);
    }

  gcc_assert (regno >= 0 && regno < FIRST_PSEUDO_REGISTER);
  gcc_assert (GET_CODE (mem) == MEM);
  rclass = REGNO_REG_CLASS (regno);
  addr = XEXP (mem, 0);

  switch (rclass)
    {
      /* GPRs can handle reg + small constant, all other addresses need to use
	 the scratch register.  */
    case GENERAL_REGS:
    case BASE_REGS:
      if (GET_CODE (addr) == AND)
	{
	  and_op2 = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}

      if (GET_CODE (addr) == PRE_MODIFY)
	{
	  scratch_or_premodify = XEXP (addr, 0);
	  gcc_assert (REG_P (scratch_or_premodify));
	  gcc_assert (GET_CODE (XEXP (addr, 1)) == PLUS);
	  addr = XEXP (addr, 1);
	}

      if (GET_CODE (addr) == PLUS
	  && (!rs6000_legitimate_offset_address_p (TImode, addr, false)
	      || and_op2 != NULL_RTX))
	{
	  addr_op1 = XEXP (addr, 0);
	  addr_op2 = XEXP (addr, 1);
	  gcc_assert (legitimate_indirect_address_p (addr_op1, false));

	  if (!REG_P (addr_op2)
	      && (GET_CODE (addr_op2) != CONST_INT
		  || !satisfies_constraint_I (addr_op2)))
	    {
	      if (TARGET_DEBUG_ADDR)
		{
		  fprintf (stderr,
			   "\nMove plus addr to register %s, mode = %s: ",
			   rs6000_reg_names[REGNO (scratch)],
			   GET_MODE_NAME (mode));
		  debug_rtx (addr_op2);
		}
	      rs6000_emit_move (scratch, addr_op2, Pmode);
	      addr_op2 = scratch;
	    }

	  emit_insn (gen_rtx_SET (VOIDmode,
				  scratch_or_premodify,
				  gen_rtx_PLUS (Pmode,
						addr_op1,
						addr_op2)));

	  addr = scratch_or_premodify;
	  scratch_or_premodify = scratch;
	}
      else if (!legitimate_indirect_address_p (addr, false)
	       && !rs6000_legitimate_offset_address_p (TImode, addr, false))
	{
	  if (TARGET_DEBUG_ADDR)
	    {
	      fprintf (stderr, "\nMove addr to register %s, mode = %s: ",
		       rs6000_reg_names[REGNO (scratch_or_premodify)],
		       GET_MODE_NAME (mode));
	      debug_rtx (addr);
	    }
	  rs6000_emit_move (scratch_or_premodify, addr, Pmode);
	  addr = scratch_or_premodify;
	  scratch_or_premodify = scratch;
	}
      break;

      /* Float/Altivec registers can only handle reg+reg addressing.  Move
	 other addresses into a scratch register.  */
    case FLOAT_REGS:
    case VSX_REGS:
    case ALTIVEC_REGS:

      /* With float regs, we need to handle the AND ourselves, since we can't
	 use the Altivec instruction with an implicit AND -16.  Allow scalar
	 loads to float registers to use reg+offset even if VSX.  */
      if (GET_CODE (addr) == AND
	  && (rclass != ALTIVEC_REGS || GET_MODE_SIZE (mode) != 16
	      || GET_CODE (XEXP (addr, 1)) != CONST_INT
	      || INTVAL (XEXP (addr, 1)) != -16
	      || !VECTOR_MEM_ALTIVEC_P (mode)))
	{
	  and_op2 = XEXP (addr, 1);
	  addr = XEXP (addr, 0);
	}

      /* If we aren't using a VSX load, save the PRE_MODIFY register and use it
	 as the address later.  */
      if (GET_CODE (addr) == PRE_MODIFY
	  && (!VECTOR_MEM_VSX_P (mode)
	      || and_op2 != NULL_RTX
	      || !legitimate_indexed_address_p (XEXP (addr, 1), false)))
	{
	  scratch_or_premodify = XEXP (addr, 0);
	  gcc_assert (legitimate_indirect_address_p (scratch_or_premodify,
						     false));
	  gcc_assert (GET_CODE (XEXP (addr, 1)) == PLUS);
	  addr = XEXP (addr, 1);
	}

      if (legitimate_indirect_address_p (addr, false)	/* reg */
	  || legitimate_indexed_address_p (addr, false)	/* reg+reg */
	  || GET_CODE (addr) == PRE_MODIFY		/* VSX pre-modify */
	  || (GET_CODE (addr) == AND			/* Altivec memory */
	      && GET_CODE (XEXP (addr, 1)) == CONST_INT
	      && INTVAL (XEXP (addr, 1)) == -16
	      && VECTOR_MEM_ALTIVEC_P (mode))
	  || (rclass == FLOAT_REGS			/* legacy float mem */
	      && GET_MODE_SIZE (mode) == 8
	      && and_op2 == NULL_RTX
	      && scratch_or_premodify == scratch
	      && rs6000_legitimate_offset_address_p (mode, addr, false)))
	;

      else if (GET_CODE (addr) == PLUS)
	{
	  addr_op1 = XEXP (addr, 0);
	  addr_op2 = XEXP (addr, 1);
	  gcc_assert (REG_P (addr_op1));

	  if (TARGET_DEBUG_ADDR)
	    {
	      fprintf (stderr, "\nMove plus addr to register %s, mode = %s: ",
		       rs6000_reg_names[REGNO (scratch)], GET_MODE_NAME (mode));
	      debug_rtx (addr_op2);
	    }
	  rs6000_emit_move (scratch, addr_op2, Pmode);
	  emit_insn (gen_rtx_SET (VOIDmode,
				  scratch_or_premodify,
				  gen_rtx_PLUS (Pmode,
						addr_op1,
						scratch)));
	  addr = scratch_or_premodify;
	  scratch_or_premodify = scratch;
	}

      else if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == CONST
	       || GET_CODE (addr) == CONST_INT || REG_P (addr))
	{
	  if (TARGET_DEBUG_ADDR)
	    {
	      fprintf (stderr, "\nMove addr to register %s, mode = %s: ",
		       rs6000_reg_names[REGNO (scratch_or_premodify)],
		       GET_MODE_NAME (mode));
	      debug_rtx (addr);
	    }

	  rs6000_emit_move (scratch_or_premodify, addr, Pmode);
	  addr = scratch_or_premodify;
	  scratch_or_premodify = scratch;
	}

      else
	gcc_unreachable ();

      break;

    default:
      gcc_unreachable ();
    }

  /* If the original address involved a pre-modify that we couldn't use the VSX
     memory instruction with update, and we haven't taken care of already,
     store the address in the pre-modify register and use that as the
     address.  */
  if (scratch_or_premodify != scratch && scratch_or_premodify != addr)
    {
      emit_insn (gen_rtx_SET (VOIDmode, scratch_or_premodify, addr));
      addr = scratch_or_premodify;
    }

  /* If the original address involved an AND -16 and we couldn't use an ALTIVEC
     memory instruction, recreate the AND now, including the clobber which is
     generated by the general ANDSI3/ANDDI3 patterns for the
     andi. instruction.  */
  if (and_op2 != NULL_RTX)
    {
      if (! legitimate_indirect_address_p (addr, false))
	{
	  emit_insn (gen_rtx_SET (VOIDmode, scratch, addr));
	  addr = scratch;
	}

      if (TARGET_DEBUG_ADDR)
	{
	  fprintf (stderr, "\nAnd addr to register %s, mode = %s: ",
		   rs6000_reg_names[REGNO (scratch)], GET_MODE_NAME (mode));
	  debug_rtx (and_op2);
	}

      and_rtx = gen_rtx_SET (VOIDmode,
			     scratch,
			     gen_rtx_AND (Pmode,
					  addr,
					  and_op2));

      cc_clobber = gen_rtx_CLOBBER (CCmode, gen_rtx_SCRATCH (CCmode));
      emit_insn (gen_rtx_PARALLEL (VOIDmode,
				   gen_rtvec (2, and_rtx, cc_clobber)));
      addr = scratch;
    }

  /* Adjust the address if it changed.  */
  if (addr != XEXP (mem, 0))
    {
      mem = change_address (mem, mode, addr);
      if (TARGET_DEBUG_ADDR)
	fprintf (stderr, "\nrs6000_secondary_reload_inner, mem adjusted.\n");
    }

  /* Now create the move.  */
  if (store_p)
    emit_insn (gen_rtx_SET (VOIDmode, mem, reg));
  else
    emit_insn (gen_rtx_SET (VOIDmode, reg, mem));

  return;
}

/* Target hook to return the cover classes for Integrated Register Allocator.
   Cover classes is a set of non-intersected register classes covering all hard
   registers used for register allocation purpose.  Any move between two
   registers of a cover class should be cheaper than load or store of the
   registers.  The value is array of register classes with LIM_REG_CLASSES used
   as the end marker.

   We need two IRA_COVER_CLASSES, one for pre-VSX, and the other for VSX to
   account for the Altivec and Floating registers being subsets of the VSX
   register set under VSX, but distinct register sets on pre-VSX machines.  */

static const enum reg_class *
rs6000_ira_cover_classes (void)
{
  static const enum reg_class cover_pre_vsx[] = IRA_COVER_CLASSES_PRE_VSX;
  static const enum reg_class cover_vsx[]     = IRA_COVER_CLASSES_VSX;

  return (TARGET_VSX) ? cover_vsx : cover_pre_vsx;
}

/* Allocate a 64-bit stack slot to be used for copying SDmode
   values through if this function has any SDmode references.  */

static void
rs6000_alloc_sdmode_stack_slot (void)
{
  tree t;
  basic_block bb;
  gimple_stmt_iterator gsi;

  gcc_assert (cfun->machine->sdmode_stack_slot == NULL_RTX);

  FOR_EACH_BB (bb)
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      {
	tree ret = walk_gimple_op (gsi_stmt (gsi), rs6000_check_sdmode, NULL);
	if (ret)
	  {
	    rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
	    cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
								  SDmode, 0);
	    return;
	  }
      }

  /* Check for any SDmode parameters of the function.  */
  for (t = DECL_ARGUMENTS (cfun->decl); t; t = TREE_CHAIN (t))
    {
      if (TREE_TYPE (t) == error_mark_node)
	continue;

      if (TYPE_MODE (TREE_TYPE (t)) == SDmode
	  || TYPE_MODE (DECL_ARG_TYPE (t)) == SDmode)
	{
	  rtx stack = assign_stack_local (DDmode, GET_MODE_SIZE (DDmode), 0);
	  cfun->machine->sdmode_stack_slot = adjust_address_nv (stack,
								SDmode, 0);
	  return;
	}
    }
}

static void
rs6000_instantiate_decls (void)
{
  if (cfun->machine->sdmode_stack_slot != NULL_RTX)
    instantiate_decl_rtl (cfun->machine->sdmode_stack_slot);
}

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.

   On the RS/6000, we have to return NO_REGS when we want to reload a
   floating-point CONST_DOUBLE to force it to be copied to memory.

   We also don't want to reload integer values into floating-point
   registers if we can at all help it.  In fact, this can
   cause reload to die, if it tries to generate a reload of CTR
   into a FP register and discovers it doesn't have the memory location
   required.

   ??? Would it be a good idea to have reload do the converse, that is
   try to reload floating modes into FP registers if possible?
 */

static enum reg_class
rs6000_preferred_reload_class (rtx x, enum reg_class rclass)
{
  enum machine_mode mode = GET_MODE (x);

  if (VECTOR_UNIT_VSX_P (mode)
      && x == CONST0_RTX (mode) && VSX_REG_CLASS_P (rclass))
    return rclass;

  if (VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)
      && (rclass == ALTIVEC_REGS || rclass == VSX_REGS)
      && easy_vector_constant (x, mode))
    return ALTIVEC_REGS;

  if (CONSTANT_P (x) && reg_classes_intersect_p (rclass, FLOAT_REGS))
    return NO_REGS;

  if (GET_MODE_CLASS (mode) == MODE_INT && rclass == NON_SPECIAL_REGS)
    return GENERAL_REGS;

  /* For VSX, prefer the traditional registers for DF if the address is of the
     form reg+offset because we can use the non-VSX loads.  Prefer the Altivec
     registers if Altivec is handling the vector operations (i.e. V16QI, V8HI,
     and V4SI).  */
  if (rclass == VSX_REGS && VECTOR_MEM_VSX_P (mode))
    {
      if (mode == DFmode && GET_CODE (x) == MEM)
	{
	  rtx addr = XEXP (x, 0);

	  if (legitimate_indirect_address_p (addr, false))	/* reg */
	    return VSX_REGS;

	  if (legitimate_indexed_address_p (addr, false))	/* reg+reg */
	    return VSX_REGS;

	  if (GET_CODE (addr) == PRE_MODIFY
	      && legitimate_indexed_address_p (XEXP (addr, 0), false))
	    return VSX_REGS;

	  return FLOAT_REGS;
	}

      if (VECTOR_UNIT_ALTIVEC_P (mode))
	return ALTIVEC_REGS;

      return rclass;
    }

  return rclass;
}

/* Debug version of rs6000_preferred_reload_class.  */
static enum reg_class
rs6000_debug_preferred_reload_class (rtx x, enum reg_class rclass)
{
  enum reg_class ret = rs6000_preferred_reload_class (x, rclass);

  fprintf (stderr,
	   "\nrs6000_preferred_reload_class, return %s, rclass = %s, "
	   "mode = %s, x:\n",
	   reg_class_names[ret], reg_class_names[rclass],
	   GET_MODE_NAME (GET_MODE (x)));
  debug_rtx (x);

  return ret;
}

/* If we are copying between FP or AltiVec registers and anything else, we need
   a memory location.  The exception is when we are targeting ppc64 and the
   move to/from fpr to gpr instructions are available.  Also, under VSX, you
   can copy vector registers from the FP register set to the Altivec register
   set and vice versa.  */

static bool
rs6000_secondary_memory_needed (enum reg_class class1,
				enum reg_class class2,
				enum machine_mode mode)
{
  if (class1 == class2)
    return false;

  /* Under VSX, there are 3 register classes that values could be in (VSX_REGS,
     ALTIVEC_REGS, and FLOAT_REGS).  We don't need to use memory to copy
     between these classes.  But we need memory for other things that can go in
     FLOAT_REGS like SFmode.  */
  if (TARGET_VSX
      && (VECTOR_MEM_VSX_P (mode) || VECTOR_UNIT_VSX_P (mode))
      && (class1 == VSX_REGS || class1 == ALTIVEC_REGS
	  || class1 == FLOAT_REGS))
    return (class2 != VSX_REGS && class2 != ALTIVEC_REGS
	    && class2 != FLOAT_REGS);

  if (class1 == VSX_REGS || class2 == VSX_REGS)
    return true;

  if (class1 == FLOAT_REGS
      && (!TARGET_MFPGPR || !TARGET_POWERPC64
	  || ((mode != DFmode)
	      && (mode != DDmode)
	      && (mode != DImode))))
    return true;

  if (class2 == FLOAT_REGS
      && (!TARGET_MFPGPR || !TARGET_POWERPC64
	  || ((mode != DFmode)
	      && (mode != DDmode)
	      && (mode != DImode))))
    return true;

  if (class1 == ALTIVEC_REGS || class2 == ALTIVEC_REGS)
    return true;

  return false;
}

/* Debug version of rs6000_secondary_memory_needed.  */
static bool
rs6000_debug_secondary_memory_needed (enum reg_class class1,
				      enum reg_class class2,
				      enum machine_mode mode)
{
  bool ret = rs6000_secondary_memory_needed (class1, class2, mode);

  fprintf (stderr,
	   "rs6000_secondary_memory_needed, return: %s, class1 = %s, "
	   "class2 = %s, mode = %s\n",
	   ret ? "true" : "false", reg_class_names[class1],
	   reg_class_names[class2], GET_MODE_NAME (mode));

  return ret;
}

/* Return the register class of a scratch register needed to copy IN into
   or out of a register in RCLASS in MODE.  If it can be done directly,
   NO_REGS is returned.  */

static enum reg_class
rs6000_secondary_reload_class (enum reg_class rclass, enum machine_mode mode,
			       rtx in)
{
  int regno;

  if (TARGET_ELF || (DEFAULT_ABI == ABI_DARWIN
#if TARGET_MACHO
		     && MACHOPIC_INDIRECT
#endif
		     ))
    {
      /* We cannot copy a symbolic operand directly into anything
	 other than BASE_REGS for TARGET_ELF.  So indicate that a
	 register from BASE_REGS is needed as an intermediate
	 register.

	 On Darwin, pic addresses require a load from memory, which
	 needs a base register.  */
      if (rclass != BASE_REGS
	  && (GET_CODE (in) == SYMBOL_REF
	      || GET_CODE (in) == HIGH
	      || GET_CODE (in) == LABEL_REF
	      || GET_CODE (in) == CONST))
	return BASE_REGS;
    }

  if (GET_CODE (in) == REG)
    {
      regno = REGNO (in);
      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  regno = true_regnum (in);
	  if (regno >= FIRST_PSEUDO_REGISTER)
	    regno = -1;
	}
    }
  else if (GET_CODE (in) == SUBREG)
    {
      regno = true_regnum (in);
      if (regno >= FIRST_PSEUDO_REGISTER)
	regno = -1;
    }
  else
    regno = -1;

  /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
     into anything.  */
  if (rclass == GENERAL_REGS || rclass == BASE_REGS
      || (regno >= 0 && INT_REGNO_P (regno)))
    return NO_REGS;

  /* Constants, memory, and FP registers can go into FP registers.  */
  if ((regno == -1 || FP_REGNO_P (regno))
      && (rclass == FLOAT_REGS || rclass == NON_SPECIAL_REGS))
    return (mode != SDmode) ? NO_REGS : GENERAL_REGS;

  /* Memory, and FP/altivec registers can go into fp/altivec registers under
     VSX.  */
  if (TARGET_VSX
      && (regno == -1 || VSX_REGNO_P (regno))
      && VSX_REG_CLASS_P (rclass))
    return NO_REGS;

  /* Memory, and AltiVec registers can go into AltiVec registers.  */
  if ((regno == -1 || ALTIVEC_REGNO_P (regno))
      && rclass == ALTIVEC_REGS)
    return NO_REGS;

  /* We can copy among the CR registers.  */
  if ((rclass == CR_REGS || rclass == CR0_REGS)
      && regno >= 0 && CR_REGNO_P (regno))
    return NO_REGS;

  /* Otherwise, we need GENERAL_REGS.  */
  return GENERAL_REGS;
}

/* Debug version of rs6000_secondary_reload_class.  */
static enum reg_class
rs6000_debug_secondary_reload_class (enum reg_class rclass,
				     enum machine_mode mode, rtx in)
{
  enum reg_class ret = rs6000_secondary_reload_class (rclass, mode, in);
  fprintf (stderr,
	   "\nrs6000_secondary_reload_class, return %s, rclass = %s, "
	   "mode = %s, input rtx:\n",
	   reg_class_names[ret], reg_class_names[rclass],
	   GET_MODE_NAME (mode));
  debug_rtx (in);

  return ret;
}

/* Return nonzero if for CLASS a mode change from FROM to TO is invalid.  */

static bool
rs6000_cannot_change_mode_class (enum machine_mode from,
				 enum machine_mode to,
				 enum reg_class rclass)
{
  unsigned from_size = GET_MODE_SIZE (from);
  unsigned to_size = GET_MODE_SIZE (to);

  if (from_size != to_size)
    {
      enum reg_class xclass = (TARGET_VSX) ? VSX_REGS : FLOAT_REGS;
      return ((from_size < 8 || to_size < 8 || TARGET_IEEEQUAD)
	      && reg_classes_intersect_p (xclass, rclass));
    }

  if (TARGET_E500_DOUBLE
      && ((((to) == DFmode) + ((from) == DFmode)) == 1
	  || (((to) == TFmode) + ((from) == TFmode)) == 1
	  || (((to) == DDmode) + ((from) == DDmode)) == 1
	  || (((to) == TDmode) + ((from) == TDmode)) == 1
	  || (((to) == DImode) + ((from) == DImode)) == 1))
    return true;

  /* Since the VSX register set includes traditional floating point registers
     and altivec registers, just check for the size being different instead of
     trying to check whether the modes are vector modes.  Otherwise it won't
     allow say DF and DI to change classes.  */
  if (TARGET_VSX && VSX_REG_CLASS_P (rclass))
    return (from_size != 8 && from_size != 16);

  if (TARGET_ALTIVEC && rclass == ALTIVEC_REGS
      && (ALTIVEC_VECTOR_MODE (from) + ALTIVEC_VECTOR_MODE (to)) == 1)
    return true;

  if (TARGET_SPE && (SPE_VECTOR_MODE (from) + SPE_VECTOR_MODE (to)) == 1
      && reg_classes_intersect_p (GENERAL_REGS, rclass))
    return true;

  return false;
}

/* Debug version of rs6000_cannot_change_mode_class.  */
static bool
rs6000_debug_cannot_change_mode_class (enum machine_mode from,
				       enum machine_mode to,
				       enum reg_class rclass)
{
  bool ret = rs6000_cannot_change_mode_class (from, to, rclass);

  fprintf (stderr,
	   "rs6000_cannot_change_mode_class, return %s, from = %s, "
	   "to = %s, rclass = %s\n",
	   ret ? "true" : "false",
	   GET_MODE_NAME (from), GET_MODE_NAME (to),
	   reg_class_names[rclass]);

  return ret;
}

/* Given a comparison operation, return the bit number in CCR to test.  We
   know this is a valid comparison.

   SCC_P is 1 if this is for an scc.  That means that %D will have been
   used instead of %C, so the bits will be in different places.

   Return -1 if OP isn't a valid comparison for some reason.  */

int
ccr_bit (rtx op, int scc_p)
{
  enum rtx_code code = GET_CODE (op);
  enum machine_mode cc_mode;
  int cc_regnum;
  int base_bit;
  rtx reg;

  if (!COMPARISON_P (op))
    return -1;

  reg = XEXP (op, 0);

  gcc_assert (GET_CODE (reg) == REG && CR_REGNO_P (REGNO (reg)));

  cc_mode = GET_MODE (reg);
  cc_regnum = REGNO (reg);
  base_bit = 4 * (cc_regnum - CR0_REGNO);

  validate_condition_mode (code, cc_mode);

  /* When generating a sCOND operation, only positive conditions are
     allowed.  */
  gcc_assert (!scc_p
	      || code == EQ || code == GT || code == LT || code == UNORDERED
	      || code == GTU || code == LTU);

  switch (code)
    {
    case NE:
      return scc_p ? base_bit + 3 : base_bit + 2;
    case EQ:
      return base_bit + 2;
    case GT:  case GTU:  case UNLE:
      return base_bit + 1;
    case LT:  case LTU:  case UNGE:
      return base_bit;
    case ORDERED:  case UNORDERED:
      return base_bit + 3;

    case GE:  case GEU:
      /* If scc, we will have done a cror to put the bit in the
	 unordered position.  So test that bit.  For integer, this is ! LT
	 unless this is an scc insn.  */
      return scc_p ? base_bit + 3 : base_bit;

    case LE:  case LEU:
      return scc_p ? base_bit + 3 : base_bit + 1;

    default:
      gcc_unreachable ();
    }
}

/* Return the GOT register.  */

rtx
rs6000_got_register (rtx value ATTRIBUTE_UNUSED)
{
  /* The second flow pass currently (June 1999) can't update
     regs_ever_live without disturbing other parts of the compiler, so
     update it here to make the prolog/epilogue code happy.  */
  if (!can_create_pseudo_p ()
      && !df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM))
    df_set_regs_ever_live (RS6000_PIC_OFFSET_TABLE_REGNUM, true);

  crtl->uses_pic_offset_table = 1;

  return pic_offset_table_rtx;
}

/* Function to init struct machine_function.
   This will be called, via a pointer variable,
   from push_function_context.  */

static struct machine_function *
rs6000_init_machine_status (void)
{
  return GGC_CNEW (machine_function);
}

/* These macros test for integers and extract the low-order bits.  */
#define INT_P(X)  \
((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE)	\
 && GET_MODE (X) == VOIDmode)

#define INT_LOWPART(X) \
  (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))

int
extract_MB (rtx op)
{
  int i;
  unsigned long val = INT_LOWPART (op);

  /* If the high bit is zero, the value is the first 1 bit we find
     from the left.  */
  if ((val & 0x80000000) == 0)
    {
      gcc_assert (val & 0xffffffff);

      i = 1;
      while (((val <<= 1) & 0x80000000) == 0)
	++i;
      return i;
    }

  /* If the high bit is set and the low bit is not, or the mask is all
     1's, the value is zero.  */
  if ((val & 1) == 0 || (val & 0xffffffff) == 0xffffffff)
    return 0;

  /* Otherwise we have a wrap-around mask.  Look for the first 0 bit
     from the right.  */
  i = 31;
  while (((val >>= 1) & 1) != 0)
    --i;

  return i;
}

int
extract_ME (rtx op)
{
  int i;
  unsigned long val = INT_LOWPART (op);

  /* If the low bit is zero, the value is the first 1 bit we find from
     the right.  */
  if ((val & 1) == 0)
    {
      gcc_assert (val & 0xffffffff);

      i = 30;
      while (((val >>= 1) & 1) == 0)
	--i;

      return i;
    }

  /* If the low bit is set and the high bit is not, or the mask is all
     1's, the value is 31.  */
  if ((val & 0x80000000) == 0 || (val & 0xffffffff) == 0xffffffff)
    return 31;

  /* Otherwise we have a wrap-around mask.  Look for the first 0 bit
     from the left.  */
  i = 0;
  while (((val <<= 1) & 0x80000000) != 0)
    ++i;

  return i;
}

/* Locate some local-dynamic symbol still in use by this function
   so that we can print its name in some tls_ld pattern.  */

static const char *
rs6000_get_some_local_dynamic_name (void)
{
  rtx insn;

  if (cfun->machine->some_ld_name)
    return cfun->machine->some_ld_name;

  for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
    if (INSN_P (insn)
	&& for_each_rtx (&PATTERN (insn),
			 rs6000_get_some_local_dynamic_name_1, 0))
      return cfun->machine->some_ld_name;

  gcc_unreachable ();
}

/* Helper function for rs6000_get_some_local_dynamic_name.  */

static int
rs6000_get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
{
  rtx x = *px;

  if (GET_CODE (x) == SYMBOL_REF)
    {
      const char *str = XSTR (x, 0);
      if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
	{
	  cfun->machine->some_ld_name = str;
	  return 1;
	}
    }

  return 0;
}

/* Write out a function code label.  */

void
rs6000_output_function_entry (FILE *file, const char *fname)
{
  if (fname[0] != '.')
    {
      switch (DEFAULT_ABI)
	{
	default:
	  gcc_unreachable ();

	case ABI_AIX:
	  if (DOT_SYMBOLS)
	    putc ('.', file);
	  else
	    ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "L.");
	  break;

	case ABI_V4:
	case ABI_DARWIN:
	  break;
	}
    }
  if (TARGET_AIX)
    RS6000_OUTPUT_BASENAME (file, fname);
  else
    assemble_name (file, fname);
}

/* Print an operand.  Recognize special options, documented below.  */

#if TARGET_ELF
#define SMALL_DATA_RELOC ((rs6000_sdata == SDATA_EABI) ? "sda21" : "sdarel")
#define SMALL_DATA_REG ((rs6000_sdata == SDATA_EABI) ? 0 : 13)
#else
#define SMALL_DATA_RELOC "sda21"
#define SMALL_DATA_REG 0
#endif

void
print_operand (FILE *file, rtx x, int code)
{
  int i;
  HOST_WIDE_INT val;
  unsigned HOST_WIDE_INT uval;

  switch (code)
    {
    case '.':
      /* Write out an instruction after the call which may be replaced
	 with glue code by the loader.  This depends on the AIX version.  */
      asm_fprintf (file, RS6000_CALL_GLUE);
      return;

      /* %a is output_address.  */

    case 'A':
      /* If X is a constant integer whose low-order 5 bits are zero,
	 write 'l'.  Otherwise, write 'r'.  This is a kludge to fix a bug
	 in the AIX assembler where "sri" with a zero shift count
	 writes a trash instruction.  */
      if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0)
	putc ('l', file);
      else
	putc ('r', file);
      return;

    case 'b':
      /* If constant, low-order 16 bits of constant, unsigned.
	 Otherwise, write normally.  */
      if (INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 0xffff);
      else
	print_operand (file, x, 0);
      return;

    case 'B':
      /* If the low-order bit is zero, write 'r'; otherwise, write 'l'
	 for 64-bit mask direction.  */
      putc (((INT_LOWPART (x) & 1) == 0 ? 'r' : 'l'), file);
      return;

      /* %c is output_addr_const if a CONSTANT_ADDRESS_P, otherwise
	 output_operand.  */

    case 'c':
      /* X is a CR register.  Print the number of the GT bit of the CR.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%c value");
      else
	fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 1);
      return;

    case 'D':
      /* Like 'J' but get to the GT bit only.  */
      gcc_assert (GET_CODE (x) == REG);

      /* Bit 1 is GT bit.  */
      i = 4 * (REGNO (x) - CR0_REGNO) + 1;

      /* Add one for shift count in rlinm for scc.  */
      fprintf (file, "%d", i + 1);
      return;

    case 'E':
      /* X is a CR register.  Print the number of the EQ bit of the CR */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%E value");
      else
	fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO) + 2);
      return;

    case 'f':
      /* X is a CR register.  Print the shift count needed to move it
	 to the high-order four bits.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%f value");
      else
	fprintf (file, "%d", 4 * (REGNO (x) - CR0_REGNO));
      return;

    case 'F':
      /* Similar, but print the count for the rotate in the opposite
	 direction.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%F value");
      else
	fprintf (file, "%d", 32 - 4 * (REGNO (x) - CR0_REGNO));
      return;

    case 'G':
      /* X is a constant integer.  If it is negative, print "m",
	 otherwise print "z".  This is to make an aze or ame insn.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%G value");
      else if (INTVAL (x) >= 0)
	putc ('z', file);
      else
	putc ('m', file);
      return;

    case 'h':
      /* If constant, output low-order five bits.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 31);
      else
	print_operand (file, x, 0);
      return;

    case 'H':
      /* If constant, output low-order six bits.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INT_LOWPART (x) & 63);
      else
	print_operand (file, x, 0);
      return;

    case 'I':
      /* Print `i' if this is a constant, else nothing.  */
      if (INT_P (x))
	putc ('i', file);
      return;

    case 'j':
      /* Write the bit number in CCR for jump.  */
      i = ccr_bit (x, 0);
      if (i == -1)
	output_operand_lossage ("invalid %%j code");
      else
	fprintf (file, "%d", i);
      return;

    case 'J':
      /* Similar, but add one for shift count in rlinm for scc and pass
	 scc flag to `ccr_bit'.  */
      i = ccr_bit (x, 1);
      if (i == -1)
	output_operand_lossage ("invalid %%J code");
      else
	/* If we want bit 31, write a shift count of zero, not 32.  */
	fprintf (file, "%d", i == 31 ? 0 : i + 1);
      return;

    case 'k':
      /* X must be a constant.  Write the 1's complement of the
	 constant.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%k value");
      else
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~ INT_LOWPART (x));
      return;

    case 'K':
      /* X must be a symbolic constant on ELF.  Write an
	 expression suitable for an 'addi' that adds in the low 16
	 bits of the MEM.  */
      if (GET_CODE (x) != CONST)
	{
	  print_operand_address (file, x);
	  fputs ("@l", file);
	}
      else
	{
	  if (GET_CODE (XEXP (x, 0)) != PLUS
	      || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
		  && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
	      || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
	    output_operand_lossage ("invalid %%K value");
	  print_operand_address (file, XEXP (XEXP (x, 0), 0));
	  fputs ("@l", file);
	  /* For GNU as, there must be a non-alphanumeric character
	     between 'l' and the number.  The '-' is added by
	     print_operand() already.  */
	  if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
	    fputs ("+", file);
	  print_operand (file, XEXP (XEXP (x, 0), 1), 0);
	}
      return;

      /* %l is output_asm_label.  */

    case 'L':
      /* Write second word of DImode or DFmode reference.  Works on register
	 or non-indexed memory only.  */
      if (GET_CODE (x) == REG)
	fputs (reg_names[REGNO (x) + 1], file);
      else if (GET_CODE (x) == MEM)
	{
	  /* Handle possible auto-increment.  Since it is pre-increment and
	     we have already done it, we can just use an offset of word.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0),
					   UNITS_PER_WORD));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0),
					   UNITS_PER_WORD));
	  else
	    output_address (XEXP (adjust_address_nv (x, SImode,
						     UNITS_PER_WORD),
				  0));

	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;

    case 'm':
      /* MB value for a mask operand.  */
      if (! mask_operand (x, SImode))
	output_operand_lossage ("invalid %%m value");

      fprintf (file, "%d", extract_MB (x));
      return;

    case 'M':
      /* ME value for a mask operand.  */
      if (! mask_operand (x, SImode))
	output_operand_lossage ("invalid %%M value");

      fprintf (file, "%d", extract_ME (x));
      return;

