/* This file is part of the program psim. Copyright (C) 1994-1995, Andrew Cagney This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _DEVICE_TABLE_C_ #define _DEVICE_TABLE_C_ #ifndef STATIC_INLINE_DEVICE_TABLE #define STATIC_INLINE_DEVICE_TABLE STATIC_INLINE #endif #include #include #include #include #include #include "device_table.h" #include "events.h" #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STRING_H #include #else #ifdef HAVE_STRINGS_H #include #endif #endif #include "cpu.h" #include "bfd.h" /* Helper functions */ /* Generic device init: Attaches the device of size (taken from @,) to its parent at address zero and with read/write access. */ STATIC_INLINE_DEVICE_TABLE void generic_init_callback(device *me, psim *system) { unsigned_word addr; unsigned nr_bytes; if (scand_uw_u(device_name(me), &addr, &nr_bytes) != 2) error("generic_init_callback() invalid nr_bytes in %s\n", device_name(me)); device_attach_address(device_parent(me), device_name(me), attach_callback, 0 /*space*/, addr, nr_bytes, access_read_write, me); } /* DMA a file into memory */ STATIC_INLINE_DEVICE_TABLE int dma_file(device *me, const char *file_name, unsigned_word addr) { int count; int inc; FILE *image; char buf[1024]; /* get it open */ image = fopen(file_name, "r"); if (image == NULL) return -1; /* read it in slowly */ count = 0; while (1) { inc = fread(buf, 1, sizeof(buf), image); if (feof(image) || ferror(image)) break; if (device_dma_write_buffer(device_parent(me), buf, 0 /*address-space*/, addr+count, inc /*nr-bytes*/, 1 /*violate ro*/) != inc) { fclose(image); return -1; } count += inc; } /* close down again */ fclose(image); return count; } /* inimplemented versions of each function */ void unimp_device_init(device *me, psim *system) { error("device_init_callback for %s not implemented\n", device_name(me)); } void unimp_device_attach_address(device *me, const char *name, attach_type type, int space, unsigned_word addr, unsigned nr_bytes, access_type access, device *who) /*callback/default*/ { error("device_attach_address_callback for %s not implemented\n", device_name(me)); } void unimp_device_detach_address(device *me, const char *name, attach_type type, int space, unsigned_word addr, unsigned nr_bytes, access_type access, device *who) /*callback/default*/ { error("device_detach_address_callback for %s not implemented\n", device_name(me)); } unsigned unimp_device_io_read_buffer(device *me, void *dest, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { error("device_io_read_buffer_callback for %s not implemented\n", device_name(me)); return 0; } unsigned unimp_device_io_write_buffer(device *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { error("device_io_write_buffer_callback for %s not implemented\n", device_name(me)); return 0; } unsigned unimp_device_dma_read_buffer(device *me, void *target, int space, unsigned_word addr, unsigned nr_bytes) { error("device_dma_read_buffer_callback for %s not implemented\n", device_name(me)); return 0; } unsigned unimp_device_dma_write_buffer(device *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, int violate_read_only_section) { error("device_dma_write_buffer_callback for %s not implemented\n", device_name(me)); return 0; } void unimp_device_attach_interrupt(device *me, device *who, int interrupt_line, const char *name) { error("device_attach_interrupt_callback for %s not implemented\n", device_name(me)); } void unimp_device_detach_interrupt(device *me, device *who, int interrupt_line, const char *name) { error("device_detach_interrupt_callback for %s not implemented\n", device_name(me)); } void unimp_device_interrupt(device *me, device *who, int interrupt_line, int interrupt_status, cpu *processor, unsigned_word cia) { error("device_interrupt_callback for %s not implemented\n", device_name(me)); } void unimp_device_interrupt_ack(device *me, int interrupt_line, int interrupt_status) { error("device_interrupt_ack_callback for %s not implemented\n", device_name(me)); } void unimp_device_ioctl(device *me, psim *system, cpu *processor, unsigned_word cia, va_list ap) { error("device_ioctl_callback for %s not implemented\n", device_name(me)); } /* ignore/passthrough versions of each function */ void ignore_device_init(device *me, psim *system) { /*null*/ } void passthrough_device_attach_address(device *me, const char *name, attach_type attach, int space, unsigned_word addr, unsigned nr_bytes, access_type access, device *who) /*callback/default*/ { device_attach_address(device_parent(me), name, attach, space, addr, nr_bytes, access, who); } void passthrough_device_detach_address(device *me, const char *name, attach_type attach, int space, unsigned_word addr, unsigned nr_bytes, access_type access, device *who) /*callback/default*/ { device_detach_address(device_parent(me), name, attach, space, addr, nr_bytes, access, who); } unsigned passthrough_device_dma_read_buffer(device *me, void *dest, int space, unsigned_word addr, unsigned nr_bytes) { return device_dma_read_buffer(device_parent(me), dest, space, addr, nr_bytes); } unsigned passthrough_device_dma_write_buffer(device *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, int violate_read_only_section) { return device_dma_write_buffer(device_parent(me), source, space, addr, nr_bytes, violate_read_only_section); } void