#include #include "sysdep.h" #include "bfd.h" #include "mn10300_sim.h" #ifndef INLINE #ifdef __GNUC__ #define INLINE inline #else #define INLINE #endif #endif host_callback *mn10300_callback; int mn10300_debug; static SIM_OPEN_KIND sim_kind; static char *myname; static struct hash_entry *lookup_hash PARAMS ((uint32 ins, int)); static long hash PARAMS ((long)); static void init_system PARAMS ((void)); #define MAX_HASH 63 struct hash_entry { struct hash_entry *next; long opcode; long mask; struct simops *ops; }; struct hash_entry hash_table[MAX_HASH+1]; /* This probably doesn't do a very good job at bucket filling, but it's simple... */ static INLINE long hash(insn) long insn; { /* These are one byte insns. */ if ((insn & 0xffffff00) == 0) { if ((insn & 0xf0) == 0x00 || (insn & 0xf0) == 0x40) return (insn & 0xf3) & 0x3f; if ((insn & 0xf0) == 0x10 || (insn & 0xf0) == 0x30 || (insn & 0xf0) == 0x50) return (insn & 0xfc) & 0x3f; if ((insn & 0xf0) == 0x60 || (insn & 0xf0) == 0x70 || (insn & 0xf0) == 0x80 || (insn & 0xf0) == 0x90 || (insn & 0xf0) == 0xa0 || (insn & 0xf0) == 0xb0 || (insn & 0xf0) == 0xe0) return (insn & 0xf0) & 0x3f; return (insn & 0xff) & 0x3f; } /* These are two byte insns */ if ((insn & 0xffff0000) == 0) { if ((insn & 0xf000) == 0x2000 || (insn & 0xf000) == 0x5000) return ((insn & 0xfc00) >> 8) & 0x3f; if ((insn & 0xf000) == 0x4000) return ((insn & 0xf300) >> 8) & 0x3f; if ((insn & 0xf000) == 0x8000 || (insn & 0xf000) == 0x9000 || (insn & 0xf000) == 0xa000 || (insn & 0xf000) == 0xb000) return ((insn & 0xf000) >> 8) & 0x3f; return ((insn & 0xff00) >> 8) & 0x3f; } /* These are three byte insns. */ if ((insn & 0xff000000) == 0) { if ((insn & 0xf00000) == 0x000000) return ((insn & 0xf30000) >> 16) & 0x3f; if ((insn & 0xf00000) == 0x200000 || (insn & 0xf00000) == 0x300000) return ((insn & 0xfc0000) >> 16) & 0x3f; return ((insn & 0xff0000) >> 16) & 0x3f; } /* These are four byte or larger insns. */ return ((insn & 0xff000000) >> 24) & 0x3f; } static struct hash_entry * lookup_hash (ins, length) uint32 ins; int length; { struct hash_entry *h; h = &hash_table[hash(ins)]; while ((ins & h->mask) != h->opcode || (length != h->ops->length)) { if (h->next == NULL) { (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR looking up hash for 0x%x, PC=0x%x\n", ins, PC); exit(1); } h = h->next; } return (h); } /* FIXME These would more efficient to use than load_mem/store_mem, but need to be changed to use the memory map. */ uint8 get_byte (x) uint8 *x; { return *x; } uint16 get_half (x) uint8 *x; { uint8 *a = x; return (a[1] << 8) + (a[0]); } uint32 get_word (x) uint8 *x; { uint8 *a = x; return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]); } void put_byte (addr, data) uint8 *addr; uint8 data; { uint8 *a = addr; a[0] = data; } void put_half (addr, data) uint8 *addr; uint16 data; { uint8 *a = addr; a[0] = data & 0xff; a[1] = (data >> 8) & 0xff; } void put_word (addr, data) uint8 *addr; uint32 data; { uint8 *a = addr; a[0] = data & 0xff; a[1] = (data >> 8) & 0xff; a[2] = (data >> 16) & 0xff; a[3] = (data >> 24) & 0xff; } uint32 load_mem_big (addr, len) SIM_ADDR addr; int len; { uint8 *p = addr + State.mem; switch (len) { case 1: return p[0]; case 2: return p[0] << 8 | p[1]; case 3: return p[0] << 16 | p[1] << 8 | p[2]; case 4: return p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3]; default: abort (); } } uint32 load_mem (addr, len) SIM_ADDR addr; int len; { uint8 *p = addr + State.mem; switch (len) { case 1: return p[0]; case 2: return p[1] << 8 | p[0]; case 3: return p[2] << 16 | p[1] << 8 | p[0]; case 4: return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0]; default: abort (); } } void store_mem (addr, len, data) SIM_ADDR addr; int len; uint32 data; { uint8 *p = addr + State.mem; switch (len) { case 1: p[0] = data; return; case 2: p[0] = data; p[1] = data >> 8; return; case 4: p[0] = data; p[1] = data >> 8; p[2] = data >> 16; p[3] = data >> 24; return; default: abort (); } } void sim_size (power) int power; { if (State.mem) free (State.mem); State.mem = (uint8 *) calloc (1, 1 << power); if (!State.mem) { (*mn10300_callback->printf_filtered) (mn10300_callback, "Allocation of main memory failed.