#include "sim-main.h" #include "v850_sim.h" #include "simops.h" #include #ifdef HAVE_UTIME_H #include #endif #ifdef HAVE_TIME_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_STRING_H #include #else #ifdef HAVE_STRINGS_H #include #endif #endif #include "targ-vals.h" #include "libiberty.h" #include #if !defined(__GO32__) && !defined(_WIN32) #include #include #include #endif /* This is an array of the bit positions of registers r20 .. r31 in that order in a prepare/dispose instruction. */ int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 }; /* This is an array of the bit positions of registers r16 .. r31 in that order in a push/pop instruction. */ int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21}; /* This is an array of the bit positions of registers r1 .. r15 in that order in a push/pop instruction. */ int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21}; #ifdef DEBUG #ifndef SIZE_INSTRUCTION #define SIZE_INSTRUCTION 18 #endif #ifndef SIZE_VALUES #define SIZE_VALUES 11 #endif unsigned32 trace_values[3]; int trace_num_values; unsigned32 trace_pc; const char * trace_name; int trace_module; void trace_input (char *name, enum op_types type, int size) { if (!TRACE_ALU_P (STATE_CPU (simulator, 0))) return; trace_pc = PC; trace_name = name; trace_module = TRACE_ALU_IDX; switch (type) { default: case OP_UNKNOWN: case OP_NONE: case OP_TRAP: trace_num_values = 0; break; case OP_REG: case OP_REG_REG_MOVE: trace_values[0] = State.regs[OP[0]]; trace_num_values = 1; break; case OP_BIT_CHANGE: case OP_REG_REG: case OP_REG_REG_CMP: trace_values[0] = State.regs[OP[1]]; trace_values[1] = State.regs[OP[0]]; trace_num_values = 2; break; case OP_IMM_REG: case OP_IMM_REG_CMP: trace_values[0] = SEXT5 (OP[0]); trace_values[1] = OP[1]; trace_num_values = 2; break; case OP_IMM_REG_MOVE: trace_values[0] = SEXT5 (OP[0]); trace_num_values = 1; break; case OP_COND_BR: trace_values[0] = State.pc; trace_values[1] = SEXT9 (OP[0]); trace_values[2] = PSW; trace_num_values = 3; break; case OP_LOAD16: trace_values[0] = OP[1] * size; trace_values[1] = State.regs[30]; trace_num_values = 2; break; case OP_STORE16: trace_values[0] = State.regs[OP[0]]; trace_values[1] = OP[1] * size; trace_values[2] = State.regs[30]; trace_num_values = 3; break; case OP_LOAD32: trace_values[0] = EXTEND16 (OP[2]); trace_values[1] = State.regs[OP[0]]; trace_num_values = 2; break; case OP_STORE32: trace_values[0] = State.regs[OP[1]]; trace_values[1] = EXTEND16 (OP[2]); trace_values[2] = State.regs[OP[0]]; trace_num_values = 3; break; case OP_JUMP: trace_values[0] = SEXT22 (OP[0]); trace_values[1] = State.pc; trace_num_values = 2; break; case OP_IMM_REG_REG: trace_values[0] = EXTEND16 (OP[0]) << size; trace_values[1] = State.regs[OP[1]]; trace_num_values = 2; break; case OP_IMM16_REG_REG: trace_values[0] = EXTEND16 (OP[2]) << size; trace_values[1] = State.regs[OP[1]]; trace_num_values = 2; break; case OP_UIMM_REG_REG: trace_values[0] = (OP[0] & 0xffff) << size; trace_values[1] = State.regs[OP[1]]; trace_num_values = 2; break; case OP_UIMM16_REG_REG: trace_values[0] = (OP[2]) << size; trace_values[1] = State.regs[OP[1]]; trace_num_values = 2; break; case OP_BIT: trace_num_values = 0; break; case OP_EX1: trace_values[0] = PSW; trace_num_values = 1; break; case OP_EX2: trace_num_values = 0; break; case OP_LDSR: trace_values[0] = State.regs[OP[0]]; trace_num_values = 1; break; case OP_STSR: trace_values[0] = State.sregs[OP[1]]; trace_num_values = 1; } } void trace_result (int has_result, unsigned32 result) { char buf[1000]; char *chp; buf[0] = '\0'; chp = buf; /* write out the values saved during the trace_input call */ { int i; for (i = 0; i < trace_num_values; i++) { sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "", (long) trace_values[i]); chp = strchr (chp, '\0'); } while (i++ < 3) { sprintf (chp, "%*s", SIZE_VALUES, ""); chp = strchr (chp, '\0'); } } /* append any result to the end of the buffer */ if (has_result) sprintf (chp, " :: 0x%.8lx", (unsigned long) result); trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, "%s", buf); } void trace_output (enum op_types result) { if (!TRACE_ALU_P (STATE_CPU (simulator, 0))) return; switch (result) { default: case OP_UNKNOWN: case OP_NONE: case OP_TRAP: case OP_REG: case OP_REG_REG_CMP: case OP_IMM_REG_CMP: case OP_COND_BR: case OP_STORE16: case OP_STORE32: case OP_BIT: case OP_EX2: trace_result (0, 0); break; case OP_LOAD16: case OP_STSR: trace_result (1, State.regs[OP[0]]); break; case OP_REG_REG: case OP_REG_REG_MOVE: case OP_IMM_REG: case OP_IMM_REG_MOVE: case OP_LOAD32: case OP_EX1: trace_result (1, State.regs[OP[1]]); break; case OP_IMM_REG_REG: case OP_UIMM_REG_REG: case OP_IMM16_REG_REG: case OP_UIMM16_REG_REG: trace_result (1, State.regs[OP[1]]); break; case OP_JUMP: if (OP[1] != 0) trace_result (1, State.regs[OP[1]]); else trace_result (0, 0); break; case OP_LDSR: trace_result (1, State.sregs[OP[1]]); break; } } #endif /* Returns 1 if the specific condition is met, returns 0 otherwise. */ int condition_met (unsigned code) { unsigned int psw = PSW; switch (code & 0xf) { case 0x0: return ((psw & PSW_OV) != 0); case 0x1: return ((psw & PSW_CY) != 0); case 0x2: return ((psw & PSW_Z) != 0); case 0x3: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0); case 0x4: return ((psw & PSW_S) != 0); /*case 0x5: return 1;*/ case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0); case 0x7: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0); case 0x8: return ((psw & PSW_OV) == 0); case 0x9: return ((psw & PSW_CY) == 0); case 0xa: return ((psw & PSW_Z) == 0); case 0xb: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0); case 0xc: return ((psw & PSW_S) == 0); case 0xd: return ((psw & PSW_SAT) != 0); case 0xe: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0); case 0xf: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0); } return 1; } unsigned long Add32 (unsigned long a1, unsigned long a2, int * carry) { unsigned long result = (a1 + a2); * carry = (result < a1); return result; } static void Multiply64 (int sign, unsigned long op0) { unsigned long op1; unsigned long lo; unsigned long mid1; unsigned long mid2; unsigned long hi; unsigned long RdLo; unsigned long RdHi; int carry; op1 = State.regs[ OP[1] ]; if (sign) { /* Compute sign of result and adjust operands if necessary. */ sign = (op0 ^ op1) & 0x80000000; if (((signed long) op0) < 0) op0 = - op0; if (((signed long) op1) < 0) op1 = - op1; } /* We can split the 32x32 into four 16x16 operations. This ensures that we do not lose precision on 32bit only hosts: */ lo = ( (op0 & 0xFFFF) * (op1 & 0xFFFF)); mid1 = ( (op0 & 0xFFFF) * ((op1 >> 16) & 0xFFFF)); mid2 = (((op0 >> 16) & 0xFFFF) * (op1 & 0xFFFF)); hi = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF)); /* We now need to add all of these results together, taking care to propogate the carries from the additions: */ RdLo = Add32 (lo, (mid1 << 16), & carry); RdHi = carry; RdLo = Add32 (RdLo, (mid2 << 16), & carry); RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi); if (sign) { /* Negate result if necessary. */ RdLo = ~ RdLo; RdHi = ~ RdHi; if (RdLo == 0xFFFFFFFF) { RdLo = 0; RdHi += 1; } else RdLo += 1; } /* Don't store into register 0. */ if (OP[1]) State.regs[ OP[1] ] = RdLo; if (OP[2] >> 11) State.regs[ OP[2] >> 11 ] = RdHi; return; } /* Read a