      /* %n outputs the negative of its operand.  */

    case 'N':
      /* Write the number of elements in the vector times 4.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%N value");
      else
	fprintf (file, "%d", XVECLEN (x, 0) * 4);
      return;

    case 'O':
      /* Similar, but subtract 1 first.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%O value");
      else
	fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
      return;

    case 'p':
      /* X is a CONST_INT that is a power of two.  Output the logarithm.  */
      if (! INT_P (x)
	  || INT_LOWPART (x) < 0
	  || (i = exact_log2 (INT_LOWPART (x))) < 0)
	output_operand_lossage ("invalid %%p value");
      else
	fprintf (file, "%d", i);
      return;

    case 'P':
      /* The operand must be an indirect memory reference.  The result
	 is the register name.  */
      if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
	  || REGNO (XEXP (x, 0)) >= 32)
	output_operand_lossage ("invalid %%P value");
      else
	fputs (reg_names[REGNO (XEXP (x, 0))], file);
      return;

    case 'q':
      /* This outputs the logical code corresponding to a boolean
	 expression.  The expression may have one or both operands
	 negated (if one, only the first one).  For condition register
	 logical operations, it will also treat the negated
	 CR codes as NOTs, but not handle NOTs of them.  */
      {
	const char *const *t = 0;
	const char *s;
	enum rtx_code code = GET_CODE (x);
	static const char * const tbl[3][3] = {
	  { "and", "andc", "nor" },
	  { "or", "orc", "nand" },
	  { "xor", "eqv", "xor" } };

	if (code == AND)
	  t = tbl[0];
	else if (code == IOR)
	  t = tbl[1];
	else if (code == XOR)
	  t = tbl[2];
	else
	  output_operand_lossage ("invalid %%q value");

	if (GET_CODE (XEXP (x, 0)) != NOT)
	  s = t[0];
	else
	  {
	    if (GET_CODE (XEXP (x, 1)) == NOT)
	      s = t[2];
	    else
	      s = t[1];
	  }

	fputs (s, file);
      }
      return;

    case 'Q':
      if (TARGET_MFCRF)
	fputc (',', file);
        /* FALLTHRU */
      else
	return;

    case 'R':
      /* X is a CR register.  Print the mask for `mtcrf'.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%R value");
      else
	fprintf (file, "%d", 128 >> (REGNO (x) - CR0_REGNO));
      return;

    case 's':
      /* Low 5 bits of 32 - value */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%s value");
      else
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INT_LOWPART (x)) & 31);
      return;

    case 'S':
      /* PowerPC64 mask position.  All 0's is excluded.
	 CONST_INT 32-bit mask is considered sign-extended so any
	 transition must occur within the CONST_INT, not on the boundary.  */
      if (! mask64_operand (x, DImode))
	output_operand_lossage ("invalid %%S value");

      uval = INT_LOWPART (x);

      if (uval & 1)	/* Clear Left */
	{
#if HOST_BITS_PER_WIDE_INT > 64
	  uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
#endif
	  i = 64;
	}
      else		/* Clear Right */
	{
	  uval = ~uval;
#if HOST_BITS_PER_WIDE_INT > 64
	  uval &= ((unsigned HOST_WIDE_INT) 1 << 64) - 1;
#endif
	  i = 63;
	}
      while (uval != 0)
	--i, uval >>= 1;
      gcc_assert (i >= 0);
      fprintf (file, "%d", i);
      return;

    case 't':
      /* Like 'J' but get to the OVERFLOW/UNORDERED bit.  */
      gcc_assert (GET_CODE (x) == REG && GET_MODE (x) == CCmode);

      /* Bit 3 is OV bit.  */
      i = 4 * (REGNO (x) - CR0_REGNO) + 3;

      /* If we want bit 31, write a shift count of zero, not 32.  */
      fprintf (file, "%d", i == 31 ? 0 : i + 1);
      return;

    case 'T':
      /* Print the symbolic name of a branch target register.  */
      if (GET_CODE (x) != REG || (REGNO (x) != LR_REGNO
				  && REGNO (x) != CTR_REGNO))
	output_operand_lossage ("invalid %%T value");
      else if (REGNO (x) == LR_REGNO)
	fputs (TARGET_NEW_MNEMONICS ? "lr" : "r", file);
      else
	fputs ("ctr", file);
      return;

    case 'u':
      /* High-order 16 bits of constant for use in unsigned operand.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%u value");
      else
	fprintf (file, HOST_WIDE_INT_PRINT_HEX,
		 (INT_LOWPART (x) >> 16) & 0xffff);
      return;

    case 'v':
      /* High-order 16 bits of constant for use in signed operand.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%v value");
      else
	fprintf (file, HOST_WIDE_INT_PRINT_HEX,
		 (INT_LOWPART (x) >> 16) & 0xffff);
      return;

    case 'U':
      /* Print `u' if this has an auto-increment or auto-decrement.  */
      if (GET_CODE (x) == MEM
	  && (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC
	      || GET_CODE (XEXP (x, 0)) == PRE_MODIFY))
	putc ('u', file);
      return;

    case 'V':
      /* Print the trap code for this operand.  */
      switch (GET_CODE (x))
	{
	case EQ:
	  fputs ("eq", file);   /* 4 */
	  break;
	case NE:
	  fputs ("ne", file);   /* 24 */
	  break;
	case LT:
	  fputs ("lt", file);   /* 16 */
	  break;
	case LE:
	  fputs ("le", file);   /* 20 */
	  break;
	case GT:
	  fputs ("gt", file);   /* 8 */
	  break;
	case GE:
	  fputs ("ge", file);   /* 12 */
	  break;
	case LTU:
	  fputs ("llt", file);  /* 2 */
	  break;
	case LEU:
	  fputs ("lle", file);  /* 6 */
	  break;
	case GTU:
	  fputs ("lgt", file);  /* 1 */
	  break;
	case GEU:
	  fputs ("lge", file);  /* 5 */
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    case 'w':
      /* If constant, low-order 16 bits of constant, signed.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC,
		 ((INT_LOWPART (x) & 0xffff) ^ 0x8000) - 0x8000);
      else
	print_operand (file, x, 0);
      return;

    case 'W':
      /* MB value for a PowerPC64 rldic operand.  */
      val = (GET_CODE (x) == CONST_INT
	     ? INTVAL (x) : CONST_DOUBLE_HIGH (x));

      if (val < 0)
	i = -1;
      else
	for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
	  if ((val <<= 1) < 0)
	    break;

#if HOST_BITS_PER_WIDE_INT == 32
      if (GET_CODE (x) == CONST_INT && i >= 0)
	i += 32;  /* zero-extend high-part was all 0's */
      else if (GET_CODE (x) == CONST_DOUBLE && i == 32)
	{
	  val = CONST_DOUBLE_LOW (x);

	  gcc_assert (val);
	  if (val < 0)
	    --i;
	  else
	    for ( ; i < 64; i++)
	      if ((val <<= 1) < 0)
		break;
	}
#endif

      fprintf (file, "%d", i + 1);
      return;

    case 'x':
      /* X is a FPR or Altivec register used in a VSX context.  */
      if (GET_CODE (x) != REG || !VSX_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%x value");
      else
	{
	  int reg = REGNO (x);
	  int vsx_reg = (FP_REGNO_P (reg)
			 ? reg - 32
			 : reg - FIRST_ALTIVEC_REGNO + 32);

#ifdef TARGET_REGNAMES      
	  if (TARGET_REGNAMES)
	    fprintf (file, "%%vs%d", vsx_reg);
	  else
#endif
	    fprintf (file, "%d", vsx_reg);
	}
      return;

    case 'X':
      if (GET_CODE (x) == MEM
	  && (legitimate_indexed_address_p (XEXP (x, 0), 0)
	      || (GET_CODE (XEXP (x, 0)) == PRE_MODIFY
		  && legitimate_indexed_address_p (XEXP (XEXP (x, 0), 1), 0))))
	putc ('x', file);
      return;

    case 'Y':
      /* Like 'L', for third word of TImode  */
      if (GET_CODE (x) == REG)
	fputs (reg_names[REGNO (x) + 2], file);
      else if (GET_CODE (x) == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
	  else
	    output_address (XEXP (adjust_address_nv (x, SImode, 8), 0));
	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;

    case 'z':
      /* X is a SYMBOL_REF.  Write out the name preceded by a
	 period and without any trailing data in brackets.  Used for function
	 names.  If we are configured for System V (or the embedded ABI) on
	 the PowerPC, do not emit the period, since those systems do not use
	 TOCs and the like.  */
      gcc_assert (GET_CODE (x) == SYMBOL_REF);

      /* Mark the decl as referenced so that cgraph will output the
	 function.  */
      if (SYMBOL_REF_DECL (x))
	mark_decl_referenced (SYMBOL_REF_DECL (x));

      /* For macho, check to see if we need a stub.  */
      if (TARGET_MACHO)
	{
	  const char *name = XSTR (x, 0);
#if TARGET_MACHO
	  if (MACHOPIC_INDIRECT
	      && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION)
	    name = machopic_indirection_name (x, /*stub_p=*/true);
#endif
	  assemble_name (file, name);
	}
      else if (!DOT_SYMBOLS)
	assemble_name (file, XSTR (x, 0));
      else
	rs6000_output_function_entry (file, XSTR (x, 0));
      return;

    case 'Z':
      /* Like 'L', for last word of TImode.  */
      if (GET_CODE (x) == REG)
	fputs (reg_names[REGNO (x) + 3], file);
      else if (GET_CODE (x) == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
	  else
	    output_address (XEXP (adjust_address_nv (x, SImode, 12), 0));
	  if (small_data_operand (x, GET_MODE (x)))
	    fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		     reg_names[SMALL_DATA_REG]);
	}
      return;

      /* Print AltiVec or SPE memory operand.  */
    case 'y':
      {
	rtx tmp;

	gcc_assert (GET_CODE (x) == MEM);

	tmp = XEXP (x, 0);

	/* Ugly hack because %y is overloaded.  */
	if ((TARGET_SPE || TARGET_E500_DOUBLE)
	    && (GET_MODE_SIZE (GET_MODE (x)) == 8
		|| GET_MODE (x) == TFmode
		|| GET_MODE (x) == TImode))
	  {
	    /* Handle [reg].  */
	    if (GET_CODE (tmp) == REG)
	      {
		fprintf (file, "0(%s)", reg_names[REGNO (tmp)]);
		break;
	      }
	    /* Handle [reg+UIMM].  */
	    else if (GET_CODE (tmp) == PLUS &&
		     GET_CODE (XEXP (tmp, 1)) == CONST_INT)
	      {
		int x;

		gcc_assert (GET_CODE (XEXP (tmp, 0)) == REG);

		x = INTVAL (XEXP (tmp, 1));
		fprintf (file, "%d(%s)", x, reg_names[REGNO (XEXP (tmp, 0))]);
		break;
	      }

	    /* Fall through.  Must be [reg+reg].  */
	  }
	if (VECTOR_MEM_ALTIVEC_P (GET_MODE (x))
	    && GET_CODE (tmp) == AND
	    && GET_CODE (XEXP (tmp, 1)) == CONST_INT
	    && INTVAL (XEXP (tmp, 1)) == -16)
	  tmp = XEXP (tmp, 0);
	else if (VECTOR_MEM_VSX_P (GET_MODE (x))
		 && GET_CODE (tmp) == PRE_MODIFY)
	  tmp = XEXP (tmp, 1);
	if (GET_CODE (tmp) == REG)
	  fprintf (file, "0,%s", reg_names[REGNO (tmp)]);
	else
	  {
	    if (!GET_CODE (tmp) == PLUS
		|| !REG_P (XEXP (tmp, 0))
		|| !REG_P (XEXP (tmp, 1)))
	      {
		output_operand_lossage ("invalid %%y value, try using the 'Z' constraint");
		break;
	      }

	    if (REGNO (XEXP (tmp, 0)) == 0)
	      fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 1)) ],
		       reg_names[ REGNO (XEXP (tmp, 0)) ]);
	    else
	      fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (tmp, 0)) ],
		       reg_names[ REGNO (XEXP (tmp, 1)) ]);
	  }
	break;
      }

    case 0:
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x)]);
      else if (GET_CODE (x) == MEM)
	{
	  /* We need to handle PRE_INC and PRE_DEC here, since we need to
	     know the width from the mode.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC)
	    fprintf (file, "%d(%s)", GET_MODE_SIZE (GET_MODE (x)),
		     reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
	  else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    fprintf (file, "%d(%s)", - GET_MODE_SIZE (GET_MODE (x)),
		     reg_names[REGNO (XEXP (XEXP (x, 0), 0))]);
	  else if (GET_CODE (XEXP (x, 0)) == PRE_MODIFY)
	    output_address (XEXP (XEXP (x, 0), 1));
	  else
	    output_address (XEXP (x, 0));
	}
      else
	output_addr_const (file, x);
      return;

    case '&':
      assemble_name (file, rs6000_get_some_local_dynamic_name ());
      return;

    default:
      output_operand_lossage ("invalid %%xn code");
    }
}

/* Print the address of an operand.  */

void
print_operand_address (FILE *file, rtx x)
{
  if (GET_CODE (x) == REG)
    fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
  else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST
	   || GET_CODE (x) == LABEL_REF)
    {
      output_addr_const (file, x);
      if (small_data_operand (x, GET_MODE (x)))
	fprintf (file, "@%s(%s)", SMALL_DATA_RELOC,
		 reg_names[SMALL_DATA_REG]);
      else
	gcc_assert (!TARGET_TOC);
    }
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG)
    {
      gcc_assert (REG_P (XEXP (x, 0)));
      if (REGNO (XEXP (x, 0)) == 0)
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
		 reg_names[ REGNO (XEXP (x, 0)) ]);
      else
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
		 reg_names[ REGNO (XEXP (x, 1)) ]);
    }
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
    fprintf (file, HOST_WIDE_INT_PRINT_DEC "(%s)",
	     INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
#if TARGET_ELF
  else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
	   && CONSTANT_P (XEXP (x, 1)))
    {
      output_addr_const (file, XEXP (x, 1));
      fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
    }
#endif
#if TARGET_MACHO
  else if (GET_CODE (x) == LO_SUM && GET_CODE (XEXP (x, 0)) == REG
	   && CONSTANT_P (XEXP (x, 1)))
    {
      fprintf (file, "lo16(");
      output_addr_const (file, XEXP (x, 1));
      fprintf (file, ")(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
    }
#endif
  else if (legitimate_constant_pool_address_p (x))
    {
      output_addr_const (file, XEXP (x, 1));
      fprintf (file, "(%s)", reg_names[REGNO (XEXP (x, 0))]);
    }
  else
    gcc_unreachable ();
}

/* Implement OUTPUT_ADDR_CONST_EXTRA for address X.  */

bool
rs6000_output_addr_const_extra (FILE *file, rtx x)
{
  if (GET_CODE (x) == UNSPEC)
    switch (XINT (x, 1))
      {
      case UNSPEC_TOCREL:
	x = XVECEXP (x, 0, 0);
	gcc_assert (GET_CODE (x) == SYMBOL_REF);
	output_addr_const (file, x);
	if (!TARGET_AIX || (TARGET_ELF && TARGET_MINIMAL_TOC))
	  {
	    putc ('-', file);
	    assemble_name (file, toc_label_name);
	  }
	else if (TARGET_ELF)
	  fputs ("@toc", file);
	return true;

#if TARGET_MACHO
      case UNSPEC_MACHOPIC_OFFSET:
	output_addr_const (file, XVECEXP (x, 0, 0));
	putc ('-', file);
	machopic_output_function_base_name (file);
	return true;
#endif
      }
  return false;
}

/* Target hook for assembling integer objects.  The PowerPC version has
   to handle fixup entries for relocatable code if RELOCATABLE_NEEDS_FIXUP
   is defined.  It also needs to handle DI-mode objects on 64-bit
   targets.  */

static bool
rs6000_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
#ifdef RELOCATABLE_NEEDS_FIXUP
  /* Special handling for SI values.  */
  if (RELOCATABLE_NEEDS_FIXUP && size == 4 && aligned_p)
    {
      static int recurse = 0;

      /* For -mrelocatable, we mark all addresses that need to be fixed up
	 in the .fixup section.  */
      if (TARGET_RELOCATABLE
	  && in_section != toc_section
	  && in_section != text_section
	  && !unlikely_text_section_p (in_section)
	  && !recurse
	  && GET_CODE (x) != CONST_INT
	  && GET_CODE (x) != CONST_DOUBLE
	  && CONSTANT_P (x))
	{
	  char buf[256];

	  recurse = 1;
	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCP", fixuplabelno);
	  fixuplabelno++;
	  ASM_OUTPUT_LABEL (asm_out_file, buf);
	  fprintf (asm_out_file, "\t.long\t(");
	  output_addr_const (asm_out_file, x);
	  fprintf (asm_out_file, ")@fixup\n");
	  fprintf (asm_out_file, "\t.section\t\".fixup\",\"aw\"\n");
	  ASM_OUTPUT_ALIGN (asm_out_file, 2);
	  fprintf (asm_out_file, "\t.long\t");
	  assemble_name (asm_out_file, buf);
	  fprintf (asm_out_file, "\n\t.previous\n");
	  recurse = 0;
	  return true;
	}
      /* Remove initial .'s to turn a -mcall-aixdesc function
	 address into the address of the descriptor, not the function
	 itself.  */
      else if (GET_CODE (x) == SYMBOL_REF
	       && XSTR (x, 0)[0] == '.'
	       && DEFAULT_ABI == ABI_AIX)
	{
	  const char *name = XSTR (x, 0);
	  while (*name == '.')
	    name++;

	  fprintf (asm_out_file, "\t.long\t%s\n", name);
	  return true;
	}
    }
#endif /* RELOCATABLE_NEEDS_FIXUP */
  return default_assemble_integer (x, size, aligned_p);
}

#ifdef HAVE_GAS_HIDDEN
/* Emit an assembler directive to set symbol visibility for DECL to
   VISIBILITY_TYPE.  */

static void
rs6000_assemble_visibility (tree decl, int vis)
{
  /* Functions need to have their entry point symbol visibility set as
     well as their descriptor symbol visibility.  */
  if (DEFAULT_ABI == ABI_AIX
      && DOT_SYMBOLS
      && TREE_CODE (decl) == FUNCTION_DECL)
    {
      static const char * const visibility_types[] = {
	NULL, "internal", "hidden", "protected"
      };

      const char *name, *type;

      name = ((* targetm.strip_name_encoding)
	      (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl))));
      type = visibility_types[vis];

      fprintf (asm_out_file, "\t.%s\t%s\n", type, name);
      fprintf (asm_out_file, "\t.%s\t.%s\n", type, name);
    }
  else
    default_assemble_visibility (decl, vis);
}
#endif

enum rtx_code
rs6000_reverse_condition (enum machine_mode mode, enum rtx_code code)
{
  /* Reversal of FP compares takes care -- an ordered compare
     becomes an unordered compare and vice versa.  */
  if (mode == CCFPmode
      && (!flag_finite_math_only
	  || code == UNLT || code == UNLE || code == UNGT || code == UNGE
	  || code == UNEQ || code == LTGT))
    return reverse_condition_maybe_unordered (code);
  else
    return reverse_condition (code);
}

/* Generate a compare for CODE.  Return a brand-new rtx that
   represents the result of the compare.  */

static rtx
rs6000_generate_compare (rtx cmp, enum machine_mode mode)
{
  enum machine_mode comp_mode;
  rtx compare_result;
  enum rtx_code code = GET_CODE (cmp);
  rtx op0 = XEXP (cmp, 0);
  rtx op1 = XEXP (cmp, 1);

  if (FLOAT_MODE_P (mode))
    comp_mode = CCFPmode;
  else if (code == GTU || code == LTU
	   || code == GEU || code == LEU)
    comp_mode = CCUNSmode;
  else if ((code == EQ || code == NE)
	   && GET_CODE (op0) == SUBREG
	   && GET_CODE (op1) == SUBREG
	   && SUBREG_PROMOTED_UNSIGNED_P (op0)
	   && SUBREG_PROMOTED_UNSIGNED_P (op1))
    /* These are unsigned values, perhaps there will be a later
       ordering compare that can be shared with this one.
       Unfortunately we cannot detect the signedness of the operands
       for non-subregs.  */
    comp_mode = CCUNSmode;
  else
    comp_mode = CCmode;

  /* First, the compare.  */
  compare_result = gen_reg_rtx (comp_mode);

  /* E500 FP compare instructions on the GPRs.  Yuck!  */
  if ((!TARGET_FPRS && TARGET_HARD_FLOAT)
      && FLOAT_MODE_P (mode))
    {
      rtx cmp, or_result, compare_result2;
      enum machine_mode op_mode = GET_MODE (op0);

      if (op_mode == VOIDmode)
	op_mode = GET_MODE (op1);

      /* The E500 FP compare instructions toggle the GT bit (CR bit 1) only.
	 This explains the following mess.  */

      switch (code)
	{
	case EQ: case UNEQ: case NE: case LTGT:
	  switch (op_mode)
	    {
	    case SFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstsfeq_gpr (compare_result, op0, op1)
		: gen_cmpsfeq_gpr (compare_result, op0, op1);
	      break;

	    case DFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstdfeq_gpr (compare_result, op0, op1)
		: gen_cmpdfeq_gpr (compare_result, op0, op1);
	      break;

	    case TFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tsttfeq_gpr (compare_result, op0, op1)
		: gen_cmptfeq_gpr (compare_result, op0, op1);
	      break;

	    default:
	      gcc_unreachable ();
	    }
	  break;

	case GT: case GTU: case UNGT: case UNGE: case GE: case GEU:
	  switch (op_mode)
	    {
	    case SFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstsfgt_gpr (compare_result, op0, op1)
		: gen_cmpsfgt_gpr (compare_result, op0, op1);
	      break;

	    case DFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstdfgt_gpr (compare_result, op0, op1)
		: gen_cmpdfgt_gpr (compare_result, op0, op1);
	      break;

	    case TFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tsttfgt_gpr (compare_result, op0, op1)
		: gen_cmptfgt_gpr (compare_result, op0, op1);
	      break;

	    default:
	      gcc_unreachable ();
	    }
	  break;

	case LT: case LTU: case UNLT: case UNLE: case LE: case LEU:
	  switch (op_mode)
	    {
	    case SFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstsflt_gpr (compare_result, op0, op1)
		: gen_cmpsflt_gpr (compare_result, op0, op1);
	      break;

	    case DFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstdflt_gpr (compare_result, op0, op1)
		: gen_cmpdflt_gpr (compare_result, op0, op1);
	      break;

	    case TFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tsttflt_gpr (compare_result, op0, op1)
		: gen_cmptflt_gpr (compare_result, op0, op1);
	      break;

	    default:
	      gcc_unreachable ();
	    }
	  break;
        default:
          gcc_unreachable ();
	}

      /* Synthesize LE and GE from LT/GT || EQ.  */
      if (code == LE || code == GE || code == LEU || code == GEU)
	{
	  emit_insn (cmp);

	  switch (code)
	    {
	    case LE: code = LT; break;
	    case GE: code = GT; break;
	    case LEU: code = LT; break;
	    case GEU: code = GT; break;
	    default: gcc_unreachable ();
	    }

	  compare_result2 = gen_reg_rtx (CCFPmode);

	  /* Do the EQ.  */
	  switch (op_mode)
	    {
	    case SFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstsfeq_gpr (compare_result2, op0, op1)
		: gen_cmpsfeq_gpr (compare_result2, op0, op1);
	      break;

	    case DFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tstdfeq_gpr (compare_result2, op0, op1)
		: gen_cmpdfeq_gpr (compare_result2, op0, op1);
	      break;

	    case TFmode:
	      cmp = (flag_finite_math_only && !flag_trapping_math)
		? gen_tsttfeq_gpr (compare_result2, op0, op1)
		: gen_cmptfeq_gpr (compare_result2, op0, op1);
	      break;

	    default:
	      gcc_unreachable ();
	    }
	  emit_insn (cmp);

	  /* OR them together.  */
	  or_result = gen_reg_rtx (CCFPmode);
	  cmp = gen_e500_cr_ior_compare (or_result, compare_result,
					   compare_result2);
	  compare_result = or_result;
	  code = EQ;
	}
      else
	{
	  if (code == NE || code == LTGT)
	    code = NE;
	  else
	    code = EQ;
	}

      emit_insn (cmp);
    }
  else
    {
      /* Generate XLC-compatible TFmode compare as PARALLEL with extra
	 CLOBBERs to match cmptf_internal2 pattern.  */
      if (comp_mode == CCFPmode && TARGET_XL_COMPAT
	  && GET_MODE (op0) == TFmode
	  && !TARGET_IEEEQUAD
	  && TARGET_HARD_FLOAT && TARGET_FPRS && TARGET_LONG_DOUBLE_128)
	emit_insn (gen_rtx_PARALLEL (VOIDmode,
	  gen_rtvec (9,
		     gen_rtx_SET (VOIDmode,
				  compare_result,
				  gen_rtx_COMPARE (comp_mode, op0, op1)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)),
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (DFmode)))));
      else if (GET_CODE (op1) == UNSPEC
	       && XINT (op1, 1) == UNSPEC_SP_TEST)
	{
	  rtx op1b = XVECEXP (op1, 0, 0);
	  comp_mode = CCEQmode;
	  compare_result = gen_reg_rtx (CCEQmode);
	  if (TARGET_64BIT)
	    emit_insn (gen_stack_protect_testdi (compare_result, op0, op1b));
	  else
	    emit_insn (gen_stack_protect_testsi (compare_result, op0, op1b));
	}
      else
	emit_insn (gen_rtx_SET (VOIDmode, compare_result,
				gen_rtx_COMPARE (comp_mode, op0, op1)));
    }

  /* Some kinds of FP comparisons need an OR operation;
     under flag_finite_math_only we don't bother.  */
  if (FLOAT_MODE_P (mode)
      && !flag_finite_math_only
      && !(TARGET_HARD_FLOAT && !TARGET_FPRS)
      && (code == LE || code == GE
	  || code == UNEQ || code == LTGT
	  || code == UNGT || code == UNLT))
    {
      enum rtx_code or1, or2;
      rtx or1_rtx, or2_rtx, compare2_rtx;
      rtx or_result = gen_reg_rtx (CCEQmode);

      switch (code)
	{
	case LE: or1 = LT;  or2 = EQ;  break;
	case GE: or1 = GT;  or2 = EQ;  break;
	case UNEQ: or1 = UNORDERED;  or2 = EQ;  break;
	case LTGT: or1 = LT;  or2 = GT;  break;
	case UNGT: or1 = UNORDERED;  or2 = GT;  break;
	case UNLT: or1 = UNORDERED;  or2 = LT;  break;
	default:  gcc_unreachable ();
	}
      validate_condition_mode (or1, comp_mode);
      validate_condition_mode (or2, comp_mode);
      or1_rtx = gen_rtx_fmt_ee (or1, SImode, compare_result, const0_rtx);
      or2_rtx = gen_rtx_fmt_ee (or2, SImode, compare_result, const0_rtx);
      compare2_rtx = gen_rtx_COMPARE (CCEQmode,
				      gen_rtx_IOR (SImode, or1_rtx, or2_rtx),
				      const_true_rtx);
      emit_insn (gen_rtx_SET (VOIDmode, or_result, compare2_rtx));

      compare_result = or_result;
      code = EQ;
    }

  validate_condition_mode (code, GET_MODE (compare_result));

  return gen_rtx_fmt_ee (code, VOIDmode, compare_result, const0_rtx);
}


/* Emit the RTL for an sCOND pattern.  */

void
rs6000_emit_sISEL (enum machine_mode mode, rtx operands[])
{
  rtx condition_rtx;
  enum machine_mode op_mode;
  enum rtx_code cond_code;
  rtx result = operands[0];

  condition_rtx = rs6000_generate_compare (operands[1], mode);
  cond_code = GET_CODE (condition_rtx);

  op_mode = GET_MODE (XEXP (operands[1], 0));
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (XEXP (operands[1], 1));

  if (TARGET_POWERPC64 && GET_MODE (result) == DImode)
    {
      PUT_MODE (condition_rtx, DImode);
      if (cond_code == GEU || cond_code == GTU || cond_code == LEU
         || cond_code == LTU)
       emit_insn (gen_isel_unsigned_di (result, condition_rtx,
					force_reg (DImode, const1_rtx),
					force_reg (DImode, const0_rtx),
					XEXP (condition_rtx, 0)));
      else
       emit_insn (gen_isel_signed_di (result, condition_rtx,
				      force_reg (DImode, const1_rtx),
				      force_reg (DImode, const0_rtx),
				      XEXP (condition_rtx, 0)));
    }
  else
    {
      PUT_MODE (condition_rtx, SImode);
      if (cond_code == GEU || cond_code == GTU || cond_code == LEU
	 || cond_code == LTU)
       emit_insn (gen_isel_unsigned_si (result, condition_rtx,
					force_reg (SImode, const1_rtx),
					force_reg (SImode, const0_rtx),
					XEXP (condition_rtx, 0)));
      else
       emit_insn (gen_isel_signed_si (result, condition_rtx,
				      force_reg (SImode, const1_rtx),
				      force_reg (SImode, const0_rtx),
				      XEXP (condition_rtx, 0)));
    }
}

void
rs6000_emit_sCOND (enum machine_mode mode, rtx operands[])
{
  rtx condition_rtx;
  enum machine_mode op_mode;
  enum rtx_code cond_code;
  rtx result = operands[0];

  if (TARGET_ISEL && (mode == SImode || mode == DImode))
    {
      rs6000_emit_sISEL (mode, operands);
      return;
    }

  condition_rtx = rs6000_generate_compare (operands[1], mode);
  cond_code = GET_CODE (condition_rtx);

  if (FLOAT_MODE_P (mode)
      && !TARGET_FPRS && TARGET_HARD_FLOAT)
    {
      rtx t;

      PUT_MODE (condition_rtx, SImode);
      t = XEXP (condition_rtx, 0);

      gcc_assert (cond_code == NE || cond_code == EQ);

      if (cond_code == NE)
	emit_insn (gen_e500_flip_gt_bit (t, t));

      emit_insn (gen_move_from_CR_gt_bit (result, t));
      return;
    }

  if (cond_code == NE
      || cond_code == GE || cond_code == LE
      || cond_code == GEU || cond_code == LEU
      || cond_code == ORDERED || cond_code == UNGE || cond_code == UNLE)
    {
      rtx not_result = gen_reg_rtx (CCEQmode);
      rtx not_op, rev_cond_rtx;
      enum machine_mode cc_mode;

      cc_mode = GET_MODE (XEXP (condition_rtx, 0));

      rev_cond_rtx = gen_rtx_fmt_ee (rs6000_reverse_condition (cc_mode, cond_code),
				     SImode, XEXP (condition_rtx, 0), const0_rtx);
      not_op = gen_rtx_COMPARE (CCEQmode, rev_cond_rtx, const0_rtx);
      emit_insn (gen_rtx_SET (VOIDmode, not_result, not_op));
      condition_rtx = gen_rtx_EQ (VOIDmode, not_result, const0_rtx);
    }

  op_mode = GET_MODE (XEXP (operands[1], 0));
  if (op_mode == VOIDmode)
    op_mode = GET_MODE (XEXP (operands[1], 1));

  if (TARGET_POWERPC64 && (op_mode == DImode || FLOAT_MODE_P (mode)))
    {
      PUT_MODE (condition_rtx, DImode);
      convert_move (result, condition_rtx, 0);
    }
  else
    {
      PUT_MODE (condition_rtx, SImode);
      emit_insn (gen_rtx_SET (VOIDmode, result, condition_rtx));
    }
}

/* Emit a branch of kind CODE to location LOC.  */

void
rs6000_emit_cbranch (enum machine_mode mode, rtx operands[])
{
  rtx condition_rtx, loc_ref;

  condition_rtx = rs6000_generate_compare (operands[0], mode);
  loc_ref = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
  emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
			       gen_rtx_IF_THEN_ELSE (VOIDmode, condition_rtx,
						     loc_ref, pc_rtx)));
}

/* Return the string to output a conditional branch to LABEL, which is
   the operand number of the label, or -1 if the branch is really a
   conditional return.

   OP is the conditional expression.  XEXP (OP, 0) is assumed to be a
   condition code register and its mode specifies what kind of
   comparison we made.

   REVERSED is nonzero if we should reverse the sense of the comparison.

