#include #include "sysdep.h" #include "bfd.h" #include "v850_sim.h" enum interrupt_type { int_none, int_reset, int_nmi, int_intov1, int_intp10, int_intp11, int_intp12, int_intp13, int_intcm4, num_int_types }; enum interrupt_cond_type { int_cond_none, int_cond_pc, int_cond_time }; struct interrupt_generator { enum interrupt_type type; enum interrupt_cond_type cond_type; int number; int address; int time; int enabled; struct interrupt_generator *next; }; char *interrupt_names[] = { "", "reset", "nmi", "intov1", "intp10", "intp11", "intp12", "intp13", "intcm4", NULL }; struct interrupt_generator *intgen_list; /* True if a non-maskable (such as NMI or reset) interrupt generator is present. */ static int have_nm_generator; #ifndef INLINE #ifdef __GNUC__ #define INLINE inline #else #define INLINE #endif #endif /* These default values correspond to expected usage for the chip. */ SIM_ADDR rom_size = 0x8000; SIM_ADDR low_end = 0x200000; SIM_ADDR high_start = 0xffe000; SIM_ADDR high_base; host_callback *v850_callback; int v850_debug; /* non-zero if we opened prog_bfd */ static int prog_bfd_was_opened_p; bfd *prog_bfd; static SIM_OPEN_KIND sim_kind; static char *myname; uint32 OP[4]; static struct hash_entry *lookup_hash PARAMS ((uint32 ins)); static long hash PARAMS ((long)); static void do_format_1_2 PARAMS ((uint32)); static void do_format_3 PARAMS ((uint32)); static void do_format_4 PARAMS ((uint32)); static void do_format_5 PARAMS ((uint32)); static void do_format_6 PARAMS ((uint32)); static void do_format_7 PARAMS ((uint32)); static void do_format_8 PARAMS ((uint32)); static void do_format_9_10 PARAMS ((uint32)); static void init_system PARAMS ((void)); #define MAX_HASH 63 struct hash_entry { struct hash_entry *next; long opcode; long mask; struct simops *ops; }; struct hash_entry hash_table[MAX_HASH+1]; static INLINE long hash(insn) long insn; { if ( (insn & 0x0600) == 0 || (insn & 0x0700) == 0x0200 || (insn & 0x0700) == 0x0600 || (insn & 0x0780) == 0x0700) return (insn & 0x07e0) >> 5; if ((insn & 0x0700) == 0x0300 || (insn & 0x0700) == 0x0400 || (insn & 0x0700) == 0x0500) return (insn & 0x0780) >> 7; if ((insn & 0x07c0) == 0x0780) return (insn & 0x07c0) >> 6; return (insn & 0x07e0) >> 5; } static struct hash_entry * lookup_hash (ins) uint32 ins; { struct hash_entry *h; h = &hash_table[hash(ins)]; while ((ins & h->mask) != h->opcode) { if (h->next == NULL) { (*v850_callback->printf_filtered) (v850_callback, "ERROR looking up hash for 0x%x, PC=0x%x\n", ins, PC); exit(1); } h = h->next; } return (h); } /* FIXME These would more efficient to use than load_mem/store_mem, but need to be changed to use the memory map. */ uint8 get_byte (x) uint8 *x; { return *x; } uint16 get_half (x) uint8 *x; { uint8 *a = x; return (a[1] << 8) + (a[0]); } uint32 get_word (x) uint8 *x; { uint8 *a = x; return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]); } void put_byte (addr, data) uint8 *addr; uint8 data; { uint8 *a = addr; a[0] = data; } void put_half (addr, data) uint8 *addr; uint16 data; { uint8 *a = addr; a[0] = data & 0xff; a[1] = (data >> 8) & 0xff; } void put_word (addr, data) uint8 *addr; uint32 data; { uint8 *a = addr; a[0] = data & 0xff; a[1] = (data >> 8) & 0xff; a[2] = (data >> 16) & 0xff; a[3] = (data >> 24) & 0xff; } uint8 * map (addr) SIM_ADDR addr; { uint8 *p; /* Mask down to 24 bits. */ addr &= 0xffffff; if (addr < low_end) { /* "Mirror" the addresses below 1MB. */ if (addr < 0x100000) addr &= (rom_size - 1); else addr += (rom_size - 0x100000); return (uint8 *) (addr + State.mem); } else if (addr >= high_start) { /* If in the peripheral I/O region, mirror 1K region across 4K, and similarly if in the internal RAM region. */ if (addr >= 0xfff000) addr &= 0xfff3ff; else if (addr >= 0xffe000) addr &= 0xffe3ff; return (uint8 *) (addr - high_start + high_base + State.mem); } else { fprintf (stderr, "segmentation fault: access address: %x not below %x or above %x [ep = %x]\n", addr, low_end, high_start, State.regs[30]); /* Signal a memory error. */ State.exception = SIGSEGV; /* Point to a location not in main memory - renders invalid addresses harmless until we get back to main insn loop. */ return (uint8 *) &(State.dummy_mem); } } uint32 load_mem (addr, len) SIM_ADDR addr; int len; { uint8 *p = map (addr); switch (len) { case 1: return p[0]; case 2: return p[1] << 8 | p[0]; case 4: return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0]; default: abort (); } } void store_mem (addr, len, data) SIM_ADDR addr; int len; uint32 data; { uint8 *p = map (addr); switch (len) { case 1: p[0] = data; return; case 2: p[0] = data; p[1] = data >> 8; return; case 4: p[0] = data; p[1] = data >> 8; p[2] = data >> 16; p[3] = data >> 24; return; default: abort (); } } void sim_size (power) int power; { int totsize; if (State.mem) free (State.mem); totsize = rom_size + (low_end - 0x100000) + (0x1000000 - high_start); high_base = rom_size + (low_end - 0x100000); State.mem = (uint8 *) calloc (1, totsize); if (!State.mem) { (*v850_callback->printf_filtered) (v850_callback, "Allocation of main memory failed.\n"); exit (1); } } void sim_set_memory_map (spec) char *spec; { char *reststr, *nreststr; SIM_ADDR new_low_end, new_high_start; new_low_end = low_end; new_high_start = high_start; if (! strncmp (spec, "hole=", 5)) { new_low_end = sim_parse_number (spec + 5, &reststr); if (new_low_end < 0x100000) { (*v850_callback->printf_filtered) (v850_callback, "Low end must be at least 0x100000\n"); return; } if (*reststr == ',') { ++reststr; new_high_start = sim_parse_number (reststr, &nreststr); /* FIXME Check high_start also */ } (*v850_callback->printf_filtered) (v850_callback, "Hole goes from 0x%x to 0x%x\n", new_low_end, new_high_start); } else { (*v850_callback->printf_filtered) (v850_callback, "Invalid specification for memory map, must be `hole=[,]'\n"); } if (new_low_end != low_end || new_high_start != high_start) { low_end = new_low_end; high_start = new_high_start; if (State.mem) { (*v850_callback->printf_filtered) (v850_callback, "Reconfiguring memory (old contents will be lost)\n"); sim_size (1); } } } /* Parse a number in hex, octal, or decimal form. */ int sim_parse_number (str, rest) char *str, **rest; { if (str[0] == '0' && str[1] == 'x') return strtol (str, rest, 16); else if (str[0] == '0') return strtol (str, rest, 16); else return strtol (str, rest, 10); } static void init_system () { if (!State.mem) sim_size(1); } int sim_write (sd, addr, buffer, size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int i; init_system (); for (i = 0; i < size; i++) store_mem (addr + i, 1, buffer[i]); return size; } SIM_DESC sim_open (kind, cb, abfd, argv) SIM_OPEN_KIND kind; host_callback *cb; struct _bfd *abfd; char **argv; { struct simops *s; struct hash_entry *h; char **p; sim_kind = kind; myname = argv[0]; v850_callback = cb; if (argv != NULL) { for (p = argv + 1; *p; ++p) { #ifdef DEBUG if (strcmp (*p, "-t") == 0) v850_debug = DEBUG; else #endif (*v850_callback->printf_filtered) (v850_callback, "ERROR: unsupported option(s): %s\n",*p); } } /* put all the opcodes in the hash table */ for (s = Simops; s->func; s++) { h = &hash_table[hash(s->opcode)]; /* go to the last entry in the chain */ while (h->next) h = h->next; if (h->ops) { h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry)); h = h->next; } h->ops = s; h->mask = s->mask; h->opcode = s->opcode; } /* fudge our descriptor for now */ return (SIM_DESC) 1; } void sim_close (sd, quitting) SIM_DESC sd; int quitting; { if (prog_bfd != NULL && prog_bfd_was_opened_p) bfd_close (prog_bfd); } void sim_set_profile (n) int n; { (*v850_callback->printf_filtered) (v850_callback, "sim_set_profile %d\n", n); } void sim_set_profile_size (n) int n; { (*v850_callback->printf_filtered) (v850_callback, "sim_set_profile_size %d\n", n); } time_t start_time; static void do_interrupt PARAMS ((enum interrupt_type)); int sim_stop (sd) SIM_DESC sd; { return 0; } void sim_resume (sd, step, siggnal) SIM_DESC sd; int step, siggnal; { uint32 inst, opcode; reg_t oldpc; struct interrupt_generator *intgen; time_t now; if (step) State.exception = SIGTRAP; else State.exception = 0; time (&start_time); do { struct hash_entry * h; /* Fetch the current instruction. */ inst = RLW (PC); oldpc = PC; h = lookup_hash (inst); OP[0] = inst & 0x1f; OP[1] = (inst >> 11) & 0x1f; OP[2] = (inst >> 16) & 0xffff; OP[3] = inst; // fprintf (stderr, "PC = %x, SP = %x\n", PC, SP ); if (inst == 0) { fprintf (stderr, "NOP encountered!