null terminated string from memory, return in a buffer. */ static char * fetch_str (SIM_DESC sd, address_word addr) { char *buf; int nr = 0; while (sim_core_read_1 (STATE_CPU (sd, 0), PC, read_map, addr + nr) != 0) nr++; buf = NZALLOC (char, nr + 1); sim_read (simulator, addr, (unsigned char *) buf, nr); return buf; } /* Read a null terminated argument vector from memory, return in a buffer. */ static char ** fetch_argv (SIM_DESC sd, address_word addr) { int max_nr = 64; int nr = 0; char **buf = xmalloc (max_nr * sizeof (char*)); while (1) { unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0), PC, read_map, addr + nr * 4); if (a == 0) break; buf[nr] = fetch_str (sd, a); nr ++; if (nr == max_nr - 1) { max_nr += 50; buf = xrealloc (buf, max_nr * sizeof (char*)); } } buf[nr] = 0; return buf; } /* sst.b */ int OP_380 (void) { trace_input ("sst.b", OP_STORE16, 1); store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]); trace_output (OP_STORE16); return 2; } /* sst.h */ int OP_480 (void) { trace_input ("sst.h", OP_STORE16, 2); store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]); trace_output (OP_STORE16); return 2; } /* sst.w */ int OP_501 (void) { trace_input ("sst.w", OP_STORE16, 4); store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]); trace_output (OP_STORE16); return 2; } /* ld.b */ int OP_700 (void) { int adr; trace_input ("ld.b", OP_LOAD32, 1); adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1)); trace_output (OP_LOAD32); return 4; } /* ld.h */ int OP_720 (void) { int adr; trace_input ("ld.h", OP_LOAD32, 2); adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); adr &= ~0x1; State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2)); trace_output (OP_LOAD32); return 4; } /* ld.w */ int OP_10720 (void) { int adr; trace_input ("ld.w", OP_LOAD32, 4); adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); adr &= ~0x3; State.regs[ OP[1] ] = load_mem (adr, 4); trace_output (OP_LOAD32); return 4; } /* st.b */ int OP_740 (void) { trace_input ("st.b", OP_STORE32, 1); store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]); trace_output (OP_STORE32); return 4; } /* st.h */ int OP_760 (void) { int adr; trace_input ("st.h", OP_STORE32, 2); adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); adr &= ~1; store_mem (adr, 2, State.regs[ OP[1] ]); trace_output (OP_STORE32); return 4; } /* st.w */ int OP_10760 (void) { int adr; trace_input ("st.w", OP_STORE32, 4); adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); adr &= ~3; store_mem (adr, 4, State.regs[ OP[1] ]); trace_output (OP_STORE32); return 4; } /* add reg, reg */ int OP_1C0 (void) { unsigned int op0, op1, result, z, s, cy, ov; trace_input ("add", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 + op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (result < op0 || result < op1); ov = ((op0 & 0x80000000) == (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); trace_output (OP_REG_REG); return 2; } /* add sign_extend(imm5), reg */ int OP_240 (void) { unsigned int op0, op1, result, z, s, cy, ov; int temp; trace_input ("add", OP_IMM_REG, 0); /* Compute the result. */ temp = SEXT5 (OP[0]); op0 = temp; op1 = State.regs[OP[1]]; result = op0 + op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (result < op0 || result < op1); ov = ((op0 & 0x80000000) == (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); trace_output (OP_IMM_REG); return 2; } /* addi sign_extend(imm16), reg, reg */ int OP_600 (void) { unsigned int op0, op1, result, z, s, cy, ov; trace_input ("addi", OP_IMM16_REG_REG, 0); /* Compute the result. */ op0 = EXTEND16 (OP[2]); op1 = State.regs[ OP[0] ]; result = op0 + op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (result < op0 || result < op1); ov = ((op0 & 0x80000000) == (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); trace_output (OP_IMM16_REG_REG); return 4; } /* sub reg1, reg2 */ int OP_1A0 (void) { unsigned int op0, op1, result, z, s, cy, ov; trace_input ("sub", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op1 - op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 < op0); ov = ((op1 & 0x80000000) != (op0 & 0x80000000) && (op1 & 0x80000000) != (result & 0x80000000)); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); trace_output (OP_REG_REG); return 2; } /* subr reg1, reg2 */ int OP_180 (void) { unsigned int op0, op1, result, z, s, cy, ov; trace_input ("subr", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 - op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op0 < op1); ov = ((op0 & 0x80000000) != (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); trace_output (OP_REG_REG); return 2; } /* sxh reg1 */ int OP_E0 (void) { trace_input ("mulh", OP_REG_REG, 0); State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ])); trace_output (OP_REG_REG); return 2; } /* mulh sign_extend(imm5), reg2 */ int OP_2E0 (void) { trace_input ("mulh", OP_IMM_REG, 0); State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]); trace_output (OP_IMM_REG); return 2; } /* mulhi imm16, reg1, reg2 */ int OP_6E0 (void) { trace_input ("mulhi", OP_IMM16_REG_REG, 0); State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]); trace_output (OP_IMM16_REG_REG); return 4; } /* cmp reg, reg */ int OP_1E0 (void) { unsigned int op0, op1, result, z, s, cy, ov; trace_input ("cmp", OP_REG_REG_CMP, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op1 - op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 < op0); ov = ((op1 & 0x80000000) != (op0 & 0x80000000) && (op1 & 0x80000000) != (result & 0x80000000)); /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); trace_output (OP_REG_REG_CMP); return 2; } /* cmp sign_extend(imm5), reg */ int OP_260 (void) { unsigned int op0, op1, result, z, s, cy, ov; int temp; /* Compute the result. */ trace_input ("cmp", OP_IMM_REG_CMP, 0); temp = SEXT5 (OP[0]); op0 = temp; op1 = State.regs[OP[1]]; result = op1 - op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 < op0); ov = ((op1 & 0x80000000) != (op0 & 0x80000000) && (op1 & 0x80000000) != (result & 0x80000000)); /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); trace_output (OP_IMM_REG_CMP); return 2; } /* setf cccc,reg2 */ int OP_7E0 (void) { trace_input ("setf", OP_EX1, 0); State.regs[ OP[1] ] = condition_met (OP[0]); trace_output (OP_EX1); return 4; } /* satadd reg,reg */ int OP_C0 (void) { unsigned int op0, op1, result, z, s, cy, ov, sat; trace_input ("satadd", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 + op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (result < op0 || result < op1); ov = ((op0 & 0x80000000) == (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); sat = ov; /* Handle saturated results. */ if (sat && s) { /* An overflow that results in a negative result implies that we became too positive. */ result = 0x7fffffff; s = 0; } else if (sat) { /* Any other overflow must have thus been too negative. */ result = 0x80000000; s = 1; z = 0; } /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | (sat ? PSW_SAT : 0)); trace_output (OP_REG_REG); return 2; } /* satadd sign_extend(imm5), reg */ int OP_220 (void) { unsigned int op0, op1, result, z, s, cy, ov, sat; int temp; trace_input ("satadd", OP_IMM_REG, 0); /* Compute the result. */ temp = SEXT5 (OP[0]); op0 = temp; op1 = State.regs[OP[1]]; result = op0 + op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (result < op0 || result < op1); ov = ((op0 & 0x80000000) == (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); sat = ov; /* Handle saturated results. */ if (sat && s) { /* An overflow that results in a negative result implies that we became too positive. */ result = 0x7fffffff; s = 0; } else if (sat) { /* Any other overflow must have thus been too negative. */ result = 0x80000000; s = 1; z = 0; } /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | (sat ? PSW_SAT : 0)); trace_output (OP_IMM_REG); return 2; } /* satsub reg1, reg2 */ int OP_A0 (void) { unsigned int op0, op1, result, z, s, cy, ov, sat; trace_input ("satsub", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op1 - op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 < op0); ov = ((op1 & 0x80000000) != (op0 & 0x80000000) && (op1 & 0x80000000) != (result & 0x80000000)); sat = ov; /* Handle saturated results. */ if (sat && s) { /* An overflow that results in a negative result implies that we became too positive. */ result = 0x7fffffff; s = 0; } else if (sat) { /* Any other overflow must have thus been too negative. */ result = 0x80000000; s = 1; z = 0; } /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | (sat ? PSW_SAT : 0)); trace_output (OP_REG_REG); return 2; } /* satsubi sign_extend(imm16), reg */ int OP_660 (void) { unsigned int op0, op1, result, z, s, cy, ov, sat; int temp; trace_input ("satsubi", OP_IMM_REG, 0); /* Compute the result. */ temp = EXTEND16 (OP[2]); op0 = temp; op1 = State.regs[ OP[0] ]; result = op1 - op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 < op0); ov = ((op1 & 0x80000000) != (op0 & 0x80000000) && (op1 & 0x80000000) != (result & 0x80000000)); sat = ov; /* Handle saturated results. */ if (sat && s) { /* An overflow that results in a negative result implies that we became too positive. */ result = 0x7fffffff; s = 0; } else if (sat) { /* Any other overflow must have thus been too negative. */ result = 0x80000000; s = 1; z = 0; } /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | (sat ? PSW_SAT : 0)); trace_output (OP_IMM_REG); return 4; } /* satsubr reg,reg */ int OP_80 (void) { unsigned int op0, op1, result, z, s, cy, ov, sat; trace_input ("satsubr", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 - op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op0 < op1); ov = ((op0 & 0x80000000) != (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); sat = ov; /* Handle saturated results. */ if (sat && s) { /* An overflow that results in a negative result implies that we became too positive. */ result = 0x7fffffff; s = 0; } else if (sat) { /* Any other overflow must have thus been too negative. */ result = 0x80000000; s = 1; z = 0; } /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | (sat ? PSW_SAT : 0)); trace_output (OP_REG_REG); return 2; } /* tst reg,reg */ int OP_160 (void) { unsigned int op0, op1, result, z, s; trace_input ("tst", OP_REG_REG_CMP, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 & op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); /* Store the condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); trace_output (OP_REG_REG_CMP); return 2; } /* mov sign_extend(imm5), reg */ int OP_200 (void) { int value = SEXT5 (OP[0]); trace_input ("mov", OP_IMM_REG_MOVE, 0); State.regs[ OP[1] ] = value; trace_output (OP_IMM_REG_MOVE); return 2; } /* movhi imm16, reg, reg */ int OP_640 (void) { trace_input ("movhi", OP_UIMM16_REG_REG, 16); State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16); trace_output (OP_UIMM16_REG_REG); return 4; } /* sar zero_extend(imm5),reg1 */ int OP_2A0 (void) { unsigned int op0, op1, result, z, s, cy; trace_input ("sar", OP_IMM_REG, 0); op0 = OP[0]; op1 = State.regs[ OP[1] ]; result = (signed)op1 >> op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; /* Store the result and condition codes. */ State.regs[ OP[1] ] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); trace_output (OP_IMM_REG); return 2; } /* sar reg1, reg2 */ int OP_A007E0 (void) { unsigned int op0, op1, result, z, s, cy; trace_input ("sar", OP_REG_REG, 0); op0 = State.regs[ OP[0] ] & 0x1f; op1 = State.regs[ OP[1] ]; result = (signed)op1 >> op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); trace_output (OP_REG_REG); return 4; } /* shl zero_extend(imm5),reg1 */ int OP_2C0 (void) { unsigned int op0, op1, result, z, s, cy; trace_input ("shl", OP_IMM_REG, 0); op0 = OP[0]; op1 = State.regs[ OP[1] ]; result = op1 << op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = op0 ? (op1 & (1 << (32 - op0))) : 0; /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); trace_output (OP_IMM_REG); return 2; } /* shl reg1, reg2 */ int OP_C007E0 (void) { unsigned int op0, op1, result, z, s, cy; trace_input ("shl", OP_REG_REG, 0); op0 = State.regs[ OP[0] ] & 0x1f; op1 = State.regs[ OP[1] ]; result = op1 << op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = op0 ? (op1 & (1 << (32 - op0))) : 0; /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); trace_output (OP_REG_REG); return 4; } /* shr zero_extend(imm5),reg1 */ int OP_280 (void) { unsigned int op0, op1, result, z, s, cy; trace_input ("shr", OP_IMM_REG, 0); op0 = OP[0]; op1 = State.regs[ OP[1] ]; result = op1 >> op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); trace_output (OP_IMM_REG); return 2; } /* shr reg1, reg2 */ int OP_8007E0 (void) { unsigned int op0, op1, result, z, s, cy; trace_input ("shr", OP_REG_REG, 0); op0 = State.regs[ OP[0] ] & 0x1f; op1 = State.regs[ OP[1] ]; result = op1 >> op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); trace_output (OP_REG_REG); return 4; } /* or reg, reg */ int OP_100 (void) { unsigned int op0, op1, result, z, s; trace_input ("or", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 | op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); trace_output (OP_REG_REG); return 2; } /* ori zero_extend(imm16), reg, reg */ int OP_680 (void) { unsigned int op0, op1, result, z, s; trace_input ("ori", OP_UIMM16_REG_REG, 0); op0 = OP[2]; op1 = State.regs[ OP[0] ]; result = op0 | op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); trace_output (OP_UIMM16_REG_REG); return 4; } /* and reg, reg */ int OP_140 (void) { unsigned int op0, op1, result, z, s; trace_input ("and", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 & op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); trace_output (OP_REG_REG); return 2; } /* andi zero_extend(imm16), reg, reg */ int OP_6C0 (void) { unsigned int result, z; trace_input ("andi", OP_UIMM16_REG_REG, 0); result = OP[2] & State.regs[ OP[0] ]; /* Compute the condition codes. */ z = (result == 0); /* Store the result and condition codes. */ State.regs[ OP[1] ] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= (z ? PSW_Z : 0); trace_output (OP_UIMM16_REG_REG); return 4; } /* xor reg, reg */ int OP_120 (void) { unsigned int op0, op1, result, z, s; trace_input ("xor", OP_REG_REG, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; op1 = State.regs[ OP[1] ]; result = op0 ^ op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); trace_output (OP_REG_REG); return 2; } /* xori zero_extend(imm16), reg, reg */ int OP_6A0 (void) { unsigned int op0, op1, result, z, s; trace_input ("xori", OP_UIMM16_REG_REG, 0); op0 = OP[2]; op1 = State.regs[ OP[0] ]; result = op0 ^ op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); trace_output (OP_UIMM16_REG_REG); return 4; } /* not reg1, reg2 */ int OP_20 (void) { unsigned int op0, result, z, s; trace_input ("not", OP_REG_REG_MOVE, 0); /* Compute the result. */ op0 = State.regs[ OP[0] ]; result = ~op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); /* Store the result and condition codes. */ State.regs[OP[1]] = result; PSW &= ~(PSW_Z | PSW_S | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); trace_output (OP_REG_REG_MOVE); return 2; } /* set1 */ int OP_7C0 (void) { unsigned int op0, op1, op2; int temp; trace_input ("set1", OP_BIT, 0); op0 = State.regs[ OP[0] ]; op1 = OP[1] & 0x7; temp = EXTEND16 (OP[2]); op2 = temp; temp = load_mem (op0 + op2, 1); PSW &= ~PSW_Z; if ((temp & (1 << op1)) == 0) PSW |= PSW_Z; temp |= (1 << op1); store_mem (op0 + op2, 1, temp); trace_output (OP_BIT); return 4; } /* not1 */ int OP_47C0 (void) { unsigned int op0, op1, op2; int temp; trace_input ("not1", OP_BIT, 0); op0 = State.regs[ OP[0] ]; op1 = OP[1] & 0x7; temp = EXTEND16 (OP[2]); op2 = temp; temp = load_mem (op0 + op2, 1); PSW &= ~PSW_Z; if ((temp & (1 << op1)) == 0) PSW |= PSW_Z; temp ^= (1 << op1); store_mem (op0 + op2, 1, temp); trace_output (OP_BIT); return 4; } /* clr1 */ int OP_87C0 (void) { unsigned int op0, op1, op2; int temp; trace_input ("clr1", OP_BIT, 0); op0 = State.regs[ OP[0] ]; op1 = OP[1] & 0x7; temp = EXTEND16 (OP[2]); op2 = temp; temp = load_mem (op0 + op2, 1); PSW &= ~PSW_Z; if ((temp & (1 << op1)) == 0) PSW |= PSW_Z; temp &= ~(1 << op1); store_mem (op0 + op2, 1, temp); trace_output (OP_BIT); return 4; } /* tst1 */ int OP_C7C0 (void) { unsigned int op0, op1, op2; int temp; trace_input ("tst1", OP_BIT, 0); op0 = State.regs[ OP[0] ]; op1 = OP[1] & 0x7; temp = EXTEND16 (OP[2]); op2 = temp; temp = load_mem (op0 + op2, 1); PSW &= ~PSW_Z; if ((temp & (1 << op1)) == 0) PSW |= PSW_Z; trace_output (OP_BIT); return 4; } /* di */ int OP_16007E0 (void) { trace_input ("di", OP_NONE, 0); PSW |= PSW_ID; trace_output (OP_NONE); return 4; } /* ei */ int OP_16087E0 (void) { trace_input ("ei", OP_NONE, 0); PSW &= ~PSW_ID; trace_output (OP_NONE); return 4; } /* halt */ int OP_12007E0 (void) { trace_input ("halt", OP_NONE, 0); /* FIXME this should put processor into a mode where NMI still handled */ trace_output (OP_NONE); sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, sim_stopped, SIM_SIGTRAP); return 0; } /* trap */ int OP_10007E0 (void) { trace_input ("trap", OP_TRAP, 0); trace_output (OP_TRAP); /* Trap 31 is used for simulating OS I/O functions */ if (OP[0] == 31) { int save_errno = errno; errno = 0; /* Registers passed to trap 0 */ #define FUNC State.regs[6] /* function number, return value */ #define PARM1 State.regs[7] /* optional parm 1 */ #define PARM2 State.regs[8] /* optional parm 2 */ #define PARM3 State.regs[9] /* optional parm 3 */ /* Registers set by trap 0 */ #define RETVAL State.regs[10] /* return value */ #define RETERR State.regs[11] /* return error code */ /* Turn a pointer in a register into a pointer into real memory. */ #define MEMPTR(x) (map (x)) RETERR = 0; switch (FUNC) { #ifdef HAVE_FORK #ifdef TARGET_SYS_fork case TARGET_SYS_fork: RETVAL = fork (); RETERR = errno; break; #endif #endif #ifdef HAVE_EXECVE #ifdef TARGET_SYS_execv case TARGET_SYS_execve: { char *path = fetch_str (simulator, PARM1); char **argv = fetch_argv (simulator, PARM2); char **envp = fetch_argv (simulator, PARM3); RETVAL = execve (path, argv, envp); free (path); freeargv (argv); freeargv (envp); RETERR = errno; break; } #endif #endif #if HAVE_EXECV #ifdef TARGET_SYS_execv case TARGET_SYS_execv: { char *path = fetch_str (simulator, PARM1); char **argv = fetch_argv (simulator, PARM2); RETVAL = execv (path, argv); free (path); freeargv (argv); RETERR = errno; break; } #endif #endif #if 0 #ifdef TARGET_SYS_pipe case TARGET_SYS_pipe: { reg_t buf; int host_fd[2]; buf = PARM1; RETVAL = pipe (host_fd); SW (buf, host_fd[0]); buf += sizeof (uint16); SW (buf, host_fd[1]); RETERR = errno; } break; #endif #endif #if 0 #ifdef TARGET_SYS_wait case TARGET_SYS_wait: { int status; RETVAL = wait (&status); SW (PARM1, status); RETERR = errno; } break; #endif #endif #ifdef TARGET_SYS_read case TARGET_SYS_read: { char *buf = zalloc (PARM3); RETVAL = sim_io_read (simulator, PARM1, buf, PARM3); sim_write (simulator, PARM2, (unsigned char *) buf, PARM3); free (buf); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); break; } #endif #ifdef TARGET_SYS_write case TARGET_SYS_write: { char *buf = zalloc (PARM3); sim_read (simulator, PARM2, (unsigned char *) buf, PARM3); if (PARM1 == 1) RETVAL = sim_io_write_stdout (simulator, buf, PARM3); else RETVAL = sim_io_write (simulator, PARM1, buf, PARM3); free (buf); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); break; } #endif #ifdef TARGET_SYS_lseek case TARGET_SYS_lseek: RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); break; #endif #ifdef TARGET_SYS_close case TARGET_SYS_close: RETVAL = sim_io_close (simulator, PARM1); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); break; #endif #ifdef TARGET_SYS_open case TARGET_SYS_open: { char *buf = fetch_str (simulator, PARM1); RETVAL = sim_io_open (simulator, buf, PARM2); free (buf); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); break; } #endif #ifdef TARGET_SYS_exit case TARGET_SYS_exit: if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0) /* get signal encoded by kill */ sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, sim_signalled, PARM1 & 0xffff); else if (PARM1 == 0xdead) /* old libraries */ sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, sim_stopped, SIM_SIGABRT); else /* PARM1 has exit status */ sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, sim_exited, PARM1); break; #endif #ifdef TARGET_SYS_stat case TARGET_SYS_stat: /* added at hmsi */ /* stat system call */ { struct stat host_stat; reg_t buf; char *path = fetch_str (simulator, PARM1); RETVAL = sim_io_stat (simulator, path, &host_stat); free (path); buf = PARM2; /* Just wild-assed guesses. */ store_mem (buf, 2, host_stat.st_dev); store_mem (buf + 2, 2, host_stat.st_ino); store_mem (buf + 4, 4, host_stat.st_mode); store_mem (buf + 8, 2, host_stat.st_nlink); store_mem (buf + 10, 2, host_stat.st_uid); store_mem (buf + 12, 2, host_stat.st_gid); store_mem (buf + 14, 2, host_stat.st_rdev); store_mem (buf + 16, 4, host_stat.st_size); store_mem (buf + 20, 4, host_stat.st_atime); store_mem (buf + 28, 4, host_stat.st_mtime); store_mem (buf + 36, 4, host_stat.st_ctime); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); } break; #endif #ifdef TARGET_SYS_fstat case TARGET_SYS_fstat: /* fstat system call */ { struct stat host_stat; reg_t buf; RETVAL = sim_io_fstat (simulator, PARM1, &host_stat); buf = PARM2; /* Just wild-assed guesses. */ store_mem (buf, 2, host_stat.st_dev); store_mem (buf + 2, 2, host_stat.st_ino); store_mem (buf + 4, 4, host_stat.st_mode); store_mem (buf + 8, 2, host_stat.st_nlink); store_mem (buf + 10, 2, host_stat.st_uid); store_mem (buf + 12, 2, host_stat.st_gid); store_mem (buf + 14, 2, host_stat.st_rdev); store_mem (buf + 16, 4, host_stat.st_size); store_mem (buf + 20, 4, host_stat.st_atime); store_mem (buf + 28, 4, host_stat.st_mtime); store_mem (buf + 36, 4, host_stat.st_ctime); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); } break; #endif #ifdef TARGET_SYS_rename case TARGET_SYS_rename: { char *oldpath = fetch_str (simulator, PARM1); char *newpath = fetch_str (simulator, PARM2); RETVAL = sim_io_rename (simulator, oldpath, newpath); free (oldpath); free (newpath); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); } break; #endif #ifdef TARGET_SYS_unlink case TARGET_SYS_unlink: { char *path = fetch_str (simulator, PARM1); RETVAL = sim_io_unlink (simulator, path); free (path); if ((int) RETVAL < 0) RETERR = sim_io_get_errno (simulator); } break; #endif #ifdef HAVE_CHOWN #ifdef TARGET_SYS_chown case TARGET_SYS_chown: { char *path = fetch_str (simulator, PARM1); RETVAL = chown (path, PARM2, PARM3); free (path); RETERR = errno; } break; #endif #endif #if HAVE_CHMOD #ifdef TARGET_SYS_chmod case TARGET_SYS_chmod: { char *path = fetch_str (simulator, PARM1); RETVAL = chmod (path, PARM2); free (path); RETERR = errno; } break; #endif #endif #ifdef TARGET_SYS_time #if HAVE_TIME case TARGET_SYS_time: { time_t now; RETVAL = time (&now); store_mem (PARM1, 4, now); RETERR = errno; } break; #endif #endif #if !defined(__GO32__) && !defined(_WIN32) #ifdef TARGET_SYS_times case TARGET_SYS_times: { struct tms tms; RETVAL = times (&tms); store_mem (PARM1, 4, tms.tms_utime); store_mem (PARM1 + 4, 4, tms.tms_stime); store_mem (PARM1 + 8, 4, tms.tms_cutime); store_mem (PARM1 + 12, 4, tms.tms_cstime); reterr = errno; break; } #endif #endif #ifdef TARGET_SYS_gettimeofday #if !defined(__GO32__) && !defined(_WIN32) case TARGET_SYS_gettimeofday: { struct timeval t; struct timezone tz; RETVAL = gettimeofday (&t, &tz); store_mem (PARM1, 4, t.tv_sec); store_mem (PARM1 + 4, 4, t.tv_usec); store_mem (PARM2, 4, tz.tz_minuteswest); store_mem (PARM2 + 4, 4, tz.tz_dsttime); RETERR = errno; break; } #endif #endif #ifdef TARGET_SYS_utime #if HAVE_UTIME case TARGET_SYS_utime: { /* Cast the second argument to void *, to avoid type mismatch if a prototype is present. */ sim_io_error (simulator, "Utime not supported"); /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */ } break; #endif #endif default: abort (); } errno = save_errno; return 4; } else { /* Trap 0 -> 30 */ EIPC = PC + 4; EIPSW = PSW; /* Mask out EICC */ ECR &= 0xffff0000; ECR |= 0x40 + OP[0]; /* Flag that we are now doing exception processing. */ PSW |= PSW_EP | PSW_ID; PC = (OP[0] < 0x10) ? 0x40 : 0x50; return 0; } } /* tst1 reg2, [reg1] */ int OP_E607E0 (void) { int temp; trace_input ("tst1", OP_BIT, 1); temp = load_mem (State.regs[ OP[0] ], 1); PSW &= ~PSW_Z; if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0) PSW |= PSW_Z; trace_output (OP_BIT); return 4; } /* mulu reg1, reg2, reg3 */ int OP_22207E0 (void) { trace_input ("mulu", OP_REG_REG_REG, 0); Multiply64 (0, State.regs[ OP[0] ]); trace_output (OP_REG_REG_REG); return 4; } #define BIT_CHANGE_OP( name, binop ) \ unsigned int bit; \ unsigned int temp; \ \ trace_input (name, OP_BIT_CHANGE, 0); \ \ bit = 1 << (State.regs[ OP[1] ] & 0x7); \ temp = load_mem (State.regs[ OP[0] ], 1); \ \ PSW &= ~PSW_Z; \ if ((temp & bit) == 0) \ PSW |= PSW_Z; \ temp binop bit; \ \ store_mem (State.regs[ OP[0] ], 1, temp); \ \ trace_output (OP_BIT_CHANGE); \ \ return 4; /* clr1 reg2, [reg1] */ int OP_E407E0 (void) { BIT_CHANGE_OP ("clr1", &= ~ ); } /* not1 reg2, [reg1] */ int OP_E207E0 (void) { BIT_CHANGE_OP ("not1", ^= ); } /* set1 */ int OP_E007E0 (void) { BIT_CHANGE_OP ("set1", |= ); } /* sasf */ int OP_20007E0 (void) { trace_input ("sasf", OP_EX1, 0); State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]); trace_output (OP_EX1); return 4; } /* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */ void divun ( unsigned int N, unsigned long int als, unsigned long int sfi, unsigned32 /*unsigned long int*/ * quotient_ptr, unsigned32 /*unsigned long int*/ * remainder_ptr, int * overflow_ptr ) { unsigned long ald = sfi >> (N - 1); unsigned long alo = als; unsigned int Q = 1; unsigned int C; unsigned int S = 0; unsigned int i; unsigned int R1 = 1; unsigned int DBZ = (als == 0) ? 1 : 0; unsigned long alt = Q ? ~als : als; /* 1st Loop */ alo = ald + alt + Q; C = (((alt >> 31) & (ald >> 31)) | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); C = C ^ Q; Q = ~(C ^ S) & 1; R1 = (alo == 0) ? 0 : (R1 & Q); if ((S ^ (alo>>31)) && !C) { DBZ = 1; } S = alo >> 31; sfi = (sfi << (32-N+1)) | Q; ald = (alo << 1) | (sfi >> 31); /* 2nd - N-1th Loop */ for (i = 2; i < N; i++) { alt = Q ? ~als : als; alo = ald + alt + Q; C = (((alt >> 31) & (ald >> 31)) | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); C = C ^ Q; Q = ~(C ^ S) & 1; R1 = (alo == 0) ? 0 : (R1 & Q); if ((S ^ (alo>>31)) && !C && !DBZ) { DBZ = 1; } S = alo >> 31; sfi = (sfi << 1) | Q; ald = (alo << 1) | (sfi >> 31); } /* Nth Loop */ alt = Q ? ~als : als; alo = ald + alt + Q; C = (((alt >> 31) & (ald >> 31)) | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); C = C ^ Q; Q = ~(C ^ S) & 1; R1 = (alo == 0) ? 0 : (R1 & Q); if ((S ^ (alo>>31)) && !C) { DBZ = 1; } * quotient_ptr = (sfi << 1) | Q; * remainder_ptr = Q ? alo : (alo + als); * overflow_ptr = DBZ | R1; } /* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */ void divn ( unsigned int N, unsigned long int als, unsigned long int sfi, signed32 /*signed long int*/ * quotient_ptr, signed32 /*signed long int*/ * remainder_ptr, int * overflow_ptr ) { unsigned long ald = (signed long) sfi >> (N - 1); unsigned long alo = als; unsigned int SS = als >> 31; unsigned int SD = sfi >> 31; unsigned int R1 = 1; unsigned int OV; unsigned int DBZ = als == 0 ? 1 : 0; unsigned int Q = ~(SS ^ SD) & 1; unsigned int C; unsigned int S; unsigned int i; unsigned long alt = Q ? ~als : als; /* 1st Loop */ alo = ald + alt + Q; C = (((alt >> 31) & (ald >> 31)) | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); Q = C ^ SS; R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); S = alo >> 31; sfi = (sfi << (32-N+1)) | Q; ald = (alo << 1) | (sfi >> 31); if ((alo >> 31) ^ (ald >> 31)) { DBZ = 1; } /* 2nd - N-1th Loop */ for (i = 2; i < N; i++) { alt = Q ? ~als : als; alo = ald + alt + Q; C = (((alt >> 31) & (ald >> 31)) | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); Q = C ^ SS; R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); S = alo >> 31; sfi = (sfi << 1) | Q; ald = (alo << 1) | (sfi >> 31); if ((alo >> 31) ^ (ald >> 31)) { DBZ = 1; } } /* Nth Loop */ alt = Q ? ~als : als; alo = ald + alt + Q; C = (((alt >> 31) & (ald >> 31)) | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); Q = C ^ SS; R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); sfi = (sfi << (32-N+1)); ald = alo; /* End */ if (alo != 0) { alt = Q ? ~als : als; alo = ald + alt + Q; } R1 = R1 & ((~alo >> 31) ^ SD); if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald; if (N != 32) ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q; else ald = sfi = sfi | Q; OV = DBZ | ((alo == 0) ? 