   INSN is the insn.  */

char *
output_cbranch (rtx op, const char *label, int reversed, rtx insn)
{
  static char string[64];
  enum rtx_code code = GET_CODE (op);
  rtx cc_reg = XEXP (op, 0);
  enum machine_mode mode = GET_MODE (cc_reg);
  int cc_regno = REGNO (cc_reg) - CR0_REGNO;
  int need_longbranch = label != NULL && get_attr_length (insn) == 8;
  int really_reversed = reversed ^ need_longbranch;
  char *s = string;
  const char *ccode;
  const char *pred;
  rtx note;

  validate_condition_mode (code, mode);

  /* Work out which way this really branches.  We could use
     reverse_condition_maybe_unordered here always but this
     makes the resulting assembler clearer.  */
  if (really_reversed)
    {
      /* Reversal of FP compares takes care -- an ordered compare
	 becomes an unordered compare and vice versa.  */
      if (mode == CCFPmode)
	code = reverse_condition_maybe_unordered (code);
      else
	code = reverse_condition (code);
    }

  if ((!TARGET_FPRS && TARGET_HARD_FLOAT) && mode == CCFPmode)
    {
      /* The efscmp/tst* instructions twiddle bit 2, which maps nicely
	 to the GT bit.  */
      switch (code)
	{
	case EQ:
	  /* Opposite of GT.  */
	  code = GT;
	  break;

	case NE:
	  code = UNLE;
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  switch (code)
    {
      /* Not all of these are actually distinct opcodes, but
	 we distinguish them for clarity of the resulting assembler.  */
    case NE: case LTGT:
      ccode = "ne"; break;
    case EQ: case UNEQ:
      ccode = "eq"; break;
    case GE: case GEU:
      ccode = "ge"; break;
    case GT: case GTU: case UNGT:
      ccode = "gt"; break;
    case LE: case LEU:
      ccode = "le"; break;
    case LT: case LTU: case UNLT:
      ccode = "lt"; break;
    case UNORDERED: ccode = "un"; break;
    case ORDERED: ccode = "nu"; break;
    case UNGE: ccode = "nl"; break;
    case UNLE: ccode = "ng"; break;
    default:
      gcc_unreachable ();
    }

  /* Maybe we have a guess as to how likely the branch is.
     The old mnemonics don't have a way to specify this information.  */
  pred = "";
  note = find_reg_note (insn, REG_BR_PROB, NULL_RTX);
  if (note != NULL_RTX)
    {
      /* PROB is the difference from 50%.  */
      int prob = INTVAL (XEXP (note, 0)) - REG_BR_PROB_BASE / 2;

      /* Only hint for highly probable/improbable branches on newer
	 cpus as static prediction overrides processor dynamic
	 prediction.  For older cpus we may as well always hint, but
	 assume not taken for branches that are very close to 50% as a
	 mispredicted taken branch is more expensive than a
	 mispredicted not-taken branch.  */
      if (rs6000_always_hint
	  || (abs (prob) > REG_BR_PROB_BASE / 100 * 48
	      && br_prob_note_reliable_p (note)))
	{
	  if (abs (prob) > REG_BR_PROB_BASE / 20
	      && ((prob > 0) ^ need_longbranch))
	    pred = "+";
	  else
	    pred = "-";
	}
    }

  if (label == NULL)
    s += sprintf (s, "{b%sr|b%slr%s} ", ccode, ccode, pred);
  else
    s += sprintf (s, "{b%s|b%s%s} ", ccode, ccode, pred);

  /* We need to escape any '%' characters in the reg_names string.
     Assume they'd only be the first character....  */
  if (reg_names[cc_regno + CR0_REGNO][0] == '%')
    *s++ = '%';
  s += sprintf (s, "%s", reg_names[cc_regno + CR0_REGNO]);

  if (label != NULL)
    {
      /* If the branch distance was too far, we may have to use an
	 unconditional branch to go the distance.  */
      if (need_longbranch)
	s += sprintf (s, ",$+8\n\tb %s", label);
      else
	s += sprintf (s, ",%s", label);
    }

  return string;
}

/* Return the string to flip the GT bit on a CR.  */
char *
output_e500_flip_gt_bit (rtx dst, rtx src)
{
  static char string[64];
  int a, b;

  gcc_assert (GET_CODE (dst) == REG && CR_REGNO_P (REGNO (dst))
	      && GET_CODE (src) == REG && CR_REGNO_P (REGNO (src)));

  /* GT bit.  */
  a = 4 * (REGNO (dst) - CR0_REGNO) + 1;
  b = 4 * (REGNO (src) - CR0_REGNO) + 1;

  sprintf (string, "crnot %d,%d", a, b);
  return string;
}

/* Return insn for VSX or Altivec comparisons.  */

static rtx
rs6000_emit_vector_compare_inner (enum rtx_code code, rtx op0, rtx op1)
{
  rtx mask;
  enum machine_mode mode = GET_MODE (op0);

  switch (code)
    {
    default:
      break;

    case GE:
      if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
	return NULL_RTX;

    case EQ:
    case GT:
    case GTU:
      mask = gen_reg_rtx (mode);
      emit_insn (gen_rtx_SET (VOIDmode,
			      mask,
			      gen_rtx_fmt_ee (code, mode, op0, op1)));
      return mask;
    }

  return NULL_RTX;
}

/* Emit vector compare for operands OP0 and OP1 using code RCODE.
   DMODE is expected destination mode. This is a recursive function.  */

static rtx
rs6000_emit_vector_compare (enum rtx_code rcode,
			    rtx op0, rtx op1,
			    enum machine_mode dmode)
{
  rtx mask;
  bool swap_operands = false;
  bool try_again = false;

  gcc_assert (VECTOR_UNIT_ALTIVEC_OR_VSX_P (dmode));
  gcc_assert (GET_MODE (op0) == GET_MODE (op1));

  /* See if the comparison works as is.  */
  mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
  if (mask)
    return mask;

  switch (rcode)
    {
    case LT:
      rcode = GT;
      swap_operands = true;
      try_again = true;
      break;
    case LTU:
      rcode = GTU;
      swap_operands = true;
      try_again = true;
      break;
    case NE:
    case UNLE:
    case UNLT:
    case UNGE:
    case UNGT:
      /* Invert condition and try again.
	 e.g., A != B becomes ~(A==B).  */
      {
	enum rtx_code rev_code;
	enum insn_code nor_code;
	rtx mask2;

	rev_code = reverse_condition_maybe_unordered (rcode);
	if (rev_code == UNKNOWN)
	  return NULL_RTX;

	nor_code = optab_handler (one_cmpl_optab, (int)dmode)->insn_code;
	if (nor_code == CODE_FOR_nothing)
	  return NULL_RTX;

	mask2 = rs6000_emit_vector_compare (rev_code, op0, op1, dmode);
	if (!mask2)
	  return NULL_RTX;

	mask = gen_reg_rtx (dmode);
	emit_insn (GEN_FCN (nor_code) (mask, mask2));
	return mask;
      }
      break;
    case GE:
    case GEU:
    case LE:
    case LEU:
      /* Try GT/GTU/LT/LTU OR EQ */
      {
	rtx c_rtx, eq_rtx;
	enum insn_code ior_code;
	enum rtx_code new_code;

	switch (rcode)
	  {
	  case  GE:
	    new_code = GT;
	    break;

	  case GEU:
	    new_code = GTU;
	    break;

	  case LE:
	    new_code = LT;
	    break;

	  case LEU:
	    new_code = LTU;
	    break;

	  default:
	    gcc_unreachable ();
	  }

	ior_code = optab_handler (ior_optab, (int)dmode)->insn_code;
	if (ior_code == CODE_FOR_nothing)
	  return NULL_RTX;

	c_rtx = rs6000_emit_vector_compare (new_code, op0, op1, dmode);
	if (!c_rtx)
	  return NULL_RTX;

	eq_rtx = rs6000_emit_vector_compare (EQ, op0, op1, dmode);
	if (!eq_rtx)
	  return NULL_RTX;

	mask = gen_reg_rtx (dmode);
	emit_insn (GEN_FCN (ior_code) (mask, c_rtx, eq_rtx));
	return mask;
      }
      break;
    default:
      return NULL_RTX;
    }

  if (try_again)
    {
      if (swap_operands)
	{
	  rtx tmp;
	  tmp = op0;
	  op0 = op1;
	  op1 = tmp;
	}

      mask = rs6000_emit_vector_compare_inner (rcode, op0, op1);
      if (mask)
	return mask;
    }

  /* You only get two chances.  */
  return NULL_RTX;
}

/* Emit vector conditional expression.  DEST is destination. OP_TRUE and
   OP_FALSE are two VEC_COND_EXPR operands.  CC_OP0 and CC_OP1 are the two
   operands for the relation operation COND.  */

int
rs6000_emit_vector_cond_expr (rtx dest, rtx op_true, rtx op_false,
			      rtx cond, rtx cc_op0, rtx cc_op1)
{
  enum machine_mode dest_mode = GET_MODE (dest);
  enum rtx_code rcode = GET_CODE (cond);
  enum machine_mode cc_mode = CCmode;
  rtx mask;
  rtx cond2;
  rtx tmp;
  bool invert_move = false;

  if (VECTOR_UNIT_NONE_P (dest_mode))
    return 0;

  switch (rcode)
    {
      /* Swap operands if we can, and fall back to doing the operation as
	 specified, and doing a NOR to invert the test.  */
    case NE:
    case UNLE:
    case UNLT:
    case UNGE:
    case UNGT:
      /* Invert condition and try again.
	 e.g., A  = (B != C) ? D : E becomes A = (B == C) ? E : D.  */
      invert_move = true;
      rcode = reverse_condition_maybe_unordered (rcode);
      if (rcode == UNKNOWN)
	return 0;
      break;

      /* Mark unsigned tests with CCUNSmode.  */
    case GTU:
    case GEU:
    case LTU:
    case LEU:
      cc_mode = CCUNSmode;
      break;

    default:
      break;
    }

  /* Get the vector mask for the given relational operations.  */
  mask = rs6000_emit_vector_compare (rcode, cc_op0, cc_op1, dest_mode);

  if (!mask)
    return 0;

  if (invert_move)
    {
      tmp = op_true;
      op_true = op_false;
      op_false = tmp;
    }

  cond2 = gen_rtx_fmt_ee (NE, cc_mode, mask, const0_rtx);
  emit_insn (gen_rtx_SET (VOIDmode,
			  dest,
			  gen_rtx_IF_THEN_ELSE (dest_mode,
						cond2,
						op_true,
						op_false)));
  return 1;
}

/* Emit a conditional move: move TRUE_COND to DEST if OP of the
   operands of the last comparison is nonzero/true, FALSE_COND if it
   is zero/false.  Return 0 if the hardware has no such operation.  */

int
rs6000_emit_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
{
  enum rtx_code code = GET_CODE (op);
  rtx op0 = XEXP (op, 0);
  rtx op1 = XEXP (op, 1);
  REAL_VALUE_TYPE c1;
  enum machine_mode compare_mode = GET_MODE (op0);
  enum machine_mode result_mode = GET_MODE (dest);
  rtx temp;
  bool is_against_zero;

  /* These modes should always match.  */
  if (GET_MODE (op1) != compare_mode
      /* In the isel case however, we can use a compare immediate, so
	 op1 may be a small constant.  */
      && (!TARGET_ISEL || !short_cint_operand (op1, VOIDmode)))
    return 0;
  if (GET_MODE (true_cond) != result_mode)
    return 0;
  if (GET_MODE (false_cond) != result_mode)
    return 0;

  /* First, work out if the hardware can do this at all, or
     if it's too slow....  */
  if (!FLOAT_MODE_P (compare_mode))
    {
      if (TARGET_ISEL)
	return rs6000_emit_int_cmove (dest, op, true_cond, false_cond);
      return 0;
    }
  else if (TARGET_HARD_FLOAT && !TARGET_FPRS
	   && SCALAR_FLOAT_MODE_P (compare_mode))
    return 0;

  is_against_zero = op1 == CONST0_RTX (compare_mode);

  /* A floating-point subtract might overflow, underflow, or produce
     an inexact result, thus changing the floating-point flags, so it
     can't be generated if we care about that.  It's safe if one side
     of the construct is zero, since then no subtract will be
     generated.  */
  if (SCALAR_FLOAT_MODE_P (compare_mode)
      && flag_trapping_math && ! is_against_zero)
    return 0;

  /* Eliminate half of the comparisons by switching operands, this
     makes the remaining code simpler.  */
  if (code == UNLT || code == UNGT || code == UNORDERED || code == NE
      || code == LTGT || code == LT || code == UNLE)
    {
      code = reverse_condition_maybe_unordered (code);
      temp = true_cond;
      true_cond = false_cond;
      false_cond = temp;
    }

  /* UNEQ and LTGT take four instructions for a comparison with zero,
     it'll probably be faster to use a branch here too.  */
  if (code == UNEQ && HONOR_NANS (compare_mode))
    return 0;

  if (GET_CODE (op1) == CONST_DOUBLE)
    REAL_VALUE_FROM_CONST_DOUBLE (c1, op1);

  /* We're going to try to implement comparisons by performing
     a subtract, then comparing against zero.  Unfortunately,
     Inf - Inf is NaN which is not zero, and so if we don't
     know that the operand is finite and the comparison
     would treat EQ different to UNORDERED, we can't do it.  */
  if (HONOR_INFINITIES (compare_mode)
      && code != GT && code != UNGE
      && (GET_CODE (op1) != CONST_DOUBLE || real_isinf (&c1))
      /* Constructs of the form (a OP b ? a : b) are safe.  */
      && ((! rtx_equal_p (op0, false_cond) && ! rtx_equal_p (op1, false_cond))
	  || (! rtx_equal_p (op0, true_cond)
	      && ! rtx_equal_p (op1, true_cond))))
    return 0;

  /* At this point we know we can use fsel.  */

  /* Reduce the comparison to a comparison against zero.  */
  if (! is_against_zero)
    {
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp,
			      gen_rtx_MINUS (compare_mode, op0, op1)));
      op0 = temp;
      op1 = CONST0_RTX (compare_mode);
    }

  /* If we don't care about NaNs we can reduce some of the comparisons
     down to faster ones.  */
  if (! HONOR_NANS (compare_mode))
    switch (code)
      {
      case GT:
	code = LE;
	temp = true_cond;
	true_cond = false_cond;
	false_cond = temp;
	break;
      case UNGE:
	code = GE;
	break;
      case UNEQ:
	code = EQ;
	break;
      default:
	break;
      }

  /* Now, reduce everything down to a GE.  */
  switch (code)
    {
    case GE:
      break;

    case LE:
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
      op0 = temp;
      break;

    case ORDERED:
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_ABS (compare_mode, op0)));
      op0 = temp;
      break;

    case EQ:
      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp,
			      gen_rtx_NEG (compare_mode,
					   gen_rtx_ABS (compare_mode, op0))));
      op0 = temp;
      break;

    case UNGE:
      /* a UNGE 0 <-> (a GE 0 || -a UNLT 0) */
      temp = gen_reg_rtx (result_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp,
			      gen_rtx_IF_THEN_ELSE (result_mode,
						    gen_rtx_GE (VOIDmode,
								op0, op1),
						    true_cond, false_cond)));
      false_cond = true_cond;
      true_cond = temp;

      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
      op0 = temp;
      break;

    case GT:
      /* a GT 0 <-> (a GE 0 && -a UNLT 0) */
      temp = gen_reg_rtx (result_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp,
			      gen_rtx_IF_THEN_ELSE (result_mode,
						    gen_rtx_GE (VOIDmode,
								op0, op1),
						    true_cond, false_cond)));
      true_cond = false_cond;
      false_cond = temp;

      temp = gen_reg_rtx (compare_mode);
      emit_insn (gen_rtx_SET (VOIDmode, temp, gen_rtx_NEG (compare_mode, op0)));
      op0 = temp;
      break;

    default:
      gcc_unreachable ();
    }

  emit_insn (gen_rtx_SET (VOIDmode, dest,
			  gen_rtx_IF_THEN_ELSE (result_mode,
						gen_rtx_GE (VOIDmode,
							    op0, op1),
						true_cond, false_cond)));
  return 1;
}

/* Same as above, but for ints (isel).  */

static int
rs6000_emit_int_cmove (rtx dest, rtx op, rtx true_cond, rtx false_cond)
{
  rtx condition_rtx, cr;
  enum machine_mode mode = GET_MODE (dest);

  if (mode != SImode && (!TARGET_POWERPC64 || mode != DImode))
    return 0;

  /* We still have to do the compare, because isel doesn't do a
     compare, it just looks at the CRx bits set by a previous compare
     instruction.  */
  condition_rtx = rs6000_generate_compare (op, mode);
  cr = XEXP (condition_rtx, 0);

  if (mode == SImode)
    {
      if (GET_MODE (cr) == CCmode)
	emit_insn (gen_isel_signed_si (dest, condition_rtx,
				       true_cond, false_cond, cr));
      else
	emit_insn (gen_isel_unsigned_si (dest, condition_rtx,
					 true_cond, false_cond, cr));
    }
  else
    {
      if (GET_MODE (cr) == CCmode)
	emit_insn (gen_isel_signed_di (dest, condition_rtx,
				       true_cond, false_cond, cr));
      else
	emit_insn (gen_isel_unsigned_di (dest, condition_rtx,
					 true_cond, false_cond, cr));
    }

  return 1;
}

const char *
output_isel (rtx *operands)
{
  enum rtx_code code;

  code = GET_CODE (operands[1]);
  if (code == GE || code == GEU || code == LE || code == LEU || code == NE)
    {
      PUT_CODE (operands[1], reverse_condition (code));
      return "isel %0,%3,%2,%j1";
    }
  else
    return "isel %0,%2,%3,%j1";
}

void
rs6000_emit_minmax (rtx dest, enum rtx_code code, rtx op0, rtx op1)
{
  enum machine_mode mode = GET_MODE (op0);
  enum rtx_code c;
  rtx target;

  /* VSX/altivec have direct min/max insns.  */
  if ((code == SMAX || code == SMIN) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode))
    {
      emit_insn (gen_rtx_SET (VOIDmode,
			      dest,
			      gen_rtx_fmt_ee (code, mode, op0, op1)));
      return;
    }

  if (code == SMAX || code == SMIN)
    c = GE;
  else
    c = GEU;

  if (code == SMAX || code == UMAX)
    target = emit_conditional_move (dest, c, op0, op1, mode,
				    op0, op1, mode, 0);
  else
    target = emit_conditional_move (dest, c, op0, op1, mode,
				    op1, op0, mode, 0);
  gcc_assert (target);
  if (target != dest)
    emit_move_insn (dest, target);
}

/* Emit instructions to perform a load-reserved/store-conditional operation.
   The operation performed is an atomic
   (set M (CODE:MODE M OP))
   If not NULL, BEFORE is atomically set to M before the operation, and
   AFTER is set to M after the operation (that is, (CODE:MODE M OP)).
   If SYNC_P then a memory barrier is emitted before the operation.
   Either OP or M may be wrapped in a NOT operation.  */

void
rs6000_emit_sync (enum rtx_code code, enum machine_mode mode,
		  rtx m, rtx op, rtx before_param, rtx after_param,
		  bool sync_p)
{
  enum machine_mode used_mode;
  rtx the_op, set_before, set_after, set_atomic, cc_scratch, before, after;
  rtx used_m;
  rtvec vec;
  HOST_WIDE_INT imask = GET_MODE_MASK (mode);
  rtx shift = NULL_RTX;

  if (sync_p)
    emit_insn (gen_lwsync ());

    used_m = m;

  /* If this is smaller than SImode, we'll have to use SImode with
     adjustments.  */
  if (mode == QImode || mode == HImode)
    {
      rtx newop, oldop;

      if (MEM_ALIGN (used_m) >= 32)
	{
	  int ishift = 0;
	  if (BYTES_BIG_ENDIAN)
	    ishift = GET_MODE_BITSIZE (SImode) - GET_MODE_BITSIZE (mode);

	  shift = GEN_INT (ishift);
	  used_m = change_address (used_m, SImode, 0);
	}
      else
	{
	  rtx addrSI, aligned_addr;
	  int shift_mask = mode == QImode ? 0x18 : 0x10;

	  addrSI = gen_lowpart_common (SImode,
				       force_reg (Pmode, XEXP (used_m, 0)));
	  addrSI = force_reg (SImode, addrSI);
	  shift = gen_reg_rtx (SImode);

	  emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
				 GEN_INT (shift_mask)));
	  emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));

	  aligned_addr = expand_binop (Pmode, and_optab,
				       XEXP (used_m, 0),
				       GEN_INT (-4), NULL_RTX,
				       1, OPTAB_LIB_WIDEN);
	  used_m = change_address (used_m, SImode, aligned_addr);
	  set_mem_align (used_m, 32);
	}
      /* It's safe to keep the old alias set of USED_M, because
	 the operation is atomic and only affects the original
	 USED_M.  */
      m = used_m;

      if (GET_CODE (op) == NOT)
	{
	  oldop = lowpart_subreg (SImode, XEXP (op, 0), mode);
	  oldop = gen_rtx_NOT (SImode, oldop);
	}
      else
	oldop = lowpart_subreg (SImode, op, mode);

      switch (code)
	{
	case IOR:
	case XOR:
	  newop = expand_binop (SImode, and_optab,
				oldop, GEN_INT (imask), NULL_RTX,
				1, OPTAB_LIB_WIDEN);
	  emit_insn (gen_ashlsi3 (newop, newop, shift));
	  break;

	case NOT: /* NAND */
	  newop = expand_binop (SImode, ior_optab,
				oldop, GEN_INT (~imask), NULL_RTX,
				1, OPTAB_LIB_WIDEN);
	  emit_insn (gen_rotlsi3 (newop, newop, shift));
	  break;

	case AND:
	  newop = expand_binop (SImode, ior_optab,
				oldop, GEN_INT (~imask), NULL_RTX,
				1, OPTAB_LIB_WIDEN);
	  emit_insn (gen_rotlsi3 (newop, newop, shift));
	  break;

	case PLUS:
	case MINUS:
	  {
	    rtx mask;

	    newop = expand_binop (SImode, and_optab,
				  oldop, GEN_INT (imask), NULL_RTX,
				  1, OPTAB_LIB_WIDEN);
	    emit_insn (gen_ashlsi3 (newop, newop, shift));

	    mask = gen_reg_rtx (SImode);
	    emit_move_insn (mask, GEN_INT (imask));
	    emit_insn (gen_ashlsi3 (mask, mask, shift));

	    if (code == PLUS)
	      newop = gen_rtx_PLUS (SImode, m, newop);
	    else
	      newop = gen_rtx_MINUS (SImode, m, newop);
	    newop = gen_rtx_AND (SImode, newop, mask);
	    newop = gen_rtx_IOR (SImode, newop,
				 gen_rtx_AND (SImode,
					      gen_rtx_NOT (SImode, mask),
					      m));
	    break;
	  }

	default:
	  gcc_unreachable ();
	}

      op = newop;
      used_mode = SImode;
      before = gen_reg_rtx (used_mode);
      after = gen_reg_rtx (used_mode);
    }
  else
    {
      used_mode = mode;
      before = before_param;
      after = after_param;

      if (before == NULL_RTX)
	before = gen_reg_rtx (used_mode);
      if (after == NULL_RTX)
	after = gen_reg_rtx (used_mode);
    }

  if ((code == PLUS || code == MINUS)
      && used_mode != mode)
    the_op = op;  /* Computed above.  */
  else if (GET_CODE (op) == NOT && GET_CODE (m) != NOT)
    the_op = gen_rtx_fmt_ee (code, used_mode, op, m);
  else if (code == NOT)
    the_op = gen_rtx_fmt_ee (IOR, used_mode,
			     gen_rtx_NOT (used_mode, m),
			     gen_rtx_NOT (used_mode, op));
  else
    the_op = gen_rtx_fmt_ee (code, used_mode, m, op);

  set_after = gen_rtx_SET (VOIDmode, after, the_op);
  set_before = gen_rtx_SET (VOIDmode, before, used_m);
  set_atomic = gen_rtx_SET (VOIDmode, used_m,
			    gen_rtx_UNSPEC (used_mode,
					    gen_rtvec (1, the_op),
					    UNSPEC_SYNC_OP));
  cc_scratch = gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (CCmode));

  if ((code == PLUS || code == MINUS) && used_mode != mode)
    vec = gen_rtvec (5, set_after, set_before, set_atomic, cc_scratch,
		     gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (SImode)));
  else
    vec = gen_rtvec (4, set_after, set_before, set_atomic, cc_scratch);
  emit_insn (gen_rtx_PARALLEL (VOIDmode, vec));

  /* Shift and mask the return values properly.  */
  if (used_mode != mode && before_param)
    {
      emit_insn (gen_lshrsi3 (before, before, shift));
      convert_move (before_param, before, 1);
    }

  if (used_mode != mode && after_param)
    {
      emit_insn (gen_lshrsi3 (after, after, shift));
      convert_move (after_param, after, 1);
    }

  /* The previous sequence will end with a branch that's dependent on
     the conditional store, so placing an isync will ensure that no
     other instructions (especially, no load or store instructions)
     can start before the atomic operation completes.  */
  if (sync_p)
    emit_insn (gen_isync ());
}

/* A subroutine of the atomic operation splitters.  Jump to LABEL if
   COND is true.  Mark the jump as unlikely to be taken.  */

static void
emit_unlikely_jump (rtx cond, rtx label)
{
  rtx very_unlikely = GEN_INT (REG_BR_PROB_BASE / 100 - 1);
  rtx x;

  x = gen_rtx_IF_THEN_ELSE (VOIDmode, cond, label, pc_rtx);
  x = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, x));
  add_reg_note (x, REG_BR_PROB, very_unlikely);
}

/* A subroutine of the atomic operation splitters.  Emit a load-locked
   instruction in MODE.  */

static void
emit_load_locked (enum machine_mode mode, rtx reg, rtx mem)
{
  rtx (*fn) (rtx, rtx) = NULL;
  if (mode == SImode)
    fn = gen_load_locked_si;
  else if (mode == DImode)
    fn = gen_load_locked_di;
  emit_insn (fn (reg, mem));
}

/* A subroutine of the atomic operation splitters.  Emit a store-conditional
   instruction in MODE.  */

static void
emit_store_conditional (enum machine_mode mode, rtx res, rtx mem, rtx val)
{
  rtx (*fn) (rtx, rtx, rtx) = NULL;
  if (mode == SImode)
    fn = gen_store_conditional_si;
  else if (mode == DImode)
    fn = gen_store_conditional_di;

  /* Emit sync before stwcx. to address PPC405 Erratum.  */
  if (PPC405_ERRATUM77)
    emit_insn (gen_memory_barrier ());

  emit_insn (fn (res, mem, val));
}

/* Expand an atomic fetch-and-operate pattern.  CODE is the binary operation
   to perform.  MEM is the memory on which to operate.  VAL is the second
   operand of the binary operator.  BEFORE and AFTER are optional locations to
   return the value of MEM either before of after the operation.  SCRATCH is
   a scratch register.  */

void
rs6000_split_atomic_op (enum rtx_code code, rtx mem, rtx val,
                       rtx before, rtx after, rtx scratch)
{
  enum machine_mode mode = GET_MODE (mem);
  rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);

  emit_insn (gen_lwsync ());

  label = gen_label_rtx ();
  emit_label (label);
  label = gen_rtx_LABEL_REF (VOIDmode, label);

  if (before == NULL_RTX)
    before = scratch;
  emit_load_locked (mode, before, mem);

  if (code == NOT)
    x = gen_rtx_IOR (mode,
		     gen_rtx_NOT (mode, before),
		     gen_rtx_NOT (mode, val));
  else if (code == AND)
    x = gen_rtx_UNSPEC (mode, gen_rtvec (2, before, val), UNSPEC_AND);
  else
    x = gen_rtx_fmt_ee (code, mode, before, val);

  if (after != NULL_RTX)
    emit_insn (gen_rtx_SET (VOIDmode, after, copy_rtx (x)));
  emit_insn (gen_rtx_SET (VOIDmode, scratch, x));

  emit_store_conditional (mode, cond, mem, scratch);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label);

  emit_insn (gen_isync ());
}

/* Expand an atomic compare and swap operation.  MEM is the memory on which
   to operate.  OLDVAL is the old value to be compared.  NEWVAL is the new
   value to be stored.  SCRATCH is a scratch GPR.  */

void
rs6000_split_compare_and_swap (rtx retval, rtx mem, rtx oldval, rtx newval,
			       rtx scratch)
{
  enum machine_mode mode = GET_MODE (mem);
  rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);

  emit_insn (gen_lwsync ());

  label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
  label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
  emit_label (XEXP (label1, 0));

  emit_load_locked (mode, retval, mem);

  x = gen_rtx_COMPARE (CCmode, retval, oldval);
  emit_insn (gen_rtx_SET (VOIDmode, cond, x));

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label2);

  emit_move_insn (scratch, newval);
  emit_store_conditional (mode, cond, mem, scratch);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label1);

  emit_insn (gen_isync ());
  emit_label (XEXP (label2, 0));
}

/* Expand an atomic test and set operation.  MEM is the memory on which
   to operate.  VAL is the value set.  SCRATCH is a scratch GPR.  */

void
rs6000_split_lock_test_and_set (rtx retval, rtx mem, rtx val, rtx scratch)
{
  enum machine_mode mode = GET_MODE (mem);
  rtx label, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);

  label = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
  emit_label (XEXP (label, 0));

  emit_load_locked (mode, retval, mem);
  emit_move_insn (scratch, val);
  emit_store_conditional (mode, cond, mem, scratch);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label);

  emit_insn (gen_isync ());
}

void
rs6000_expand_compare_and_swapqhi (rtx dst, rtx mem, rtx oldval, rtx newval)
{
  enum machine_mode mode = GET_MODE (mem);
  rtx addrSI, align, wdst, shift, mask;
  HOST_WIDE_INT shift_mask = mode == QImode ? 0x18 : 0x10;
  HOST_WIDE_INT imask = GET_MODE_MASK (mode);

  /* Shift amount for subword relative to aligned word.  */
  addrSI = force_reg (GET_MODE (XEXP (mem, 0)), XEXP (mem, 0));
  addrSI = force_reg (SImode, gen_lowpart_common (SImode, addrSI));
  shift = gen_reg_rtx (SImode);
  emit_insn (gen_rlwinm (shift, addrSI, GEN_INT (3),
			 GEN_INT (shift_mask)));
  emit_insn (gen_xorsi3 (shift, shift, GEN_INT (shift_mask)));

  /* Shift and mask old value into position within word.  */
  oldval = convert_modes (SImode, mode, oldval, 1);
  oldval = expand_binop (SImode, and_optab,
			 oldval, GEN_INT (imask), NULL_RTX,
			 1, OPTAB_LIB_WIDEN);
  emit_insn (gen_ashlsi3 (oldval, oldval, shift));

  /* Shift and mask new value into position within word.  */
  newval = convert_modes (SImode, mode, newval, 1);
  newval = expand_binop (SImode, and_optab,
			 newval, GEN_INT (imask), NULL_RTX,
			 1, OPTAB_LIB_WIDEN);
  emit_insn (gen_ashlsi3 (newval, newval, shift));

  /* Mask for insertion.  */
  mask = gen_reg_rtx (SImode);
  emit_move_insn (mask, GEN_INT (imask));
  emit_insn (gen_ashlsi3 (mask, mask, shift));

  /* Address of aligned word containing subword.  */
  align = expand_binop (Pmode, and_optab, XEXP (mem, 0), GEN_INT (-4),
			NULL_RTX, 1, OPTAB_LIB_WIDEN);
  mem = change_address (mem, SImode, align);
  set_mem_align (mem, 32);
  MEM_VOLATILE_P (mem) = 1;

  wdst = gen_reg_rtx (SImode);
  emit_insn (gen_sync_compare_and_swapqhi_internal (wdst, mask,
						    oldval, newval, mem));

  /* Shift the result back.  */
  emit_insn (gen_lshrsi3 (wdst, wdst, shift));

  emit_move_insn (dst, gen_lowpart (mode, wdst));
}

void
rs6000_split_compare_and_swapqhi (rtx dest, rtx mask,
				  rtx oldval, rtx newval, rtx mem,
				  rtx scratch)
{
  rtx label1, label2, x, cond = gen_rtx_REG (CCmode, CR0_REGNO);

  emit_insn (gen_lwsync ());
  label1 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
  label2 = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
  emit_label (XEXP (label1, 0));

  emit_load_locked (SImode, scratch, mem);

  /* Mask subword within loaded value for comparison with oldval.
     Use UNSPEC_AND to avoid clobber.*/
  emit_insn (gen_rtx_SET (SImode, dest,
			  gen_rtx_UNSPEC (SImode,
					  gen_rtvec (2, scratch, mask),
					  UNSPEC_AND)));

  x = gen_rtx_COMPARE (CCmode, dest, oldval);
  emit_insn (gen_rtx_SET (VOIDmode, cond, x));

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label2);

  /* Clear subword within loaded value for insertion of new value.  */
  emit_insn (gen_rtx_SET (SImode, scratch,
			  gen_rtx_AND (SImode,
				       gen_rtx_NOT (SImode, mask), scratch)));
  emit_insn (gen_iorsi3 (scratch, scratch, newval));
  emit_store_conditional (SImode, cond, mem, scratch);

  x = gen_rtx_NE (VOIDmode, cond, const0_rtx);
  emit_unlikely_jump (x, label1);

  emit_insn (gen_isync ());
  emit_label (XEXP (label2, 0));
}


  /* Emit instructions to move SRC to DST.  Called by splitters for
   multi-register moves.  It will emit at most one instruction for
   each register that is accessed; that is, it won't emit li/lis pairs
   (or equivalent for 64-bit code).  One of SRC or DST must be a hard
   register.  */

void
rs6000_split_multireg_move (rtx dst, rtx src)
{
  /* The register number of the first register being moved.  */
  int reg;
  /* The mode that is to be moved.  */
  enum machine_mode mode;
  /* The mode that the move is being done in, and its size.  */
  enum machine_mode reg_mode;
  int reg_mode_size;
  /* The number of registers that will be moved.  */
  int nregs;

  reg = REG_P (dst) ? REGNO (dst) : REGNO (src);
  mode = GET_MODE (dst);
  nregs = hard_regno_nregs[reg][mode];
  if (FP_REGNO_P (reg))
    reg_mode = DECIMAL_FLOAT_MODE_P (mode) ? DDmode : 
	((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT) ? DFmode : SFmode);
  else if (ALTIVEC_REGNO_P (reg))
    reg_mode = V16QImode;
  else if (TARGET_E500_DOUBLE && mode == TFmode)
    reg_mode = DFmode;
  else
    reg_mode = word_mode;
  reg_mode_size = GET_MODE_SIZE (reg_mode);

  gcc_assert (reg_mode_size * nregs == GET_MODE_SIZE (mode));

  if (REG_P (src) && REG_P (dst) && (REGNO (src) < REGNO (dst)))
    {
      /* Move register range backwards, if we might have destructive
	 overlap.  */
      int i;
      for (i = nregs - 1; i >= 0; i--)
	emit_insn (gen_rtx_SET (VOIDmode,
				simplify_gen_subreg (reg_mode, dst, mode,
						     i * reg_mode_size),
				simplify_gen_subreg (reg_mode, src, mode,
						     i * reg_mode_size)));
    }
  else
    {
      int i;
      int j = -1;
      bool used_update = false;
      rtx restore_basereg = NULL_RTX;

      if (MEM_P (src) && INT_REGNO_P (reg))
	{
	  rtx breg;

	  if (GET_CODE (XEXP (src, 0)) == PRE_INC
	      || GET_CODE (XEXP (src, 0)) == PRE_DEC)
	    {
	      rtx delta_rtx;
	      breg = XEXP (XEXP (src, 0), 0);
	      delta_rtx = (GET_CODE (XEXP (src, 0)) == PRE_INC
			   ? GEN_INT (GET_MODE_SIZE (GET_MODE (src)))
			   : GEN_INT (-GET_MODE_SIZE (GET_MODE (src))));
	      emit_insn (gen_add3_insn (breg, breg, delta_rtx));
	      src = replace_equiv_address (src, breg);
	    }
	  else if (! rs6000_offsettable_memref_p (src))
	    {
	      if (GET_CODE (XEXP (src, 0)) == PRE_MODIFY)
		{
		  rtx basereg = XEXP (XEXP (src, 0), 0);
		  if (TARGET_UPDATE)
		    {
		      rtx ndst = simplify_gen_subreg (reg_mode, dst, mode, 0);
		      emit_insn (gen_rtx_SET (VOIDmode, ndst,
				 gen_rtx_MEM (reg_mode, XEXP (src, 0))));
		      used_update = true;
		    }
		  else
		    emit_insn (gen_rtx_SET (VOIDmode, basereg,
			       XEXP (XEXP (src, 0), 1)));
		  src = replace_equiv_address (src, basereg);
		}
	      else
		{
		  rtx basereg = gen_rtx_REG (Pmode, reg);
		  emit_insn (gen_rtx_SET (VOIDmode, basereg, XEXP (src, 0)));
		  src = replace_equiv_address (src, basereg);
		}
	    }

	  breg = XEXP (src, 0);
	  if (GET_CODE (breg) == PLUS || GET_CODE (breg) == LO_SUM)
	    breg = XEXP (breg, 0);

	  /* If the base register we are using to address memory is
	     also a destination reg, then change that register last.  */
	  if (REG_P (breg)
	      && REGNO (breg) >= REGNO (dst)
	      && REGNO (breg) < REGNO (dst) + nregs)
	    j = REGNO (breg) - REGNO (dst);
	}
      else if (MEM_P (dst) && INT_REGNO_P (reg))
	{
	  rtx breg;

	  if (GET_CODE (XEXP (dst, 0)) == PRE_INC
	      || GET_CODE (XEXP (dst, 0)) == PRE_DEC)
	    {
	      rtx delta_rtx;
	      breg = XEXP (XEXP (dst, 0), 0);
	      delta_rtx = (GET_CODE (XEXP (dst, 0)) == PRE_INC
			   ? GEN_INT (GET_MODE_SIZE (GET_MODE (dst)))
			   : GEN_INT (-GET_MODE_SIZE (GET_MODE (dst))));