\n"); break; } PC += h->ops->func (); if (oldpc == PC) { fprintf (stderr, "simulator loop at %x\n", PC ); break; } /* Check for and handle pending interrupts. */ if (intgen_list && (have_nm_generator || !(PSW & PSW_ID))) { intgen = NULL; for (intgen = intgen_list; intgen != NULL; intgen = intgen->next) { if (intgen->cond_type == int_cond_pc && oldpc == intgen->address && intgen->enabled) { break; } else if (intgen->cond_type == int_cond_time && intgen->enabled) { time (&now); if (((long) now - (long) start_time) > intgen->time) { intgen->enabled = 0; break; } } } if (intgen) do_interrupt (intgen->type); } else if (State.pending_nmi) { State.pending_nmi = 0; do_interrupt (int_nmi); } } while (!State.exception); } static void do_interrupt (inttype) enum interrupt_type inttype; { /* Disable further interrupts. */ PSW |= PSW_ID; /* Indicate that we're doing interrupt not exception processing. */ PSW &= ~PSW_EP; if (inttype == int_reset) { PC = 0; PSW = 0x20; ECR = 0; /* (Might be useful to init other regs with random values.) */ } else if (inttype == int_nmi) { if (PSW & PSW_NP) { /* We're already working on an NMI, so this one must wait around until the previous one is done. The processor ignores subsequent NMIs, so we don't need to count them. */ State.pending_nmi = 1; } else { FEPC = PC; FEPSW = PSW; /* Set the FECC part of the ECR. */ ECR &= 0x0000ffff; ECR |= 0x10; PSW |= PSW_NP; PC = 0x10; } } else { EIPC = PC; EIPSW = PSW; /* Clear the EICC part of the ECR, will set below. */ ECR &= 0xffff0000; switch (inttype) { case int_intov1: PC = 0x80; ECR |= 0x80; break; case int_intp10: PC = 0x90; ECR |= 0x90; break; case int_intp11: PC = 0xa0; ECR |= 0xa0; break; case int_intp12: PC = 0xb0; ECR |= 0xb0; break; case int_intp13: PC = 0xc0; ECR |= 0xc0; break; case int_intcm4: PC = 0xd0; ECR |= 0xd0; break; default: /* Should never be possible. */ abort (); break; } } } int sim_trace (sd) SIM_DESC sd; { #ifdef DEBUG v850_debug = DEBUG; #endif sim_resume (sd, 0, 0); return 1; } void sim_info (sd, verbose) SIM_DESC sd; int verbose; { (*v850_callback->printf_filtered) (v850_callback, "sim_info\n"); } SIM_RC sim_create_inferior (sd, argv, env) SIM_DESC sd; char **argv; char **env; { return SIM_RC_OK; } void sim_set_callbacks (p) host_callback *p; { v850_callback = p; } /* All the code for exiting, signals, etc needs to be revamped. This is enough to get c-torture limping though. */ void sim_stop_reason (sd, reason, sigrc) SIM_DESC sd; enum sim_stop *reason; int *sigrc; { if (State.exception == SIG_V850_EXIT) { *reason = sim_exited; *sigrc = State.regs[7]; } else { *reason = sim_stopped; *sigrc = State.exception; } } void sim_fetch_register (sd, rn, memory) SIM_DESC sd; int rn; unsigned char *memory; { put_word (memory, State.regs[rn]); } void sim_store_register (sd, rn, memory) SIM_DESC sd; int rn; unsigned char *memory; { State.regs[rn] = get_word (memory); } int sim_read (sd, addr, buffer, size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int i; for (i = 0; i < size; i++) buffer[i] = load_mem (addr + i, 1); return size; } int current_intgen_number = 1; void sim_set_interrupt (spec) char *spec; { int i, num; char **argv; struct interrupt_generator *intgen, *tmpgen; extern char **buildargv (); argv = buildargv (spec); if (*argv && ! strcmp (*argv, "add")) { /* Create a new interrupt generator object. */ intgen = (struct interrupt_generator *) malloc (sizeof(struct interrupt_generator)); intgen->type = int_none; intgen->cond_type = int_cond_none; intgen->address = 0; intgen->time = 0; intgen->enabled = 0; ++argv; /* Match on interrupt type name. */ for (i = 0; i < num_int_types; ++i) { if (*argv && ! strcmp (*argv, interrupt_names[i])) { intgen->type = i; break; } } if (intgen->type == int_none) { (*v850_callback->printf_filtered) (v850_callback, "Interrupt