0 : R1); * remainder_ptr = alo; /* Adj */ if (((alo != 0) && ((SS ^ SD) ^ R1)) || ((alo == 0) && (SS ^ R1))) alo = ald + 1; else alo = ald; OV = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31)); * quotient_ptr = alo; * overflow_ptr = OV; } /* sdivun imm5, reg1, reg2, reg3 */ int OP_1C207E0 (void) { unsigned32 /*unsigned long int*/ quotient; unsigned32 /*unsigned long int*/ remainder; unsigned long int divide_by; unsigned long int divide_this; int overflow = 0; unsigned int imm5; trace_input ("sdivun", OP_IMM_REG_REG_REG, 0); imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); divide_by = State.regs[ OP[0] ]; divide_this = State.regs[ OP[1] ] << imm5; divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); State.regs[ OP[1] ] = quotient; State.regs[ OP[2] >> 11 ] = remainder; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient & 0x80000000) PSW |= PSW_S; trace_output (OP_IMM_REG_REG_REG); return 4; } /* sdivn imm5, reg1, reg2, reg3 */ int OP_1C007E0 (void) { signed32 /*signed long int*/ quotient; signed32 /*signed long int*/ remainder; signed long int divide_by; signed long int divide_this; int overflow = 0; unsigned int imm5; trace_input ("sdivn", OP_IMM_REG_REG_REG, 0); imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); divide_by = (signed32) State.regs[ OP[0] ]; divide_this = (signed32) (State.regs[ OP[1] ] << imm5); divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); State.regs[ OP[1] ] = quotient; State.regs[ OP[2] >> 11 ] = remainder; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient < 0) PSW |= PSW_S; trace_output (OP_IMM_REG_REG_REG); return 4; } /* sdivhun imm5, reg1, reg2, reg3 */ int OP_18207E0 (void) { unsigned32 /*unsigned long int*/ quotient; unsigned32 /*unsigned long int*/ remainder; unsigned long int divide_by; unsigned long int divide_this; int overflow = 0; unsigned int imm5; trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0); imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); divide_by = State.regs[ OP[0] ] & 0xffff; divide_this = State.regs[ OP[1] ] << imm5; divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); State.regs[ OP[1] ] = quotient; State.regs[ OP[2] >> 11 ] = remainder; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient & 0x80000000) PSW |= PSW_S; trace_output (OP_IMM_REG_REG_REG); return 4; } /* sdivhn imm5, reg1, reg2, reg3 */ int OP_18007E0 (void) { signed32 /*signed long int*/ quotient; signed32 /*signed long int*/ remainder; signed long int divide_by; signed long int divide_this; int overflow = 0; unsigned int imm5; trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0); imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); divide_by = EXTEND16 (State.regs[ OP[0] ]); divide_this = (signed32) (State.regs[ OP[1] ] << imm5); divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); State.regs[ OP[1] ] = quotient; State.regs[ OP[2] >> 11 ] = remainder; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient < 0) PSW |= PSW_S; trace_output (OP_IMM_REG_REG_REG); return 4; } /* divu reg1, reg2, reg3 */ int OP_2C207E0 (void) { unsigned long int quotient; unsigned long int remainder; unsigned long int divide_by; unsigned long int divide_this; int overflow = 0; trace_input ("divu", OP_REG_REG_REG, 0); /* Compute the result. */ divide_by = State.regs[ OP[0] ]; divide_this = State.regs[ OP[1] ]; if (divide_by == 0) { PSW |= PSW_OV; } else { State.regs[ OP[1] ] = quotient = divide_this / divide_by; State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient & 0x80000000) PSW |= PSW_S; } trace_output (OP_REG_REG_REG); return 4; } /* div reg1, reg2, reg3 */ int OP_2C007E0 (void) { signed long int quotient; signed long int remainder; signed long int divide_by; signed long int divide_this; trace_input ("div", OP_REG_REG_REG, 0); /* Compute the result. */ divide_by = (signed32) State.regs[ OP[0] ]; divide_this = State.regs[ OP[1] ]; if (divide_by == 0) { PSW |= PSW_OV; } else if (divide_by == -1 && divide_this == (1L << 31)) { PSW &= ~PSW_Z; PSW |= PSW_OV | PSW_S; State.regs[ OP[1] ] = (1 << 31); State.regs[ OP[2] >> 11 ] = 0; } else { divide_this = (signed32) divide_this; State.regs[ OP[1] ] = quotient = divide_this / divide_by; State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (quotient == 0) PSW |= PSW_Z; if (quotient < 0) PSW |= PSW_S; } trace_output (OP_REG_REG_REG); return 4; } /* divhu reg1, reg2, reg3 */ int OP_28207E0 (void) { unsigned long int quotient; unsigned long int remainder; unsigned long int divide_by; unsigned long int divide_this; int overflow = 0; trace_input ("divhu", OP_REG_REG_REG, 0); /* Compute the result. */ divide_by = State.regs[ OP[0] ] & 0xffff; divide_this = State.regs[ OP[1] ]; if (divide_by == 0) { PSW |= PSW_OV; } else { State.regs[ OP[1] ] = quotient = divide_this / divide_by; State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient & 0x80000000) PSW |= PSW_S; } trace_output (OP_REG_REG_REG); return 4; } /* divh reg1, reg2, reg3 */ int OP_28007E0 (void) { signed long int quotient; signed long int remainder; signed long int divide_by; signed long int divide_this; int overflow = 0; trace_input ("divh", OP_REG_REG_REG, 0); /* Compute the result. */ divide_by = EXTEND16 (State.regs[ OP[0] ]); divide_this = State.regs[ OP[1] ]; if (divide_by == 0) { PSW |= PSW_OV; } else if (divide_by == -1 && divide_this == (1L << 31)) { PSW &= ~PSW_Z; PSW |= PSW_OV | PSW_S; State.regs[ OP[1] ] = (1 << 31); State.regs[ OP[2] >> 11 ] = 0; } else { divide_this = (signed32) divide_this; State.regs[ OP[1] ] = quotient = divide_this / divide_by; State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (quotient == 0) PSW |= PSW_Z; if (quotient < 0) PSW |= PSW_S; } trace_output (OP_REG_REG_REG); return 4; } /* mulu imm9, reg2, reg3 */ int OP_24207E0 (void) { trace_input ("mulu", OP_IMM_REG_REG, 0); Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)); trace_output (OP_IMM_REG_REG); return 4; } /* mul imm9, reg2, reg3 */ int OP_24007E0 (void) { trace_input ("mul", OP_IMM_REG_REG, 0); Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0))); trace_output (OP_IMM_REG_REG); return 4; } /* ld.hu */ int OP_107E0 (void) { int adr; trace_input ("ld.hu", OP_LOAD32, 2); adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); adr &= ~0x1; State.regs[ OP[1] ] = load_mem (adr, 2); trace_output (OP_LOAD32); return 4; } /* ld.bu */ int OP_10780 (void) { int adr; trace_input ("ld.bu", OP_LOAD32, 1); adr = (State.regs[ OP[0] ] + (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1))); State.regs[ OP[1] ] = load_mem (adr, 1); trace_output (OP_LOAD32); return 4; } /* prepare list12, imm5, imm32 */ int OP_1B0780 (void) { int i; trace_input ("prepare", OP_PUSHPOP1, 0); /* Store the registers with lower number registers being placed at higher addresses. */ for (i = 0; i < 12; i++) if ((OP[3] & (1 << type1_regs[ i ]))) { SP -= 4; store_mem (SP, 4, State.regs[ 20 + i ]); } SP -= (OP[3] & 0x3e) << 1; EP = load_mem (PC + 4, 4); trace_output (OP_PUSHPOP1); return 8; } /* prepare list12, imm5, imm16-32 */ int OP_130780 (void) { int i; trace_input ("prepare", OP_PUSHPOP1, 0); /* Store the registers with lower number registers being placed at higher addresses. */ for (i = 0; i < 12; i++) if ((OP[3] & (1 << type1_regs[ i ]))) { SP -= 4; store_mem (SP, 4, State.regs[ 20 + i ]); } SP -= (OP[3] & 0x3e) << 1; EP = load_mem (PC + 4, 2) << 16; trace_output (OP_PUSHPOP1); return 6; } /* prepare list12, imm5, imm16 */ int OP_B0780 (void) { int i; trace_input ("prepare", OP_PUSHPOP1, 0); /* Store the registers with lower number registers being placed at higher addresses. */ for (i = 0; i < 12; i++) if ((OP[3] & (1 << type1_regs[ i ]))) { SP -= 4; store_mem (SP, 4, State.regs[ 20 + i ]); } SP -= (OP[3] & 0x3e) << 1; EP = EXTEND16 (load_mem (PC + 4, 2)); trace_output (OP_PUSHPOP1); return 