	      /* We have to update the breg before doing the store.
		 Use store with update, if available.  */

	      if (TARGET_UPDATE)
		{
		  rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
		  emit_insn (TARGET_32BIT
			     ? (TARGET_POWERPC64
				? gen_movdi_si_update (breg, breg, delta_rtx, nsrc)
				: gen_movsi_update (breg, breg, delta_rtx, nsrc))
			     : gen_movdi_di_update (breg, breg, delta_rtx, nsrc));
		  used_update = true;
		}
	      else
		emit_insn (gen_add3_insn (breg, breg, delta_rtx));
	      dst = replace_equiv_address (dst, breg);
	    }
	  else if (!rs6000_offsettable_memref_p (dst)
		   && GET_CODE (XEXP (dst, 0)) != LO_SUM)
	    {
	      if (GET_CODE (XEXP (dst, 0)) == PRE_MODIFY)
		{
		  rtx basereg = XEXP (XEXP (dst, 0), 0);
		  if (TARGET_UPDATE)
		    {
		      rtx nsrc = simplify_gen_subreg (reg_mode, src, mode, 0);
		      emit_insn (gen_rtx_SET (VOIDmode,
				 gen_rtx_MEM (reg_mode, XEXP (dst, 0)), nsrc));
		      used_update = true;
		    }
		  else
		    emit_insn (gen_rtx_SET (VOIDmode, basereg,
			       XEXP (XEXP (dst, 0), 1)));
		  dst = replace_equiv_address (dst, basereg);
		}
	      else
		{
		  rtx basereg = XEXP (XEXP (dst, 0), 0);
		  rtx offsetreg = XEXP (XEXP (dst, 0), 1);
		  gcc_assert (GET_CODE (XEXP (dst, 0)) == PLUS
			      && REG_P (basereg)
			      && REG_P (offsetreg)
			      && REGNO (basereg) != REGNO (offsetreg));
		  if (REGNO (basereg) == 0)
		    {
		      rtx tmp = offsetreg;
		      offsetreg = basereg;
		      basereg = tmp;
		    }
		  emit_insn (gen_add3_insn (basereg, basereg, offsetreg));
		  restore_basereg = gen_sub3_insn (basereg, basereg, offsetreg);
		  dst = replace_equiv_address (dst, basereg);
		}
	    }
	  else if (GET_CODE (XEXP (dst, 0)) != LO_SUM)
	    gcc_assert (rs6000_offsettable_memref_p (dst));
	}

      for (i = 0; i < nregs; i++)
	{
	  /* Calculate index to next subword.  */
	  ++j;
	  if (j == nregs)
	    j = 0;

	  /* If compiler already emitted move of first word by
	     store with update, no need to do anything.  */
	  if (j == 0 && used_update)
	    continue;

	  emit_insn (gen_rtx_SET (VOIDmode,
				  simplify_gen_subreg (reg_mode, dst, mode,
						       j * reg_mode_size),
				  simplify_gen_subreg (reg_mode, src, mode,
						       j * reg_mode_size)));
	}
      if (restore_basereg != NULL_RTX)
	emit_insn (restore_basereg);
    }
}


/* This page contains routines that are used to determine what the
   function prologue and epilogue code will do and write them out.  */

/* Return the first fixed-point register that is required to be
   saved. 32 if none.  */

int
first_reg_to_save (void)
{
  int first_reg;

  /* Find lowest numbered live register.  */
  for (first_reg = 13; first_reg <= 31; first_reg++)
    if (df_regs_ever_live_p (first_reg)
	&& (! call_used_regs[first_reg]
	    || (first_reg == RS6000_PIC_OFFSET_TABLE_REGNUM
		&& ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
		    || (DEFAULT_ABI == ABI_DARWIN && flag_pic)
		    || (TARGET_TOC && TARGET_MINIMAL_TOC)))))
      break;

#if TARGET_MACHO
  if (flag_pic
      && crtl->uses_pic_offset_table
      && first_reg > RS6000_PIC_OFFSET_TABLE_REGNUM)
    return RS6000_PIC_OFFSET_TABLE_REGNUM;
#endif

  return first_reg;
}

/* Similar, for FP regs.  */

int
first_fp_reg_to_save (void)
{
  int first_reg;

  /* Find lowest numbered live register.  */
  for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
    if (df_regs_ever_live_p (first_reg))
      break;

  return first_reg;
}

/* Similar, for AltiVec regs.  */

static int
first_altivec_reg_to_save (void)
{
  int i;

  /* Stack frame remains as is unless we are in AltiVec ABI.  */
  if (! TARGET_ALTIVEC_ABI)
    return LAST_ALTIVEC_REGNO + 1;

  /* On Darwin, the unwind routines are compiled without
     TARGET_ALTIVEC, and use save_world to save/restore the
     altivec registers when necessary.  */
  if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
      && ! TARGET_ALTIVEC)
    return FIRST_ALTIVEC_REGNO + 20;

  /* Find lowest numbered live register.  */
  for (i = FIRST_ALTIVEC_REGNO + 20; i <= LAST_ALTIVEC_REGNO; ++i)
    if (df_regs_ever_live_p (i))
      break;

  return i;
}

/* Return a 32-bit mask of the AltiVec registers we need to set in
   VRSAVE.  Bit n of the return value is 1 if Vn is live.  The MSB in
   the 32-bit word is 0.  */

static unsigned int
compute_vrsave_mask (void)
{
  unsigned int i, mask = 0;

  /* On Darwin, the unwind routines are compiled without
     TARGET_ALTIVEC, and use save_world to save/restore the
     call-saved altivec registers when necessary.  */
  if (DEFAULT_ABI == ABI_DARWIN && crtl->calls_eh_return
      && ! TARGET_ALTIVEC)
    mask |= 0xFFF;

  /* First, find out if we use _any_ altivec registers.  */
  for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
    if (df_regs_ever_live_p (i))
      mask |= ALTIVEC_REG_BIT (i);

  if (mask == 0)
    return mask;

  /* Next, remove the argument registers from the set.  These must
     be in the VRSAVE mask set by the caller, so we don't need to add
     them in again.  More importantly, the mask we compute here is
     used to generate CLOBBERs in the set_vrsave insn, and we do not
     wish the argument registers to die.  */
  for (i = crtl->args.info.vregno - 1; i >= ALTIVEC_ARG_MIN_REG; --i)
    mask &= ~ALTIVEC_REG_BIT (i);

  /* Similarly, remove the return value from the set.  */
  {
    bool yes = false;
    diddle_return_value (is_altivec_return_reg, &yes);
    if (yes)
      mask &= ~ALTIVEC_REG_BIT (ALTIVEC_ARG_RETURN);
  }

  return mask;
}

/* For a very restricted set of circumstances, we can cut down the
   size of prologues/epilogues by calling our own save/restore-the-world
   routines.  */

static void
compute_save_world_info (rs6000_stack_t *info_ptr)
{
  info_ptr->world_save_p = 1;
  info_ptr->world_save_p
    = (WORLD_SAVE_P (info_ptr)
       && DEFAULT_ABI == ABI_DARWIN
       && ! (cfun->calls_setjmp && flag_exceptions)
       && info_ptr->first_fp_reg_save == FIRST_SAVED_FP_REGNO
       && info_ptr->first_gp_reg_save == FIRST_SAVED_GP_REGNO
       && info_ptr->first_altivec_reg_save == FIRST_SAVED_ALTIVEC_REGNO
       && info_ptr->cr_save_p);

  /* This will not work in conjunction with sibcalls.  Make sure there
     are none.  (This check is expensive, but seldom executed.) */
  if (WORLD_SAVE_P (info_ptr))
    {
      rtx insn;
      for ( insn = get_last_insn_anywhere (); insn; insn = PREV_INSN (insn))
	if ( GET_CODE (insn) == CALL_INSN
	     && SIBLING_CALL_P (insn))
	  {
	    info_ptr->world_save_p = 0;
	    break;
	  }
    }

  if (WORLD_SAVE_P (info_ptr))
    {
      /* Even if we're not touching VRsave, make sure there's room on the
	 stack for it, if it looks like we're calling SAVE_WORLD, which
	 will attempt to save it. */
      info_ptr->vrsave_size  = 4;

      /* If we are going to save the world, we need to save the link register too.  */
      info_ptr->lr_save_p = 1;

      /* "Save" the VRsave register too if we're saving the world.  */
      if (info_ptr->vrsave_mask == 0)
	info_ptr->vrsave_mask = compute_vrsave_mask ();

      /* Because the Darwin register save/restore routines only handle
	 F14 .. F31 and V20 .. V31 as per the ABI, perform a consistency
	 check.  */
      gcc_assert (info_ptr->first_fp_reg_save >= FIRST_SAVED_FP_REGNO
		  && (info_ptr->first_altivec_reg_save
		      >= FIRST_SAVED_ALTIVEC_REGNO));
    }
  return;
}


static void
is_altivec_return_reg (rtx reg, void *xyes)
{
  bool *yes = (bool *) xyes;
  if (REGNO (reg) == ALTIVEC_ARG_RETURN)
    *yes = true;
}


/* Calculate the stack information for the current function.  This is
   complicated by having two separate calling sequences, the AIX calling
   sequence and the V.4 calling sequence.

   AIX (and Darwin/Mac OS X) stack frames look like:
							  32-bit  64-bit
	SP---->	+---------------------------------------+
		| back chain to caller			| 0	  0
		+---------------------------------------+
		| saved CR				| 4       8 (8-11)
		+---------------------------------------+
		| saved LR				| 8       16
		+---------------------------------------+
		| reserved for compilers		| 12      24
		+---------------------------------------+
		| reserved for binders			| 16      32
		+---------------------------------------+
		| saved TOC pointer			| 20      40
		+---------------------------------------+
		| Parameter save area (P)		| 24      48
		+---------------------------------------+
		| Alloca space (A)			| 24+P    etc.
		+---------------------------------------+
		| Local variable space (L)		| 24+P+A
		+---------------------------------------+
		| Float/int conversion temporary (X)	| 24+P+A+L
		+---------------------------------------+
		| Save area for AltiVec registers (W)	| 24+P+A+L+X
		+---------------------------------------+
		| AltiVec alignment padding (Y)		| 24+P+A+L+X+W
		+---------------------------------------+
		| Save area for VRSAVE register (Z)	| 24+P+A+L+X+W+Y
		+---------------------------------------+
		| Save area for GP registers (G)	| 24+P+A+X+L+X+W+Y+Z
		+---------------------------------------+
		| Save area for FP registers (F)	| 24+P+A+X+L+X+W+Y+Z+G
		+---------------------------------------+
	old SP->| back chain to caller's caller		|
		+---------------------------------------+

   The required alignment for AIX configurations is two words (i.e., 8
   or 16 bytes).


   V.4 stack frames look like:

	SP---->	+---------------------------------------+
		| back chain to caller			| 0
		+---------------------------------------+
		| caller's saved LR			| 4
		+---------------------------------------+
		| Parameter save area (P)		| 8
		+---------------------------------------+
		| Alloca space (A)			| 8+P
		+---------------------------------------+
		| Varargs save area (V)			| 8+P+A
		+---------------------------------------+
		| Local variable space (L)		| 8+P+A+V
		+---------------------------------------+
		| Float/int conversion temporary (X)	| 8+P+A+V+L
		+---------------------------------------+
		| Save area for AltiVec registers (W)	| 8+P+A+V+L+X
		+---------------------------------------+
		| AltiVec alignment padding (Y)		| 8+P+A+V+L+X+W
		+---------------------------------------+
		| Save area for VRSAVE register (Z)	| 8+P+A+V+L+X+W+Y
		+---------------------------------------+
		| SPE: area for 64-bit GP registers	|
		+---------------------------------------+
		| SPE alignment padding			|
		+---------------------------------------+
		| saved CR (C)				| 8+P+A+V+L+X+W+Y+Z
		+---------------------------------------+
		| Save area for GP registers (G)	| 8+P+A+V+L+X+W+Y+Z+C
		+---------------------------------------+
		| Save area for FP registers (F)	| 8+P+A+V+L+X+W+Y+Z+C+G
		+---------------------------------------+
	old SP->| back chain to caller's caller		|
		+---------------------------------------+

   The required alignment for V.4 is 16 bytes, or 8 bytes if -meabi is
   given.  (But note below and in sysv4.h that we require only 8 and
   may round up the size of our stack frame anyways.  The historical
   reason is early versions of powerpc-linux which didn't properly
   align the stack at program startup.  A happy side-effect is that
   -mno-eabi libraries can be used with -meabi programs.)

   The EABI configuration defaults to the V.4 layout.  However,
   the stack alignment requirements may differ.  If -mno-eabi is not
   given, the required stack alignment is 8 bytes; if -mno-eabi is
   given, the required alignment is 16 bytes.  (But see V.4 comment
   above.)  */

#ifndef ABI_STACK_BOUNDARY
#define ABI_STACK_BOUNDARY STACK_BOUNDARY
#endif

static rs6000_stack_t *
rs6000_stack_info (void)
{
  static rs6000_stack_t info;
  rs6000_stack_t *info_ptr = &info;
  int reg_size = TARGET_32BIT ? 4 : 8;
  int ehrd_size;
  int save_align;
  int first_gp;
  HOST_WIDE_INT non_fixed_size;

  memset (&info, 0, sizeof (info));

  if (TARGET_SPE)
    {
      /* Cache value so we don't rescan instruction chain over and over.  */
      if (cfun->machine->insn_chain_scanned_p == 0)
	cfun->machine->insn_chain_scanned_p
	  = spe_func_has_64bit_regs_p () + 1;
      info_ptr->spe_64bit_regs_used = cfun->machine->insn_chain_scanned_p - 1;
    }

  /* Select which calling sequence.  */
  info_ptr->abi = DEFAULT_ABI;

  /* Calculate which registers need to be saved & save area size.  */
  info_ptr->first_gp_reg_save = first_reg_to_save ();
  /* Assume that we will have to save RS6000_PIC_OFFSET_TABLE_REGNUM,
     even if it currently looks like we won't.  Reload may need it to
     get at a constant; if so, it will have already created a constant
     pool entry for it.  */
  if (((TARGET_TOC && TARGET_MINIMAL_TOC)
       || (flag_pic == 1 && DEFAULT_ABI == ABI_V4)
       || (flag_pic && DEFAULT_ABI == ABI_DARWIN))
      && crtl->uses_const_pool
      && info_ptr->first_gp_reg_save > RS6000_PIC_OFFSET_TABLE_REGNUM)
    first_gp = RS6000_PIC_OFFSET_TABLE_REGNUM;
  else
    first_gp = info_ptr->first_gp_reg_save;

  info_ptr->gp_size = reg_size * (32 - first_gp);

  /* For the SPE, we have an additional upper 32-bits on each GPR.
     Ideally we should save the entire 64-bits only when the upper
     half is used in SIMD instructions.  Since we only record
     registers live (not the size they are used in), this proves
     difficult because we'd have to traverse the instruction chain at
     the right time, taking reload into account.  This is a real pain,
     so we opt to save the GPRs in 64-bits always if but one register
     gets used in 64-bits.  Otherwise, all the registers in the frame
     get saved in 32-bits.

     So... since when we save all GPRs (except the SP) in 64-bits, the
     traditional GP save area will be empty.  */
  if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
    info_ptr->gp_size = 0;

  info_ptr->first_fp_reg_save = first_fp_reg_to_save ();
  info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save);

  info_ptr->first_altivec_reg_save = first_altivec_reg_to_save ();
  info_ptr->altivec_size = 16 * (LAST_ALTIVEC_REGNO + 1
				 - info_ptr->first_altivec_reg_save);

  /* Does this function call anything?  */
  info_ptr->calls_p = (! current_function_is_leaf
		       || cfun->machine->ra_needs_full_frame);

  /* Determine if we need to save the link register.  */
  if ((DEFAULT_ABI == ABI_AIX
       && crtl->profile
       && !TARGET_PROFILE_KERNEL)
#ifdef TARGET_RELOCATABLE
      || (TARGET_RELOCATABLE && (get_pool_size () != 0))
#endif
      || (info_ptr->first_fp_reg_save != 64
	  && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save))
      || (DEFAULT_ABI == ABI_V4 && cfun->calls_alloca)
      || info_ptr->calls_p
      || rs6000_ra_ever_killed ())
    {
      info_ptr->lr_save_p = 1;
      df_set_regs_ever_live (LR_REGNO, true);
    }

  /* Determine if we need to save the condition code registers.  */
  if (df_regs_ever_live_p (CR2_REGNO)
      || df_regs_ever_live_p (CR3_REGNO)
      || df_regs_ever_live_p (CR4_REGNO))
    {
      info_ptr->cr_save_p = 1;
      if (DEFAULT_ABI == ABI_V4)
	info_ptr->cr_size = reg_size;
    }

  /* If the current function calls __builtin_eh_return, then we need
     to allocate stack space for registers that will hold data for
     the exception handler.  */
  if (crtl->calls_eh_return)
    {
      unsigned int i;
      for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
	continue;

      /* SPE saves EH registers in 64-bits.  */
      ehrd_size = i * (TARGET_SPE_ABI
		       && info_ptr->spe_64bit_regs_used != 0
		       ? UNITS_PER_SPE_WORD : UNITS_PER_WORD);
    }
  else
    ehrd_size = 0;

  /* Determine various sizes.  */
  info_ptr->reg_size     = reg_size;
  info_ptr->fixed_size   = RS6000_SAVE_AREA;
  info_ptr->vars_size    = RS6000_ALIGN (get_frame_size (), 8);
  info_ptr->parm_size    = RS6000_ALIGN (crtl->outgoing_args_size,
					 TARGET_ALTIVEC ? 16 : 8);
  if (FRAME_GROWS_DOWNWARD)
    info_ptr->vars_size
      += RS6000_ALIGN (info_ptr->fixed_size + info_ptr->vars_size
		       + info_ptr->parm_size,
		       ABI_STACK_BOUNDARY / BITS_PER_UNIT)
	 - (info_ptr->fixed_size + info_ptr->vars_size
	    + info_ptr->parm_size);

  if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
    info_ptr->spe_gp_size = 8 * (32 - first_gp);
  else
    info_ptr->spe_gp_size = 0;

  if (TARGET_ALTIVEC_ABI)
    info_ptr->vrsave_mask = compute_vrsave_mask ();
  else
    info_ptr->vrsave_mask = 0;

  if (TARGET_ALTIVEC_VRSAVE && info_ptr->vrsave_mask)
    info_ptr->vrsave_size  = 4;
  else
    info_ptr->vrsave_size  = 0;

  compute_save_world_info (info_ptr);

  /* Calculate the offsets.  */
  switch (DEFAULT_ABI)
    {
    case ABI_NONE:
    default:
      gcc_unreachable ();

    case ABI_AIX:
    case ABI_DARWIN:
      info_ptr->fp_save_offset   = - info_ptr->fp_size;
      info_ptr->gp_save_offset   = info_ptr->fp_save_offset - info_ptr->gp_size;

      if (TARGET_ALTIVEC_ABI)
	{
	  info_ptr->vrsave_save_offset
	    = info_ptr->gp_save_offset - info_ptr->vrsave_size;

	  /* Align stack so vector save area is on a quadword boundary.
	     The padding goes above the vectors.  */
	  if (info_ptr->altivec_size != 0)
	    info_ptr->altivec_padding_size
	      = info_ptr->vrsave_save_offset & 0xF;
	  else
	    info_ptr->altivec_padding_size = 0;

	  info_ptr->altivec_save_offset
	    = info_ptr->vrsave_save_offset
	    - info_ptr->altivec_padding_size
	    - info_ptr->altivec_size;
	  gcc_assert (info_ptr->altivec_size == 0
		      || info_ptr->altivec_save_offset % 16 == 0);

	  /* Adjust for AltiVec case.  */
	  info_ptr->ehrd_offset = info_ptr->altivec_save_offset - ehrd_size;
	}
      else
	info_ptr->ehrd_offset      = info_ptr->gp_save_offset - ehrd_size;
      info_ptr->cr_save_offset   = reg_size; /* first word when 64-bit.  */
      info_ptr->lr_save_offset   = 2*reg_size;
      break;

    case ABI_V4:
      info_ptr->fp_save_offset   = - info_ptr->fp_size;
      info_ptr->gp_save_offset   = info_ptr->fp_save_offset - info_ptr->gp_size;
      info_ptr->cr_save_offset   = info_ptr->gp_save_offset - info_ptr->cr_size;

      if (TARGET_SPE_ABI && info_ptr->spe_64bit_regs_used != 0)
	{
	  /* Align stack so SPE GPR save area is aligned on a
	     double-word boundary.  */
	  if (info_ptr->spe_gp_size != 0 && info_ptr->cr_save_offset != 0)
	    info_ptr->spe_padding_size
	      = 8 - (-info_ptr->cr_save_offset % 8);
	  else
	    info_ptr->spe_padding_size = 0;

	  info_ptr->spe_gp_save_offset
	    = info_ptr->cr_save_offset
	    - info_ptr->spe_padding_size
	    - info_ptr->spe_gp_size;

	  /* Adjust for SPE case.  */
	  info_ptr->ehrd_offset = info_ptr->spe_gp_save_offset;
	}
      else if (TARGET_ALTIVEC_ABI)
	{
	  info_ptr->vrsave_save_offset
	    = info_ptr->cr_save_offset - info_ptr->vrsave_size;

	  /* Align stack so vector save area is on a quadword boundary.  */
	  if (info_ptr->altivec_size != 0)
	    info_ptr->altivec_padding_size
	      = 16 - (-info_ptr->vrsave_save_offset % 16);
	  else
	    info_ptr->altivec_padding_size = 0;

	  info_ptr->altivec_save_offset
	    = info_ptr->vrsave_save_offset
	    - info_ptr->altivec_padding_size
	    - info_ptr->altivec_size;

	  /* Adjust for AltiVec case.  */
	  info_ptr->ehrd_offset = info_ptr->altivec_save_offset;
	}
      else
	info_ptr->ehrd_offset    = info_ptr->cr_save_offset;
      info_ptr->ehrd_offset      -= ehrd_size;
      info_ptr->lr_save_offset   = reg_size;
      break;
    }

  save_align = (TARGET_ALTIVEC_ABI || DEFAULT_ABI == ABI_DARWIN) ? 16 : 8;
  info_ptr->save_size    = RS6000_ALIGN (info_ptr->fp_size
					 + info_ptr->gp_size
					 + info_ptr->altivec_size
					 + info_ptr->altivec_padding_size
					 + info_ptr->spe_gp_size
					 + info_ptr->spe_padding_size
					 + ehrd_size
					 + info_ptr->cr_size
					 + info_ptr->vrsave_size,
					 save_align);

  non_fixed_size	 = (info_ptr->vars_size
			    + info_ptr->parm_size
			    + info_ptr->save_size);

  info_ptr->total_size = RS6000_ALIGN (non_fixed_size + info_ptr->fixed_size,
				       ABI_STACK_BOUNDARY / BITS_PER_UNIT);

  /* Determine if we need to allocate any stack frame:

     For AIX we need to push the stack if a frame pointer is needed
     (because the stack might be dynamically adjusted), if we are
     debugging, if we make calls, or if the sum of fp_save, gp_save,
     and local variables are more than the space needed to save all
     non-volatile registers: 32-bit: 18*8 + 19*4 = 220 or 64-bit: 18*8
     + 18*8 = 288 (GPR13 reserved).

     For V.4 we don't have the stack cushion that AIX uses, but assume
     that the debugger can handle stackless frames.  */

  if (info_ptr->calls_p)
    info_ptr->push_p = 1;

  else if (DEFAULT_ABI == ABI_V4)
    info_ptr->push_p = non_fixed_size != 0;

  else if (frame_pointer_needed)
    info_ptr->push_p = 1;

  else if (TARGET_XCOFF && write_symbols != NO_DEBUG)
    info_ptr->push_p = 1;

  else
    info_ptr->push_p = non_fixed_size > (TARGET_32BIT ? 220 : 288);

  /* Zero offsets if we're not saving those registers.  */
  if (info_ptr->fp_size == 0)
    info_ptr->fp_save_offset = 0;

  if (info_ptr->gp_size == 0)
    info_ptr->gp_save_offset = 0;

  if (! TARGET_ALTIVEC_ABI || info_ptr->altivec_size == 0)
    info_ptr->altivec_save_offset = 0;

  if (! TARGET_ALTIVEC_ABI || info_ptr->vrsave_mask == 0)
    info_ptr->vrsave_save_offset = 0;

  if (! TARGET_SPE_ABI
      || info_ptr->spe_64bit_regs_used == 0
      || info_ptr->spe_gp_size == 0)
    info_ptr->spe_gp_save_offset = 0;

  if (! info_ptr->lr_save_p)
    info_ptr->lr_save_offset = 0;

  if (! info_ptr->cr_save_p)
    info_ptr->cr_save_offset = 0;

  return info_ptr;
}

/* Return true if the current function uses any GPRs in 64-bit SIMD
   mode.  */

static bool
spe_func_has_64bit_regs_p (void)
{
  rtx insns, insn;

  /* Functions that save and restore all the call-saved registers will
     need to save/restore the registers in 64-bits.  */
  if (crtl->calls_eh_return
      || cfun->calls_setjmp
      || crtl->has_nonlocal_goto)
    return true;

  insns = get_insns ();

  for (insn = NEXT_INSN (insns); insn != NULL_RTX; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  rtx i;

	  /* FIXME: This should be implemented with attributes...

	         (set_attr "spe64" "true")....then,
	         if (get_spe64(insn)) return true;

	     It's the only reliable way to do the stuff below.  */

	  i = PATTERN (insn);
	  if (GET_CODE (i) == SET)
	    {
	      enum machine_mode mode = GET_MODE (SET_SRC (i));

	      if (SPE_VECTOR_MODE (mode))
		return true;
	      if (TARGET_E500_DOUBLE && (mode == DFmode || mode == TFmode))
		return true;
	    }
	}
    }

  return false;
}

static void
debug_stack_info (rs6000_stack_t *info)
{
  const char *abi_string;

  if (! info)
    info = rs6000_stack_info ();

  fprintf (stderr, "\nStack information for function %s:\n",
	   ((current_function_decl && DECL_NAME (current_function_decl))
	    ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
	    : "<unknown>"));

  switch (info->abi)
    {
    default:		 abi_string = "Unknown";	break;
    case ABI_NONE:	 abi_string = "NONE";		break;
    case ABI_AIX:	 abi_string = "AIX";		break;
    case ABI_DARWIN:	 abi_string = "Darwin";		break;
    case ABI_V4:	 abi_string = "V.4";		break;
    }

  fprintf (stderr, "\tABI                 = %5s\n", abi_string);

  if (TARGET_ALTIVEC_ABI)
    fprintf (stderr, "\tALTIVEC ABI extensions enabled.\n");

  if (TARGET_SPE_ABI)
    fprintf (stderr, "\tSPE ABI extensions enabled.\n");

  if (info->first_gp_reg_save != 32)
    fprintf (stderr, "\tfirst_gp_reg_save   = %5d\n", info->first_gp_reg_save);

  if (info->first_fp_reg_save != 64)
    fprintf (stderr, "\tfirst_fp_reg_save   = %5d\n", info->first_fp_reg_save);

  if (info->first_altivec_reg_save <= LAST_ALTIVEC_REGNO)
    fprintf (stderr, "\tfirst_altivec_reg_save = %5d\n",
	     info->first_altivec_reg_save);

  if (info->lr_save_p)
    fprintf (stderr, "\tlr_save_p           = %5d\n", info->lr_save_p);

  if (info->cr_save_p)
    fprintf (stderr, "\tcr_save_p           = %5d\n", info->cr_save_p);

  if (info->vrsave_mask)
    fprintf (stderr, "\tvrsave_mask         = 0x%x\n", info->vrsave_mask);

  if (info->push_p)
    fprintf (stderr, "\tpush_p              = %5d\n", info->push_p);

  if (info->calls_p)
    fprintf (stderr, "\tcalls_p             = %5d\n", info->calls_p);

  if (info->gp_save_offset)
    fprintf (stderr, "\tgp_save_offset      = %5d\n", info->gp_save_offset);

  if (info->fp_save_offset)
    fprintf (stderr, "\tfp_save_offset      = %5d\n", info->fp_save_offset);

  if (info->altivec_save_offset)
    fprintf (stderr, "\taltivec_save_offset = %5d\n",
	     info->altivec_save_offset);

  if (info->spe_gp_save_offset)
    fprintf (stderr, "\tspe_gp_save_offset  = %5d\n",
	     info->spe_gp_save_offset);

  if (info->vrsave_save_offset)
    fprintf (stderr, "\tvrsave_save_offset  = %5d\n",
	     info->vrsave_save_offset);

  if (info->lr_save_offset)
    fprintf (stderr, "\tlr_save_offset      = %5d\n", info->lr_save_offset);

  if (info->cr_save_offset)
    fprintf (stderr, "\tcr_save_offset      = %5d\n", info->cr_save_offset);

  if (info->varargs_save_offset)
    fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);

  if (info->total_size)
    fprintf (stderr, "\ttotal_size          = "HOST_WIDE_INT_PRINT_DEC"\n",
	     info->total_size);

  if (info->vars_size)
    fprintf (stderr, "\tvars_size           = "HOST_WIDE_INT_PRINT_DEC"\n",
	     info->vars_size);

  if (info->parm_size)
    fprintf (stderr, "\tparm_size           = %5d\n", info->parm_size);

  if (info->fixed_size)
    fprintf (stderr, "\tfixed_size          = %5d\n", info->fixed_size);

  if (info->gp_size)
    fprintf (stderr, "\tgp_size             = %5d\n", info->gp_size);

  if (info->spe_gp_size)
    fprintf (stderr, "\tspe_gp_size         = %5d\n", info->spe_gp_size);

  if (info->fp_size)
    fprintf (stderr, "\tfp_size             = %5d\n", info->fp_size);

  if (info->altivec_size)
    fprintf (stderr, "\taltivec_size        = %5d\n", info->altivec_size);

  if (info->vrsave_size)
    fprintf (stderr, "\tvrsave_size         = %5d\n", info->vrsave_size);

  if (info->altivec_padding_size)
    fprintf (stderr, "\taltivec_padding_size= %5d\n",
	     info->altivec_padding_size);

  if (info->spe_padding_size)
    fprintf (stderr, "\tspe_padding_size    = %5d\n",
	     info->spe_padding_size);

  if (info->cr_size)
    fprintf (stderr, "\tcr_size             = %5d\n", info->cr_size);

  if (info->save_size)
    fprintf (stderr, "\tsave_size           = %5d\n", info->save_size);

  if (info->reg_size != 4)
    fprintf (stderr, "\treg_size            = %5d\n", info->reg_size);

  fprintf (stderr, "\n");
}

rtx
rs6000_return_addr (int count, rtx frame)
{
  /* Currently we don't optimize very well between prolog and body
     code and for PIC code the code can be actually quite bad, so
     don't try to be too clever here.  */
  if (count != 0 || (DEFAULT_ABI != ABI_AIX && flag_pic))
    {
      cfun->machine->ra_needs_full_frame = 1;

      return
	gen_rtx_MEM
	  (Pmode,
	   memory_address
	   (Pmode,
	    plus_constant (copy_to_reg
			   (gen_rtx_MEM (Pmode,
					 memory_address (Pmode, frame))),
			   RETURN_ADDRESS_OFFSET)));
    }

  cfun->machine->ra_need_lr = 1;
  return get_hard_reg_initial_val (Pmode, LR_REGNO);
}

/* Say whether a function is a candidate for sibcall handling or not.
   We do not allow indirect calls to be optimized into sibling calls.
   Also, we can't do it if there are any vector parameters; there's
   nowhere to put the VRsave code so it works; note that functions with
   vector parameters are required to have a prototype, so the argument
   type info must be available here.  (The tail recursion case can work
   with vector parameters, but there's no way to distinguish here.) */
static bool
rs6000_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
  tree type;
  if (decl)
    {
      if (TARGET_ALTIVEC_VRSAVE)
	{
	  for (type = TYPE_ARG_TYPES (TREE_TYPE (decl));
	       type; type = TREE_CHAIN (type))
	    {
	      if (TREE_CODE (TREE_VALUE (type)) == VECTOR_TYPE)
		return false;
	    }
	}
      if (DEFAULT_ABI == ABI_DARWIN
	  || ((*targetm.binds_local_p) (decl)
	      && (DEFAULT_ABI != ABI_AIX || !DECL_EXTERNAL (decl))))
	{
	  tree attr_list = TYPE_ATTRIBUTES (TREE_TYPE (decl));

	  if (!lookup_attribute ("longcall", attr_list)
	      || lookup_attribute ("shortcall", attr_list))
	    return true;
	}
    }
  return false;
}

/* NULL if INSN insn is valid within a low-overhead loop.
   Otherwise return why doloop cannot be applied.
   PowerPC uses the COUNT register for branch on table instructions.  */

static const char *
rs6000_invalid_within_doloop (const_rtx insn)
{
  if (CALL_P (insn))
    return "Function call in the loop.";

  if (JUMP_P (insn)
      && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
	  || GET_CODE (PATTERN (insn)) == ADDR_VEC))
    return "Computed branch in the loop.";

  return NULL;
}

static int
rs6000_ra_ever_killed (void)
{
  rtx top;
  rtx reg;
  rtx insn;

  if (cfun->is_thunk)
    return 0;

  /* regs_ever_live has LR marked as used if any sibcalls are present,
     but this should not force saving and restoring in the
     pro/epilogue.  Likewise, reg_set_between_p thinks a sibcall
     clobbers LR, so that is inappropriate.  */

  /* Also, the prologue can generate a store into LR that
     doesn't really count, like this:

        move LR->R0
        bcl to set PIC register
        move LR->R31
        move R0->LR

     When we're called from the epilogue, we need to avoid counting
     this as a store.  */

  push_topmost_sequence ();
  top = get_insns ();
  pop_topmost_sequence ();
  reg = gen_rtx_REG (Pmode, LR_REGNO);

  for (insn = NEXT_INSN (top); insn != NULL_RTX; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  if (CALL_P (insn))
	    {
	      if (!SIBLING_CALL_P (insn))
		return 1;
	    }
	  else if (find_regno_note (insn, REG_INC, LR_REGNO))
	    return 1;
	  else if (set_of (reg, insn) != NULL_RTX
		   && !prologue_epilogue_contains (insn))
	    return 1;
    	}
    }
  return 0;
}

