#include #include "sysdep.h" #include "bfd.h" #include "mn10300_sim.h" host_callback *mn10300_callback; int mn10300_debug; static SIM_OPEN_KIND sim_kind; static char *myname; static void dispatch PARAMS ((uint32, uint32, int)); static long hash PARAMS ((long)); static void init_system PARAMS ((void)); #define MAX_HASH 127 struct hash_entry { struct hash_entry *next; long opcode; long mask; struct simops *ops; #ifdef HASH_STAT unsigned long count; #endif }; static int max_mem = 0; struct hash_entry hash_table[MAX_HASH+1]; /* This probably doesn't do a very good job at bucket filling, but it's simple... */ static INLINE long hash(insn) long insn; { /* These are one byte insns, we special case these since, in theory, they should be the most heavily used. */ if ((insn & 0xffffff00) == 0) { switch (insn & 0xf0) { case 0x00: return 0x70; case 0x40: return 0x71; case 0x10: return 0x72; case 0x30: return 0x73; case 0x50: return 0x74; case 0x60: return 0x75; case 0x70: return 0x76; case 0x80: return 0x77; case 0x90: return 0x78; case 0xa0: return 0x79; case 0xb0: return 0x7a; case 0xe0: return 0x7b; default: return 0x7c; } } /* These are two byte insns */ if ((insn & 0xffff0000) == 0) { if ((insn & 0xf000) == 0x2000 || (insn & 0xf000) == 0x5000) return ((insn & 0xfc00) >> 8) & 0x7f; if ((insn & 0xf000) == 0x4000) return ((insn & 0xf300) >> 8) & 0x7f; if ((insn & 0xf000) == 0x8000 || (insn & 0xf000) == 0x9000 || (insn & 0xf000) == 0xa000 || (insn & 0xf000) == 0xb000) return ((insn & 0xf000) >> 8) & 0x7f; if ((insn & 0xff00) == 0xf000 || (insn & 0xff00) == 0xf100 || (insn & 0xff00) == 0xf200 || (insn & 0xff00) == 0xf500 || (insn & 0xff00) == 0xf600) return ((insn & 0xfff0) >> 4) & 0x7f; if ((insn & 0xf000) == 0xc000) return ((insn & 0xff00) >> 8) & 0x7f; return ((insn & 0xffc0) >> 6) & 0x7f; } /* These are three byte insns. */ if ((insn & 0xff000000) == 0) { if ((insn & 0xf00000) == 0x000000) return ((insn & 0xf30000) >> 16) & 0x7f; if ((insn & 0xf00000) == 0x200000 || (insn & 0xf00000) == 0x300000) return ((insn & 0xfc0000) >> 16) & 0x7f; if ((insn & 0xff0000) == 0xf80000) return ((insn & 0xfff000) >> 12) & 0x7f; if ((insn & 0xff0000) == 0xf90000) return ((insn & 0xfffc00) >> 10) & 0x7f; return ((insn & 0xff0000) >> 16) & 0x7f; } /* These are four byte or larger insns. */ if ((insn & 0xf0000000) == 0xf0000000) return ((insn & 0xfff00000) >> 20) & 0x7f; return ((insn & 0xff000000) >> 24) & 0x7f; } static INLINE void dispatch (insn, extension, length) uint32 insn; uint32 extension; int length; { struct hash_entry *h; h = &hash_table[hash(insn)]; while ((insn & h->mask) != h->opcode || (length != h->ops->length)) { if (!h->next) { (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR looking up hash for 0x%x, PC=0x%x\n", insn, PC); exit(1); } h = h->next; } #ifdef HASH_STAT h->count++; #endif /* Now call the right function. */ (h->ops->func)(insn, extension); PC += length; } /* FIXME These would more efficient to use than load_mem/store_mem, but need to be changed to use the memory map. */ uint8 get_byte (x) uint8 *x; { return *x; } uint16 get_half (x) uint8 *x; { uint8 *a = x; return (a[1] << 8) + (a[0]); } uint32 get_word (x) uint8 *x; { uint8 *a = x; return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]); } void put_byte (addr, data) uint8 *addr; uint8 data; { uint8 *a = addr; a[0] = data; } void