passthrough_device_attach_interrupt(device *me, device *who, int interrupt_line, const char *name) { device_attach_interrupt(device_parent(me), who, interrupt_line, name); } void passthrough_device_detach_interrupt(device *me, device *who, int interrupt_line, const char *name) { device_detach_interrupt(device_parent(me), who, interrupt_line, name); } void passthrough_device_interrupt(device *me, device *who, int interrupt_line, int interrupt_status, cpu *processor, unsigned_word cia) { device_interrupt(device_parent(me), who, interrupt_line, interrupt_status, processor, cia); } static const device_callbacks passthrough_callbacks = { ignore_device_init, passthrough_device_attach_address, passthrough_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, passthrough_device_dma_read_buffer, passthrough_device_dma_write_buffer, passthrough_device_attach_interrupt, passthrough_device_detach_interrupt, passthrough_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* Simple console device: console@
,16 Input characters are taken from the keyboard, output characters sent to the terminal. Echoing of characters is not disabled. The device has four registers: 0x0: read 0x4: read-status 0x8: write 0xC: write-status Where a nonzero status register indicates that the device is ready (input fifo contains a character or output fifo has space). */ typedef struct _console_buffer { char buffer; int status; event_entry_tag event_tag; } console_buffer; typedef struct _console_device { console_buffer input; console_buffer output; } console_device; typedef enum { console_read_buffer = 0, console_read_status = 4, console_write_buffer = 8, console_write_status = 12, console_offset_mask = 0xc, console_size = 16, } console_offsets; static unsigned console_io_read_buffer_callback(device *me, void *dest, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { console_device *console = (console_device*)device_data(me); unsigned_1 val; /* determine what was read */ switch ((int)addr) { case console_read_buffer: val = console->input.buffer; break; case console_read_status: { /* check for input */ int flags; int status; /* get the old status */ flags = fcntl(0, F_GETFL, 0); if (flags == -1) { perror("console"); val = 0; break; } /* temp, disable blocking IO */ status = fcntl(0, F_SETFL, flags | O_NDELAY); if (status == -1) { perror("console"); val = 0; break; } /* try for input */ status = read(0, &console->input.buffer, 1); if (status == 1) { console->input.status = 1; } else { console->input.status = 0; } /* return to regular vewing */ fcntl(0, F_SETFL, flags); } val = console->input.status; break; case console_write_buffer: val = console->output.buffer; break; case console_write_status: val = console->output.status; break; default: error("console_read_callback() internal error\n"); val = 0; break; } memset(dest, 0, nr_bytes); *(unsigned_1*)dest = val; return nr_bytes; } static unsigned console_io_write_buffer_callback(device *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { console_device *console = (console_device*)device_data(me); unsigned_1 val = *(unsigned_1*)source; switch ((int)addr) { case console_read_buffer: console->input.buffer = val; break; case console_read_status: console->input.status = val; break; case console_write_buffer: DTRACE(console, ("<%c:%d>", val, val)); printf_filtered("%c",val) ; console->output.buffer = val; console->output.status = 1; break; case console_write_status: console->output.status = val; break; default: error("console_write_callback() internal error\n"); } return nr_bytes; } static device_callbacks const console_callbacks = { generic_init_callback, unimp_device_attach_address, unimp_device_detach_address, console_io_read_buffer_callback, console_io_write_buffer_callback, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; static void * console_create(const char *name, device *parent) { /* create the descriptor */ console_device *console = ZALLOC(console_device); console->output.status = 1; console->output.buffer = '\0'; console->input.status = 0; console->input.buffer = '\0'; return console; } /* ICU device: icu@0x
,4 Single 4 byte register. Read returns processor number. Write interrupts specified processor. Illustrates passing of events to parent device. Passing of interrupts to parent bus. NB: For the sake of illustrating the passing of interrupts. This device doesn't pass interrupt events to its parent. Instead it passes them back to its self. */ static unsigned icu_io_read_buffer_callback(device *me, void *dest, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { unsigned_1 val; val = cpu_nr(processor); memset(dest, 0, nr_bytes); *(unsigned_1*)dest = val; return nr_bytes; } static unsigned icu_io_write_buffer_callback(device *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { unsigned_1 val = H2T_1(*(unsigned_1*)source); /* tell the parent device that the interrupt lines have changed. For this fake ICU. The interrupt lines just indicate the cpu to interrupt next */ device_interrupt(device_parent(me), me, val, val, processor, cia); return nr_bytes; } static device_callbacks const icu_callbacks = { generic_init_callback, unimp_device_attach_address, unimp_device_detach_address, icu_io_read_buffer_callback, icu_io_write_buffer_callback, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* HALT device: halt@0x