/* Emit instructions needed to load the TOC register.
   This is only needed when TARGET_TOC, TARGET_MINIMAL_TOC, and there is
   a constant pool; or for SVR4 -fpic.  */

void
rs6000_emit_load_toc_table (int fromprolog)
{
  rtx dest;
  dest = gen_rtx_REG (Pmode, RS6000_PIC_OFFSET_TABLE_REGNUM);

  if (TARGET_ELF && TARGET_SECURE_PLT && DEFAULT_ABI != ABI_AIX && flag_pic)
    {
      char buf[30];
      rtx lab, tmp1, tmp2, got;

      ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
      lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
      if (flag_pic == 2)
	got = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
      else
	got = rs6000_got_sym ();
      tmp1 = tmp2 = dest;
      if (!fromprolog)
	{
	  tmp1 = gen_reg_rtx (Pmode);
	  tmp2 = gen_reg_rtx (Pmode);
	}
      emit_insn (gen_load_toc_v4_PIC_1 (lab));
      emit_move_insn (tmp1,
			     gen_rtx_REG (Pmode, LR_REGNO));
      emit_insn (gen_load_toc_v4_PIC_3b (tmp2, tmp1, got, lab));
      emit_insn (gen_load_toc_v4_PIC_3c (dest, tmp2, got, lab));
    }
  else if (TARGET_ELF && DEFAULT_ABI == ABI_V4 && flag_pic == 1)
    {
      emit_insn (gen_load_toc_v4_pic_si ());
      emit_move_insn (dest, gen_rtx_REG (Pmode, LR_REGNO));
    }
  else if (TARGET_ELF && DEFAULT_ABI != ABI_AIX && flag_pic == 2)
    {
      char buf[30];
      rtx temp0 = (fromprolog
		   ? gen_rtx_REG (Pmode, 0)
		   : gen_reg_rtx (Pmode));

      if (fromprolog)
	{
	  rtx symF, symL;

	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
	  symF = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));

	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
	  symL = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));

	  emit_insn (gen_load_toc_v4_PIC_1 (symF));
	  emit_move_insn (dest,
			  gen_rtx_REG (Pmode, LR_REGNO));
	  emit_insn (gen_load_toc_v4_PIC_2 (temp0, dest, symL, symF));
	}
      else
	{
	  rtx tocsym;

	  tocsym = gen_rtx_SYMBOL_REF (Pmode, toc_label_name);
	  emit_insn (gen_load_toc_v4_PIC_1b (tocsym));
	  emit_move_insn (dest,
			  gen_rtx_REG (Pmode, LR_REGNO));
	  emit_move_insn (temp0, gen_rtx_MEM (Pmode, dest));
	}
      emit_insn (gen_addsi3 (dest, temp0, dest));
    }
  else if (TARGET_ELF && !TARGET_AIX && flag_pic == 0 && TARGET_MINIMAL_TOC)
    {
      /* This is for AIX code running in non-PIC ELF32.  */
      char buf[30];
      rtx realsym;
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
      realsym = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));

      emit_insn (gen_elf_high (dest, realsym));
      emit_insn (gen_elf_low (dest, dest, realsym));
    }
  else
    {
      gcc_assert (DEFAULT_ABI == ABI_AIX);

      if (TARGET_32BIT)
	emit_insn (gen_load_toc_aix_si (dest));
      else
	emit_insn (gen_load_toc_aix_di (dest));
    }
}

/* Emit instructions to restore the link register after determining where
   its value has been stored.  */

void
rs6000_emit_eh_reg_restore (rtx source, rtx scratch)
{
  rs6000_stack_t *info = rs6000_stack_info ();
  rtx operands[2];

  operands[0] = source;
  operands[1] = scratch;

  if (info->lr_save_p)
    {
      rtx frame_rtx = stack_pointer_rtx;
      HOST_WIDE_INT sp_offset = 0;
      rtx tmp;

      if (frame_pointer_needed
	  || cfun->calls_alloca
	  || info->total_size > 32767)
	{
	  tmp = gen_frame_mem (Pmode, frame_rtx);
	  emit_move_insn (operands[1], tmp);
	  frame_rtx = operands[1];
	}
      else if (info->push_p)
	sp_offset = info->total_size;

      tmp = plus_constant (frame_rtx, info->lr_save_offset + sp_offset);
      tmp = gen_frame_mem (Pmode, tmp);
      emit_move_insn (tmp, operands[0]);
    }
  else
    emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO), operands[0]);
}

static GTY(()) alias_set_type set = -1;

alias_set_type
get_TOC_alias_set (void)
{
  if (set == -1)
    set = new_alias_set ();
  return set;
}

/* This returns nonzero if the current function uses the TOC.  This is
   determined by the presence of (use (unspec ... UNSPEC_TOC)), which
   is generated by the ABI_V4 load_toc_* patterns.  */
#if TARGET_ELF
static int
uses_TOC (void)
{
  rtx insn;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
      {
	rtx pat = PATTERN (insn);
	int i;

	if (GET_CODE (pat) == PARALLEL)
	  for (i = 0; i < XVECLEN (pat, 0); i++)
	    {
	      rtx sub = XVECEXP (pat, 0, i);
	      if (GET_CODE (sub) == USE)
		{
		  sub = XEXP (sub, 0);
		  if (GET_CODE (sub) == UNSPEC
		      && XINT (sub, 1) == UNSPEC_TOC)
		    return 1;
		}
	    }
      }
  return 0;
}
#endif

rtx
create_TOC_reference (rtx symbol)
{
  if (TARGET_DEBUG_ADDR)
    {
      if (GET_CODE (symbol) == SYMBOL_REF)
	fprintf (stderr, "\ncreate_TOC_reference, (symbol_ref %s)\n",
		 XSTR (symbol, 0));
      else
	{
	  fprintf (stderr, "\ncreate_TOC_reference, code %s:\n",
		   GET_RTX_NAME (GET_CODE (symbol)));
	  debug_rtx (symbol);
	}
    }

  if (!can_create_pseudo_p ())
    df_set_regs_ever_live (TOC_REGISTER, true);
  return gen_rtx_PLUS (Pmode,
	   gen_rtx_REG (Pmode, TOC_REGISTER),
	     gen_rtx_CONST (Pmode,
	       gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_TOCREL)));
}

/* Issue assembly directives that create a reference to the given DWARF
   FRAME_TABLE_LABEL from the current function section.  */
void
rs6000_aix_asm_output_dwarf_table_ref (char * frame_table_label)
{
  fprintf (asm_out_file, "\t.ref %s\n",
	   TARGET_STRIP_NAME_ENCODING (frame_table_label));
}

/* If _Unwind_* has been called from within the same module,
   toc register is not guaranteed to be saved to 40(1) on function
   entry.  Save it there in that case.  */

void
rs6000_aix_emit_builtin_unwind_init (void)
{
  rtx mem;
  rtx stack_top = gen_reg_rtx (Pmode);
  rtx opcode_addr = gen_reg_rtx (Pmode);
  rtx opcode = gen_reg_rtx (SImode);
  rtx tocompare = gen_reg_rtx (SImode);
  rtx no_toc_save_needed = gen_label_rtx ();

  mem = gen_frame_mem (Pmode, hard_frame_pointer_rtx);
  emit_move_insn (stack_top, mem);

  mem = gen_frame_mem (Pmode,
		       gen_rtx_PLUS (Pmode, stack_top,
				     GEN_INT (2 * GET_MODE_SIZE (Pmode))));
  emit_move_insn (opcode_addr, mem);
  emit_move_insn (opcode, gen_rtx_MEM (SImode, opcode_addr));
  emit_move_insn (tocompare, gen_int_mode (TARGET_32BIT ? 0x80410014
					   : 0xE8410028, SImode));

  do_compare_rtx_and_jump (opcode, tocompare, EQ, 1,
			   SImode, NULL_RTX, NULL_RTX,
			   no_toc_save_needed, -1);

  mem = gen_frame_mem (Pmode,
		       gen_rtx_PLUS (Pmode, stack_top,
				     GEN_INT (5 * GET_MODE_SIZE (Pmode))));
  emit_move_insn (mem, gen_rtx_REG (Pmode, 2));
  emit_label (no_toc_save_needed);
}

/* This ties together stack memory (MEM with an alias set of frame_alias_set)
   and the change to the stack pointer.  */

static void
rs6000_emit_stack_tie (void)
{
  rtx mem = gen_frame_mem (BLKmode,
			   gen_rtx_REG (Pmode, STACK_POINTER_REGNUM));

  emit_insn (gen_stack_tie (mem));
}

/* Emit the correct code for allocating stack space, as insns.
   If COPY_R12, make sure a copy of the old frame is left in r12.
   If COPY_R11, make sure a copy of the old frame is left in r11,
   in preference to r12 if COPY_R12.
   The generated code may use hard register 0 as a temporary.  */

static void
rs6000_emit_allocate_stack (HOST_WIDE_INT size, int copy_r12, int copy_r11)
{
  rtx insn;
  rtx stack_reg = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
  rtx tmp_reg = gen_rtx_REG (Pmode, 0);
  rtx todec = gen_int_mode (-size, Pmode);
  rtx par, set, mem;

  if (INTVAL (todec) != -size)
    {
      warning (0, "stack frame too large");
      emit_insn (gen_trap ());
      return;
    }

  if (crtl->limit_stack)
    {
      if (REG_P (stack_limit_rtx)
	  && REGNO (stack_limit_rtx) > 1
	  && REGNO (stack_limit_rtx) <= 31)
	{
	  emit_insn (gen_add3_insn (tmp_reg, stack_limit_rtx, GEN_INT (size)));
	  emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
				    const0_rtx));
	}
      else if (GET_CODE (stack_limit_rtx) == SYMBOL_REF
	       && TARGET_32BIT
	       && DEFAULT_ABI == ABI_V4)
	{
	  rtx toload = gen_rtx_CONST (VOIDmode,
				      gen_rtx_PLUS (Pmode,
						    stack_limit_rtx,
						    GEN_INT (size)));

	  emit_insn (gen_elf_high (tmp_reg, toload));
	  emit_insn (gen_elf_low (tmp_reg, tmp_reg, toload));
	  emit_insn (gen_cond_trap (LTU, stack_reg, tmp_reg,
				    const0_rtx));
	}
      else
	warning (0, "stack limit expression is not supported");
    }

  if (copy_r12 || copy_r11)
    emit_move_insn (copy_r11
                    ? gen_rtx_REG (Pmode, 11)
                    : gen_rtx_REG (Pmode, 12),
                    stack_reg);

  if (size > 32767)
    {
      /* Need a note here so that try_split doesn't get confused.  */
      if (get_last_insn () == NULL_RTX)
	emit_note (NOTE_INSN_DELETED);
      insn = emit_move_insn (tmp_reg, todec);
      try_split (PATTERN (insn), insn, 0);
      todec = tmp_reg;
    }
  
  insn = emit_insn (TARGET_32BIT
		    ? gen_movsi_update_stack (stack_reg, stack_reg,
					todec, stack_reg)
		    : gen_movdi_di_update_stack (stack_reg, stack_reg,
					   todec, stack_reg));
  /* Since we didn't use gen_frame_mem to generate the MEM, grab
     it now and set the alias set/attributes. The above gen_*_update
     calls will generate a PARALLEL with the MEM set being the first
     operation. */
  par = PATTERN (insn);
  gcc_assert (GET_CODE (par) == PARALLEL);
  set = XVECEXP (par, 0, 0);
  gcc_assert (GET_CODE (set) == SET);
  mem = SET_DEST (set);
  gcc_assert (MEM_P (mem));
  MEM_NOTRAP_P (mem) = 1;
  set_mem_alias_set (mem, get_frame_alias_set ());

  RTX_FRAME_RELATED_P (insn) = 1;
  add_reg_note (insn, REG_FRAME_RELATED_EXPR,
		gen_rtx_SET (VOIDmode, stack_reg,
			     gen_rtx_PLUS (Pmode, stack_reg,
					   GEN_INT (-size))));
}

/* Add to 'insn' a note which is PATTERN (INSN) but with REG replaced
   with (plus:P (reg 1) VAL), and with REG2 replaced with RREG if REG2
   is not NULL.  It would be nice if dwarf2out_frame_debug_expr could
   deduce these equivalences by itself so it wasn't necessary to hold
   its hand so much.  */

static void
rs6000_frame_related (rtx insn, rtx reg, HOST_WIDE_INT val,
		      rtx reg2, rtx rreg)
{
  rtx real, temp;

  /* copy_rtx will not make unique copies of registers, so we need to
     ensure we don't have unwanted sharing here.  */
  if (reg == reg2)
    reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));

  if (reg == rreg)
    reg = gen_raw_REG (GET_MODE (reg), REGNO (reg));

  real = copy_rtx (PATTERN (insn));

  if (reg2 != NULL_RTX)
    real = replace_rtx (real, reg2, rreg);

  real = replace_rtx (real, reg,
		      gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode,
							STACK_POINTER_REGNUM),
				    GEN_INT (val)));

  /* We expect that 'real' is either a SET or a PARALLEL containing
     SETs (and possibly other stuff).  In a PARALLEL, all the SETs
     are important so they all have to be marked RTX_FRAME_RELATED_P.  */

  if (GET_CODE (real) == SET)
    {
      rtx set = real;

      temp = simplify_rtx (SET_SRC (set));
      if (temp)
	SET_SRC (set) = temp;
      temp = simplify_rtx (SET_DEST (set));
      if (temp)
	SET_DEST (set) = temp;
      if (GET_CODE (SET_DEST (set)) == MEM)
	{
	  temp = simplify_rtx (XEXP (SET_DEST (set), 0));
	  if (temp)
	    XEXP (SET_DEST (set), 0) = temp;
	}
    }
  else
    {
      int i;

      gcc_assert (GET_CODE (real) == PARALLEL);
      for (i = 0; i < XVECLEN (real, 0); i++)
	if (GET_CODE (XVECEXP (real, 0, i)) == SET)
	  {
	    rtx set = XVECEXP (real, 0, i);

	    temp = simplify_rtx (SET_SRC (set));
	    if (temp)
	      SET_SRC (set) = temp;
	    temp = simplify_rtx (SET_DEST (set));
	    if (temp)
	      SET_DEST (set) = temp;
	    if (GET_CODE (SET_DEST (set)) == MEM)
	      {
		temp = simplify_rtx (XEXP (SET_DEST (set), 0));
		if (temp)
		  XEXP (SET_DEST (set), 0) = temp;
	      }
	    RTX_FRAME_RELATED_P (set) = 1;
	  }
    }

  RTX_FRAME_RELATED_P (insn) = 1;
  add_reg_note (insn, REG_FRAME_RELATED_EXPR, real);
}

/* Returns an insn that has a vrsave set operation with the
   appropriate CLOBBERs.  */

static rtx
generate_set_vrsave (rtx reg, rs6000_stack_t *info, int epiloguep)
{
  int nclobs, i;
  rtx insn, clobs[TOTAL_ALTIVEC_REGS + 1];
  rtx vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);

  clobs[0]
    = gen_rtx_SET (VOIDmode,
		   vrsave,
		   gen_rtx_UNSPEC_VOLATILE (SImode,
					    gen_rtvec (2, reg, vrsave),
					    UNSPECV_SET_VRSAVE));

  nclobs = 1;

  /* We need to clobber the registers in the mask so the scheduler
     does not move sets to VRSAVE before sets of AltiVec registers.

     However, if the function receives nonlocal gotos, reload will set
     all call saved registers live.  We will end up with:

     	(set (reg 999) (mem))
	(parallel [ (set (reg vrsave) (unspec blah))
		    (clobber (reg 999))])

     The clobber will cause the store into reg 999 to be dead, and
     flow will attempt to delete an epilogue insn.  In this case, we
     need an unspec use/set of the register.  */

  for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)
    if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
      {
	if (!epiloguep || call_used_regs [i])
	  clobs[nclobs++] = gen_rtx_CLOBBER (VOIDmode,
					     gen_rtx_REG (V4SImode, i));
	else
	  {
	    rtx reg = gen_rtx_REG (V4SImode, i);

	    clobs[nclobs++]
	      = gen_rtx_SET (VOIDmode,
			     reg,
			     gen_rtx_UNSPEC (V4SImode,
					     gen_rtvec (1, reg), 27));
	  }
      }

  insn = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nclobs));

  for (i = 0; i < nclobs; ++i)
    XVECEXP (insn, 0, i) = clobs[i];

  return insn;
}

/* Save a register into the frame, and emit RTX_FRAME_RELATED_P notes.
   Save REGNO into [FRAME_REG + OFFSET] in mode MODE.  */

static void
emit_frame_save (rtx frame_reg, rtx frame_ptr, enum machine_mode mode,
		 unsigned int regno, int offset, HOST_WIDE_INT total_size)
{
  rtx reg, offset_rtx, insn, mem, addr, int_rtx;
  rtx replacea, replaceb;

  int_rtx = GEN_INT (offset);

  /* Some cases that need register indexed addressing.  */
  if ((TARGET_ALTIVEC_ABI && ALTIVEC_VECTOR_MODE (mode))
      || (TARGET_VSX && VSX_VECTOR_MODE (mode))
      || (TARGET_E500_DOUBLE && mode == DFmode)
      || (TARGET_SPE_ABI
	  && SPE_VECTOR_MODE (mode)
	  && !SPE_CONST_OFFSET_OK (offset)))
    {
      /* Whomever calls us must make sure r11 is available in the
	 flow path of instructions in the prologue.  */
      offset_rtx = gen_rtx_REG (Pmode, 11);
      emit_move_insn (offset_rtx, int_rtx);

      replacea = offset_rtx;
      replaceb = int_rtx;
    }
  else
    {
      offset_rtx = int_rtx;
      replacea = NULL_RTX;
      replaceb = NULL_RTX;
    }

  reg = gen_rtx_REG (mode, regno);
  addr = gen_rtx_PLUS (Pmode, frame_reg, offset_rtx);
  mem = gen_frame_mem (mode, addr);

  insn = emit_move_insn (mem, reg);

  rs6000_frame_related (insn, frame_ptr, total_size, replacea, replaceb);
}

/* Emit an offset memory reference suitable for a frame store, while
   converting to a valid addressing mode.  */

static rtx
gen_frame_mem_offset (enum machine_mode mode, rtx reg, int offset)
{
  rtx int_rtx, offset_rtx;

  int_rtx = GEN_INT (offset);

  if ((TARGET_SPE_ABI && SPE_VECTOR_MODE (mode))
      || (TARGET_E500_DOUBLE && mode == DFmode))
    {
      offset_rtx = gen_rtx_REG (Pmode, FIXED_SCRATCH);
      emit_move_insn (offset_rtx, int_rtx);
    }
  else
    offset_rtx = int_rtx;

  return gen_frame_mem (mode, gen_rtx_PLUS (Pmode, reg, offset_rtx));
}

/* Look for user-defined global regs.  We should not save and restore these,
   and cannot use stmw/lmw if there are any in its range.  */

static bool
no_global_regs_above (int first, bool gpr)
{
  int i;
  int last = gpr ? 32 : 64;
  for (i = first; i < last; i++)
    if (global_regs[i])
      return false;
  return true;
}

#ifndef TARGET_FIX_AND_CONTINUE
#define TARGET_FIX_AND_CONTINUE 0
#endif

/* It's really GPR 13 and FPR 14, but we need the smaller of the two.  */
#define FIRST_SAVRES_REGISTER FIRST_SAVED_GP_REGNO
#define LAST_SAVRES_REGISTER 31
#define N_SAVRES_REGISTERS (LAST_SAVRES_REGISTER - FIRST_SAVRES_REGISTER + 1)

static GTY(()) rtx savres_routine_syms[N_SAVRES_REGISTERS][8];

/* Temporary holding space for an out-of-line register save/restore
   routine name.  */
static char savres_routine_name[30];

/* Return the name for an out-of-line register save/restore routine.
   We are saving/restoring GPRs if GPR is true.  */

static char *
rs6000_savres_routine_name (rs6000_stack_t *info, int regno,
			    bool savep, bool gpr, bool lr)
{
  const char *prefix = "";
  const char *suffix = "";

  /* Different targets are supposed to define
     {SAVE,RESTORE}_FP_{PREFIX,SUFFIX} with the idea that the needed
     routine name could be defined with:

     sprintf (name, "%s%d%s", SAVE_FP_PREFIX, regno, SAVE_FP_SUFFIX)

     This is a nice idea in practice, but in reality, things are
     complicated in several ways:

     - ELF targets have save/restore routines for GPRs.

     - SPE targets use different prefixes for 32/64-bit registers, and
       neither of them fit neatly in the FOO_{PREFIX,SUFFIX} regimen.

     - PPC64 ELF targets have routines for save/restore of GPRs that
       differ in what they do with the link register, so having a set
       prefix doesn't work.  (We only use one of the save routines at
       the moment, though.)

     - PPC32 elf targets have "exit" versions of the restore routines
       that restore the link register and can save some extra space.
       These require an extra suffix.  (There are also "tail" versions
       of the restore routines and "GOT" versions of the save routines,
       but we don't generate those at present.  Same problems apply,
       though.)

     We deal with all this by synthesizing our own prefix/suffix and
     using that for the simple sprintf call shown above.  */
  if (TARGET_SPE)
    {
      /* No floating point saves on the SPE.  */
      gcc_assert (gpr);

      if (savep)
	prefix = info->spe_64bit_regs_used ? "_save64gpr_" : "_save32gpr_";
      else
	prefix = info->spe_64bit_regs_used ? "_rest64gpr_" : "_rest32gpr_";

      if (lr)
	suffix = "_x";
    }
  else if (DEFAULT_ABI == ABI_V4)
    {
      if (TARGET_64BIT)
	goto aix_names;

      if (gpr)
	prefix = savep ? "_savegpr_" : "_restgpr_";
      else
	prefix = savep ? "_savefpr_" : "_restfpr_";

      if (lr)
	suffix = "_x";
    }
  else if (DEFAULT_ABI == ABI_AIX)
    {
#ifndef POWERPC_LINUX
      /* No out-of-line save/restore routines for GPRs on AIX.  */
      gcc_assert (!TARGET_AIX || !gpr);
#endif

    aix_names:
      if (gpr)
	prefix = (savep
		  ? (lr ? "_savegpr0_" : "_savegpr1_")
		  : (lr ? "_restgpr0_" : "_restgpr1_"));
#ifdef POWERPC_LINUX
      else if (lr)
	prefix = (savep ? "_savefpr_" : "_restfpr_");
#endif
      else
	{
	  prefix = savep ? SAVE_FP_PREFIX : RESTORE_FP_PREFIX;
	  suffix = savep ? SAVE_FP_SUFFIX : RESTORE_FP_SUFFIX;
	}
    }
  else if (DEFAULT_ABI == ABI_DARWIN)
    sorry ("Out-of-line save/restore routines not supported on Darwin");

  sprintf (savres_routine_name, "%s%d%s", prefix, regno, suffix);

  return savres_routine_name;
}

/* Return an RTL SYMBOL_REF for an out-of-line register save/restore routine.
   We are saving/restoring GPRs if GPR is true.  */

static rtx
rs6000_savres_routine_sym (rs6000_stack_t *info, bool savep,
			   bool gpr, bool lr)
{
  int regno = gpr ? info->first_gp_reg_save : (info->first_fp_reg_save - 32);
  rtx sym;
  int select = ((savep ? 1 : 0) << 2
		| ((TARGET_SPE_ABI
		    /* On the SPE, we never have any FPRs, but we do have
		       32/64-bit versions of the routines.  */
		    ? (info->spe_64bit_regs_used ? 1 : 0)
		    : (gpr ? 1 : 0)) << 1)
		| (lr ? 1: 0));

  /* Don't generate bogus routine names.  */
  gcc_assert (FIRST_SAVRES_REGISTER <= regno
	      && regno <= LAST_SAVRES_REGISTER);

  sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select];

  if (sym == NULL)
    {
      char *name;

      name = rs6000_savres_routine_name (info, regno, savep, gpr, lr);

      sym = savres_routine_syms[regno-FIRST_SAVRES_REGISTER][select]
	= gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
      SYMBOL_REF_FLAGS (sym) |= SYMBOL_FLAG_FUNCTION;
    }

  return sym;
}

/* Emit a sequence of insns, including a stack tie if needed, for
   resetting the stack pointer.  If SAVRES is true, then don't reset the
   stack pointer, but move the base of the frame into r11 for use by
   out-of-line register restore routines.  */

static rtx
rs6000_emit_stack_reset (rs6000_stack_t *info,
			 rtx sp_reg_rtx, rtx frame_reg_rtx,
			 int sp_offset, bool savres)
{
  /* This blockage is needed so that sched doesn't decide to move
     the sp change before the register restores.  */
  if (frame_reg_rtx != sp_reg_rtx
      || (TARGET_SPE_ABI
	  && info->spe_64bit_regs_used != 0
	  && info->first_gp_reg_save != 32))
    rs6000_emit_stack_tie ();
  
  if (frame_reg_rtx != sp_reg_rtx)
    {
      if (sp_offset != 0)
	{
	  rtx dest_reg = savres ? gen_rtx_REG (Pmode, 11) : sp_reg_rtx;
	  return emit_insn (gen_add3_insn (dest_reg, frame_reg_rtx,
					   GEN_INT (sp_offset)));
	}
      else if (!savres)
	return emit_move_insn (sp_reg_rtx, frame_reg_rtx);
    }
  else if (sp_offset != 0)
    {
      /* If we are restoring registers out-of-line, we will be using the
	 "exit" variants of the restore routines, which will reset the
	 stack for us.	But we do need to point r11 into the right place
	 for those routines.  */
      rtx dest_reg = (savres
		      ? gen_rtx_REG (Pmode, 11)
		      : sp_reg_rtx);

      rtx insn = emit_insn (gen_add3_insn (dest_reg, sp_reg_rtx,
					   GEN_INT (sp_offset)));
      if (!savres)
	return insn;
    }
  return NULL_RTX;
}

/* Construct a parallel rtx describing the effect of a call to an
   out-of-line register save/restore routine.  */

static rtx
rs6000_make_savres_rtx (rs6000_stack_t *info,
			rtx frame_reg_rtx, int save_area_offset,
			enum machine_mode reg_mode,
			bool savep, bool gpr, bool lr)
{
  int i;
  int offset, start_reg, end_reg, n_regs;
  int reg_size = GET_MODE_SIZE (reg_mode);
  rtx sym;
  rtvec p;

  offset = 0;
  start_reg = (gpr
	       ? info->first_gp_reg_save
	       : info->first_fp_reg_save);
  end_reg = gpr ? 32 : 64;
  n_regs = end_reg - start_reg;
  p = rtvec_alloc ((lr ? 4 : 3) + n_regs);

  if (!savep && lr)
    RTVEC_ELT (p, offset++) = gen_rtx_RETURN (VOIDmode);

  RTVEC_ELT (p, offset++)
    = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 65));

  sym = rs6000_savres_routine_sym (info, savep, gpr, lr);
  RTVEC_ELT (p, offset++) = gen_rtx_USE (VOIDmode, sym);
  RTVEC_ELT (p, offset++)
    = gen_rtx_USE (VOIDmode,
		   gen_rtx_REG (Pmode, DEFAULT_ABI != ABI_AIX ? 11
				       : gpr && !lr ? 12
				       : 1));

  for (i = 0; i < end_reg - start_reg; i++)
    {
      rtx addr, reg, mem;
      reg = gen_rtx_REG (reg_mode, start_reg + i);
      addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			   GEN_INT (save_area_offset + reg_size*i));
      mem = gen_frame_mem (reg_mode, addr);

      RTVEC_ELT (p, i + offset) = gen_rtx_SET (VOIDmode,
					       savep ? mem : reg,
					       savep ? reg : mem);
    }

  if (savep && lr)
    {
      rtx addr, reg, mem;
      reg = gen_rtx_REG (Pmode, 0);
      addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			   GEN_INT (info->lr_save_offset));
      mem = gen_frame_mem (Pmode, addr);
      RTVEC_ELT (p, i + offset) = gen_rtx_SET (VOIDmode, mem, reg);
    }

  return gen_rtx_PARALLEL (VOIDmode, p);
}

/* Determine whether the gp REG is really used.  */

static bool
rs6000_reg_live_or_pic_offset_p (int reg)
{
  return ((df_regs_ever_live_p (reg)
           && (!call_used_regs[reg]
               || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
                   && TARGET_TOC && TARGET_MINIMAL_TOC)))
          || (reg == RS6000_PIC_OFFSET_TABLE_REGNUM
              && ((DEFAULT_ABI == ABI_V4 && flag_pic != 0)
                  || (DEFAULT_ABI == ABI_DARWIN && flag_pic))));
}

enum {
  SAVRES_MULTIPLE = 0x1,
  SAVRES_INLINE_FPRS = 0x2,
  SAVRES_INLINE_GPRS = 0x4,
  SAVRES_NOINLINE_GPRS_SAVES_LR = 0x8,
  SAVRES_NOINLINE_FPRS_SAVES_LR = 0x10,
  SAVRES_NOINLINE_FPRS_DOESNT_RESTORE_LR = 0x20
};

/* Determine the strategy for savings/restoring registers.  */

static int
rs6000_savres_strategy (rs6000_stack_t *info, bool savep,
			int using_static_chain_p, int sibcall)
{
  bool using_multiple_p;
  bool common;
  bool savres_fprs_inline;
  bool savres_gprs_inline;
  bool noclobber_global_gprs
    = no_global_regs_above (info->first_gp_reg_save, /*gpr=*/true);
  int strategy;

  using_multiple_p = (TARGET_MULTIPLE && ! TARGET_POWERPC64
		      && (!TARGET_SPE_ABI
			  || info->spe_64bit_regs_used == 0)
		      && info->first_gp_reg_save < 31
		      && noclobber_global_gprs);
  /* Don't bother to try to save things out-of-line if r11 is occupied
     by the static chain.  It would require too much fiddling and the
     static chain is rarely used anyway.  */
  common = (using_static_chain_p
	    || sibcall
	    || crtl->calls_eh_return
	    || !info->lr_save_p
	    || cfun->machine->ra_need_lr
	    || info->total_size > 32767);
  savres_fprs_inline = (common
			|| info->first_fp_reg_save == 64
			|| !no_global_regs_above (info->first_fp_reg_save,
						  /*gpr=*/false)
			/* The out-of-line FP routines use
			   double-precision stores; we can't use those
			   routines if we don't have such stores.  */
			|| (TARGET_HARD_FLOAT && !TARGET_DOUBLE_FLOAT)
			|| FP_SAVE_INLINE (info->first_fp_reg_save));
  savres_gprs_inline = (common
			/* Saving CR interferes with the exit routines
			   used on the SPE, so just punt here.  */
			|| (!savep
			    && TARGET_SPE_ABI
			    && info->spe_64bit_regs_used != 0
			    && info->cr_save_p != 0)
			|| info->first_gp_reg_save == 32
			|| !noclobber_global_gprs
			|| GP_SAVE_INLINE (info->first_gp_reg_save));

  if (savep)
    /* If we are going to use store multiple, then don't even bother
     with the out-of-line routines, since the store-multiple instruction
     will always be smaller.  */
    savres_gprs_inline = savres_gprs_inline || using_multiple_p;
  else
    {
      /* The situation is more complicated with load multiple.  We'd
         prefer to use the out-of-line routines for restores, since the
         "exit" out-of-line routines can handle the restore of LR and
         the frame teardown.  But we can only use the out-of-line
         routines if we know that we've used store multiple or
         out-of-line routines in the prologue, i.e. if we've saved all
         the registers from first_gp_reg_save.  Otherwise, we risk
         loading garbage from the stack.  Furthermore, we can only use
         the "exit" out-of-line gpr restore if we haven't saved any
         fprs.  */
      bool saved_all = !savres_gprs_inline || using_multiple_p;

      if (saved_all && info->first_fp_reg_save != 64)
	/* We can't use the exit routine; use load multiple if it's
	   available.  */
	savres_gprs_inline = savres_gprs_inline || using_multiple_p;
    }

  strategy = (using_multiple_p
	      | (savres_fprs_inline << 1)
	      | (savres_gprs_inline << 2));
#ifdef POWERPC_LINUX
  if (TARGET_64BIT)
    {
      if (!savres_fprs_inline)
	strategy |= SAVRES_NOINLINE_FPRS_SAVES_LR;
      else if (!savres_gprs_inline && info->first_fp_reg_save == 64)
	strategy |= SAVRES_NOINLINE_GPRS_SAVES_LR;
    }
#else
  if (TARGET_AIX && !savres_fprs_inline)
    strategy |= SAVRES_NOINLINE_FPRS_DOESNT_RESTORE_LR;
#endif
  return strategy;
}

/* Emit function prologue as insns.  */

void
rs6000_emit_prologue (void)
{
  rs6000_stack_t *info = rs6000_stack_info ();
  enum machine_mode reg_mode = Pmode;
  int reg_size = TARGET_32BIT ? 4 : 8;
  rtx sp_reg_rtx = gen_rtx_REG (Pmode, STACK_POINTER_REGNUM);
  rtx frame_ptr_rtx = gen_rtx_REG (Pmode, 12);
  rtx frame_reg_rtx = sp_reg_rtx;
  rtx cr_save_rtx = NULL_RTX;
  rtx insn;
  int strategy;
  int saving_FPRs_inline;
  int saving_GPRs_inline;
  int using_store_multiple;
  int using_static_chain_p = (cfun->static_chain_decl != NULL_TREE
                              && df_regs_ever_live_p (STATIC_CHAIN_REGNUM)
			      && call_used_regs[STATIC_CHAIN_REGNUM]);
  HOST_WIDE_INT sp_offset = 0;

  if (TARGET_FIX_AND_CONTINUE)
    {
      /* gdb on darwin arranges to forward a function from the old
	 address by modifying the first 5 instructions of the function
	 to branch to the overriding function.  This is necessary to
	 permit function pointers that point to the old function to
	 actually forward to the new function.  */
      emit_insn (gen_nop ());
      emit_insn (gen_nop ());
      emit_insn (gen_nop ());
      emit_insn (gen_nop ());
      emit_insn (gen_nop ());
    }

  if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
    {
      reg_mode = V2SImode;
      reg_size = 8;
    }

  strategy = rs6000_savres_strategy (info, /*savep=*/true,
				     /*static_chain_p=*/using_static_chain_p,
				     /*sibcall=*/0);
  using_store_multiple = strategy & SAVRES_MULTIPLE;
  saving_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
  saving_GPRs_inline = strategy & SAVRES_INLINE_GPRS;