type unknown; known types are\n"); for (i = 0; i < num_int_types; ++i) { (*v850_callback->printf_filtered) (v850_callback, " %s", interrupt_names[i]); } (*v850_callback->printf_filtered) (v850_callback, "\n"); free (intgen); return; } ++argv; intgen->address = 0; intgen->time = 0; if (*argv && ! strcmp (*argv, "pc")) { intgen->cond_type = int_cond_pc; ++argv; intgen->address = sim_parse_number (*argv, NULL); } else if (*argv && ! strcmp (*argv, "time")) { intgen->cond_type = int_cond_time; ++argv; intgen->time = sim_parse_number (*argv, NULL); } else { (*v850_callback->printf_filtered) (v850_callback, "Condition type must be `pc' or `time'.\n"); free (intgen); return; } /* We now have a valid interrupt generator. Number it and add to the list of generators. */ intgen->number = current_intgen_number++; intgen->enabled = 1; intgen->next = intgen_list; intgen_list = intgen; (*v850_callback->printf_filtered) (v850_callback, "Interrupt generator %d (NMI) at pc=0x%x, time=%d.\n", intgen_list->number, intgen_list->address, intgen_list->time); } else if (*argv && !strcmp (*argv, "remove")) { ++argv; num = sim_parse_number (*argv, NULL); tmpgen = NULL; if (intgen_list) { if (intgen_list->number == num) { tmpgen = intgen_list; intgen_list = intgen_list->next; } else { for (intgen = intgen_list; intgen != NULL; intgen = intgen->next) { if (intgen->next != NULL && intgen->next->number == num) { tmpgen = intgen->next; intgen->next = intgen->next->next; break; } } } if (tmpgen) free (tmpgen); else (*v850_callback->printf_filtered) (v850_callback, "No interrupt generator numbered %d, ignoring.\n", num); } } else if (*argv && !strcmp (*argv, "info")) { if (intgen_list) { for (intgen = intgen_list; intgen != NULL; intgen = intgen->next) (*v850_callback->printf_filtered) (v850_callback, "Interrupt generator %d (%s) at pc=0x%x/time=%d%s.\n", intgen->number, interrupt_names[intgen->type], intgen->address, intgen->time, (intgen->enabled ? "" : " (disabled)")); } else { (*v850_callback->printf_filtered) (v850_callback, "No interrupt generators defined.\n"); } } else { (*v850_callback->printf_filtered) (v850_callback, "Invalid interrupt command, must be one of `add', `remove', or `info'.\n"); } /* Cache the presence of a non-maskable generator. */ have_nm_generator = 0; for (intgen = intgen_list; intgen != NULL; intgen = intgen->next) { if (intgen->type == int_nmi || intgen->type == int_reset) { have_nm_generator = 1; break; } } } void sim_do_command (sd, cmd) SIM_DESC sd; char *cmd; { char *mm_cmd = "memory-map"; char *int_cmd = "interrupt"; if (! strncmp (cmd, mm_cmd, strlen (mm_cmd)) && strchr (" ", cmd[strlen(mm_cmd)])) sim_set_memory_map (cmd + strlen(mm_cmd) + 1); else if (! strncmp (cmd, int_cmd, strlen (int_cmd)) && strchr (" ", cmd[strlen(int_cmd)])) sim_set_interrupt (cmd + strlen(int_cmd) + 1); else if (! strcmp (cmd, "help")) { (*v850_callback->printf_filtered) (v850_callback, "V850 simulator commands:\n\n"); (*v850_callback->printf_filtered) (v850_callback, "interrupt add { pc | time } -- Set up an interrupt generator\n"); (*v850_callback->printf_filtered) (v850_callback, "interrupt remove -- Remove an existing interrupt generator\n"); (*v850_callback->printf_filtered) (v850_callback, "interrupt info -- List all the interrupt generators\n"); (*v850_callback->printf_filtered) (v850_callback, "memory-map hole=, -- Set the memory map to have a hole between and \n"); (*v850_callback->printf_filtered) (v850_callback, "\n"); } else (*v850_callback->printf_filtered) (v850_callback, "\"%s\" is not a valid V850 simulator command.\n", cmd); } SIM_RC sim_load (sd, prog, abfd, from_tty) SIM_DESC sd; char *prog; bfd *abfd; int from_tty; { extern bfd *sim_load_file (); /* ??? Don't know where this should live. */ if (prog_bfd != NULL && prog_bfd_was_opened_p) bfd_close (prog_bfd); prog_bfd = sim_load_file (sd, myname, v850_callback, prog, abfd, sim_kind == SIM_OPEN_DEBUG); if (prog_bfd == NULL) return SIM_RC_FAIL; PC = bfd_get_start_address (prog_bfd); prog_bfd_was_opened_p = abfd == NULL; return SIM_RC_OK; }