,4 With real hardware, the processor operation is normally terminated through a reset. This device illustrates how a reset device could be attached to an address */ static unsigned halt_io_read_buffer_callback(device *me, void *dest, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { cpu_halt(processor, cia, was_exited, 0); return 0; } static unsigned halt_io_write_buffer_callback(device *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { cpu_halt(processor, cia, was_exited, *(unsigned_1*)source); return 0; } static device_callbacks const halt_callbacks = { generic_init_callback, unimp_device_attach_address, unimp_device_detach_address, halt_io_read_buffer_callback, halt_io_write_buffer_callback, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* Register init device: register Properties attached to the register device specify the name/value initialization pair for cpu registers. FIXME: A specific processor can be initialized by creating a property with a name like `0.pc'. */ static void register_init(device *me, const char *name, void *data) { psim *system = (psim*)data; unsigned32 value = device_find_integer_property(me, name); int processor; if (isdigit(name[0]) && name[1] == '.') { processor = atol(name); name += 2; DTRACE(register, ("%d.%s=0x%lx\n", processor, name, (unsigned long)value)); } else { processor = -1; DTRACE(register, ("%s=0x%lx\n", name, (unsigned long)value)); } psim_write_register(system, processor, /* all processors */ &value, name, cooked_transfer); } static void register_init_callback(device *me, psim *system) { device_traverse_properties(me, register_init, system); } static device_callbacks const register_callbacks = { register_init_callback, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* VEA VM device: vm@0x, A VEA mode device. This sets its self up as the default memory device capturing all accesses (reads/writes) to currently unmapped addresses. If the unmaped access falls within unallocated stack or heap address ranges then memory is allocated and the access is allowed to continue. During init phase, this device expects to receive `attach' requests from its children for the text/data/bss memory areas. Typically, this would be done by the binary device. STACK: The location of the stack in memory is specified as part of the devices name. Unmaped accesses that fall within the stack space result in the allocated stack being grown downwards so that it includes the page of the culprit access. HEAP: During initialization, the vm device monitors all `attach' operations from its children using this to determine the initial location of the heap. The heap is then extended by system calls that frob the heap upper bound variable (see system.c). */ typedef struct _vm_device { /* area of memory valid for stack addresses */ unsigned_word stack_base; /* min possible stack value */ unsigned_word stack_bound; unsigned_word stack_lower_limit; /* area of memory valid for heap addresses */ unsigned_word heap_base; unsigned_word heap_bound; unsigned_word heap_upper_limit; } vm_device; static void vm_init_callback(device *me, psim *system) { vm_device *vm = (vm_device*)device_data(me); /* revert the stack/heap variables to their defaults */ vm->stack_lower_limit = vm->stack_bound; vm->heap_base = 0; vm->heap_bound = 0; vm->heap_upper_limit = 0; /* establish this device as the default memory handler */ device_attach_address(device_parent(me), device_name(me), attach_default, 0 /*address space - ignore*/, 0 /*addr - ignore*/, 0 /*nr_bytes - ignore*/, access_read_write /*access*/, me); } static void vm_attach_address(device *me, const char *name, attach_type attach, int space, unsigned_word addr, unsigned nr_bytes, access_type access, device *who) /*callback/default*/ { vm_device *vm = (vm_device*)device_data(me); /* update end of bss if necessary */ if (vm->heap_base < addr + nr_bytes) { vm->heap_base = addr + nr_bytes; vm->heap_bound = addr + nr_bytes; vm->heap_upper_limit = addr + nr_bytes; } device_attach_address(device_parent(me), "vm@0x0,0", /* stop remap */ attach_raw_memory, 0 /*address space*/, addr, nr_bytes, access, me); } STATIC_INLINE_DEVICE_TABLE unsigned add_vm_space(device *me, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { vm_device *vm = (vm_device*)device_data(me); unsigned_word block_addr; unsigned block_nr_bytes; /* an address in the stack area, allocate just down to the addressed page */ if (addr >= vm->stack_base && addr < vm->stack_lower_limit) { block_addr = FLOOR_PAGE(addr); block_nr_bytes = vm->stack_lower_limit - block_addr; vm->stack_lower_limit = block_addr; } /* an address in the heap area, allocate all of the required heap */ else if (addr >= vm->heap_upper_limit && addr < vm->heap_bound) { block_addr = vm->heap_upper_limit; block_nr_bytes = vm->heap_bound - vm->heap_upper_limit; vm->heap_upper_limit = vm->heap_bound; } /* oops - an invalid address - abort the cpu */ else if (processor != NULL) { cpu_halt(processor, cia, was_signalled, SIGSEGV); return 0; } /* 2*oops - an invalid address and no processor */ else { return 0; } /* got the parameters, allocate the space */ device_attach_address(device_parent(me), "vm@0x0,0", /* stop remap */ attach_raw_memory, 0 /*address space*/, block_addr, block_nr_bytes, access_read_write, me); return