  /* For V.4, update stack before we do any saving and set back pointer.  */
  if (! WORLD_SAVE_P (info)
      && info->push_p
      && (DEFAULT_ABI == ABI_V4
	  || crtl->calls_eh_return))
    {
      bool need_r11 = (TARGET_SPE
		       ? (!saving_GPRs_inline
			  && info->spe_64bit_regs_used == 0)
		       : (!saving_FPRs_inline || !saving_GPRs_inline));
      if (info->total_size < 32767)
	sp_offset = info->total_size;
      else
	frame_reg_rtx = (need_r11
			 ? gen_rtx_REG (Pmode, 11)
			 : frame_ptr_rtx);
      rs6000_emit_allocate_stack (info->total_size,
				  (frame_reg_rtx != sp_reg_rtx
				   && (info->cr_save_p
				       || info->lr_save_p
				       || info->first_fp_reg_save < 64
				       || info->first_gp_reg_save < 32
				       )),
				  need_r11);
      if (frame_reg_rtx != sp_reg_rtx)
	rs6000_emit_stack_tie ();
    }

  /* Handle world saves specially here.  */
  if (WORLD_SAVE_P (info))
    {
      int i, j, sz;
      rtx treg;
      rtvec p;
      rtx reg0;

      /* save_world expects lr in r0. */
      reg0 = gen_rtx_REG (Pmode, 0);
      if (info->lr_save_p)
	{
	  insn = emit_move_insn (reg0,
				 gen_rtx_REG (Pmode, LR_REGNO));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}

      /* The SAVE_WORLD and RESTORE_WORLD routines make a number of
	 assumptions about the offsets of various bits of the stack
	 frame.  */
      gcc_assert (info->gp_save_offset == -220
		  && info->fp_save_offset == -144
		  && info->lr_save_offset == 8
		  && info->cr_save_offset == 4
		  && info->push_p
		  && info->lr_save_p
		  && (!crtl->calls_eh_return
		       || info->ehrd_offset == -432)
		  && info->vrsave_save_offset == -224
		  && info->altivec_save_offset == -416);

      treg = gen_rtx_REG (SImode, 11);
      emit_move_insn (treg, GEN_INT (-info->total_size));

      /* SAVE_WORLD takes the caller's LR in R0 and the frame size
	 in R11.  It also clobbers R12, so beware!  */

      /* Preserve CR2 for save_world prologues */
      sz = 5;
      sz += 32 - info->first_gp_reg_save;
      sz += 64 - info->first_fp_reg_save;
      sz += LAST_ALTIVEC_REGNO - info->first_altivec_reg_save + 1;
      p = rtvec_alloc (sz);
      j = 0;
      RTVEC_ELT (p, j++) = gen_rtx_CLOBBER (VOIDmode,
					    gen_rtx_REG (SImode,
							 LR_REGNO));
      RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
					gen_rtx_SYMBOL_REF (Pmode,
							    "*save_world"));
      /* We do floats first so that the instruction pattern matches
	 properly.  */
      for (i = 0; i < 64 - info->first_fp_reg_save; i++)
	{
 	  rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
				   ? DFmode : SFmode), 
			         info->first_fp_reg_save + i);
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->fp_save_offset
					    + sp_offset + 8 * i));
 	  rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
				     ? DFmode : SFmode), addr);

	  RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
	}
      for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
	{
	  rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->altivec_save_offset
					    + sp_offset + 16 * i));
	  rtx mem = gen_frame_mem (V4SImode, addr);

	  RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
	}
      for (i = 0; i < 32 - info->first_gp_reg_save; i++)
	{
	  rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->gp_save_offset
					    + sp_offset + reg_size * i));
	  rtx mem = gen_frame_mem (reg_mode, addr);

	  RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
	}

      {
	/* CR register traditionally saved as CR2.  */
	rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
	rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				 GEN_INT (info->cr_save_offset
					  + sp_offset));
	rtx mem = gen_frame_mem (reg_mode, addr);

	RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg);
      }
      /* Explain about use of R0.  */
      if (info->lr_save_p)
	{
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->lr_save_offset
					    + sp_offset));
	  rtx mem = gen_frame_mem (reg_mode, addr);

	  RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, mem, reg0);
	}
      /* Explain what happens to the stack pointer.  */
      {
	rtx newval = gen_rtx_PLUS (Pmode, sp_reg_rtx, treg);
	RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, sp_reg_rtx, newval);
      }

      insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
      rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
			    treg, GEN_INT (-info->total_size));
      sp_offset = info->total_size;
    }

  /* If we use the link register, get it into r0.  */
  if (!WORLD_SAVE_P (info) && info->lr_save_p)
    {
      rtx addr, reg, mem;

      insn = emit_move_insn (gen_rtx_REG (Pmode, 0),
			     gen_rtx_REG (Pmode, LR_REGNO));
      RTX_FRAME_RELATED_P (insn) = 1;

      if (!(strategy & (SAVRES_NOINLINE_GPRS_SAVES_LR
			| SAVRES_NOINLINE_FPRS_SAVES_LR)))
	{
	  addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			       GEN_INT (info->lr_save_offset + sp_offset));
	  reg = gen_rtx_REG (Pmode, 0);
	  mem = gen_rtx_MEM (Pmode, addr);
	  /* This should not be of rs6000_sr_alias_set, because of
	     __builtin_return_address.  */

	  insn = emit_move_insn (mem, reg);
	  rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
				NULL_RTX, NULL_RTX);
	}
    }

  /* If we need to save CR, put it into r12 or r11.  */
  if (!WORLD_SAVE_P (info) && info->cr_save_p && frame_reg_rtx != frame_ptr_rtx)
    {
      rtx set;

      cr_save_rtx
	= gen_rtx_REG (SImode, DEFAULT_ABI == ABI_AIX && !saving_GPRs_inline
		       ? 11 : 12);
      insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
      RTX_FRAME_RELATED_P (insn) = 1;
      /* Now, there's no way that dwarf2out_frame_debug_expr is going
	 to understand '(unspec:SI [(reg:CC 68) ...] UNSPEC_MOVESI_FROM_CR)'.
	 But that's OK.  All we have to do is specify that _one_ condition
	 code register is saved in this stack slot.  The thrower's epilogue
	 will then restore all the call-saved registers.
	 We use CR2_REGNO (70) to be compatible with gcc-2.95 on Linux.  */
      set = gen_rtx_SET (VOIDmode, cr_save_rtx,
			 gen_rtx_REG (SImode, CR2_REGNO));
      add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
    }

  /* Do any required saving of fpr's.  If only one or two to save, do
     it ourselves.  Otherwise, call function.  */
  if (!WORLD_SAVE_P (info) && saving_FPRs_inline)
    {
      int i;
      for (i = 0; i < 64 - info->first_fp_reg_save; i++)
	if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
	     && ! call_used_regs[info->first_fp_reg_save+i]))
	  emit_frame_save (frame_reg_rtx, frame_ptr_rtx, 
			   (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
			    ? DFmode : SFmode,
			   info->first_fp_reg_save + i,
			   info->fp_save_offset + sp_offset + 8 * i,
			   info->total_size);
    }
  else if (!WORLD_SAVE_P (info) && info->first_fp_reg_save != 64)
    {
      rtx par;

      par = rs6000_make_savres_rtx (info, frame_reg_rtx,
				    info->fp_save_offset + sp_offset,
				    DFmode,
				    /*savep=*/true, /*gpr=*/false,
				    /*lr=*/(strategy
					    & SAVRES_NOINLINE_FPRS_SAVES_LR)
					   != 0);
      insn = emit_insn (par);
      rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
			    NULL_RTX, NULL_RTX);
    }

  /* Save GPRs.  This is done as a PARALLEL if we are using
     the store-multiple instructions.  */
  if (!WORLD_SAVE_P (info)
      && TARGET_SPE_ABI
      && info->spe_64bit_regs_used != 0
      && info->first_gp_reg_save != 32)
    {
      int i;
      rtx spe_save_area_ptr;
 
      /* Determine whether we can address all of the registers that need
	 to be saved with an offset from the stack pointer that fits in
	 the small const field for SPE memory instructions.  */
      int spe_regs_addressable_via_sp
	= (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
			       + (32 - info->first_gp_reg_save - 1) * reg_size)
	   && saving_GPRs_inline);
      int spe_offset;
 
      if (spe_regs_addressable_via_sp)
	{
	  spe_save_area_ptr = frame_reg_rtx;
	  spe_offset = info->spe_gp_save_offset + sp_offset;
	}
      else
	{
	  /* Make r11 point to the start of the SPE save area.  We need
	     to be careful here if r11 is holding the static chain.  If
	     it is, then temporarily save it in r0.  We would use r0 as
	     our base register here, but using r0 as a base register in
	     loads and stores means something different from what we
	     would like.  */
	  int ool_adjust = (saving_GPRs_inline
			    ? 0
			    : (info->first_gp_reg_save
			       - (FIRST_SAVRES_REGISTER+1))*8);
	  HOST_WIDE_INT offset = (info->spe_gp_save_offset
				  + sp_offset - ool_adjust);

	  if (using_static_chain_p)
	    {
	      rtx r0 = gen_rtx_REG (Pmode, 0);
	      gcc_assert (info->first_gp_reg_save > 11);
 
	      emit_move_insn (r0, gen_rtx_REG (Pmode, 11));
	    }
 
	  spe_save_area_ptr = gen_rtx_REG (Pmode, 11);
	  insn = emit_insn (gen_addsi3 (spe_save_area_ptr,
					frame_reg_rtx,
					GEN_INT (offset)));
	  /* We need to make sure the move to r11 gets noted for
	     properly outputting unwind information.  */
	  if (!saving_GPRs_inline)
	    rs6000_frame_related (insn, frame_reg_rtx, offset,
				  NULL_RTX, NULL_RTX);
	  spe_offset = 0;
	}
 
      if (saving_GPRs_inline)
	{
	  for (i = 0; i < 32 - info->first_gp_reg_save; i++)
	    if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
	      {
		rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
		rtx offset, addr, mem;

		/* We're doing all this to ensure that the offset fits into
		   the immediate offset of 'evstdd'.  */
		gcc_assert (SPE_CONST_OFFSET_OK (reg_size * i + spe_offset));
 
		offset = GEN_INT (reg_size * i + spe_offset);
		addr = gen_rtx_PLUS (Pmode, spe_save_area_ptr, offset);
		mem = gen_rtx_MEM (V2SImode, addr);
  
		insn = emit_move_insn (mem, reg);
	   
		rs6000_frame_related (insn, spe_save_area_ptr,
				      info->spe_gp_save_offset
				      + sp_offset + reg_size * i,
				      offset, const0_rtx);
	      }
	}
      else
	{
	  rtx par;

	  par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
					0, reg_mode,
					/*savep=*/true, /*gpr=*/true,
					/*lr=*/false);
	  insn = emit_insn (par);
	  rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
				NULL_RTX, NULL_RTX);
	}
					
 
      /* Move the static chain pointer back.  */
      if (using_static_chain_p && !spe_regs_addressable_via_sp)
	emit_move_insn (gen_rtx_REG (Pmode, 11), gen_rtx_REG (Pmode, 0));
    }
  else if (!WORLD_SAVE_P (info) && !saving_GPRs_inline)
    {
      rtx par;

      /* Need to adjust r11 (r12) if we saved any FPRs.  */
      if (info->first_fp_reg_save != 64)
        {
	  rtx dest_reg = gen_rtx_REG (reg_mode, DEFAULT_ABI == ABI_AIX
				      ? 12 : 11);
	  rtx offset = GEN_INT (sp_offset
                                + (-8 * (64-info->first_fp_reg_save)));
	  emit_insn (gen_add3_insn (dest_reg, frame_reg_rtx, offset));
        }

      par = rs6000_make_savres_rtx (info, frame_reg_rtx,
				    info->gp_save_offset + sp_offset,
				    reg_mode,
				    /*savep=*/true, /*gpr=*/true,
				    /*lr=*/(strategy
					    & SAVRES_NOINLINE_GPRS_SAVES_LR)
					   != 0);
      insn = emit_insn (par);
      rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
			    NULL_RTX, NULL_RTX);
    }
  else if (!WORLD_SAVE_P (info) && using_store_multiple)
    {
      rtvec p;
      int i;
      p = rtvec_alloc (32 - info->first_gp_reg_save);
      for (i = 0; i < 32 - info->first_gp_reg_save; i++)
	{
	  rtx addr, reg, mem;
	  reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
	  addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			       GEN_INT (info->gp_save_offset
					+ sp_offset
					+ reg_size * i));
	  mem = gen_frame_mem (reg_mode, addr);

	  RTVEC_ELT (p, i) = gen_rtx_SET (VOIDmode, mem, reg);
	}
      insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
      rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
			    NULL_RTX, NULL_RTX);
    }
  else if (!WORLD_SAVE_P (info))
    {
      int i;
      for (i = 0; i < 32 - info->first_gp_reg_save; i++)
	if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
          {
            rtx addr, reg, mem;
            reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);

            addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
                                 GEN_INT (info->gp_save_offset
                                          + sp_offset
                                          + reg_size * i));
            mem = gen_frame_mem (reg_mode, addr);

            insn = emit_move_insn (mem, reg);
            rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
                                  NULL_RTX, NULL_RTX);
          }
    }

  /* ??? There's no need to emit actual instructions here, but it's the
     easiest way to get the frame unwind information emitted.  */
  if (crtl->calls_eh_return)
    {
      unsigned int i, regno;

      /* In AIX ABI we need to pretend we save r2 here.  */
      if (TARGET_AIX)
	{
	  rtx addr, reg, mem;

	  reg = gen_rtx_REG (reg_mode, 2);
	  addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			       GEN_INT (sp_offset + 5 * reg_size));
	  mem = gen_frame_mem (reg_mode, addr);

	  insn = emit_move_insn (mem, reg);
	  rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
				NULL_RTX, NULL_RTX);
	  PATTERN (insn) = gen_blockage ();
	}

      for (i = 0; ; ++i)
	{
	  regno = EH_RETURN_DATA_REGNO (i);
	  if (regno == INVALID_REGNUM)
	    break;

	  emit_frame_save (frame_reg_rtx, frame_ptr_rtx, reg_mode, regno,
			   info->ehrd_offset + sp_offset
			   + reg_size * (int) i,
			   info->total_size);
	}
    }

  /* Save CR if we use any that must be preserved.  */
  if (!WORLD_SAVE_P (info) && info->cr_save_p)
    {
      rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			       GEN_INT (info->cr_save_offset + sp_offset));
      rtx mem = gen_frame_mem (SImode, addr);
      /* See the large comment above about why CR2_REGNO is used.  */
      rtx magic_eh_cr_reg = gen_rtx_REG (SImode, CR2_REGNO);

      /* If r12 was used to hold the original sp, copy cr into r0 now
	 that it's free.  */
      if (REGNO (frame_reg_rtx) == 12)
	{
	  rtx set;

	  cr_save_rtx = gen_rtx_REG (SImode, 0);
	  insn = emit_insn (gen_movesi_from_cr (cr_save_rtx));
	  RTX_FRAME_RELATED_P (insn) = 1;
	  set = gen_rtx_SET (VOIDmode, cr_save_rtx, magic_eh_cr_reg);
	  add_reg_note (insn, REG_FRAME_RELATED_EXPR, set);
	}
      insn = emit_move_insn (mem, cr_save_rtx);

      rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
			    NULL_RTX, NULL_RTX);
    }

  /* Update stack and set back pointer unless this is V.4,
     for which it was done previously.  */
  if (!WORLD_SAVE_P (info) && info->push_p
      && !(DEFAULT_ABI == ABI_V4 || crtl->calls_eh_return))
    {
      if (info->total_size < 32767)
      sp_offset = info->total_size;
      else
	frame_reg_rtx = frame_ptr_rtx;
      rs6000_emit_allocate_stack (info->total_size,
				  (frame_reg_rtx != sp_reg_rtx
				   && ((info->altivec_size != 0)
				       || (info->vrsave_mask != 0)
				       )),
				  FALSE);
      if (frame_reg_rtx != sp_reg_rtx)
	rs6000_emit_stack_tie ();
    }

  /* Set frame pointer, if needed.  */
  if (frame_pointer_needed)
    {
      insn = emit_move_insn (gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
			     sp_reg_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Save AltiVec registers if needed.  Save here because the red zone does
     not include AltiVec registers.  */
  if (!WORLD_SAVE_P (info) && TARGET_ALTIVEC_ABI && info->altivec_size != 0)
    {
      int i;

      /* There should be a non inline version of this, for when we
         are saving lots of vector registers.  */
      for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
        if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
          {
            rtx areg, savereg, mem;
            int offset;

            offset = info->altivec_save_offset + sp_offset
              + 16 * (i - info->first_altivec_reg_save);

            savereg = gen_rtx_REG (V4SImode, i);

            areg = gen_rtx_REG (Pmode, 0);
            emit_move_insn (areg, GEN_INT (offset));

            /* AltiVec addressing mode is [reg+reg].  */
            mem = gen_frame_mem (V4SImode,
                                 gen_rtx_PLUS (Pmode, frame_reg_rtx, areg));

            insn = emit_move_insn (mem, savereg);

            rs6000_frame_related (insn, frame_ptr_rtx, info->total_size,
                                  areg, GEN_INT (offset));
          }
    }

  /* VRSAVE is a bit vector representing which AltiVec registers
     are used.  The OS uses this to determine which vector
     registers to save on a context switch.  We need to save
     VRSAVE on the stack frame, add whatever AltiVec registers we
     used in this function, and do the corresponding magic in the
     epilogue.  */

  if (TARGET_ALTIVEC && TARGET_ALTIVEC_VRSAVE
      && info->vrsave_mask != 0)
    {
      rtx reg, mem, vrsave;
      int offset;

      /* Get VRSAVE onto a GPR.  Note that ABI_V4 might be using r12
         as frame_reg_rtx and r11 as the static chain pointer for
         nested functions.  */
      reg = gen_rtx_REG (SImode, 0);
      vrsave = gen_rtx_REG (SImode, VRSAVE_REGNO);
      if (TARGET_MACHO)
        emit_insn (gen_get_vrsave_internal (reg));
      else
        emit_insn (gen_rtx_SET (VOIDmode, reg, vrsave));

      if (!WORLD_SAVE_P (info))
        {
          /* Save VRSAVE.  */
          offset = info->vrsave_save_offset + sp_offset;
          mem = gen_frame_mem (SImode,
                               gen_rtx_PLUS (Pmode, frame_reg_rtx,
                                             GEN_INT (offset)));
          insn = emit_move_insn (mem, reg);
        }

      /* Include the registers in the mask.  */
      emit_insn (gen_iorsi3 (reg, reg, GEN_INT ((int) info->vrsave_mask)));

      insn = emit_insn (generate_set_vrsave (reg, info, 0));
    }

  /* If we are using RS6000_PIC_OFFSET_TABLE_REGNUM, we need to set it up.  */
  if ((TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0)
      || (DEFAULT_ABI == ABI_V4
	  && (flag_pic == 1 || (flag_pic && TARGET_SECURE_PLT))
	  && df_regs_ever_live_p (RS6000_PIC_OFFSET_TABLE_REGNUM)))
    {
      /* If emit_load_toc_table will use the link register, we need to save
	 it.  We use R12 for this purpose because emit_load_toc_table
	 can use register 0.  This allows us to use a plain 'blr' to return
	 from the procedure more often.  */
      int save_LR_around_toc_setup = (TARGET_ELF
				      && DEFAULT_ABI != ABI_AIX
				      && flag_pic
				      && ! info->lr_save_p
				      && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0);
      if (save_LR_around_toc_setup)
	{
	  rtx lr = gen_rtx_REG (Pmode, LR_REGNO);

	  insn = emit_move_insn (frame_ptr_rtx, lr);
	  RTX_FRAME_RELATED_P (insn) = 1;

	  rs6000_emit_load_toc_table (TRUE);

	  insn = emit_move_insn (lr, frame_ptr_rtx);
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
      else
	rs6000_emit_load_toc_table (TRUE);
    }

#if TARGET_MACHO
  if (DEFAULT_ABI == ABI_DARWIN
      && flag_pic && crtl->uses_pic_offset_table)
    {
      rtx lr = gen_rtx_REG (Pmode, LR_REGNO);
      rtx src = gen_rtx_SYMBOL_REF (Pmode, MACHOPIC_FUNCTION_BASE_NAME);

      /* Save and restore LR locally around this call (in R0).  */
      if (!info->lr_save_p)
	emit_move_insn (gen_rtx_REG (Pmode, 0), lr);

      emit_insn (gen_load_macho_picbase (src));

      emit_move_insn (gen_rtx_REG (Pmode,
				   RS6000_PIC_OFFSET_TABLE_REGNUM),
		      lr);

      if (!info->lr_save_p)
	emit_move_insn (lr, gen_rtx_REG (Pmode, 0));
    }
#endif
}

/* Write function prologue.  */

static void
rs6000_output_function_prologue (FILE *file,
				 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
  rs6000_stack_t *info = rs6000_stack_info ();

  if (TARGET_DEBUG_STACK)
    debug_stack_info (info);

  /* Write .extern for any function we will call to save and restore
     fp values.  */
  if (info->first_fp_reg_save < 64
      && !FP_SAVE_INLINE (info->first_fp_reg_save))
    {
      char *name;
      int regno = info->first_fp_reg_save - 32;

      name = rs6000_savres_routine_name (info, regno, /*savep=*/true,
					 /*gpr=*/false, /*lr=*/false);
      fprintf (file, "\t.extern %s\n", name);

      name = rs6000_savres_routine_name (info, regno, /*savep=*/false,
					 /*gpr=*/false, /*lr=*/true);
      fprintf (file, "\t.extern %s\n", name);
    }

  /* Write .extern for AIX common mode routines, if needed.  */
  if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined)
    {
      fputs ("\t.extern __mulh\n", file);
      fputs ("\t.extern __mull\n", file);
      fputs ("\t.extern __divss\n", file);
      fputs ("\t.extern __divus\n", file);
      fputs ("\t.extern __quoss\n", file);
      fputs ("\t.extern __quous\n", file);
      common_mode_defined = 1;
    }

  if (! HAVE_prologue)
    {
      rtx prologue;

      start_sequence ();

      /* A NOTE_INSN_DELETED is supposed to be at the start and end of
	 the "toplevel" insn chain.  */
      emit_note (NOTE_INSN_DELETED);
      rs6000_emit_prologue ();
      emit_note (NOTE_INSN_DELETED);

      /* Expand INSN_ADDRESSES so final() doesn't crash.  */
      {
	rtx insn;
	unsigned addr = 0;
	for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
	  {
	    INSN_ADDRESSES_NEW (insn, addr);
	    addr += 4;
	  }
      }

      prologue = get_insns ();
      end_sequence ();

      if (TARGET_DEBUG_STACK)
	debug_rtx_list (prologue, 100);

      emit_insn_before_noloc (prologue, BB_HEAD (ENTRY_BLOCK_PTR->next_bb),
			      ENTRY_BLOCK_PTR);
    }

  rs6000_pic_labelno++;
}

/* Non-zero if vmx regs are restored before the frame pop, zero if
   we restore after the pop when possible.  */
#define ALWAYS_RESTORE_ALTIVEC_BEFORE_POP 0

/* Reload CR from REG.  */

static void
rs6000_restore_saved_cr (rtx reg, int using_mfcr_multiple)
{
  int count = 0;
  int i;

  if (using_mfcr_multiple)
    {
      for (i = 0; i < 8; i++)
	if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
	  count++;
      gcc_assert (count);
    }

  if (using_mfcr_multiple && count > 1)
    {
      rtvec p;
      int ndx;

      p = rtvec_alloc (count);

      ndx = 0;
      for (i = 0; i < 8; i++)
	if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
	  {
	    rtvec r = rtvec_alloc (2);
	    RTVEC_ELT (r, 0) = reg;
	    RTVEC_ELT (r, 1) = GEN_INT (1 << (7-i));
	    RTVEC_ELT (p, ndx) =
	      gen_rtx_SET (VOIDmode, gen_rtx_REG (CCmode, CR0_REGNO+i),
			   gen_rtx_UNSPEC (CCmode, r, UNSPEC_MOVESI_TO_CR));
	    ndx++;
	  }
      emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
      gcc_assert (ndx == count);
    }
  else
    for (i = 0; i < 8; i++)
      if (df_regs_ever_live_p (CR0_REGNO+i) && ! call_used_regs[CR0_REGNO+i])
	{
	  emit_insn (gen_movsi_to_cr_one (gen_rtx_REG (CCmode,
						       CR0_REGNO+i),
					  reg));
	}
}

/* Return true if OFFSET from stack pointer can be clobbered by signals.
   V.4 doesn't have any stack cushion, AIX ABIs have 220 or 288 bytes
   below stack pointer not cloberred by signals.  */

static inline bool
offset_below_red_zone_p (HOST_WIDE_INT offset)
{
  return offset < (DEFAULT_ABI == ABI_V4
		   ? 0
		   : TARGET_32BIT ? -220 : -288);
}

/* Emit function epilogue as insns.  */

void
rs6000_emit_epilogue (int sibcall)
{
  rs6000_stack_t *info;
  int restoring_GPRs_inline;
  int restoring_FPRs_inline;
  int using_load_multiple;
  int using_mtcr_multiple;
  int use_backchain_to_restore_sp;
  int restore_lr;
  int strategy;
  int sp_offset = 0;
  rtx sp_reg_rtx = gen_rtx_REG (Pmode, 1);
  rtx frame_reg_rtx = sp_reg_rtx;
  rtx cfa_restores = NULL_RTX;
  rtx insn;
  rtx cr_save_reg = NULL_RTX;
  enum machine_mode reg_mode = Pmode;
  int reg_size = TARGET_32BIT ? 4 : 8;
  int i;

  info = rs6000_stack_info ();

  if (TARGET_SPE_ABI && info->spe_64bit_regs_used != 0)
    {
      reg_mode = V2SImode;
      reg_size = 8;
    }

  strategy = rs6000_savres_strategy (info, /*savep=*/false,
				     /*static_chain_p=*/0, sibcall);
  using_load_multiple = strategy & SAVRES_MULTIPLE;
  restoring_FPRs_inline = strategy & SAVRES_INLINE_FPRS;
  restoring_GPRs_inline = strategy & SAVRES_INLINE_GPRS;
  using_mtcr_multiple = (rs6000_cpu == PROCESSOR_PPC601
			 || rs6000_cpu == PROCESSOR_PPC603
			 || rs6000_cpu == PROCESSOR_PPC750
			 || optimize_size);
  /* Restore via the backchain when we have a large frame, since this
     is more efficient than an addis, addi pair.  The second condition
     here will not trigger at the moment;  We don't actually need a
     frame pointer for alloca, but the generic parts of the compiler
     give us one anyway.  */
  use_backchain_to_restore_sp = (info->total_size > 32767
				 || info->total_size
				     + (info->lr_save_p ? info->lr_save_offset : 0)
				       > 32767
				 || (cfun->calls_alloca
				     && !frame_pointer_needed));
  restore_lr = (info->lr_save_p
		&& (restoring_FPRs_inline
		    || (strategy & SAVRES_NOINLINE_FPRS_DOESNT_RESTORE_LR))
		&& (restoring_GPRs_inline
		    || info->first_fp_reg_save < 64));

  if (WORLD_SAVE_P (info))
    {
      int i, j;
      char rname[30];
      const char *alloc_rname;
      rtvec p;

      /* eh_rest_world_r10 will return to the location saved in the LR
	 stack slot (which is not likely to be our caller.)
	 Input: R10 -- stack adjustment.  Clobbers R0, R11, R12, R7, R8.
	 rest_world is similar, except any R10 parameter is ignored.
	 The exception-handling stuff that was here in 2.95 is no
	 longer necessary.  */

      p = rtvec_alloc (9
		       + 1
		       + 32 - info->first_gp_reg_save
		       + LAST_ALTIVEC_REGNO + 1 - info->first_altivec_reg_save
		       + 63 + 1 - info->first_fp_reg_save);

      strcpy (rname, ((crtl->calls_eh_return) ?
		      "*eh_rest_world_r10" : "*rest_world"));
      alloc_rname = ggc_strdup (rname);

      j = 0;
      RTVEC_ELT (p, j++) = gen_rtx_RETURN (VOIDmode);
      RTVEC_ELT (p, j++) = gen_rtx_USE (VOIDmode,
					gen_rtx_REG (Pmode,
						     LR_REGNO));
      RTVEC_ELT (p, j++)
	= gen_rtx_USE (VOIDmode, gen_rtx_SYMBOL_REF (Pmode, alloc_rname));
      /* The instruction pattern requires a clobber here;
	 it is shared with the restVEC helper. */
      RTVEC_ELT (p, j++)
	= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));

      {
	/* CR register traditionally saved as CR2.  */
	rtx reg = gen_rtx_REG (reg_mode, CR2_REGNO);
	rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				 GEN_INT (info->cr_save_offset));
	rtx mem = gen_frame_mem (reg_mode, addr);

	RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
      }

      for (i = 0; i < 32 - info->first_gp_reg_save; i++)
	{
	  rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->gp_save_offset
					    + reg_size * i));
	  rtx mem = gen_frame_mem (reg_mode, addr);

	  RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
	}
      for (i = 0; info->first_altivec_reg_save + i <= LAST_ALTIVEC_REGNO; i++)
	{
	  rtx reg = gen_rtx_REG (V4SImode, info->first_altivec_reg_save + i);
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->altivec_save_offset
					    + 16 * i));
	  rtx mem = gen_frame_mem (V4SImode, addr);

	  RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
	}
      for (i = 0; info->first_fp_reg_save + i <= 63; i++)
	{
 	  rtx reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
				   ? DFmode : SFmode), 
 			         info->first_fp_reg_save + i);
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->fp_save_offset
					    + 8 * i));
 	  rtx mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
				     ? DFmode : SFmode), addr);

	  RTVEC_ELT (p, j++) = gen_rtx_SET (VOIDmode, reg, mem);
	}
      RTVEC_ELT (p, j++)
	= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 0));
      RTVEC_ELT (p, j++)
	= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 12));
      RTVEC_ELT (p, j++)
	= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 7));
      RTVEC_ELT (p, j++)
	= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 8));
      RTVEC_ELT (p, j++)
	= gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, 10));
      emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));

      return;
    }

  /* frame_reg_rtx + sp_offset points to the top of this stack frame.  */
  if (info->push_p)
    sp_offset = info->total_size;

  /* Restore AltiVec registers if we must do so before adjusting the
     stack.  */
  if (TARGET_ALTIVEC_ABI
      && info->altivec_size != 0
      && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
	  || (DEFAULT_ABI != ABI_V4
	      && offset_below_red_zone_p (info->altivec_save_offset))))
    {
      int i;

      if (use_backchain_to_restore_sp)
	{
	  frame_reg_rtx = gen_rtx_REG (Pmode, 11);
	  emit_move_insn (frame_reg_rtx,
			  gen_rtx_MEM (Pmode, sp_reg_rtx));
	  sp_offset = 0;
	}
      else if (frame_pointer_needed)
	frame_reg_rtx = hard_frame_pointer_rtx;

      for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
	if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
	  {
	    rtx addr, areg, mem, reg;

	    areg = gen_rtx_REG (Pmode, 0);
	    emit_move_insn
	      (areg, GEN_INT (info->altivec_save_offset
			      + sp_offset
			      + 16 * (i - info->first_altivec_reg_save)));

	    /* AltiVec addressing mode is [reg+reg].  */
	    addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
	    mem = gen_frame_mem (V4SImode, addr);

	    reg = gen_rtx_REG (V4SImode, i);
	    emit_move_insn (reg, mem);
	    if (offset_below_red_zone_p (info->altivec_save_offset
					 + (i - info->first_altivec_reg_save)
					   * 16))
	      cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
					     cfa_restores);
	  }
    }

  /* Restore VRSAVE if we must do so before adjusting the stack.  */
  if (TARGET_ALTIVEC
      && TARGET_ALTIVEC_VRSAVE
      && info->vrsave_mask != 0
      && (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
	  || (DEFAULT_ABI != ABI_V4
	      && offset_below_red_zone_p (info->vrsave_save_offset))))
    {
      rtx addr, mem, reg;

      if (frame_reg_rtx == sp_reg_rtx)
	{
	  if (use_backchain_to_restore_sp)
	    {
	      frame_reg_rtx = gen_rtx_REG (Pmode, 11);
	      emit_move_insn (frame_reg_rtx,
			      gen_rtx_MEM (Pmode, sp_reg_rtx));
	      sp_offset = 0;
	    }
	  else if (frame_pointer_needed)
	    frame_reg_rtx = hard_frame_pointer_rtx;
	}

      addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			   GEN_INT (info->vrsave_save_offset + sp_offset));
      mem = gen_frame_mem (SImode, addr);
      reg = gen_rtx_REG (SImode, 12);
      emit_move_insn (reg, mem);

      emit_insn (generate_set_vrsave (reg, info, 1));
    }

  insn = NULL_RTX;
  /* If we have a large stack frame, restore the old stack pointer
     using the backchain.  */
  if (use_backchain_to_restore_sp)
    {
      if (frame_reg_rtx == sp_reg_rtx)
	{
	  /* Under V.4, don't reset the stack pointer until after we're done
	     loading the saved registers.  */
	  if (DEFAULT_ABI == ABI_V4)
	    frame_reg_rtx = gen_rtx_REG (Pmode, 11);

	  insn = emit_move_insn (frame_reg_rtx,
				 gen_rtx_MEM (Pmode, sp_reg_rtx));
	  sp_offset = 0;
	}
      else if (ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
	       && DEFAULT_ABI == ABI_V4)
	/* frame_reg_rtx has been set up by the altivec restore.  */
	;
      else
	{
	  insn = emit_move_insn (sp_reg_rtx, frame_reg_rtx);
	  frame_reg_rtx = sp_reg_rtx;
	}
    }
  /* If we have a frame pointer, we can restore the old stack pointer
     from it.  */
  else if (frame_pointer_needed)
    {
      frame_reg_rtx = sp_reg_rtx;
      if (DEFAULT_ABI == ABI_V4)
	frame_reg_rtx = gen_rtx_REG (Pmode, 11);

      insn = emit_insn (gen_add3_insn (frame_reg_rtx, hard_frame_pointer_rtx,
				       GEN_INT (info->total_size)));
      sp_offset = 0;
    }
  else if (info->push_p
	   && DEFAULT_ABI != ABI_V4
	   && !crtl->calls_eh_return)
    {
      insn = emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx,
				       GEN_INT (info->total_size)));
      sp_offset = 0;
    }
  if (insn && frame_reg_rtx == sp_reg_rtx)
    {
      if (cfa_restores)
	{
	  REG_NOTES (insn) = cfa_restores;
	  cfa_restores = NULL_RTX;
	}
      add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  /* Restore AltiVec registers if we have not done so already.  */
  if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
      && TARGET_ALTIVEC_ABI
      && info->altivec_size != 0
      && (DEFAULT_ABI == ABI_V4
	  || !offset_below_red_zone_p (info->altivec_save_offset)))
    {
      int i;

      for (i = info->first_altivec_reg_save; i <= LAST_ALTIVEC_REGNO; ++i)
	if (info->vrsave_mask & ALTIVEC_REG_BIT (i))
	  {
	    rtx addr, areg, mem, reg;

	    areg = gen_rtx_REG (Pmode, 0);
	    emit_move_insn
	      (areg, GEN_INT (info->altivec_save_offset
			      + sp_offset
			      + 16 * (i - info->first_altivec_reg_save)));