put_half (addr, data) uint8 *addr; uint16 data; { uint8 *a = addr; a[0] = data & 0xff; a[1] = (data >> 8) & 0xff; } void put_word (addr, data) uint8 *addr; uint32 data; { uint8 *a = addr; a[0] = data & 0xff; a[1] = (data >> 8) & 0xff; a[2] = (data >> 16) & 0xff; a[3] = (data >> 24) & 0xff; } void sim_size (power) int power; { if (State.mem) free (State.mem); max_mem = 1 << power; State.mem = (uint8 *) calloc (1, 1 << power); if (!State.mem) { (*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n"); exit (1); } } static void init_system () { if (!State.mem) sim_size(19); } int sim_write (sd, addr, buffer, size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int i; init_system (); for (i = 0; i < size; i++) store_byte (addr + i, buffer[i]); return size; } /* Compare two opcode table entries for qsort. */ static int compare_simops (arg1, arg2) const PTR arg1; const PTR arg2; { unsigned long code1 = ((struct simops *)arg1)->opcode; unsigned long code2 = ((struct simops *)arg2)->opcode; if (code1 < code2) return -1; if (code2 < code1) return 1; return 0; } SIM_DESC sim_open (kind, cb, abfd, argv) SIM_OPEN_KIND kind; host_callback *cb; struct _bfd *abfd; char **argv; { struct simops *s; struct hash_entry *h; char **p; int i; mn10300_callback = cb; /* Sort the opcode array from smallest opcode to largest. This will generally improve simulator performance as the smaller opcodes are generally preferred to the larger opcodes. */ for (i = 0, s = Simops; s->func; s++, i++) ; qsort (Simops, i, sizeof (Simops[0]), compare_simops); sim_kind = kind; myname = argv[0]; for (p = argv + 1; *p; ++p) { if (strcmp (*p, "-E") == 0) ++p; /* ignore endian spec */ else #ifdef DEBUG if (strcmp (*p, "-t") == 0) mn10300_debug = DEBUG; else #endif (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p); } /* put all the opcodes in the hash table */ for (s = Simops; s->func; s++) { h = &hash_table[hash(s->opcode)]; /* go to the last entry in the chain */ while (h->next) { /* Don't insert the same opcode more than once. */ if (h->opcode == s->opcode && h->mask == s->mask && h->ops == s) break; else h = h->next; } /* Don't insert the same opcode more than once. */ if (h->opcode == s->opcode && h->mask == s->mask && h->ops == s) continue; if (h->ops) { h->next = calloc(1,sizeof(struct hash_entry)); h = h->next; } h->ops = s; h->mask = s->mask; h->opcode = s->opcode; #if HASH_STAT h->count = 0; #endif } /* fudge our descriptor for now */ return (SIM_DESC) 1; } void sim_close (sd, quitting) SIM_DESC sd; int quitting; { /* nothing to do */ } void sim_set_profile (n) int n; { (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n); } void sim_set_profile_size (n) int n; { (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n); } int sim_stop (sd) SIM_DESC sd; { return 0; } void sim_resume (sd, step, siggnal) SIM_DESC sd; int step, siggnal; { uint32 inst; reg_t oldpc; struct hash_entry *h; if (step) State.exception = SIGTRAP; else State.exception = 0; State.exited = 0; do { unsigned long insn, extension; /* Fetch the current instruction. */ inst = load_mem_big (PC, 2); oldpc = PC; /* Using a giant case statement may seem like a waste because of the code/rodata size the table itself will consume. However, using a giant case statement speeds up the simulator by 10-15% by avoiding cascading if/else