block_nr_bytes; } static unsigned vm_io_read_buffer_callback(device *me, void *dest, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { if (add_vm_space(me, addr, nr_bytes, processor, cia) >= nr_bytes) { memset(dest, 0, nr_bytes); /* always initialized to zero */ return nr_bytes; } else return 0; } static unsigned vm_io_write_buffer_callback(device *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, cpu *processor, unsigned_word cia) { if (add_vm_space(me, addr, nr_bytes, processor, cia) >= nr_bytes) { return device_dma_write_buffer(device_parent(me), source, space, addr, nr_bytes, 0/*violate_read_only*/); } else return 0; } static void vm_ioctl_callback(device *me, psim *system, cpu *processor, unsigned_word cia, va_list ap) { /* While the caller is notified that the heap has grown by the requested amount, the heap is infact extended out to a page boundary. */ vm_device *vm = (vm_device*)device_data(me); unsigned_word new_break = ALIGN_8(cpu_registers(processor)->gpr[3]); unsigned_word old_break = vm->heap_bound; signed_word delta = new_break - old_break; if (delta > 0) vm->heap_bound = ALIGN_PAGE(new_break); cpu_registers(processor)->gpr[0] = 0; cpu_registers(processor)->gpr[3] = new_break; } static device_callbacks const vm_callbacks = { vm_init_callback, vm_attach_address, passthrough_device_detach_address, vm_io_read_buffer_callback, vm_io_write_buffer_callback, unimp_device_dma_read_buffer, passthrough_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, vm_ioctl_callback, }; static void * vea_vm_create(const char *name, device *parent) { vm_device *vm = ZALLOC(vm_device); unsigned_word addr; unsigned nr_bytes; /* extract out the stack parameters */ if (scand_uw_u(name, &addr, &nr_bytes) != 2) error("vm_device_create() invalid vm device %s\n", name); vm->stack_base = addr; vm->stack_bound = addr + nr_bytes; return vm; } /* Memory init device: memory@0x,, This strange device is used create sections of memory */ static void memory_init_callback(device *me, psim *system) { unsigned_word addr; unsigned nr_bytes; unsigned access; int nr_args; nr_args = scand_uw_u_u(device_name(me), &addr, &nr_bytes, &access); switch (nr_args) { case 2: access = access_read_write_exec; break; case 3: break; default: error("memory_init_callback() invalid memory device %s\n", device_name(me)); break; } device_attach_address(device_parent(me), device_name(me), attach_raw_memory, 0 /*address space*/, addr, nr_bytes, (access_type)access, me); } static device_callbacks const memory_callbacks = { memory_init_callback, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* IOBUS device: iobus@
Simple bus on which some IO devices live */ static void iobus_attach_address_callback(device *me, const char *name, attach_type type, int space, unsigned_word addr, unsigned nr_bytes, access_type access, device *who) /*callback/default*/ { unsigned_word iobus_addr; /* sanity check */ if (type == attach_default) error("iobus_attach_address_callback() no default for %s/%s\n", device_name(me), name); if (space != 0) error("iobus_attach_address_callback() no space for %s/%s\n", device_name(me), name); /* get the bus address */ if (scand_uw(device_name(me), &iobus_addr) != 1) error("iobus_attach_address_callback() invalid address for %s\n", device_name(me)); device_attach_address(device_parent(me), device_name(me), type, 0 /*space*/, iobus_addr + addr, nr_bytes, access, who); } STATIC_INLINE_DEVICE_TABLE void iobus_do_interrupt(event_queue *queue, void *data) { cpu *target = (cpu*)data; /* try to interrupt the processor. If the attempt fails, try again on the next tick */ if (!external_interrupt(target)) event_queue_schedule(queue, 1, iobus_do_interrupt, target); } static void iobus_interrupt_callback(device *me, device *who, int interrupt_line, int interrupt_status, cpu *processor, unsigned_word cia) { /* the interrupt controler can't interrupt a cpu at any time. Rather it must synchronize with the system clock before performing an interrupt on the given processor */ psim *system = cpu_system(processor); cpu *target = psim_cpu(system, interrupt_status); if (target != NULL) { event_queue *events = cpu_event_queue(target); event_queue_schedule(events, 1, iobus_do_interrupt, target); } } static device_callbacks const iobus_callbacks = { ignore_device_init, iobus_attach_address_callback, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, iobus_interrupt_callback, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* FILE device: file@0x
, (later - file@0x
,,,) Specifies a file to read directly into memory starting at
*/ static void file_init_callback(device *me, psim *system) { unsigned_word addr; int count; char file_name[1024]; if (scand_uw_c(device_name(me), &addr, file_name, sizeof(file_name)) != 2) error("devices/file - Usage: file@
,\n"); /* load the file */ count = dma_file(me, file_name, addr); if (count < 0) error("device_table/%s - Problem loading file %s\n", device_name(me), file_name); } static device_callbacks const file_callbacks = { file_init_callback, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* DATA device: data@
,, Store at
using size transfer */ static void data_init_callback(device *me, psim *system) { unsigned_word addr; unsigned count; unsigned value; union { unsigned_1 v1; unsigned_2 v2; unsigned_4 v4; unsigned_8 v8; } buf; if (scand_uw_u_u(device_name(me), &addr, &count, &value) != 3) error("devices/data - Usage: data@