	    /* AltiVec addressing mode is [reg+reg].  */
	    addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, areg);
	    mem = gen_frame_mem (V4SImode, addr);

	    reg = gen_rtx_REG (V4SImode, i);
	    emit_move_insn (reg, mem);
	    if (DEFAULT_ABI == ABI_V4)
	      cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
					     cfa_restores);
	  }
    }

  /* Restore VRSAVE if we have not done so already.  */
  if (!ALWAYS_RESTORE_ALTIVEC_BEFORE_POP
      && TARGET_ALTIVEC
      && TARGET_ALTIVEC_VRSAVE
      && info->vrsave_mask != 0
      && (DEFAULT_ABI == ABI_V4
	  || !offset_below_red_zone_p (info->vrsave_save_offset)))
    {
      rtx addr, mem, reg;

      addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			   GEN_INT (info->vrsave_save_offset + sp_offset));
      mem = gen_frame_mem (SImode, addr);
      reg = gen_rtx_REG (SImode, 12);
      emit_move_insn (reg, mem);

      emit_insn (generate_set_vrsave (reg, info, 1));
    }

  /* Get the old lr if we saved it.  If we are restoring registers
     out-of-line, then the out-of-line routines can do this for us.  */
  if (restore_lr && restoring_GPRs_inline)
    {
      rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx,
				      info->lr_save_offset + sp_offset);

      emit_move_insn (gen_rtx_REG (Pmode, 0), mem);
    }

  /* Get the old cr if we saved it.  */
  if (info->cr_save_p)
    {
      rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			       GEN_INT (info->cr_save_offset + sp_offset));
      rtx mem = gen_frame_mem (SImode, addr);

      cr_save_reg = gen_rtx_REG (SImode,
				 DEFAULT_ABI == ABI_AIX
				 && !restoring_GPRs_inline
				 && info->first_fp_reg_save < 64
				 ? 11 : 12);
      emit_move_insn (cr_save_reg, mem);
    }

  /* Set LR here to try to overlap restores below.  LR is always saved
     above incoming stack, so it never needs REG_CFA_RESTORE.  */
  if (restore_lr && restoring_GPRs_inline)
    emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO),
		    gen_rtx_REG (Pmode, 0));

  /* Load exception handler data registers, if needed.  */
  if (crtl->calls_eh_return)
    {
      unsigned int i, regno;

      if (TARGET_AIX)
	{
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (sp_offset + 5 * reg_size));
	  rtx mem = gen_frame_mem (reg_mode, addr);

	  emit_move_insn (gen_rtx_REG (reg_mode, 2), mem);
	}

      for (i = 0; ; ++i)
	{
	  rtx mem;

	  regno = EH_RETURN_DATA_REGNO (i);
	  if (regno == INVALID_REGNUM)
	    break;

	  mem = gen_frame_mem_offset (reg_mode, frame_reg_rtx,
				      info->ehrd_offset + sp_offset
				      + reg_size * (int) i);

	  emit_move_insn (gen_rtx_REG (reg_mode, regno), mem);
	}
    }

  /* Restore GPRs.  This is done as a PARALLEL if we are using
     the load-multiple instructions.  */
  if (TARGET_SPE_ABI
      && info->spe_64bit_regs_used != 0
      && info->first_gp_reg_save != 32)
    {
      /* Determine whether we can address all of the registers that need
         to be saved with an offset from the stack pointer that fits in
         the small const field for SPE memory instructions.  */
      int spe_regs_addressable_via_sp
	= (SPE_CONST_OFFSET_OK(info->spe_gp_save_offset + sp_offset
			       + (32 - info->first_gp_reg_save - 1) * reg_size)
	   && restoring_GPRs_inline);
      int spe_offset;

      if (spe_regs_addressable_via_sp)
	spe_offset = info->spe_gp_save_offset + sp_offset;
      else
        {
	  rtx old_frame_reg_rtx = frame_reg_rtx;
          /* Make r11 point to the start of the SPE save area.  We worried about
             not clobbering it when we were saving registers in the prologue.
             There's no need to worry here because the static chain is passed
             anew to every function.  */
	  int ool_adjust = (restoring_GPRs_inline
			    ? 0
			    : (info->first_gp_reg_save
			       - (FIRST_SAVRES_REGISTER+1))*8);

	  if (frame_reg_rtx == sp_reg_rtx)
	    frame_reg_rtx = gen_rtx_REG (Pmode, 11);
          emit_insn (gen_addsi3 (frame_reg_rtx, old_frame_reg_rtx,
				 GEN_INT (info->spe_gp_save_offset
					  + sp_offset
					  - ool_adjust)));
	  /* Keep the invariant that frame_reg_rtx + sp_offset points
	     at the top of the stack frame.  */
	  sp_offset = -info->spe_gp_save_offset;

          spe_offset = 0;
        }

      if (restoring_GPRs_inline)
	{
	  for (i = 0; i < 32 - info->first_gp_reg_save; i++)
	    if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
	      {
		rtx offset, addr, mem, reg;

		/* We're doing all this to ensure that the immediate offset
		   fits into the immediate field of 'evldd'.  */
		gcc_assert (SPE_CONST_OFFSET_OK (spe_offset + reg_size * i));

		offset = GEN_INT (spe_offset + reg_size * i);
		addr = gen_rtx_PLUS (Pmode, frame_reg_rtx, offset);
		mem = gen_rtx_MEM (V2SImode, addr);
		reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);

		insn = emit_move_insn (reg, mem);
		if (DEFAULT_ABI == ABI_V4)
		  {
		    if (frame_pointer_needed
			&& info->first_gp_reg_save + i
			   == HARD_FRAME_POINTER_REGNUM)
		      {
			add_reg_note (insn, REG_CFA_DEF_CFA,
				      plus_constant (frame_reg_rtx,
						     sp_offset));
			RTX_FRAME_RELATED_P (insn) = 1;
		      }

		    cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
						   cfa_restores);
		  }
	      }
	}
      else
	{
	  rtx par;

	  par = rs6000_make_savres_rtx (info, gen_rtx_REG (Pmode, 11),
					0, reg_mode,
					/*savep=*/false, /*gpr=*/true,
					/*lr=*/true);
	  emit_jump_insn (par);
	  /* We don't want anybody else emitting things after we jumped
	     back.  */
	  return;
	}
    }
  else if (!restoring_GPRs_inline)
    {
      /* We are jumping to an out-of-line function.  */
      bool can_use_exit = info->first_fp_reg_save == 64;
      rtx par;

      /* Emit stack reset code if we need it.  */
      if (can_use_exit)
	rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
				 sp_offset, can_use_exit);
      else
	{
	  emit_insn (gen_add3_insn (gen_rtx_REG (Pmode, DEFAULT_ABI == ABI_AIX
							? 12 : 11),
				    frame_reg_rtx,
				    GEN_INT (sp_offset - info->fp_size)));
	  if (REGNO (frame_reg_rtx) == 11)
	    sp_offset += info->fp_size;
	}

      par = rs6000_make_savres_rtx (info, frame_reg_rtx,
				    info->gp_save_offset, reg_mode,
				    /*savep=*/false, /*gpr=*/true,
				    /*lr=*/can_use_exit);

      if (can_use_exit)
	{
	  if (info->cr_save_p)
	    {
	      rs6000_restore_saved_cr (cr_save_reg, using_mtcr_multiple);
	      if (DEFAULT_ABI == ABI_V4)
		cfa_restores
		  = alloc_reg_note (REG_CFA_RESTORE,
				    gen_rtx_REG (SImode, CR2_REGNO),
				    cfa_restores);
	    }

	  emit_jump_insn (par);

	  /* We don't want anybody else emitting things after we jumped
	     back.  */
	  return;
	}

      insn = emit_insn (par);
      if (DEFAULT_ABI == ABI_V4)
	{
	  if (frame_pointer_needed)
	    {
	      add_reg_note (insn, REG_CFA_DEF_CFA,
			    plus_constant (frame_reg_rtx, sp_offset));
	      RTX_FRAME_RELATED_P (insn) = 1;
	    }

	  for (i = info->first_gp_reg_save; i < 32; i++)
	    cfa_restores
	      = alloc_reg_note (REG_CFA_RESTORE,
				gen_rtx_REG (reg_mode, i), cfa_restores);
	}
    }
  else if (using_load_multiple)
    {
      rtvec p;
      p = rtvec_alloc (32 - info->first_gp_reg_save);
      for (i = 0; i < 32 - info->first_gp_reg_save; i++)
	{
	  rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
				   GEN_INT (info->gp_save_offset
					    + sp_offset
					    + reg_size * i));
	  rtx mem = gen_frame_mem (reg_mode, addr);
	  rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);

	  RTVEC_ELT (p, i) = gen_rtx_SET (VOIDmode, reg, mem);
	  if (DEFAULT_ABI == ABI_V4)
	    cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
					   cfa_restores);
	}
      insn = emit_insn (gen_rtx_PARALLEL (VOIDmode, p));
      if (DEFAULT_ABI == ABI_V4 && frame_pointer_needed)
	{
	  add_reg_note (insn, REG_CFA_DEF_CFA,
			plus_constant (frame_reg_rtx, sp_offset));
	  RTX_FRAME_RELATED_P (insn) = 1;
	}
    }
  else
    {
      for (i = 0; i < 32 - info->first_gp_reg_save; i++)
        if (rs6000_reg_live_or_pic_offset_p (info->first_gp_reg_save + i))
	  {
            rtx addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
                                     GEN_INT (info->gp_save_offset
                                              + sp_offset
                                              + reg_size * i));
            rtx mem = gen_frame_mem (reg_mode, addr);
	    rtx reg = gen_rtx_REG (reg_mode, info->first_gp_reg_save + i);

	    insn = emit_move_insn (reg, mem);
	    if (DEFAULT_ABI == ABI_V4)
	      {
	        if (frame_pointer_needed
		    && info->first_gp_reg_save + i
		       == HARD_FRAME_POINTER_REGNUM)
		  {
		    add_reg_note (insn, REG_CFA_DEF_CFA,
				  plus_constant (frame_reg_rtx, sp_offset));
		    RTX_FRAME_RELATED_P (insn) = 1;
		  }

		cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
					       cfa_restores);
	      }
          }
    }

  if (restore_lr && !restoring_GPRs_inline)
    {
      rtx mem = gen_frame_mem_offset (Pmode, frame_reg_rtx,
				     info->lr_save_offset + sp_offset);

      emit_move_insn (gen_rtx_REG (Pmode, 0), mem);
      emit_move_insn (gen_rtx_REG (Pmode, LR_REGNO),
		      gen_rtx_REG (Pmode, 0));
    }

  /* Restore fpr's if we need to do it without calling a function.  */
  if (restoring_FPRs_inline)
    for (i = 0; i < 64 - info->first_fp_reg_save; i++)
      if ((df_regs_ever_live_p (info->first_fp_reg_save+i)
	   && ! call_used_regs[info->first_fp_reg_save+i]))
	{
	  rtx addr, mem, reg;
	  addr = gen_rtx_PLUS (Pmode, frame_reg_rtx,
			       GEN_INT (info->fp_save_offset
					+ sp_offset
					+ 8 * i));
	  mem = gen_frame_mem (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
				 ? DFmode : SFmode), addr);
	  reg = gen_rtx_REG (((TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
			       ? DFmode : SFmode),
			     info->first_fp_reg_save + i);

 	  emit_move_insn (reg, mem);
	  if (DEFAULT_ABI == ABI_V4)
	    cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg,
					   cfa_restores);
	}

  /* If we saved cr, restore it here.  Just those that were used.  */
  if (info->cr_save_p)
    {
      rs6000_restore_saved_cr (cr_save_reg, using_mtcr_multiple);
      if (DEFAULT_ABI == ABI_V4)
	cfa_restores
	  = alloc_reg_note (REG_CFA_RESTORE, gen_rtx_REG (SImode, CR2_REGNO),
			    cfa_restores);
    }

  /* If this is V.4, unwind the stack pointer after all of the loads
     have been done.  */
  insn = rs6000_emit_stack_reset (info, sp_reg_rtx, frame_reg_rtx,
				  sp_offset, !restoring_FPRs_inline);
  if (insn)
    {
      if (cfa_restores)
	{
	  REG_NOTES (insn) = cfa_restores;
	  cfa_restores = NULL_RTX;
	}
      add_reg_note (insn, REG_CFA_DEF_CFA, sp_reg_rtx);
      RTX_FRAME_RELATED_P (insn) = 1;
    }

  if (crtl->calls_eh_return)
    {
      rtx sa = EH_RETURN_STACKADJ_RTX;
      emit_insn (gen_add3_insn (sp_reg_rtx, sp_reg_rtx, sa));
    }

  if (!sibcall)
    {
      rtvec p;
      bool lr = (strategy & SAVRES_NOINLINE_FPRS_DOESNT_RESTORE_LR) == 0;
      if (! restoring_FPRs_inline)
	p = rtvec_alloc (4 + 64 - info->first_fp_reg_save);
      else
	p = rtvec_alloc (2);

      RTVEC_ELT (p, 0) = gen_rtx_RETURN (VOIDmode);
      RTVEC_ELT (p, 1) = ((restoring_FPRs_inline || !lr)
			  ? gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 65))
			  : gen_rtx_CLOBBER (VOIDmode,
					     gen_rtx_REG (Pmode, 65)));

      /* If we have to restore more than two FP registers, branch to the
	 restore function.  It will return to our caller.  */
      if (! restoring_FPRs_inline)
	{
	  int i;
	  rtx sym;

	  sym = rs6000_savres_routine_sym (info,
					   /*savep=*/false,
					   /*gpr=*/false,
					   /*lr=*/lr);
	  RTVEC_ELT (p, 2) = gen_rtx_USE (VOIDmode, sym);
	  RTVEC_ELT (p, 3) = gen_rtx_USE (VOIDmode,
					  gen_rtx_REG (Pmode,
						       DEFAULT_ABI == ABI_AIX
						       ? 1 : 11));
	  for (i = 0; i < 64 - info->first_fp_reg_save; i++)
	    {
	      rtx addr, mem;
	      addr = gen_rtx_PLUS (Pmode, sp_reg_rtx,
				   GEN_INT (info->fp_save_offset + 8*i));
	      mem = gen_frame_mem (DFmode, addr);

	      RTVEC_ELT (p, i+4) =
		gen_rtx_SET (VOIDmode,
			     gen_rtx_REG (DFmode, info->first_fp_reg_save + i),
			     mem);
	    }
	}

      emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, p));
    }
}

/* Write function epilogue.  */

static void
rs6000_output_function_epilogue (FILE *file,
				 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
{
  if (! HAVE_epilogue)
    {
      rtx insn = get_last_insn ();
      /* If the last insn was a BARRIER, we don't have to write anything except
	 the trace table.  */
      if (GET_CODE (insn) == NOTE)
	insn = prev_nonnote_insn (insn);
      if (insn == 0 ||  GET_CODE (insn) != BARRIER)
	{
	  /* This is slightly ugly, but at least we don't have two
	     copies of the epilogue-emitting code.  */
	  start_sequence ();

	  /* A NOTE_INSN_DELETED is supposed to be at the start
	     and end of the "toplevel" insn chain.  */
	  emit_note (NOTE_INSN_DELETED);
	  rs6000_emit_epilogue (FALSE);
	  emit_note (NOTE_INSN_DELETED);

	  /* Expand INSN_ADDRESSES so final() doesn't crash.  */
	  {
	    rtx insn;
	    unsigned addr = 0;
	    for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
	      {
		INSN_ADDRESSES_NEW (insn, addr);
		addr += 4;
	      }
	  }

	  if (TARGET_DEBUG_STACK)
	    debug_rtx_list (get_insns (), 100);
	  final (get_insns (), file, FALSE);
	  end_sequence ();
	}
    }

#if TARGET_MACHO
  macho_branch_islands ();
  /* Mach-O doesn't support labels at the end of objects, so if
     it looks like we might want one, insert a NOP.  */
  {
    rtx insn = get_last_insn ();
    while (insn
	   && NOTE_P (insn)
	   && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL)
      insn = PREV_INSN (insn);
    if (insn
	&& (LABEL_P (insn)
	    || (NOTE_P (insn)
		&& NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL)))
      fputs ("\tnop\n", file);
  }
#endif

  /* Output a traceback table here.  See /usr/include/sys/debug.h for info
     on its format.

     We don't output a traceback table if -finhibit-size-directive was
     used.  The documentation for -finhibit-size-directive reads
     ``don't output a @code{.size} assembler directive, or anything
     else that would cause trouble if the function is split in the
     middle, and the two halves are placed at locations far apart in
     memory.''  The traceback table has this property, since it
     includes the offset from the start of the function to the
     traceback table itself.

     System V.4 Powerpc's (and the embedded ABI derived from it) use a
     different traceback table.  */
  if (DEFAULT_ABI == ABI_AIX && ! flag_inhibit_size_directive
      && rs6000_traceback != traceback_none && !cfun->is_thunk)
    {
      const char *fname = NULL;
      const char *language_string = lang_hooks.name;
      int fixed_parms = 0, float_parms = 0, parm_info = 0;
      int i;
      int optional_tbtab;
      rs6000_stack_t *info = rs6000_stack_info ();

      if (rs6000_traceback == traceback_full)
	optional_tbtab = 1;
      else if (rs6000_traceback == traceback_part)
	optional_tbtab = 0;
      else
	optional_tbtab = !optimize_size && !TARGET_ELF;

      if (optional_tbtab)
	{
	  fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
	  while (*fname == '.')	/* V.4 encodes . in the name */
	    fname++;

	  /* Need label immediately before tbtab, so we can compute
	     its offset from the function start.  */
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
	  ASM_OUTPUT_LABEL (file, fname);
	}

      /* The .tbtab pseudo-op can only be used for the first eight
	 expressions, since it can't handle the possibly variable
	 length fields that follow.  However, if you omit the optional
	 fields, the assembler outputs zeros for all optional fields
	 anyways, giving each variable length field is minimum length
	 (as defined in sys/debug.h).  Thus we can not use the .tbtab
	 pseudo-op at all.  */

      /* An all-zero word flags the start of the tbtab, for debuggers
	 that have to find it by searching forward from the entry
	 point or from the current pc.  */
      fputs ("\t.long 0\n", file);

      /* Tbtab format type.  Use format type 0.  */
      fputs ("\t.byte 0,", file);

      /* Language type.  Unfortunately, there does not seem to be any
	 official way to discover the language being compiled, so we
	 use language_string.
	 C is 0.  Fortran is 1.  Pascal is 2.  Ada is 3.  C++ is 9.
	 Java is 13.  Objective-C is 14.  Objective-C++ isn't assigned
	 a number, so for now use 9.  LTO isn't assigned a number either,
	 so for now use 0.  */
      if (! strcmp (language_string, "GNU C")
	  || ! strcmp (language_string, "GNU GIMPLE"))
	i = 0;
      else if (! strcmp (language_string, "GNU F77")
	       || ! strcmp (language_string, "GNU Fortran"))
	i = 1;
      else if (! strcmp (language_string, "GNU Pascal"))
	i = 2;
      else if (! strcmp (language_string, "GNU Ada"))
	i = 3;
      else if (! strcmp (language_string, "GNU C++")
	       || ! strcmp (language_string, "GNU Objective-C++"))
	i = 9;
      else if (! strcmp (language_string, "GNU Java"))
	i = 13;
      else if (! strcmp (language_string, "GNU Objective-C"))
	i = 14;
      else
	gcc_unreachable ();
      fprintf (file, "%d,", i);

      /* 8 single bit fields: global linkage (not set for C extern linkage,
	 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
	 from start of procedure stored in tbtab, internal function, function
	 has controlled storage, function has no toc, function uses fp,
	 function logs/aborts fp operations.  */
      /* Assume that fp operations are used if any fp reg must be saved.  */
      fprintf (file, "%d,",
	       (optional_tbtab << 5) | ((info->first_fp_reg_save != 64) << 1));

      /* 6 bitfields: function is interrupt handler, name present in
	 proc table, function calls alloca, on condition directives
	 (controls stack walks, 3 bits), saves condition reg, saves
	 link reg.  */
      /* The `function calls alloca' bit seems to be set whenever reg 31 is
	 set up as a frame pointer, even when there is no alloca call.  */
      fprintf (file, "%d,",
	       ((optional_tbtab << 6)
		| ((optional_tbtab & frame_pointer_needed) << 5)
		| (info->cr_save_p << 1)
		| (info->lr_save_p)));

      /* 3 bitfields: saves backchain, fixup code, number of fpr saved
	 (6 bits).  */
      fprintf (file, "%d,",
	       (info->push_p << 7) | (64 - info->first_fp_reg_save));

      /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits).  */
      fprintf (file, "%d,", (32 - first_reg_to_save ()));

      if (optional_tbtab)
	{
	  /* Compute the parameter info from the function decl argument
	     list.  */
	  tree decl;
	  int next_parm_info_bit = 31;

	  for (decl = DECL_ARGUMENTS (current_function_decl);
	       decl; decl = TREE_CHAIN (decl))
	    {
	      rtx parameter = DECL_INCOMING_RTL (decl);
	      enum machine_mode mode = GET_MODE (parameter);

	      if (GET_CODE (parameter) == REG)
		{
		  if (SCALAR_FLOAT_MODE_P (mode))
		    {
		      int bits;

		      float_parms++;

		      switch (mode)
			{
			case SFmode:
			case SDmode:
			  bits = 0x2;
			  break;

			case DFmode:
			case DDmode:
			case TFmode:
			case TDmode:
			  bits = 0x3;
			  break;

			default:
			  gcc_unreachable ();
			}

		      /* If only one bit will fit, don't or in this entry.  */
		      if (next_parm_info_bit > 0)
			parm_info |= (bits << (next_parm_info_bit - 1));
		      next_parm_info_bit -= 2;
		    }
		  else
		    {
		      fixed_parms += ((GET_MODE_SIZE (mode)
				       + (UNITS_PER_WORD - 1))
				      / UNITS_PER_WORD);
		      next_parm_info_bit -= 1;
		    }
		}
	    }
	}

      /* Number of fixed point parameters.  */
      /* This is actually the number of words of fixed point parameters; thus
	 an 8 byte struct counts as 2; and thus the maximum value is 8.  */
      fprintf (file, "%d,", fixed_parms);

      /* 2 bitfields: number of floating point parameters (7 bits), parameters
	 all on stack.  */
      /* This is actually the number of fp registers that hold parameters;
	 and thus the maximum value is 13.  */
      /* Set parameters on stack bit if parameters are not in their original
	 registers, regardless of whether they are on the stack?  Xlc
	 seems to set the bit when not optimizing.  */
      fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));

      if (! optional_tbtab)
	return;

      /* Optional fields follow.  Some are variable length.  */

      /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float,
	 11 double float.  */
      /* There is an entry for each parameter in a register, in the order that
	 they occur in the parameter list.  Any intervening arguments on the
	 stack are ignored.  If the list overflows a long (max possible length
	 34 bits) then completely leave off all elements that don't fit.  */
      /* Only emit this long if there was at least one parameter.  */
      if (fixed_parms || float_parms)
	fprintf (file, "\t.long %d\n", parm_info);

      /* Offset from start of code to tb table.  */
      fputs ("\t.long ", file);
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
      if (TARGET_AIX)
	RS6000_OUTPUT_BASENAME (file, fname);
      else
	assemble_name (file, fname);
      putc ('-', file);
      rs6000_output_function_entry (file, fname);
      putc ('\n', file);

      /* Interrupt handler mask.  */
      /* Omit this long, since we never set the interrupt handler bit
	 above.  */

      /* Number of CTL (controlled storage) anchors.  */
      /* Omit this long, since the has_ctl bit is never set above.  */

      /* Displacement into stack of each CTL anchor.  */
      /* Omit this list of longs, because there are no CTL anchors.  */

      /* Length of function name.  */
      if (*fname == '*')
	++fname;
      fprintf (file, "\t.short %d\n", (int) strlen (fname));

      /* Function name.  */
      assemble_string (fname, strlen (fname));

      /* Register for alloca automatic storage; this is always reg 31.
	 Only emit this if the alloca bit was set above.  */
      if (frame_pointer_needed)
	fputs ("\t.byte 31\n", file);

      fputs ("\t.align 2\n", file);
    }
}

/* A C compound statement that outputs the assembler code for a thunk
   function, used to implement C++ virtual function calls with
   multiple inheritance.  The thunk acts as a wrapper around a virtual
   function, adjusting the implicit object parameter before handing
   control off to the real function.

   First, emit code to add the integer DELTA to the location that
   contains the incoming first argument.  Assume that this argument
   contains a pointer, and is the one used to pass the `this' pointer
   in C++.  This is the incoming argument *before* the function
   prologue, e.g. `%o0' on a sparc.  The addition must preserve the
   values of all other incoming arguments.

   After the addition, emit code to jump to FUNCTION, which is a
   `FUNCTION_DECL'.  This is a direct pure jump, not a call, and does
   not touch the return address.  Hence returning from FUNCTION will
   return to whoever called the current `thunk'.

   The effect must be as if FUNCTION had been called directly with the
   adjusted first argument.  This macro is responsible for emitting
   all of the code for a thunk function; output_function_prologue()
   and output_function_epilogue() are not invoked.

   The THUNK_FNDECL is redundant.  (DELTA and FUNCTION have already
   been extracted from it.)  It might possibly be useful on some
   targets, but probably not.

   If you do not define this macro, the target-independent code in the
   C++ frontend will generate a less efficient heavyweight thunk that
   calls FUNCTION instead of jumping to it.  The generic approach does
   not support varargs.  */

static void
rs6000_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
			HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
			tree function)
{
  rtx this_rtx, insn, funexp;

  reload_completed = 1;
  epilogue_completed = 1;

  /* Mark the end of the (empty) prologue.  */
  emit_note (NOTE_INSN_PROLOGUE_END);

  /* Find the "this" pointer.  If the function returns a structure,
     the structure return pointer is in r3.  */
  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    this_rtx = gen_rtx_REG (Pmode, 4);
  else
    this_rtx = gen_rtx_REG (Pmode, 3);

  /* Apply the constant offset, if required.  */
  if (delta)
    emit_insn (gen_add3_insn (this_rtx, this_rtx, GEN_INT (delta)));

  /* Apply the offset from the vtable, if required.  */
  if (vcall_offset)
    {
      rtx vcall_offset_rtx = GEN_INT (vcall_offset);
      rtx tmp = gen_rtx_REG (Pmode, 12);

      emit_move_insn (tmp, gen_rtx_MEM (Pmode, this_rtx));
      if (((unsigned HOST_WIDE_INT) vcall_offset) + 0x8000 >= 0x10000)
	{
	  emit_insn (gen_add3_insn (tmp, tmp, vcall_offset_rtx));
	  emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
	}
      else
	{
	  rtx loc = gen_rtx_PLUS (Pmode, tmp, vcall_offset_rtx);

	  emit_move_insn (tmp, gen_rtx_MEM (Pmode, loc));
	}
      emit_insn (gen_add3_insn (this_rtx, this_rtx, tmp));
    }

  /* Generate a tail call to the target function.  */
  if (!TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }
  funexp = XEXP (DECL_RTL (function), 0);
  funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);

#if TARGET_MACHO
  if (MACHOPIC_INDIRECT)
    funexp = machopic_indirect_call_target (funexp);
#endif

  /* gen_sibcall expects reload to convert scratch pseudo to LR so we must
     generate sibcall RTL explicitly.  */
  insn = emit_call_insn (
	   gen_rtx_PARALLEL (VOIDmode,
	     gen_rtvec (4,
			gen_rtx_CALL (VOIDmode,
				      funexp, const0_rtx),
			gen_rtx_USE (VOIDmode, const0_rtx),
			gen_rtx_USE (VOIDmode,
				     gen_rtx_REG (SImode,
						  LR_REGNO)),
			gen_rtx_RETURN (VOIDmode))));
  SIBLING_CALL_P (insn) = 1;
  emit_barrier ();

  /* Run just enough of rest_of_compilation to get the insns emitted.
     There's not really enough bulk here to make other passes such as
     instruction scheduling worth while.  Note that use_thunk calls
     assemble_start_function and assemble_end_function.  */
  insn = get_insns ();
  insn_locators_alloc ();
  shorten_branches (insn);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();

  reload_completed = 0;
  epilogue_completed = 0;
}

/* A quick summary of the various types of 'constant-pool tables'
   under PowerPC:

   Target	Flags		Name		One table per
   AIX		(none)		AIX TOC		object file
   AIX		-mfull-toc	AIX TOC		object file
   AIX		-mminimal-toc	AIX minimal TOC	translation unit
   SVR4/EABI	(none)		SVR4 SDATA	object file
   SVR4/EABI	-fpic		SVR4 pic	object file
   SVR4/EABI	-fPIC		SVR4 PIC	translation unit
   SVR4/EABI	-mrelocatable	EABI TOC	function
   SVR4/EABI	-maix		AIX TOC		object file
   SVR4/EABI	-maix -mminimal-toc
				AIX minimal TOC	translation unit

   Name			Reg.	Set by	entries	      contains:
					made by	 addrs?	fp?	sum?