6; } /* prepare list12, imm5, sp */ int OP_30780 (void) { int i; trace_input ("prepare", OP_PUSHPOP1, 0); /* Store the registers with lower number registers being placed at higher addresses. */ for (i = 0; i < 12; i++) if ((OP[3] & (1 << type1_regs[ i ]))) { SP -= 4; store_mem (SP, 4, State.regs[ 20 + i ]); } SP -= (OP[3] & 0x3e) << 1; EP = SP; trace_output (OP_PUSHPOP1); return 4; } /* mul reg1, reg2, reg3 */ int OP_22007E0 (void) { trace_input ("mul", OP_REG_REG_REG, 0); Multiply64 (1, State.regs[ OP[0] ]); trace_output (OP_REG_REG_REG); return 4; } /* popmh list18 */ int OP_307F0 (void) { int i; trace_input ("popmh", OP_PUSHPOP2, 0); if (OP[3] & (1 << 19)) { if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) { FEPSW = load_mem ( SP & ~ 3, 4); FEPC = load_mem ((SP + 4) & ~ 3, 4); } else { EIPSW = load_mem ( SP & ~ 3, 4); EIPC = load_mem ((SP + 4) & ~ 3, 4); } SP += 8; } /* Load the registers with lower number registers being retrieved from higher addresses. */ for (i = 16; i--;) if ((OP[3] & (1 << type2_regs[ i ]))) { State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4); SP += 4; } trace_output (OP_PUSHPOP2); return 4; } /* popml lsit18 */ int OP_107F0 (void) { int i; trace_input ("popml", OP_PUSHPOP3, 0); if (OP[3] & (1 << 19)) { if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) { FEPSW = load_mem ( SP & ~ 3, 4); FEPC = load_mem ((SP + 4) & ~ 3, 4); } else { EIPSW = load_mem ( SP & ~ 3, 4); EIPC = load_mem ((SP + 4) & ~ 3, 4); } SP += 8; } if (OP[3] & (1 << 3)) { PSW = load_mem (SP & ~ 3, 4); SP += 4; } /* Load the registers with lower number registers being retrieved from higher addresses. */ for (i = 15; i--;) if ((OP[3] & (1 << type3_regs[ i ]))) { State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4); SP += 4; } trace_output (OP_PUSHPOP2); return 4; } /* pushmh list18 */ int OP_307E0 (void) { int i; trace_input ("pushmh", OP_PUSHPOP2, 0); /* Store the registers with lower number registers being placed at higher addresses. */ for (i = 0; i < 16; i++) if ((OP[3] & (1 << type2_regs[ i ]))) { SP -= 4; store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]); } if (OP[3] & (1 << 19)) { SP -= 8; if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) { store_mem ((SP + 4) & ~ 3, 4, FEPC); store_mem ( SP & ~ 3, 4, FEPSW); } else { store_mem ((SP + 4) & ~ 3, 4, EIPC); store_mem ( SP & ~ 3, 4, EIPSW); } } trace_output (OP_PUSHPOP2); return 4; } /* V850E2R FPU functions */ /* sim_fpu_status_invalid_snan = 1, -V--- (sim spec.) sim_fpu_status_invalid_qnan = 2, ----- (sim spec.) sim_fpu_status_invalid_isi = 4, (inf - inf) -V--- sim_fpu_status_invalid_idi = 8, (inf / inf) -V--- sim_fpu_status_invalid_zdz = 16, (0 / 0) -V--- sim_fpu_status_invalid_imz = 32, (inf * 0) -V--- sim_fpu_status_invalid_cvi = 64, convert to integer -V--- sim_fpu_status_invalid_div0 = 128, (X / 0) --Z-- sim_fpu_status_invalid_cmp = 256, compare ----- (sim spec.) sim_fpu_status_invalid_sqrt = 512, -V--- sim_fpu_status_rounded = 1024, I---- sim_fpu_status_inexact = 2048, I---- (sim spec.) sim_fpu_status_overflow = 4096, I--O- sim_fpu_status_underflow = 8192, I---U sim_fpu_status_denorm = 16384, ----U (sim spec.) */ void update_fpsr (SIM_DESC sd, sim_fpu_status status, unsigned int mask, unsigned int double_op_p) { unsigned int fpsr = FPSR & mask; unsigned int flags = 0; if (fpsr & FPSR_XEI && ((status & (sim_fpu_status_rounded | sim_fpu_status_overflow | sim_fpu_status_inexact)) || (status & sim_fpu_status_underflow && (fpsr & (FPSR_XEU | FPSR_XEI)) == 0 && fpsr & FPSR_FS))) { flags |= FPSR_XCI | FPSR_XPI; } if (fpsr & FPSR_XEV && (status & (sim_fpu_status_invalid_isi | sim_fpu_status_invalid_imz | sim_fpu_status_invalid_zdz | sim_fpu_status_invalid_idi | sim_fpu_status_invalid_cvi | sim_fpu_status_invalid_sqrt | sim_fpu_status_invalid_snan))) { flags |= FPSR_XCV | FPSR_XPV; } if (fpsr & FPSR_XEZ && (status & sim_fpu_status_invalid_div0)) { flags |= FPSR_XCV | FPSR_XPV; } if (fpsr & FPSR_XEO && (status & sim_fpu_status_overflow)) { flags |= FPSR_XCO | FPSR_XPO; } if (((fpsr & FPSR_XEU) || (fpsr & FPSR_FS) == 0) && (status & (sim_fpu_status_underflow | sim_fpu_status_denorm))) { flags |= FPSR_XCU | FPSR_XPU; } if (flags) { FPSR &= ~FPSR_XC; FPSR |= flags; SignalExceptionFPE (sd, double_op_p); } } /* Exception. */ void SignalException (SIM_DESC sd) { if (MPM & MPM_AUE) { PSW = PSW & ~(PSW_NPV | PSW_DMP | PSW_IMP); } } void SignalExceptionFPE (SIM_DESC sd, unsigned int double_op_p) { if (((PSW & (PSW_NP|PSW_ID)) == 0) || !(FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM))) { EIPC = PC; EIPSW = PSW; EIIC = (FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM)) ? 0x71 : 0x72; PSW |= (PSW_EP | PSW_ID); PC = 0x70; SignalException (sd); } } void check_invalid_snan (SIM_DESC sd, sim_fpu_status status, unsigned int double_op_p) { if ((FPSR & FPSR_XEI) && (status & sim_fpu_status_invalid_snan)) { FPSR &= ~FPSR_XC; FPSR |= FPSR_XCV; FPSR |= FPSR_XPV; SignalExceptionFPE (sd, double_op_p); } } int v850_float_compare (SIM_DESC sd, int cmp, sim_fpu wop1, sim_fpu wop2, int double_op_p) { int result = -1; if (sim_fpu_is_nan (&wop1) || sim_fpu_is_nan (&wop2)) { if (cmp & 0x8) { if (FPSR & FPSR_XEV) { FPSR |= FPSR_XCV | FPSR_XPV; SignalExceptionFPE (sd, double_op_p); } } switch (cmp) { case FPU_CMP_F: result = 0; break; case FPU_CMP_UN: result = 1; break; case FPU_CMP_EQ: result = 0; break; case FPU_CMP_UEQ: result = 1; break; case FPU_CMP_OLT: result = 0; break; case FPU_CMP_ULT: result = 1; break; case FPU_CMP_OLE: result = 0; break; case FPU_CMP_ULE: result = 1; break; case FPU_CMP_SF: result = 0; break; case FPU_CMP_NGLE: result = 1; break; case FPU_CMP_SEQ: result = 0; break; case FPU_CMP_NGL: result = 1; break; case FPU_CMP_LT: result = 0; break; case FPU_CMP_NGE: result = 1; break; case FPU_CMP_LE: result = 0; break; case FPU_CMP_NGT: result = 1; break; default: abort (); } } else if (sim_fpu_is_infinity (&wop1) && sim_fpu_is_infinity (&wop2) && sim_fpu_sign (&wop1) == sim_fpu_sign (&wop2)) { switch (cmp) { case FPU_CMP_F: result = 0; break; case FPU_CMP_UN: result = 0; break; case FPU_CMP_EQ: result = 1; break; case FPU_CMP_UEQ: result = 1; break; case FPU_CMP_OLT: result = 0; break; case FPU_CMP_ULT: result = 0; break; case FPU_CMP_OLE: result = 1; break; case FPU_CMP_ULE: result = 1; break; case FPU_CMP_SF: result = 0; break; case FPU_CMP_NGLE: result = 0; break; case FPU_CMP_SEQ: result = 1; break; case FPU_CMP_NGL: result = 1; break; case FPU_CMP_LT: result = 0; break; case FPU_CMP_NGE: result = 0; break; case FPU_CMP_LE: result = 1; break; case FPU_CMP_NGT: result = 1; break; default: abort (); } } else { int gt = 0,lt = 0,eq = 0, status; status = sim_fpu_cmp (&wop1, &wop2); switch (status) { case SIM_FPU_IS_SNAN: case SIM_FPU_IS_QNAN: abort (); break; case SIM_FPU_IS_NINF: lt = 1; break; case SIM_FPU_IS_PINF: gt = 1; break; case SIM_FPU_IS_NNUMBER: lt = 1; break; case SIM_FPU_IS_PNUMBER: gt = 1; break; case SIM_FPU_IS_NDENORM: lt = 1; break; case SIM_FPU_IS_PDENORM: gt = 1; break; case SIM_FPU_IS_NZERO: case SIM_FPU_IS_PZERO: eq = 1; break; } switch (cmp) { case FPU_CMP_F: result = 0; break; case FPU_CMP_UN: result = 0; break; case FPU_CMP_EQ: result = eq; break; case FPU_CMP_UEQ: result = eq; break; case FPU_CMP_OLT: result = lt; break; case FPU_CMP_ULT: result = lt; break; case FPU_CMP_OLE: result = lt || eq; break; case FPU_CMP_ULE: result = lt || eq; break; case FPU_CMP_SF: result = 0; break; case FPU_CMP_NGLE: result = 0; break; case FPU_CMP_SEQ: result = eq; break; case FPU_CMP_NGL: result = eq; break; case FPU_CMP_LT: result = lt; break; case FPU_CMP_NGE: result = lt; break; case FPU_CMP_LE: result = lt || eq; break; case FPU_CMP_NGT: result = lt || eq; break; } } ASSERT (result != -1); return result; } void v850_div (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p) { signed long int quotient; signed long int remainder; signed long int divide_by; signed long int divide_this; bfd_boolean overflow = FALSE; /* Compute the result. */ divide_by = op0; divide_this = op1; if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31))) { overflow = TRUE; divide_by = 1; } quotient = divide_this / divide_by; remainder = divide_this % divide_by; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient < 0) PSW |= PSW_S; *op2p = quotient; *op3p = remainder; } void v850_divu (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p) { unsigned long int quotient; unsigned long int remainder; unsigned long int divide_by; unsigned long int divide_this; bfd_boolean overflow = FALSE; /* Compute the result. */ divide_by = op0; divide_this = op1; if (divide_by == 0) { overflow = TRUE; divide_by = 1; } quotient = divide_this / divide_by; remainder = divide_this % divide_by; /* Set condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV); if (overflow) PSW |= PSW_OV; if (quotient == 0) PSW |= PSW_Z; if (quotient & 0x80000000) PSW |= PSW_S; *op2p = quotient; *op3p = remainder; } void v850_sar (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) { unsigned int result, z, s, cy; op0 &= 0x1f; result = (signed)op1 >> op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 & (1 << (op0 - 1))); /* Store the result and condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); *op2p = result; } void v850_shl (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) { unsigned int result, z, s, cy; op0 &= 0x1f; result = op1 << op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 & (1 << (32 - op0))); /* Store the result and condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); *op2p = result; } void v850_rotl (SIM_DESC sd, unsigned int amount, unsigned int src, unsigned int * dest) { unsigned int result, z, s, cy; amount &= 0x1f; result = src << amount; result |= src >> (32 - amount); /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = ! (result & 1); /* Store the result and condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); * dest = result; } void v850_bins (SIM_DESC sd, unsigned int source, unsigned int lsb, unsigned int msb, unsigned int * dest) { unsigned int mask; unsigned int result, pos, width; unsigned int z, s; pos = lsb; width = (msb - lsb) + 1; mask = ~ (-1 << width); source &= mask; mask <<= pos; result = (* dest) & ~ mask; result |= source << pos; /* Compute the condition codes. */ z = (result == 0); s = result & 0x80000000; /* Store the result and condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV ); PSW |= (z ? PSW_Z : 0) | (s ? PSW_S : 0); * dest = result; } void v850_shr (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) { unsigned int result, z, s, cy; op0 &= 0x1f; result = op1 >> op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 & (1 << (op0 - 1))); /* Store the result and condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0)); *op2p = result; } void v850_satadd (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) { unsigned int result, z, s, cy, ov, sat; result = op0 + op1; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (result < op0 || result < op1); ov = ((op0 & 0x80000000) == (op1 & 0x80000000) && (op0 & 0x80000000) != (result & 0x80000000)); sat = ov; /* Store the result and condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | (sat ? PSW_SAT : 0)); /* Handle saturated results. */ if (sat && s) { result = 0x7fffffff; PSW &= ~PSW_S; } else if (sat) { result = 0x80000000; PSW |= PSW_S; } *op2p = result; } void v850_satsub (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) { unsigned int result, z, s, cy, ov, sat; /* Compute the result. */ result = op1 - op0; /* Compute the condition codes. */ z = (result == 0); s = (result & 0x80000000); cy = (op1 < op0); ov = ((op1 & 0x80000000) != (op0 & 0x80000000) && (op1 & 0x80000000) != (result & 0x80000000)); sat = ov; /* Store the result and condition codes. */ PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) | (sat ? PSW_SAT : 0)); /* Handle saturated results. */ if (sat && s) { result = 0x7fffffff; PSW &= ~PSW_S; } else if (sat) { result = 0x80000000; PSW |= PSW_S; } *op2p = result; } unsigned32 load_data_mem (SIM_DESC sd, SIM_ADDR addr, int len) { uint32 data; switch (len) { case 1: data = sim_core_read_unaligned_1 (STATE_CPU (sd, 0), PC, read_map, addr); break; case 2: data = sim_core_read_unaligned_2 (STATE_CPU (sd, 0), PC, read_map, addr); break; case 4: data = sim_core_read_unaligned_4 (STATE_CPU (sd, 0), PC, read_map, addr); break; default: abort (); } return data; } void store_data_mem (SIM_DESC sd, SIM_ADDR addr, int len, unsigned32 data) { switch (len) { case 1: store_mem (addr, 1, data); break; case 2: store_mem (addr, 2, data); break; case 4: store_mem (addr, 4, data); break; default: abort (); } } int mpu_load_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg) { int result = 1; if (PSW & PSW_DMP) { if (IPE0 && addr >= IPA2ADDR (IPA0L) && addr <= IPA2ADDR (IPA0L) && IPR0) { /* text area */ } else if (IPE1 && addr >= IPA2ADDR (IPA1L) && addr <= IPA2ADDR (IPA1L) && IPR1) { /* text area */ } else if (IPE2 && addr >= IPA2ADDR (IPA2L) && addr <= IPA2ADDR (IPA2L) && IPR2) { /* text area */ } else if (IPE3 && addr >= IPA2ADDR (IPA3L) && addr <= IPA2ADDR (IPA3L) && IPR3) { /* text area */ } else if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) { /* preifarallel area */ } else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU)) { /* stack area */ } else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPR0 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPR1 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPR2 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPR3 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else { VMECR &= ~(VMECR_VMW | VMECR_VMX); VMECR |= VMECR_VMR; VMADR = addr; VMTID = TID; FEIC = 0x431; PC = 0x30; SignalException (sd); result = 0; } } return result; } int mpu_store_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg) { int result = 1; if (PSW & PSW_DMP) { if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) { /* preifarallel area */ } else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU)) { /* stack area */ } else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPW0 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPW1 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPW2 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPW3 && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) { /* data area */ } else { if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) { FEIC = 0x432; VPTID = TID; VPADR = PC; #ifdef NOT_YET VIP_PP; VPECR; #endif } else { FEIC = 0x431; VMTID = TID; VMADR = VMECR; VMECR &= ~(VMECR_VMW | VMECR_VMX); VMECR |= VMECR_VMR; PC = 0x30; } result = 0; } } return result; }