,,\n"); /* store the data value */ switch (count) { case 1: buf.v1 = H2T_1(value); break; case 2: buf.v2 = H2T_2(value); break; case 4: buf.v4 = H2T_4(value); break; case 8: buf.v8 = H2T_8(value); break; } if (device_dma_write_buffer(device_parent(me), &buf, 0 /*address-space*/, addr, count, /*nr-bytes*/ 1 /*violate ro*/) != count) { error("devices/%s - Problem storing 0x%x at 0x%lx\n", device_name(me), value, (long)addr); } } static device_callbacks const data_callbacks = { data_init_callback, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* HTAB: htab@
, PTE: pte@,,,, PTE: pte@,,, HTAB defines the location (in physical memory) of a HASH table. PTE (as a child of HTAB) defines a mapping that is to be entered into that table. NB: All the work in this device is done during init by the PTE. The pte, looks up its parent to determine the address of the HTAB and then uses DMA calls to establish the required mapping. */ STATIC_INLINE_DEVICE_TABLE void htab_decode_hash_table(device *parent, unsigned32 *htaborg, unsigned32 *htabmask) { unsigned_word htab_ra; unsigned htab_nr_bytes; unsigned n; /* determine the location/size of the hash table */ if (parent == NULL || strncmp(device_name(parent), "htab@", strlen("htab@")) != 0) error("devices/htab - missing htab device\n"); if (scand_uw_u(device_name(parent), &htab_ra, &htab_nr_bytes) != 2) error("devices/%s - Usage: htab@,\n", device_name(parent)); for (n = htab_nr_bytes; n > 1; n = n / 2) { if (n % 2 != 0) error("devices/%s - htab size 0x%x not a power of two\n", device_name(parent), htab_nr_bytes); } *htaborg = htab_ra; *htabmask = MASKED32(htab_nr_bytes - 1, 7, 31-6); if ((htab_ra & INSERTED32(*htabmask, 7, 15)) != 0) { error("devices/%s - htaborg 0x%x not aligned to htabmask 0x%x\n", device_name(parent), *htaborg, *htabmask); } DTRACE(htab, ("htab - htaborg=0x%lx htabmask=0x%lx\n", (unsigned long)*htaborg, (unsigned long)*htabmask)); } STATIC_INLINE void htab_map_page(device *me, unsigned_word ra, unsigned64 va, unsigned wimg, unsigned pp, unsigned32 htaborg, unsigned32 htabmask) { unsigned64 vpn = va << 12; unsigned32 vsid = INSERTED32(EXTRACTED64(vpn, 0, 23), 0, 23); unsigned32 page = INSERTED32(EXTRACTED64(vpn, 24, 39), 0, 15); unsigned32 hash = INSERTED32(EXTRACTED32(vsid, 5, 23) ^ EXTRACTED32(page, 0, 15), 7, 31-6); int h; for (h = 0; h < 2; h++) { unsigned32 pteg = (htaborg | (hash & htabmask)); int pti; for (pti = 0; pti < 8; pti++, pteg += 8) { unsigned32 current_target_pte0; unsigned32 current_pte0; if (device_dma_read_buffer(device_parent(me), ¤t_target_pte0, 0, /*space*/ pteg, sizeof(current_target_pte0)) != 4) error("htab_init_callback() failed to read a pte at 0x%x\n", pteg); current_pte0 = T2H_4(current_target_pte0); if (!MASKED32(current_pte0, 0, 0)) { /* empty pte fill it */ unsigned32 pte0 = (MASK32(0, 0) | INSERTED32(EXTRACTED32(vsid, 0, 23), 1, 24) | INSERTED32(h, 25, 25) | INSERTED32(EXTRACTED32(page, 0, 5), 26, 31)); unsigned32 target_pte0 = H2T_4(pte0); unsigned32 pte1 = (INSERTED32(EXTRACTED32(ra, 0, 19), 0, 19) | INSERTED32(wimg, 25, 28) | INSERTED32(pp, 30, 31)); unsigned32 target_pte1 = H2T_4(pte1); if (device_dma_write_buffer(device_parent(me), &target_pte0, 0, /*space*/ pteg, sizeof(target_pte0), 1/*ro?*/) != 4 || device_dma_write_buffer(device_parent(me), &target_pte1, 0, /*space*/ pteg + 4, sizeof(target_pte1), 1/*ro?*/) != 4) error("htab_init_callback() failed to write a pte a 0x%x\n", pteg); DTRACE(htab, ("map - va=0x%lx ra=0x%lx &pte0=0x%lx pte0=0x%lx pte1=0x%lx\n", (unsigned long)va, (unsigned long)ra, (unsigned long)pteg, (unsigned long)pte0, (unsigned long)pte1)); return; } } /* re-hash */ hash = MASKED32(~hash, 0, 18); } } STATIC_INLINE_DEVICE_TABLE void htab_map_region(device *me, unsigned_word pte_ra, unsigned_word pte_va, unsigned nr_bytes, unsigned wimg, unsigned pp, unsigned32 htaborg, unsigned32 htabmask) { unsigned_word ra; unsigned64 va; /* go through all pages and create a pte for each */ for (ra = pte_ra, va = (signed_word)pte_va; ra < pte_ra + nr_bytes; ra += 0x1000, va += 0x1000) { htab_map_page(me, ra, va, wimg, pp, htaborg, htabmask); } } typedef struct _htab_binary_sizes { unsigned_word text_ra; unsigned_word text_base; unsigned_word text_bound; unsigned_word data_ra; unsigned_word data_base; unsigned data_bound; device *me; } htab_binary_sizes; STATIC_INLINE_DEVICE_TABLE void htab_sum_binary(bfd *abfd, sec_ptr sec, PTR data) { htab_binary_sizes *sizes = (htab_binary_sizes*)data; unsigned_word size = bfd_get_section_size_before_reloc (sec); unsigned_word vma = bfd_get_section_vma (abfd, sec); /* skip the section if no memory to allocate */ if (! (bfd_get_section_flags(abfd, sec) & SEC_ALLOC)) return; if ((bfd_get_section_flags (abfd, sec) & SEC_CODE) || (bfd_get_section_flags (abfd, sec) & SEC_READONLY)) { if (sizes->text_bound < vma + size) sizes->text_bound = ALIGN_PAGE(vma + size); if (sizes->text_base > vma) sizes->text_base = FLOOR_PAGE(vma); } else if ((bfd_get_section_flags (abfd, sec) & SEC_DATA) || (bfd_get_section_flags (abfd, sec) & SEC_ALLOC)) { if (sizes->data_bound < vma + size) sizes->data_bound = ALIGN_PAGE(vma + size); if (sizes->data_base > vma) sizes->data_base = FLOOR_PAGE(vma); } } STATIC_INLINE_DEVICE_TABLE void htab_dma_binary(bfd *abfd, sec_ptr sec, PTR data) { htab_binary_sizes *sizes = (htab_binary_sizes*)data; void *section_init; unsigned_word section_vma; unsigned_word section_size; unsigned_word section_ra; device *me = sizes->me; /* skip the section if no memory to allocate */ if (! (bfd_get_section_flags(abfd, sec) & SEC_ALLOC)) return; /* check/ignore any sections of size zero */ section_size = bfd_get_section_size_before_reloc(sec); if (section_size == 0) return; /* if nothing to load, ignore this one */ if (! (bfd_get_section_flags(abfd, sec) & SEC_LOAD)) return; /* find where it is to go */ section_vma = bfd_get_section_vma(abfd, sec); section_ra = 0; if ((bfd_get_section_flags (abfd, sec) & SEC_CODE) || (bfd_get_section_flags (abfd, sec) & SEC_READONLY)) section_ra = (section_vma - sizes->text_base + sizes->text_ra); else if ((bfd_get_section_flags (abfd, sec) & SEC_DATA)) section_ra = (section_vma - sizes->data_base + sizes->data_ra); else return; /* just ignore it */ DTRACE(htab, ("load - name=%-7s vma=0x%.8lx size=%6ld ra=0x%.8lx flags=%3lx(%s%s%s%s%s )\n", bfd_get_section_name(abfd, sec), (long)section_vma, (long)section_size, (long)section_ra, (long)bfd_get_section_flags(abfd, sec), bfd_get_section_flags(abfd, sec) & SEC_LOAD ? " LOAD" : "", bfd_get_section_flags(abfd, sec) & SEC_CODE ? " CODE" : "", bfd_get_section_flags(abfd, sec) & SEC_DATA ? " DATA" : "", bfd_get_section_flags(abfd, sec) & SEC_ALLOC ? " ALLOC" : "", bfd_get_section_flags(abfd, sec) & SEC_READONLY ? " READONLY" : "" )); /* dma in the sections data */ section_init = zalloc(section_size); if (!bfd_get_section_contents(abfd, sec, section_init, 0, section_size)) { bfd_perror("devices/pte"); error("devices/%s - no data loaded\n", device_name(me)); } if (device_dma_write_buffer(device_parent(me), section_init, 0 /*space*/, section_ra, section_size, 1 /*violate_read_only*/) != section_size) error("devices/%s - broken dma transfer\n", device_name(me)); zfree(section_init); /* only free if load */ } STATIC_INLINE_DEVICE_TABLE void htab_map_binary(device *me, unsigned_word ra, unsigned wimg, unsigned pp, char *file_name, unsigned32 htaborg, unsigned32 htabmask) { htab_binary_sizes sizes; bfd *image; sizes.text_base = -1; sizes.data_base = -1; sizes.text_bound = 0; sizes.data_bound = 0; sizes.me = me; /* open the file */ image = bfd_openr(file_name, NULL); if (image == NULL) { bfd_perror("devices/pte"); error("devices/%s - the file %s not loaded\n", device_name(me), file_name); } /* check it is valid */ if (!bfd_check_format(image, bfd_object)) { bfd_close(image); error("devices/%s - the file %s has an invalid binary format\n", device_name(me), file_name); } /* determine the size of each of the files regions */ bfd_map_over_sections (image, htab_sum_binary, (PTR) &sizes); /* determine the real addresses of the sections */ sizes.text_ra = ra; sizes.data_ra = ALIGN_PAGE(sizes.text_ra + (sizes.text_bound - sizes.text_base)); DTRACE(htab, ("text map - base=0x%lx bound=0x%lx ra=0x%lx\n", (unsigned long)sizes.text_base, (unsigned long)sizes.text_bound, (unsigned long)sizes.text_ra)); DTRACE(htab, ("data map - base=0x%lx bound=0x%lx ra=0x%lx\n", (unsigned long)sizes.data_base, (unsigned long)sizes.data_bound, (unsigned long)sizes.data_ra)); /* set up virtual memory maps for each of the regions */ htab_map_region(me, sizes.text_ra, sizes.text_base, sizes.text_bound - sizes.text_base, wimg, pp, htaborg, htabmask); htab_map_region(me, sizes.data_ra, sizes.data_base, sizes.data_bound - sizes.data_base, wimg, pp, htaborg, htabmask); /* dma the sections into physical memory */ bfd_map_over_sections (image, htab_dma_binary, (PTR) &sizes); } static void htab_init_callback(device *me, psim *system) { if (WITH_TARGET_WORD_BITSIZE != 32) error("devices/htab: only 32bit targets currently suported\n"); /* only the pte does work */ if (strncmp(device_name(me), "pte@", strlen("pte@")) == 0) { unsigned32 htaborg; unsigned32 htabmask; signed32 pte_va; /* so that 0xff...0 is make 0xffffff00 */ unsigned32 pte_ra; unsigned pte_nr_bytes; unsigned pte_wimg; unsigned pte_pp; char file_name[1024]; htab_decode_hash_table(device_parent(me), &htaborg, &htabmask); /* handle a normal mapping definition */ if (scand_uw_uw_u_u_u(device_name(me), &pte_ra, &pte_va, &pte_nr_bytes, &pte_wimg, &pte_pp) == 5) { DTRACE(htab, ("pte - ra=0x%lx, wimg=%ld, pp=%ld, va=0x%lx, nr_bytes=%ld\n", (unsigned long)pte_ra, (long)pte_wimg, (long)pte_pp, (unsigned long)pte_va, (long)pte_nr_bytes)); htab_map_region(me, pte_ra, pte_va, pte_nr_bytes, pte_wimg, pte_pp, htaborg, htabmask); } else if (scand_uw_u_u_c(device_name(me), &pte_ra, &pte_wimg, &pte_pp, file_name, sizeof(file_name)) == 4) { DTRACE(htab, ("pte - ra=0x%lx, wimg=%ld, pp=%ld, binary=%s\n", (unsigned long)pte_ra, (unsigned long)pte_wimg, (long)pte_pp, file_name)); htab_map_binary(me, pte_ra, pte_wimg, pte_pp, file_name, htaborg, htabmask); } else { error("devices/%s - Usage: %s\nor\t%s\n", device_name(me), "pte@,,,,,", "pte@,,,"); } } } static device_callbacks const htab_callbacks = { htab_init_callback, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, passthrough_device_dma_read_buffer, passthrough_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* Simulator device: sim@0x