statements or cascading case statements. */ switch ((inst >> 8) & 0xff) { /* All the single byte insns except 0x80, 0x90, 0xa0, 0xb0 which must be handled specially. */ case 0x00: case 0x04: case 0x08: case 0x0c: case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: case 0x19: case 0x1a: case 0x1b: case 0x1c: case 0x1d: case 0x1e: case 0x1f: case 0x3c: case 0x3d: case 0x3e: case 0x3f: case 0x40: case 0x41: case 0x44: case 0x45: case 0x48: case 0x49: case 0x4c: case 0x4d: case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: case 0x60: case 0x61: case 0x62: case 0x63: case 0x64: case 0x65: case 0x66: case 0x67: case 0x68: case 0x69: case 0x6a: case 0x6b: case 0x6c: case 0x6d: case 0x6e: case 0x6f: case 0x70: case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7a: case 0x7b: case 0x7c: case 0x7d: case 0x7e: case 0x7f: case 0xcb: case 0xd0: case 0xd1: case 0xd2: case 0xd3: case 0xd4: case 0xd5: case 0xd6: case 0xd7: case 0xd8: case 0xd9: case 0xda: case 0xdb: case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7: case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef: case 0xff: insn = (inst >> 8) & 0xff; extension = 0; dispatch (insn, extension, 1); break; /* Special cases where dm == dn is used to encode a different instruction. */ case 0x80: case 0x85: case 0x8a: case 0x8f: case 0x90: case 0x95: case 0x9a: case 0x9f: case 0xa0: case 0xa5: case 0xaa: case 0xaf: case 0xb0: case 0xb5: case 0xba: case 0xbf: insn = inst; extension = 0; dispatch (insn, extension, 2); break; case 0x81: case 0x82: case 0x83: case 0x84: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8b: case 0x8c: case 0x8d: case 0x8e: case 0x91: case 0x92: case 0x93: case 0x94: case 0x96: case 0x97: case 0x98: case 0x99: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0xa1: case 0xa2: case 0xa3: case 0xa4: case 0xa6: case 0xa7: case 0xa8: case 0xa9: case 0xab: case 0xac: case 0xad: case 0xae: case 0xb1: case 0xb2: case 0xb3: case 0xb4: case 0xb6: case 0xb7: case 0xb8: case 0xb9: case 0xbb: case 0xbc: case 0xbd: case 0xbe: insn = (inst >> 8) & 0xff; extension = 0; dispatch (insn, extension, 1); break; /* The two byte instructions. */ case 0x20: case 0x21: case 0x22: case 0x23: case 0x28: case 0x29: case 0x2a: case 0x2b: case 0x42: case 0x43: case 0x46: case 0x47: case 0x4a: case 0x4b: case 0x4e: case 0x4f: case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: case 0xc6: case 0xc7: case 0xc8: case 0xc9: case 0xca: case 0xce: case 0xcf: case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: insn = inst; extension = 0; dispatch (insn, extension, 2); break; /* The three byte insns with a 16bit operand in little endian format. */ case 0x01: case 0x02: case 0x03: case 0x05: case 0x06: case 0x07: case 0x09: case 0x0a: case 0x0b: case 0x0d: case 0x0e: case 0x0f: case 0x24: case 0x25: case 0x26: case 0x27: case 0x2c: case 0x2d: case 0x2e: case 0x2f: case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: case 0x39: case 0x3a: case 0x3b: case 0xcc: insn = load_byte (PC); insn <<= 16; insn |= load_half (PC + 1); extension = 0; dispatch (insn, extension, 3); break; /* The three byte insns without 16bit operand. */ case 0xde: case 0xdf: case 0xf8: case 0xf9: insn = load_mem_big (PC, 3); extension = 0; dispatch (insn, extension, 3); break; /* Four byte insns. */ case 0xfa: case 0xfb: if ((inst & 0xfffc) == 0xfaf0 || (inst & 0xfffc) == 0xfaf4 || (inst & 0xfffc) == 0xfaf8) insn = load_mem_big (PC, 4); else { insn = inst; insn <<= 16; insn |= load_half (PC + 2); extension = 0; } dispatch (insn, extension, 4); break; /* Five byte insns. */ case 0xcd: insn = load_byte (PC); insn <<= 24; insn |= (load_half (PC + 1) << 8); insn |= load_byte (PC + 3); extension = load_byte (PC + 4); dispatch (insn, extension, 5); break; case 0xdc: insn = load_byte (PC); insn <<= 24; extension = load_word (PC + 1); insn |= (extension & 0xffffff00) >> 8; extension &= 0xff; dispatch (insn, extension, 5); break; /* Six byte insns. */ case 0xfc: case 0xfd: insn = (inst << 16); extension = load_word (PC + 2); insn |= ((extension & 0xffff0000) >> 16); extension &= 0xffff; dispatch (insn, extension, 6); break; case 0xdd: insn = load_byte (PC) << 24; extension = load_word (PC + 1); insn |= ((extension >> 8) & 0xffffff); extension = (extension & 0xff) << 16; extension |= load_byte (PC + 5) << 8; extension |= load_byte (PC + 6); dispatch (insn, extension, 7); break; case 0xfe: insn = inst << 16; extension = load_word (PC + 2); insn |= ((extension >> 16) & 0xffff); extension <<= 8; extension &= 0xffff00; extension |= load_byte (PC + 6); dispatch (insn, extension, 7); break; default: abort (); } } while (!State.exception); #ifdef HASH_STAT { int i; for (i = 0; i < MAX_HASH; i++) { struct hash_entry *h; h = &hash_table[i]; printf("hash 0x%x:\n", i); while (h) { printf("h->opcode = 0x%x, count = 0x%x\n", h->opcode, h->count); h = h->next; } printf("\n\n"); } fflush (stdout); } #endif } int sim_trace (sd) SIM_DESC sd; { #ifdef DEBUG mn10300_debug = DEBUG; #endif sim_resume (sd, 0, 0); return 1; } void sim_info (sd, verbose) SIM_DESC sd; int verbose; { (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n"); } SIM_RC sim_create_inferior (sd, argv, env) SIM_DESC sd; char **argv; char **env; { return SIM_RC_OK; } void sim_kill (sd) SIM_DESC sd; { /* nothing to do */ } void sim_set_callbacks (p) host_callback *p; { mn10300_callback = p; } /* All the code for exiting, signals, etc needs to be revamped. This is enough to get c-torture limping though. */ void sim_stop_reason (sd, reason, sigrc) SIM_DESC sd; enum sim_stop *reason; int *sigrc; { if (State.exited) *reason = sim_exited; else *reason = sim_stopped; if (State.exception == SIGQUIT) *sigrc = 0; else *sigrc = State.exception; } void sim_fetch_register (sd, rn, memory) SIM_DESC sd; int rn; unsigned char *memory; { put_word (memory, State.regs[rn]); } void sim_store_register (sd, rn, memory) SIM_DESC sd; int rn; unsigned char *memory; { State.regs[rn] = get_word (memory); } int sim_read (sd, addr, buffer, size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int i; for (i = 0; i < size; i++) buffer[i] = load_byte (addr + i); return size; } void sim_do_command (sd, cmd) SIM_DESC sd; char *cmd; { (*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd); } SIM_RC sim_load (sd, prog, abfd, from_tty) SIM_DESC sd; char *prog; bfd *abfd; int from_tty; { extern bfd *sim_load_file (); /* ??? Don't know where this should live. */ bfd *prog_bfd; prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd, sim_kind == SIM_OPEN_DEBUG); if (prog_bfd == NULL) return SIM_RC_FAIL; PC = bfd_get_start_address (prog_bfd); if (abfd == NULL) bfd_close (prog_bfd); return SIM_RC_OK; }