   AIX TOC		2	crt0	as	 Y	option	option
   AIX minimal TOC	30	prolog	gcc	 Y	Y	option
   SVR4 SDATA		13	crt0	gcc	 N	Y	N
   SVR4 pic		30	prolog	ld	 Y	not yet	N
   SVR4 PIC		30	prolog	gcc	 Y	option	option
   EABI TOC		30	prolog	gcc	 Y	option	option

*/

/* Hash functions for the hash table.  */

static unsigned
rs6000_hash_constant (rtx k)
{
  enum rtx_code code = GET_CODE (k);
  enum machine_mode mode = GET_MODE (k);
  unsigned result = (code << 3) ^ mode;
  const char *format;
  int flen, fidx;

  format = GET_RTX_FORMAT (code);
  flen = strlen (format);
  fidx = 0;

  switch (code)
    {
    case LABEL_REF:
      return result * 1231 + (unsigned) INSN_UID (XEXP (k, 0));

    case CONST_DOUBLE:
      if (mode != VOIDmode)
	return real_hash (CONST_DOUBLE_REAL_VALUE (k)) * result;
      flen = 2;
      break;

    case CODE_LABEL:
      fidx = 3;
      break;

    default:
      break;
    }

  for (; fidx < flen; fidx++)
    switch (format[fidx])
      {
      case 's':
	{
	  unsigned i, len;
	  const char *str = XSTR (k, fidx);
	  len = strlen (str);
	  result = result * 613 + len;
	  for (i = 0; i < len; i++)
	    result = result * 613 + (unsigned) str[i];
	  break;
	}
      case 'u':
      case 'e':
	result = result * 1231 + rs6000_hash_constant (XEXP (k, fidx));
	break;
      case 'i':
      case 'n':
	result = result * 613 + (unsigned) XINT (k, fidx);
	break;
      case 'w':
	if (sizeof (unsigned) >= sizeof (HOST_WIDE_INT))
	  result = result * 613 + (unsigned) XWINT (k, fidx);
	else
	  {
	    size_t i;
	    for (i = 0; i < sizeof (HOST_WIDE_INT) / sizeof (unsigned); i++)
	      result = result * 613 + (unsigned) (XWINT (k, fidx)
						  >> CHAR_BIT * i);
	  }
	break;
      case '0':
	break;
      default:
	gcc_unreachable ();
      }

  return result;
}

static unsigned
toc_hash_function (const void *hash_entry)
{
  const struct toc_hash_struct *thc =
    (const struct toc_hash_struct *) hash_entry;
  return rs6000_hash_constant (thc->key) ^ thc->key_mode;
}

/* Compare H1 and H2 for equivalence.  */

static int
toc_hash_eq (const void *h1, const void *h2)
{
  rtx r1 = ((const struct toc_hash_struct *) h1)->key;
  rtx r2 = ((const struct toc_hash_struct *) h2)->key;

  if (((const struct toc_hash_struct *) h1)->key_mode
      != ((const struct toc_hash_struct *) h2)->key_mode)
    return 0;

  return rtx_equal_p (r1, r2);
}

/* These are the names given by the C++ front-end to vtables, and
   vtable-like objects.  Ideally, this logic should not be here;
   instead, there should be some programmatic way of inquiring as
   to whether or not an object is a vtable.  */

#define VTABLE_NAME_P(NAME)				\
  (strncmp ("_vt.", name, strlen ("_vt.")) == 0		\
  || strncmp ("_ZTV", name, strlen ("_ZTV")) == 0	\
  || strncmp ("_ZTT", name, strlen ("_ZTT")) == 0	\
  || strncmp ("_ZTI", name, strlen ("_ZTI")) == 0	\
  || strncmp ("_ZTC", name, strlen ("_ZTC")) == 0)

#ifdef NO_DOLLAR_IN_LABEL
/* Return a GGC-allocated character string translating dollar signs in
   input NAME to underscores.  Used by XCOFF ASM_OUTPUT_LABELREF.  */

const char *
rs6000_xcoff_strip_dollar (const char *name)
{
  char *strip, *p;
  int len;

  p = strchr (name, '$');

  if (p == 0 || p == name)
    return name;

  len = strlen (name);
  strip = (char *) alloca (len + 1);
  strcpy (strip, name);
  p = strchr (strip, '$');
  while (p)
    {
      *p = '_';
      p = strchr (p + 1, '$');
    }

  return ggc_alloc_string (strip, len);
}
#endif

void
rs6000_output_symbol_ref (FILE *file, rtx x)
{
  /* Currently C++ toc references to vtables can be emitted before it
     is decided whether the vtable is public or private.  If this is
     the case, then the linker will eventually complain that there is
     a reference to an unknown section.  Thus, for vtables only,
     we emit the TOC reference to reference the symbol and not the
     section.  */
  const char *name = XSTR (x, 0);

  if (VTABLE_NAME_P (name))
    {
      RS6000_OUTPUT_BASENAME (file, name);
    }
  else
    assemble_name (file, name);
}

/* Output a TOC entry.  We derive the entry name from what is being
   written.  */

void
output_toc (FILE *file, rtx x, int labelno, enum machine_mode mode)
{
  char buf[256];
  const char *name = buf;
  rtx base = x;
  HOST_WIDE_INT offset = 0;

  gcc_assert (!TARGET_NO_TOC);

  /* When the linker won't eliminate them, don't output duplicate
     TOC entries (this happens on AIX if there is any kind of TOC,
     and on SVR4 under -fPIC or -mrelocatable).  Don't do this for
     CODE_LABELs.  */
  if (TARGET_TOC && GET_CODE (x) != LABEL_REF)
    {
      struct toc_hash_struct *h;
      void * * found;

      /* Create toc_hash_table.  This can't be done at OVERRIDE_OPTIONS
	 time because GGC is not initialized at that point.  */
      if (toc_hash_table == NULL)
	toc_hash_table = htab_create_ggc (1021, toc_hash_function,
					  toc_hash_eq, NULL);

      h = GGC_NEW (struct toc_hash_struct);
      h->key = x;
      h->key_mode = mode;
      h->labelno = labelno;

      found = htab_find_slot (toc_hash_table, h, INSERT);
      if (*found == NULL)
	*found = h;
      else  /* This is indeed a duplicate.
	       Set this label equal to that label.  */
	{
	  fputs ("\t.set ", file);
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
	  fprintf (file, "%d,", labelno);
	  ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
	  fprintf (file, "%d\n", ((*(const struct toc_hash_struct **)
					      found)->labelno));
	  return;
	}
    }

  /* If we're going to put a double constant in the TOC, make sure it's
     aligned properly when strict alignment is on.  */
  if (GET_CODE (x) == CONST_DOUBLE
      && STRICT_ALIGNMENT
      && GET_MODE_BITSIZE (mode) >= 64
      && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
    ASM_OUTPUT_ALIGN (file, 3);
  }

  (*targetm.asm_out.internal_label) (file, "LC", labelno);

  /* Handle FP constants specially.  Note that if we have a minimal
     TOC, things we put here aren't actually in the TOC, so we can allow
     FP constants.  */
  if (GET_CODE (x) == CONST_DOUBLE &&
      (GET_MODE (x) == TFmode || GET_MODE (x) == TDmode))
    {
      REAL_VALUE_TYPE rv;
      long k[4];

      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
      if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
	REAL_VALUE_TO_TARGET_DECIMAL128 (rv, k);
      else
	REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);

      if (TARGET_64BIT)
	{
	  if (TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff,
		     k[2] & 0xffffffff, k[3] & 0xffffffff);
	  fprintf (file, "0x%lx%08lx,0x%lx%08lx\n",
		   k[0] & 0xffffffff, k[1] & 0xffffffff,
		   k[2] & 0xffffffff, k[3] & 0xffffffff);
	  return;
	}
      else
	{
	  if (TARGET_MINIMAL_TOC)
	    fputs ("\t.long ", file);
	  else
	    fprintf (file, "\t.tc FT_%lx_%lx_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff,
		     k[2] & 0xffffffff, k[3] & 0xffffffff);
	  fprintf (file, "0x%lx,0x%lx,0x%lx,0x%lx\n",
		   k[0] & 0xffffffff, k[1] & 0xffffffff,
		   k[2] & 0xffffffff, k[3] & 0xffffffff);
	  return;
	}
    }
  else if (GET_CODE (x) == CONST_DOUBLE &&
	   (GET_MODE (x) == DFmode || GET_MODE (x) == DDmode))
    {
      REAL_VALUE_TYPE rv;
      long k[2];

      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);

      if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
	REAL_VALUE_TO_TARGET_DECIMAL64 (rv, k);
      else
	REAL_VALUE_TO_TARGET_DOUBLE (rv, k);

      if (TARGET_64BIT)
	{
	  if (TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc FD_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff);
	  fprintf (file, "0x%lx%08lx\n",
		   k[0] & 0xffffffff, k[1] & 0xffffffff);
	  return;
	}
      else
	{
	  if (TARGET_MINIMAL_TOC)
	    fputs ("\t.long ", file);
	  else
	    fprintf (file, "\t.tc FD_%lx_%lx[TC],",
		     k[0] & 0xffffffff, k[1] & 0xffffffff);
	  fprintf (file, "0x%lx,0x%lx\n",
		   k[0] & 0xffffffff, k[1] & 0xffffffff);
	  return;
	}
    }
  else if (GET_CODE (x) == CONST_DOUBLE &&
	   (GET_MODE (x) == SFmode || GET_MODE (x) == SDmode))
    {
      REAL_VALUE_TYPE rv;
      long l;

      REAL_VALUE_FROM_CONST_DOUBLE (rv, x);
      if (DECIMAL_FLOAT_MODE_P (GET_MODE (x)))
	REAL_VALUE_TO_TARGET_DECIMAL32 (rv, l);
      else
	REAL_VALUE_TO_TARGET_SINGLE (rv, l);

      if (TARGET_64BIT)
	{
	  if (TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
	  fprintf (file, "0x%lx00000000\n", l & 0xffffffff);
	  return;
	}
      else
	{
	  if (TARGET_MINIMAL_TOC)
	    fputs ("\t.long ", file);
	  else
	    fprintf (file, "\t.tc FS_%lx[TC],", l & 0xffffffff);
	  fprintf (file, "0x%lx\n", l & 0xffffffff);
	  return;
	}
    }
  else if (GET_MODE (x) == VOIDmode
	   && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
    {
      unsigned HOST_WIDE_INT low;
      HOST_WIDE_INT high;

      if (GET_CODE (x) == CONST_DOUBLE)
	{
	  low = CONST_DOUBLE_LOW (x);
	  high = CONST_DOUBLE_HIGH (x);
	}
      else
#if HOST_BITS_PER_WIDE_INT == 32
	{
	  low = INTVAL (x);
	  high = (low & 0x80000000) ? ~0 : 0;
	}
#else
	{
	  low = INTVAL (x) & 0xffffffff;
	  high = (HOST_WIDE_INT) INTVAL (x) >> 32;
	}
#endif

      /* TOC entries are always Pmode-sized, but since this
	 is a bigendian machine then if we're putting smaller
	 integer constants in the TOC we have to pad them.
	 (This is still a win over putting the constants in
	 a separate constant pool, because then we'd have
	 to have both a TOC entry _and_ the actual constant.)

	 For a 32-bit target, CONST_INT values are loaded and shifted
	 entirely within `low' and can be stored in one TOC entry.  */

      /* It would be easy to make this work, but it doesn't now.  */
      gcc_assert (!TARGET_64BIT || POINTER_SIZE >= GET_MODE_BITSIZE (mode));

      if (POINTER_SIZE > GET_MODE_BITSIZE (mode))
	{
#if HOST_BITS_PER_WIDE_INT == 32
	  lshift_double (low, high, POINTER_SIZE - GET_MODE_BITSIZE (mode),
			 POINTER_SIZE, &low, &high, 0);
#else
	  low |= high << 32;
	  low <<= POINTER_SIZE - GET_MODE_BITSIZE (mode);
	  high = (HOST_WIDE_INT) low >> 32;
	  low &= 0xffffffff;
#endif
	}

      if (TARGET_64BIT)
	{
	  if (TARGET_MINIMAL_TOC)
	    fputs (DOUBLE_INT_ASM_OP, file);
	  else
	    fprintf (file, "\t.tc ID_%lx_%lx[TC],",
		     (long) high & 0xffffffff, (long) low & 0xffffffff);
	  fprintf (file, "0x%lx%08lx\n",
		   (long) high & 0xffffffff, (long) low & 0xffffffff);
	  return;
	}
      else
	{
	  if (POINTER_SIZE < GET_MODE_BITSIZE (mode))
	    {
	      if (TARGET_MINIMAL_TOC)
		fputs ("\t.long ", file);
	      else
		fprintf (file, "\t.tc ID_%lx_%lx[TC],",
			 (long) high & 0xffffffff, (long) low & 0xffffffff);
	      fprintf (file, "0x%lx,0x%lx\n",
		       (long) high & 0xffffffff, (long) low & 0xffffffff);
	    }
	  else
	    {
	      if (TARGET_MINIMAL_TOC)
		fputs ("\t.long ", file);
	      else
		fprintf (file, "\t.tc IS_%lx[TC],", (long) low & 0xffffffff);
	      fprintf (file, "0x%lx\n", (long) low & 0xffffffff);
	    }
	  return;
	}
    }

  if (GET_CODE (x) == CONST)
    {
      gcc_assert (GET_CODE (XEXP (x, 0)) == PLUS
		  && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT);

      base = XEXP (XEXP (x, 0), 0);
      offset = INTVAL (XEXP (XEXP (x, 0), 1));
    }

  switch (GET_CODE (base))
    {
    case SYMBOL_REF:
      name = XSTR (base, 0);
      break;

    case LABEL_REF:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L",
				   CODE_LABEL_NUMBER (XEXP (base, 0)));
      break;

    case CODE_LABEL:
      ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
      break;

    default:
      gcc_unreachable ();
    }

  if (TARGET_MINIMAL_TOC)
    fputs (TARGET_32BIT ? "\t.long " : DOUBLE_INT_ASM_OP, file);
  else
    {
      fputs ("\t.tc ", file);
      RS6000_OUTPUT_BASENAME (file, name);

      if (offset < 0)
	fprintf (file, ".N" HOST_WIDE_INT_PRINT_UNSIGNED, - offset);
      else if (offset)
	fprintf (file, ".P" HOST_WIDE_INT_PRINT_UNSIGNED, offset);

      fputs ("[TC],", file);
    }

  /* Currently C++ toc references to vtables can be emitted before it
     is decided whether the vtable is public or private.  If this is
     the case, then the linker will eventually complain that there is
     a TOC reference to an unknown section.  Thus, for vtables only,
     we emit the TOC reference to reference the symbol and not the
     section.  */
  if (VTABLE_NAME_P (name))
    {
      RS6000_OUTPUT_BASENAME (file, name);
      if (offset < 0)
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, offset);
      else if (offset > 0)
	fprintf (file, "+" HOST_WIDE_INT_PRINT_DEC, offset);
    }
  else
    output_addr_const (file, x);
  putc ('\n', file);
}

/* Output an assembler pseudo-op to write an ASCII string of N characters
   starting at P to FILE.

   On the RS/6000, we have to do this using the .byte operation and
   write out special characters outside the quoted string.
   Also, the assembler is broken; very long strings are truncated,
   so we must artificially break them up early.  */

void
output_ascii (FILE *file, const char *p, int n)
{
  char c;
  int i, count_string;
  const char *for_string = "\t.byte \"";
  const char *for_decimal = "\t.byte ";
  const char *to_close = NULL;

  count_string = 0;
  for (i = 0; i < n; i++)
    {
      c = *p++;
      if (c >= ' ' && c < 0177)
	{
	  if (for_string)
	    fputs (for_string, file);
	  putc (c, file);

	  /* Write two quotes to get one.  */
	  if (c == '"')
	    {
	      putc (c, file);
	      ++count_string;
	    }

	  for_string = NULL;
	  for_decimal = "\"\n\t.byte ";
	  to_close = "\"\n";
	  ++count_string;

	  if (count_string >= 512)
	    {
	      fputs (to_close, file);

	      for_string = "\t.byte \"";
	      for_decimal = "\t.byte ";
	      to_close = NULL;
	      count_string = 0;
	    }
	}
      else
	{
	  if (for_decimal)
	    fputs (for_decimal, file);
	  fprintf (file, "%d", c);

	  for_string = "\n\t.byte \"";
	  for_decimal = ", ";
	  to_close = "\n";
	  count_string = 0;
	}
    }

  /* Now close the string if we have written one.  Then end the line.  */
  if (to_close)
    fputs (to_close, file);
}

/* Generate a unique section name for FILENAME for a section type
   represented by SECTION_DESC.  Output goes into BUF.

   SECTION_DESC can be any string, as long as it is different for each
   possible section type.

   We name the section in the same manner as xlc.  The name begins with an
   underscore followed by the filename (after stripping any leading directory
   names) with the last period replaced by the string SECTION_DESC.  If
   FILENAME does not contain a period, SECTION_DESC is appended to the end of
   the name.  */

void
rs6000_gen_section_name (char **buf, const char *filename,
			 const char *section_desc)
{
  const char *q, *after_last_slash, *last_period = 0;
  char *p;
  int len;

  after_last_slash = filename;
  for (q = filename; *q; q++)
    {
      if (*q == '/')
	after_last_slash = q + 1;
      else if (*q == '.')
	last_period = q;
    }

  len = strlen (after_last_slash) + strlen (section_desc) + 2;
  *buf = (char *) xmalloc (len);

  p = *buf;
  *p++ = '_';

  for (q = after_last_slash; *q; q++)
    {
      if (q == last_period)
	{
	  strcpy (p, section_desc);
	  p += strlen (section_desc);
	  break;
	}

      else if (ISALNUM (*q))
	*p++ = *q;
    }

  if (last_period == 0)
    strcpy (p, section_desc);
  else
    *p = '\0';
}

/* Emit profile function.  */

void
output_profile_hook (int labelno ATTRIBUTE_UNUSED)
{
  /* Non-standard profiling for kernels, which just saves LR then calls
     _mcount without worrying about arg saves.  The idea is to change
     the function prologue as little as possible as it isn't easy to
     account for arg save/restore code added just for _mcount.  */
  if (TARGET_PROFILE_KERNEL)
    return;

  if (DEFAULT_ABI == ABI_AIX)
    {
#ifndef NO_PROFILE_COUNTERS
# define NO_PROFILE_COUNTERS 0
#endif
      if (NO_PROFILE_COUNTERS)
	emit_library_call (init_one_libfunc (RS6000_MCOUNT),
			   LCT_NORMAL, VOIDmode, 0);
      else
	{
	  char buf[30];
	  const char *label_name;
	  rtx fun;

	  ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
	  label_name = (*targetm.strip_name_encoding) (ggc_strdup (buf));
	  fun = gen_rtx_SYMBOL_REF (Pmode, label_name);

	  emit_library_call (init_one_libfunc (RS6000_MCOUNT),
			     LCT_NORMAL, VOIDmode, 1, fun, Pmode);
	}
    }
  else if (DEFAULT_ABI == ABI_DARWIN)
    {
      const char *mcount_name = RS6000_MCOUNT;
      int caller_addr_regno = LR_REGNO;

      /* Be conservative and always set this, at least for now.  */
      crtl->uses_pic_offset_table = 1;

#if TARGET_MACHO
      /* For PIC code, set up a stub and collect the caller's address
	 from r0, which is where the prologue puts it.  */
      if (MACHOPIC_INDIRECT
	  && crtl->uses_pic_offset_table)
	caller_addr_regno = 0;
#endif
      emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mcount_name),
			 LCT_NORMAL, VOIDmode, 1,
			 gen_rtx_REG (Pmode, caller_addr_regno), Pmode);
    }
}

/* Write function profiler code.  */

void
output_function_profiler (FILE *file, int labelno)
{
  char buf[100];

  switch (DEFAULT_ABI)
    {
    default:
      gcc_unreachable ();

    case ABI_V4:
      if (!TARGET_32BIT)
	{
	  warning (0, "no profiling of 64-bit code for this ABI");
	  return;
	}
      ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
      fprintf (file, "\tmflr %s\n", reg_names[0]);
      if (NO_PROFILE_COUNTERS)
	{
	  asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	}
      else if (TARGET_SECURE_PLT && flag_pic)
	{
	  asm_fprintf (file, "\tbcl 20,31,1f\n1:\n\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
	  asm_fprintf (file, "\t{cau|addis} %s,%s,",
		       reg_names[12], reg_names[12]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "-1b@ha\n\t{cal|la} %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "-1b@l(%s)\n", reg_names[12]);
	}
      else if (flag_pic == 1)
	{
	  fputs ("\tbl _GLOBAL_OFFSET_TABLE_@local-4\n", file);
	  asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\tmflr %s\n", reg_names[12]);
	  asm_fprintf (file, "\t{l|lwz} %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "@got(%s)\n", reg_names[12]);
	}
      else if (flag_pic > 1)
	{
	  asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  /* Now, we need to get the address of the label.  */
	  fputs ("\tbcl 20,31,1f\n\t.long ", file);
	  assemble_name (file, buf);
	  fputs ("-.\n1:", file);
	  asm_fprintf (file, "\tmflr %s\n", reg_names[11]);
	  asm_fprintf (file, "\t{l|lwz} %s,0(%s)\n",
		       reg_names[0], reg_names[11]);
	  asm_fprintf (file, "\t{cax|add} %s,%s,%s\n",
		       reg_names[0], reg_names[0], reg_names[11]);
	}
      else
	{
	  asm_fprintf (file, "\t{liu|lis} %s,", reg_names[12]);
	  assemble_name (file, buf);
	  fputs ("@ha\n", file);
	  asm_fprintf (file, "\t{st|stw} %s,4(%s)\n",
		       reg_names[0], reg_names[1]);
	  asm_fprintf (file, "\t{cal|la} %s,", reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "@l(%s)\n", reg_names[12]);
	}

      /* ABI_V4 saves the static chain reg with ASM_OUTPUT_REG_PUSH.  */
      fprintf (file, "\tbl %s%s\n",
	       RS6000_MCOUNT, flag_pic ? "@plt" : "");
      break;

    case ABI_AIX:
    case ABI_DARWIN:
      if (!TARGET_PROFILE_KERNEL)
	{
	  /* Don't do anything, done in output_profile_hook ().  */
	}
      else
	{
	  gcc_assert (!TARGET_32BIT);

	  asm_fprintf (file, "\tmflr %s\n", reg_names[0]);
	  asm_fprintf (file, "\tstd %s,16(%s)\n", reg_names[0], reg_names[1]);

	  if (cfun->static_chain_decl != NULL)
	    {
	      asm_fprintf (file, "\tstd %s,24(%s)\n",
			   reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
	      fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
	      asm_fprintf (file, "\tld %s,24(%s)\n",
			   reg_names[STATIC_CHAIN_REGNUM], reg_names[1]);
	    }
	  else
	    fprintf (file, "\tbl %s\n", RS6000_MCOUNT);
	}
      break;
    }
}



/* The following variable value is the last issued insn.  */

static rtx last_scheduled_insn;

/* The following variable helps to balance issuing of load and
   store instructions */

static int load_store_pendulum;

/* Power4 load update and store update instructions are cracked into a
   load or store and an integer insn which are executed in the same cycle.
   Branches have their own dispatch slot which does not count against the
   GCC issue rate, but it changes the program flow so there are no other
   instructions to issue in this cycle.  */

static int
rs6000_variable_issue_1 (rtx insn, int more)
{
  last_scheduled_insn = insn;
  if (GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    {
      cached_can_issue_more = more;
      return cached_can_issue_more;
    }

  if (insn_terminates_group_p (insn, current_group))
    {
      cached_can_issue_more = 0;
      return cached_can_issue_more;
    }

  /* If no reservation, but reach here */
  if (recog_memoized (insn) < 0)
    return more;

  if (rs6000_sched_groups)
    {
      if (is_microcoded_insn (insn))
        cached_can_issue_more = 0;
      else if (is_cracked_insn (insn))
        cached_can_issue_more = more > 2 ? more - 2 : 0;
      else
        cached_can_issue_more = more - 1;

      return cached_can_issue_more;
    }

  if (rs6000_cpu_attr == CPU_CELL && is_nonpipeline_insn (insn))
    return 0;

  cached_can_issue_more = more - 1;
  return cached_can_issue_more;
}

static int
rs6000_variable_issue (FILE *stream, int verbose, rtx insn, int more)
{
  int r = rs6000_variable_issue_1 (insn, more);
  if (verbose)
    fprintf (stream, "// rs6000_variable_issue (more = %d) = %d\n", more, r);
  return r;
}

/* Adjust the cost of a scheduling dependency.  Return the new cost of
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.  */

static int
rs6000_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
  enum attr_type attr_type;

  if (! recog_memoized (insn))
    return 0;

  switch (REG_NOTE_KIND (link))
    {
    case REG_DEP_TRUE:
      {
        /* Data dependency; DEP_INSN writes a register that INSN reads
	   some cycles later.  */

	/* Separate a load from a narrower, dependent store.  */
	if (rs6000_sched_groups
	    && GET_CODE (PATTERN (insn)) == SET
	    && GET_CODE (PATTERN (dep_insn)) == SET
	    && GET_CODE (XEXP (PATTERN (insn), 1)) == MEM
	    && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == MEM
	    && (GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (insn), 1)))
		> GET_MODE_SIZE (GET_MODE (XEXP (PATTERN (dep_insn), 0)))))
	  return cost + 14;

        attr_type = get_attr_type (insn);

        switch (attr_type)
          {
          case TYPE_JMPREG:
            /* Tell the first scheduling pass about the latency between
               a mtctr and bctr (and mtlr and br/blr).  The first
               scheduling pass will not know about this latency since
               the mtctr instruction, which has the latency associated
               to it, will be generated by reload.  */
            return TARGET_POWER ? 5 : 4;
          case TYPE_BRANCH:
            /* Leave some extra cycles between a compare and its
               dependent branch, to inhibit expensive mispredicts.  */
            if ((rs6000_cpu_attr == CPU_PPC603
                 || rs6000_cpu_attr == CPU_PPC604
                 || rs6000_cpu_attr == CPU_PPC604E
                 || rs6000_cpu_attr == CPU_PPC620
                 || rs6000_cpu_attr == CPU_PPC630
                 || rs6000_cpu_attr == CPU_PPC750
                 || rs6000_cpu_attr == CPU_PPC7400
                 || rs6000_cpu_attr == CPU_PPC7450
                 || rs6000_cpu_attr == CPU_POWER4
                 || rs6000_cpu_attr == CPU_POWER5
		 || rs6000_cpu_attr == CPU_POWER7
                 || rs6000_cpu_attr == CPU_CELL)
                && recog_memoized (dep_insn)
                && (INSN_CODE (dep_insn) >= 0))

              switch (get_attr_type (dep_insn))
                {
                case TYPE_CMP:
                case TYPE_COMPARE:
                case TYPE_DELAYED_COMPARE:
                case TYPE_IMUL_COMPARE:
                case TYPE_LMUL_COMPARE:
                case TYPE_FPCOMPARE:
                case TYPE_CR_LOGICAL:
                case TYPE_DELAYED_CR:
		  return cost + 2;
		default:
		  break;
		}
            break;

          case TYPE_STORE:
          case TYPE_STORE_U:
          case TYPE_STORE_UX:
          case TYPE_FPSTORE:
          case TYPE_FPSTORE_U:
          case TYPE_FPSTORE_UX:
            if ((rs6000_cpu == PROCESSOR_POWER6)
                && recog_memoized (dep_insn)
                && (INSN_CODE (dep_insn) >= 0))
              {

                if (GET_CODE (PATTERN (insn)) != SET)
                  /* If this happens, we have to extend this to schedule
                     optimally.  Return default for now.  */
                  return cost;

                /* Adjust the cost for the case where the value written
                   by a fixed point operation is used as the address
                   gen value on a store. */
                switch (get_attr_type (dep_insn))
                  {
                  case TYPE_LOAD:
                  case TYPE_LOAD_U:
                  case TYPE_LOAD_UX:
                  case TYPE_CNTLZ:
                    {
                      if (! store_data_bypass_p (dep_insn, insn))
                        return 4;
                      break;
                    }
                  case TYPE_LOAD_EXT:
                  case TYPE_LOAD_EXT_U:
                  case TYPE_LOAD_EXT_UX:
                  case TYPE_VAR_SHIFT_ROTATE:
                  case TYPE_VAR_DELAYED_COMPARE:
                    {
                      if (! store_data_bypass_p (dep_insn, insn))
                        return 6;
                      break;
		    }
                  case TYPE_INTEGER:
                  case TYPE_COMPARE:
                  case TYPE_FAST_COMPARE:
                  case TYPE_EXTS:
                  case TYPE_SHIFT:
                  case TYPE_INSERT_WORD:
                  case TYPE_INSERT_DWORD:
                  case TYPE_FPLOAD_U:
                  case TYPE_FPLOAD_UX:
                  case TYPE_STORE_U:
                  case TYPE_STORE_UX:
                  case TYPE_FPSTORE_U:
                  case TYPE_FPSTORE_UX:
                    {
                      if (! store_data_bypass_p (dep_insn, insn))
                        return 3;
                      break;
                    }
                  case TYPE_IMUL:
                  case TYPE_IMUL2:
                  case TYPE_IMUL3:
                  case TYPE_LMUL:
                  case TYPE_IMUL_COMPARE:
                  case TYPE_LMUL_COMPARE:
                    {
                      if (! store_data_bypass_p (dep_insn, insn))
                        return 17;
                      break;
                    }
                  case TYPE_IDIV:
                    {
                      if (! store_data_bypass_p (dep_insn, insn))
                        return 45;
                      break;
                    }
                  case TYPE_LDIV:
                    {
                      if (! store_data_bypass_p (dep_insn, insn))
                        return 57;
                      break;
                    }
                  default:
                    break;
                  }
              }
	    break;

          case TYPE_LOAD:
          case TYPE_LOAD_U:
          case TYPE_LOAD_UX:
          case TYPE_LOAD_EXT:
          case TYPE_LOAD_EXT_U:
          case TYPE_LOAD_EXT_UX:
            if ((rs6000_cpu == PROCESSOR_POWER6)
                && recog_memoized (dep_insn)
                && (INSN_CODE (dep_insn) >= 0))
              {

                /* Adjust the cost for the case where the value written
                   by a fixed point instruction is used within the address
                   gen portion of a subsequent load(u)(x) */
                switch (get_attr_type (dep_insn))
                  {
                  case TYPE_LOAD:
                  case TYPE_LOAD_U:
                  case TYPE_LOAD_UX:
                  case TYPE_CNTLZ:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 4;
                      break;
                    }
                  case TYPE_LOAD_EXT:
                  case TYPE_LOAD_EXT_U:
                  case TYPE_LOAD_EXT_UX:
                  case TYPE_VAR_SHIFT_ROTATE:
                  case TYPE_VAR_DELAYED_COMPARE:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 6;
                      break;
                    }
                  case TYPE_INTEGER:
                  case TYPE_COMPARE:
                  case TYPE_FAST_COMPARE:
                  case TYPE_EXTS:
                  case TYPE_SHIFT:
                  case TYPE_INSERT_WORD:
                  case TYPE_INSERT_DWORD:
                  case TYPE_FPLOAD_U:
                  case TYPE_FPLOAD_UX:
                  case TYPE_STORE_U:
                  case TYPE_STORE_UX:
                  case TYPE_FPSTORE_U:
                  case TYPE_FPSTORE_UX:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 3;
                      break;
                    }
                  case TYPE_IMUL:
                  case TYPE_IMUL2:
                  case TYPE_IMUL3:
                  case TYPE_LMUL:
                  case TYPE_IMUL_COMPARE:
                  case TYPE_LMUL_COMPARE:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 17;
                      break;
                    }
                  case TYPE_IDIV:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 45;
                      break;
                    }
                  case TYPE_LDIV:
                    {
                      if (set_to_load_agen (dep_insn, insn))
                        return 57;
                      break;
                    }
                  default:
                    break;
                  }
              }
            break;

          case TYPE_FPLOAD:
            if ((rs6000_cpu == PROCESSOR_POWER6)
                && recog_memoized (dep_insn)
                && (INSN_CODE (dep_insn) >= 0)
                && (get_attr_type (dep_insn) == TYPE_MFFGPR))
              return 2;

          default:
            break;
          }

	/* Fall out to return default cost.  */
      }
      break;

    case REG_DEP_OUTPUT:
      /* Output dependency; DEP_INSN writes a register that INSN writes some
	 cycles later.  */
      if ((rs6000_cpu == PROCESSOR_POWER6)
          && recog_memoized (dep_insn)
          && (INSN_CODE (dep_insn) >= 0))
        {
          attr_type = get_attr_type (insn);

          switch (attr_type)
            {
            case TYPE_FP:
              if (get_attr_type (dep_insn) == TYPE_FP)
                return 1;
              break;
            case TYPE_FPLOAD:
              if (get_attr_type (dep_insn) == TYPE_MFFGPR)
                return 2;
              break;
            default:
              break;
            }
        }
    case REG_DEP_ANTI:
      /* Anti dependency; DEP_INSN reads a register that INSN writes some
	 cycles later.  */
      return 0;

    default:
      gcc_unreachable ();
    }

  return cost;
}

/* Debug version of rs6000_adjust_cost.  */

static int
rs6000_debug_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
  int ret = rs6000_adjust_cost (insn, link, dep_insn, cost);

  if (ret != cost)
    {
      const char *dep;

      switch (REG_NOTE_KIND (link))
	{
	default:	     dep = "unknown depencency"; break;
	case REG_DEP_TRUE:   dep = "data dependency";	 break;
	case REG_DEP_OUTPUT: dep = "output dependency";  break;
	case REG_DEP_ANTI:   dep = "anti depencency";	 break;
	}

      fprintf (stderr,
	       "\nrs6000_adjust_cost, final cost = %d, orig cost = %d, "
	       "%s, insn:\n", ret, cost, dep);

      debug_rtx (insn);
    }

  return ret;
}

/* The function returns a true if INSN is microcoded.
   Return false otherwise.  */

static bool
is_microcoded_insn (rtx insn)
{
  if (!insn || !NONDEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  if (rs6000_cpu_attr == CPU_CELL)
    return get_attr_cell_micro (insn) == CELL_MICRO_ALWAYS;

  if (rs6000_sched_groups)
    {
      enum attr_type type = get_attr_type (insn);
      if (type == TYPE_LOAD_EXT_U
	  || type == TYPE_LOAD_EXT_UX
	  || type == TYPE_LOAD_UX
	  || type == TYPE_STORE_UX
	  || type == TYPE_MFCR)
	return true;
    }

  return false;
}

/* The function returns true if INSN is cracked into 2 instructions
   by the processor (and therefore occupies 2 issue slots).  */

static bool
is_cracked_insn (rtx insn)
{
  if (!insn || !NONDEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  if (rs6000_sched_groups)
    {
      enum attr_type type = get_attr_type (insn);
      if (type == TYPE_LOAD_U || type == TYPE_STORE_U
	  || type == TYPE_FPLOAD_U || type == TYPE_FPSTORE_U
	  || type == TYPE_FPLOAD_UX || type == TYPE_FPSTORE_UX
	  || type == TYPE_LOAD_EXT || type == TYPE_DELAYED_CR
	  || type == TYPE_COMPARE || type == TYPE_DELAYED_COMPARE
	  || type == TYPE_IMUL_COMPARE || type == TYPE_LMUL_COMPARE
	  || type == TYPE_IDIV || type == TYPE_LDIV
	  || type == TYPE_INSERT_WORD)
	return true;
    }

  return false;
}

/* The function returns true if INSN can be issued only from
   the branch slot.  */

static bool
is_branch_slot_insn (rtx insn)
{
  if (!insn || !NONDEBUG_INSN_P (insn)
      || GET_CODE (PATTERN (insn)) == USE
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return false;

  if (rs6000_sched_groups)
    {
      enum attr_type type = get_attr_type (insn);
      if (type == TYPE_BRANCH || type == TYPE_JMPREG)
	return true;
      return false;
    }

  return false;
}

/* The function returns true if out_inst sets a value that is
   used in the address generation computation of in_insn */
static bool
set_to_load_agen (rtx out_insn, rtx in_insn)
{
  rtx out_set, in_set;

  /* For performance reasons, only handle the simple case where
     both loads are a single_set. */
  out_set = single_set (out_insn);
  if (out_set)
    {
      in_set = single_set (in_insn);
      if (in_set)
        return reg_mentioned_p (SET_DEST (out_set), SET_SRC (in_set));
    }

  return false;
}

/* The function returns true if the target storage location of
   out_insn is adjacent to the target storage location of in_insn */
/* Return 1 if memory locations are adjacent.  */

static bool
adjacent_mem_locations (rtx insn1, rtx insn2)
{

  rtx a = get_store_dest (PATTERN (insn1));
  rtx b = get_store_dest (PATTERN (insn2));

  if ((GET_CODE (XEXP (a, 0)) == REG
       || (GET_CODE (XEXP (a, 0)) == PLUS
	   && GET_CODE (XEXP (XEXP (a, 0), 1)) == CONST_INT))
      && (GET_CODE (XEXP (b, 0)) == REG
	  || (GET_CODE (XEXP (b, 0)) == PLUS
	      && GET_CODE (XEXP (XEXP (b, 0), 1)) == CONST_INT)))
    {
      HOST_WIDE_INT val0 = 0, val1 = 0, val_diff;
      rtx reg0, reg1;

      if (GET_CODE (XEXP (a, 0)) == PLUS)
        {
	  reg0 = XEXP (XEXP (a, 0), 0);
	  val0 = INTVAL (XEXP (XEXP (a, 0), 1));
        }
      else
	reg0 = XEXP (a, 0);

      if (GET_CODE (XEXP (b, 0)) == PLUS)
        {
	  reg1 = XEXP (XEXP (b, 0), 0);
	  val1 = INTVAL (XEXP (XEXP (b, 0), 1));
        }
      else
	reg1 = XEXP (b, 0);

      val_diff = val1 - val0;

      return ((REGNO (reg0) == REGNO (reg1))
	      && ((MEM_SIZE (a) && val_diff == INTVAL (MEM_SIZE (a)))
		  || (MEM_SIZE (b) && val_diff == -INTVAL (MEM_SIZE (b)))));
    }

  return false;
}

/* A C statement (sans semicolon) to update the integer scheduling
   priority INSN_PRIORITY (INSN). Increase the priority to execute the
   INSN earlier, reduce the priority to execute INSN later.  Do not
   define this macro if you do not need to adjust the scheduling
   priorities of insns.  */

static int
rs6000_adjust_priority (rtx insn ATTRIBUTE_UNUSED, int priority)
{
  /* On machines (like the 750) which have asymmetric integer units,
     where one integer unit can do multiply and divides and the other
     can't, reduce the priority of multiply/divide so it is scheduled
     before other integer operations.  */

#if 0
  if (! INSN_P (insn))
    return priority;