, Eventually gives access to the hardware configuration. For instance, it could allow the setting (on the fly) of variables such as hardware floating-point or strict-alignment. It's intended use is as part of testing the simulators functionality */ static device_callbacks const sim_callbacks = { ignore_device_init, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* Load device: binary Single property the name of which specifies the file (understood by BFD) that is to be DMAed into memory as part of init */ STATIC_INLINE_DEVICE_TABLE void update_for_binary_section(bfd *abfd, asection *the_section, PTR obj) { unsigned_word section_vma; unsigned_word section_size; access_type access; device *me = (device*)obj; /* skip the section if no memory to allocate */ if (! (bfd_get_section_flags(abfd, the_section) & SEC_ALLOC)) return; /* check/ignore any sections of size zero */ section_size = bfd_get_section_size_before_reloc(the_section); if (section_size == 0) return; /* find where it is to go */ section_vma = bfd_get_section_vma(abfd, the_section); DTRACE(binary, ("name=%-7s, vma=0x%.8lx, size=%6ld, flags=%3lx(%s%s%s%s%s )\n", bfd_get_section_name(abfd, the_section), (long)section_vma, (long)section_size, (long)bfd_get_section_flags(abfd, the_section), bfd_get_section_flags(abfd, the_section) & SEC_LOAD ? " LOAD" : "", bfd_get_section_flags(abfd, the_section) & SEC_CODE ? " CODE" : "", bfd_get_section_flags(abfd, the_section) & SEC_DATA ? " DATA" : "", bfd_get_section_flags(abfd, the_section) & SEC_ALLOC ? " ALLOC" : "", bfd_get_section_flags(abfd, the_section) & SEC_READONLY ? " READONLY" : "" )); /* determine the devices access */ access = access_read; if (bfd_get_section_flags(abfd, the_section) & SEC_CODE) access |= access_exec; if (!(bfd_get_section_flags(abfd, the_section) & SEC_READONLY)) access |= access_write; /* if a map, pass up a request to create the memory in core */ if (strncmp(device_name(me), "map-binary", strlen("map-binary")) == 0) device_attach_address(device_parent(me), device_name(me), attach_raw_memory, 0 /*address space*/, section_vma, section_size, access, me); /* if a load dma in the required data */ if (bfd_get_section_flags(abfd, the_section) & SEC_LOAD) { void *section_init = zalloc(section_size); if (!bfd_get_section_contents(abfd, the_section, section_init, 0, section_size)) { bfd_perror("core:load_section()"); error("load of data failed"); return; } if (device_dma_write_buffer(device_parent(me), section_init, 0 /*space*/, section_vma, section_size, 1 /*violate_read_only*/) != section_size) error("data_init_callback() broken transfer for %s\n", device_name(me)); zfree(section_init); /* only free if load */ } } static void binary_init_callback(device *me, psim *system) { const char *file_name; bfd *image; /* get the property specifying the file name */ file_name = device_find_next_property(me, NULL); /* open the file */ image = bfd_openr(file_name, NULL); if (image == NULL) { bfd_perror("devices/binary"); error("devices/%s - the file %s not loaded\n", device_name(me), file_name); } /* check it is valid */ if (!bfd_check_format(image, bfd_object)) { bfd_close(image); error("devices/%s - the file %s has an invalid binary format\n", device_name(me), file_name); } /* and the data sections */ bfd_map_over_sections(image, update_for_binary_section, (PTR)me); bfd_close(image); } static device_callbacks const binary_callbacks = { binary_init_callback, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, unimp_device_ioctl, }; /* Stack device: stack@ Has a single IOCTL to create a stack frame of the specified type. If is elf or xcoff then a corresponding stack is created. Any other value of type is ignored. The IOCTL takes the additional arguments: unsigned_word stack_end -- where the stack should come down from char **argv -- ... char **envp -- ... */ STATIC_INLINE_DEVICE_TABLE int sizeof_argument_strings(char **arg) { int sizeof_strings = 0; /* robust */ if (arg == NULL) return 0; /* add up all the string sizes (padding as we go) */ for (; *arg != NULL; arg++) { int len = strlen(*arg) + 1; sizeof_strings += ALIGN_8(len); } return sizeof_strings; } STATIC_INLINE_DEVICE_TABLE int number_of_arguments(char **arg) { int nr; if (arg == NULL) return 0; for (nr = 0; *arg != NULL; arg++, nr++); return nr; } STATIC_INLINE_DEVICE_TABLE int sizeof_arguments(char **arg) { return ALIGN_8((number_of_arguments(arg) + 1) * sizeof(unsigned_word)); } STATIC_INLINE_DEVICE_TABLE void write_stack_arguments(psim *system, char **arg, unsigned_word start_block, unsigned_word end_block, unsigned_word start_arg, unsigned_word end_arg) { DTRACE(stack, ("write_stack_arguments(system=0x%lx, arg=0x%lx, start_block=0x%lx, end_block=0x%lx, start_arg=0x%lx, end_arg=0x%lx)\n", (long)system, (long)arg, (long)start_block, (long)end_block, (long)start_arg, (long)end_arg)); if (arg == NULL) error("write_arguments: character array NULL\n"); /* only copy in arguments, memory is already zero */ for (; *arg != NULL; arg++) { int len = strlen(*arg)+1; unsigned_word target_start_block; DTRACE(stack, ("write_stack_arguments() write %s=%s at %s=0x%lx %s=0x%lx %s=0x%lx\n", "**arg", *arg, "start_block", (long)start_block, "len", (long)len, "start_arg", (long)start_arg)); if (psim_write_memory(system, 0, *arg, start_block, len, 