# mach: bfin // FIR FILTER COMPTUED DIRECTLY ON INPUT WITH NO // INTERNAL STATE // TWO OUTPUTS PER ITERATION // This program computes a FIR filter without maintaining a buffer of internal // state. // This example computes two output samples per inner loop. The following // diagram shows the alignment required for signal x and coefficients c: // x0 x1 x2 x3 x4 x5 // c0 c1 c2 c3 c4 -> output z(0)=x0*c0 + x1*c1 + ... // c0 c1 c2 c3 c4 -> z(1)=x1*c0 + x2*c1 + ... // L-1 // --- // Z(k) = \ c(n) * x(n+k) // / // --- // n=0 // Naive, first stab at spliting this for dual MACS. // L/2-1 L/2-1 // --- --- // R(k) = \ (x(2n) * y(2n+k)) + \ (x(2n-1) * y(2n-1+k)) // / / // --- --- // n=0 n=0 // Alternate, better partitioning for the machine. // L-1 // --- // R(0) = \ x(n) * y(n) // / // --- // n=0 // L-1 // --- // R(1) = \ x(n) * y(n+1) // / // --- // n=0 // L-1 // --- // R(2) = \ x(n) * y(n+2) // / // --- // n=0 // L-1 // --- // R(3) = \ x(n) * y(n+3) // / // --- // n=0 // . // . // . // . // Okay in this verion the inner loop will compute R(2k) and R(2k+1) in parallel // L-1 // --- // R(2k) = \ x(n) * y(n+2k) // / // --- // n=0 // L-1 // --- // R(2k+1) = \ x(n) * y(n+2k+1) // / // --- // n=0 // Implementation // -------------- // Sample pair x1 x0 is loaded into register R0, and coefficients c1 c0 // is loaded into register R1: // +-------+ R0 // | x1 x0 | // +-------+ // +-------+ R1 // | c1 c0 | compute two MACs: z(0)+=x0*c0, and z(1)+=x1*c0 // +-------+ // Now load x2 into lo half of R0, and compute the next two MACs: // +-------+ R0 // | x1 x2 | // +-------+ // +-------+ R1 // | c1 c0 | compute z(0)+=x1*c1 and z(1)+=x2*c1 (c0 not used) // +-------+ // Meanwhile, load coefficient pair c3 c2 into R2, and x3 into hi half of R0: // +-------+ R0 // | x3 x2 | // +-------+ // +-------+ R2 // | c3 c2 | compute z(0)+=x2*c2 and z(1)+=x3*c2 (c3 not used) // +-------+ // Load x4 into low half of R0: // +-------+ R0 // | x3 x4 | // +-------+ // +-------+ R1 // | c3 c2 | compute z(0)+=x3*c3 and z(1)+=x4*c3 (c2 not used) // +-------+ // //This is a reference FIR function used to test: */ //void firf (float input[], float output[], float coeffs[], // long input_size, long coeffs_size) //{ // long i, k; // for(i=0; i< input_size; i++){ // output[i] = 0; // for(k=0; k < coeffs_size; k++) // output[i] += input[k+i] * coeffs[k]; // } //} .include "testutils.inc" start R0 = 0; R1 = 0; R2 = 0; P1 = 128 (X); // Load loop bounds in R5, R6, and divide by 2 P2 = 64 (X); // P0 holds pointer to input data in one memory // bank. Increments by 2 after each inner-loop iter loadsym P0, input; // Pointer to coeffs in alternate memory bank. loadsym I1, coef; // Pointer to outputs in any memory bank. loadsym I2, output; // Setup outer do-loop for M/2 iterations // (2 outputs are computed per pass) LSETUP ( L$0 , L$0end ) LC0 = P1 >> 1; L$0: loadsym I1, coef; I0 = P0; // Set-up inner do-loop for L/2 iterations // (2 MACs are computed per pass) LSETUP ( L$1 , L$1end ) LC1 = P2 >> 1; // Load first two data elements in r0, // and two coeffs into r1: R0.L = W [ I0 ++ ]; A1 = A0 = 0 || R0.H = W [ I0 ++ ] || R1 = [ I1 ++ ]; L$1: A1 += R0.H * R1.L, A0 += R0.L * R1.L || R0.L = W [ I0 ++ ] || NOP; L$1end: A1 += R0.L * R1.H, A0 += R0.H * R1.H || R0.H = W [ I0 ++ ] || R1 = [ I1 ++ ]; // Line 1: do 2 MACs and load next data element into RL0. // Line 2: do 2 MACs, load next data element into RH0, // and load next 2 coeffs R0.H = A1, R0.L = A0; // advance data pointer by 2 16b elements P0 += 4; L$0end: [ I2 ++ ] = R0; // store 2 outputs // Check results loadsym I2, output; R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x0800 ); R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x1000 ); R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x2000 ); R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x1000 ); R0.L = W [ I2 ++ ]; DBGA ( R0.L , 0x0800 ); pass .data input: .dw 0x0000 .dw 0x0000 .dw 0x0000 .dw 0x0000 .dw 0x4000 .dw 0x0000 .dw 0x0000 .dw 0x0000 .dw 0x0000 .dw 0x0000 .space ((128-10)*2); // must pad with zeros or uninitialized values. .data coef: .dw 0x1000 .dw 0x2000 .dw 0x4000 .dw 0x2000 .dw 0x1000 .dw 0x0000 .space ((64-6)*2); // must pad with zeros or uninitialized values. .data output: .space (128*4)