0/*violate_readonly*/) != len) error("write_stack_arguments() - write of **arg (%s) at 0x%x failed\n", *arg, start_block); target_start_block = H2T_word(start_block); if (psim_write_memory(system, 0, &target_start_block, start_arg, sizeof(target_start_block), 0) != sizeof(target_start_block)) error("write_stack_arguments() - write of *arg failed\n"); start_block += ALIGN_8(len); start_arg += sizeof(start_block); } start_arg += sizeof(start_block); /*the null at the end*/ if (start_block != end_block || ALIGN_8(start_arg) != end_arg) error("write_stack_arguments - possible corruption\n"); DTRACE(stack, ("write_stack_arguments() = void\n")); } STATIC_INLINE_DEVICE_TABLE void create_elf_stack_frame(psim *system, unsigned_word bottom_of_stack, char **argv, char **envp) { /* fixme - this is over aligned */ /* information block */ const unsigned sizeof_envp_block = sizeof_argument_strings(envp); const unsigned_word start_envp_block = bottom_of_stack - sizeof_envp_block; const unsigned sizeof_argv_block = sizeof_argument_strings(argv); const unsigned_word start_argv_block = start_envp_block - sizeof_argv_block; /* auxiliary vector - contains only one entry */ const unsigned sizeof_aux_entry = 2*sizeof(unsigned_word); /* magic */ const unsigned_word start_aux = start_argv_block - ALIGN_8(sizeof_aux_entry); /* environment points (including null sentinal) */ const unsigned sizeof_envp = sizeof_arguments(envp); const unsigned_word start_envp = start_aux - sizeof_envp; /* argument pointers (including null sentinal) */ const int argc = number_of_arguments(argv); const unsigned sizeof_argv = sizeof_arguments(argv); const unsigned_word start_argv = start_envp - sizeof_argv; /* link register save address - alligned to a 16byte boundary */ const unsigned_word top_of_stack = ((start_argv - 2 * sizeof(unsigned_word)) & ~0xf); /* install arguments on stack */ write_stack_arguments(system, envp, start_envp_block, bottom_of_stack, start_envp, start_aux); write_stack_arguments(system, argv, start_argv_block, start_envp_block, start_argv, start_envp); /* set up the registers */ psim_write_register(system, -1, &top_of_stack, "sp", cooked_transfer); psim_write_register(system, -1, &argc, "r3", cooked_transfer); psim_write_register(system, -1, &start_argv, "r4", cooked_transfer); psim_write_register(system, -1, &start_envp, "r5", cooked_transfer); psim_write_register(system, -1, &start_aux, "r6", cooked_transfer); } STATIC_INLINE_DEVICE_TABLE void create_aix_stack_frame(psim *system, unsigned_word bottom_of_stack, char **argv, char **envp) { unsigned_word core_envp; unsigned_word core_argv; unsigned_word core_argc; unsigned_word core_aux; unsigned_word top_of_stack; /* cheat - create an elf stack frame */ create_elf_stack_frame(system, bottom_of_stack, argv, envp); /* extract argument addresses from registers */ psim_read_register(system, 0, &top_of_stack, "r1", cooked_transfer); psim_read_register(system, 0, &core_argc, "r3", cooked_transfer); psim_read_register(system, 0, &core_argv, "r4", cooked_transfer); psim_read_register(system, 0, &core_envp, "r5", cooked_transfer); psim_read_register(system, 0, &core_aux, "r6", cooked_transfer); /* extract arguments from registers */ error("create_aix_stack_frame() - what happens next?\n"); } static void stack_ioctl_callback(device *me, psim *system, cpu *processor, unsigned_word cia, va_list ap) { unsigned_word stack_pointer; const char *stack_type; char **argv; char **envp; stack_pointer = va_arg(ap, unsigned_word); argv = va_arg(ap, char **); envp = va_arg(ap, char **); DTRACE(stack, ("stack_ioctl_callback(me=0x%lx:%s, system=0x%lx, processor=0x%lx, cia=0x%lx, argv=0x%lx, envp=0x%lx)\n", (long)me, device_name(me), (long)system, (long)processor, (long)cia, (long)argv, (long)envp)); stack_type = device_find_next_property(me, NULL); if (stack_type != NULL) { if (strcmp(stack_type, "elf") == 0) create_elf_stack_frame(system, stack_pointer, argv, envp); else if (strcmp(stack_type, "xcoff") == 0) create_aix_stack_frame(system, stack_pointer, argv, envp); } DTRACE(stack, ("stack_ioctl_callback() = void\n")); } static device_callbacks const stack_callbacks = { ignore_device_init, unimp_device_attach_address, unimp_device_detach_address, unimp_device_io_read_buffer, unimp_device_io_write_buffer, unimp_device_dma_read_buffer, unimp_device_dma_write_buffer, unimp_device_attach_interrupt, unimp_device_detach_interrupt, unimp_device_interrupt, unimp_device_interrupt_ack, stack_ioctl_callback, }; device_descriptor device_table[] = { { "console", console_create, &console_callbacks }, { "memory", NULL, &memory_callbacks }, { "vm", vea_vm_create, &vm_callbacks }, { "halt", NULL, &halt_callbacks }, { "icu", NULL, &icu_callbacks }, { "register", NULL, ®ister_callbacks }, { "iobus", NULL, &iobus_callbacks }, { "file", NULL, &file_callbacks }, { "data", NULL, &data_callbacks }, { "htab", NULL, &htab_callbacks }, { "pte", NULL, &htab_callbacks }, /* yep - uses htab's table */ { "stack", NULL, &stack_callbacks }, { "sim", NULL, &sim_callbacks }, { "load-binary", NULL, &binary_callbacks }, { "map-binary", NULL, &binary_callbacks }, { "options", NULL, &passthrough_callbacks }, { "init", NULL, &passthrough_callbacks }, { "chosen", NULL, &passthrough_callbacks }, { NULL }, }; #endif /* _DEVICE_TABLE_C_ */