\n"); exit (1); } } static void init_system () { if (!State.mem) sim_size(19); } int sim_write (sd, addr, buffer, size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int i; init_system (); for (i = 0; i < size; i++) store_mem (addr + i, 1, buffer[i]); return size; } SIM_DESC sim_open (kind,argv) SIM_OPEN_KIND kind; char **argv; { struct simops *s; struct hash_entry *h; char **p; sim_kind = kind; myname = argv[0]; for (p = argv + 1; *p; ++p) { if (strcmp (*p, "-E") == 0) ++p; /* ignore endian spec */ else #ifdef DEBUG if (strcmp (*p, "-t") == 0) mn10300_debug = DEBUG; else #endif (*mn10300_callback->printf_filtered) (mn10300_callback, "ERROR: unsupported option(s): %s\n",*p); } /* put all the opcodes in the hash table */ for (s = Simops; s->func; s++) { h = &hash_table[hash(s->opcode)]; /* go to the last entry in the chain */ while (h->next) h = h->next; if (h->ops) { h->next = calloc(1,sizeof(struct hash_entry)); h = h->next; } h->ops = s; h->mask = s->mask; h->opcode = s->opcode; } /* fudge our descriptor for now */ return (SIM_DESC) 1; } void sim_close (sd, quitting) SIM_DESC sd; int quitting; { /* nothing to do */ } void sim_set_profile (n) int n; { (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile %d\n", n); } void sim_set_profile_size (n) int n; { (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_set_profile_size %d\n", n); } void sim_resume (sd, step, siggnal) SIM_DESC sd; int step, siggnal; { uint32 inst; reg_t oldpc; struct hash_entry *h; if (step) State.exception = SIGTRAP; else State.exception = 0; do { unsigned long insn, extension; /* Fetch the current instruction. */ inst = load_mem_big (PC, 1); oldpc = PC; /* These are one byte insns. */ if ((inst & 0xf3) == 0x00 || (inst & 0xf0) == 0x10 || (inst & 0xfc) == 0x3c || (inst & 0xf3) == 0x41 || (inst & 0xf3) == 0x40 || (inst & 0xfc) == 0x50 || (inst & 0xfc) == 0x54 || (inst & 0xf0) == 0x60 || (inst & 0xf0) == 0x70 || ((inst & 0xf0) == 0x80 && (inst & 0x0c) >> 2 != (inst & 0x03)) || ((inst & 0xf0) == 0x90 && (inst & 0x0c) >> 2 != (inst & 0x03)) || ((inst & 0xf0) == 0xa0 && (inst & 0x0c) >> 2 != (inst & 0x03)) || ((inst & 0xf0) == 0xb0 && (inst & 0x0c) >> 2 != (inst & 0x03)) || (inst & 0xff) == 0xcb || (inst & 0xfc) == 0xd0 || (inst & 0xfc) == 0xd4 || (inst & 0xfc) == 0xd8 || (inst & 0xf0) == 0xe0 || (inst & 0xff) == 0xff) { insn = inst; h = lookup_hash (insn, 1); extension = 0; (h->ops->func)(insn, extension); PC += 1; } /* These are two byte insns. */ else if ((inst & 0xf0) == 0x80 || (inst & 0xf0) == 0x90 || (inst & 0xf0) == 0xa0 || (inst & 0xf0) == 0xb0 || (inst & 0xfc) == 0x20 || (inst & 0xfc) == 0x28 || (inst & 0xf3) == 0x43 || (inst & 0xf3) == 0x42 || (inst & 0xfc) == 0x58 || (inst & 0xfc) == 0x5c || ((inst & 0xf0) == 0xc0 && (inst & 0xff) != 0xcb && (inst & 0xff) != 0xcc && (inst & 0xff) != 0xcd) || (inst & 0xff) == 0xf0 || (inst & 0xff) == 0xf1 || (inst & 0xff) == 0xf2 || (inst & 0xff) == 0xf3 || (inst & 0xff) == 0xf4 || (inst & 0xff) == 0xf5 || (inst & 0xff) == 0xf6) { insn = load_mem_big (PC, 2); h = lookup_hash (insn, 2); extension = 0; (h->ops->func)(insn, extension); PC += 2; } /* These are three byte insns. */ else if ((inst & 0xff) == 0xf8 || (inst & 0xff) == 0xcc || (inst & 0xff) == 0xf9 || (inst & 0xf3) == 0x01 || (inst & 0xf3) == 0x02 || (inst & 0xf3) == 0x03 || (inst & 0xfc) == 0x24 || (inst & 0xfc) == 0x2c || (inst & 0xfc) == 0x30 || (inst & 0xfc) == 0x34 || (inst & 0xfc) == 0x38 || (inst & 0xff) == 0xde || (inst & 0xff) == 0xdf || (inst & 0xff) == 0xcc) { insn = load_mem_big (PC, 3); h = lookup_hash (insn, 3); extension = 0; /* If it's a format D1 insn, "ret", or "retf" insn, then there's no need to worry about endianness. Others have a 16bit immediate in little endian form that we need to extract. */ if (h->ops->format == FMT_D1 || h->opcode == 0xdf0000 || h->opcode == 0xde0000) (h->ops->func)(insn, extension); else { insn &= 0xff0000; insn |= load_mem (PC + 1, 2); (h->ops->func)(insn, extension); } PC += 3; } /* These are four byte insns. */ else if ((inst & 0xff) == 0xfa || (inst & 0xff) == 0xfb) { insn = load_mem_big (PC, 4); h = lookup_hash (insn, 4); extension = 0; /* This must be a format D2 insn; a small number of such insns don't have any 16bit immediates (they instead have two 8 bit immediates). */ if (h->opcode == 0xfaf80000 || h->opcode == 0xfaf00000 || h->opcode == 0xfaf40000) (h->ops->func)(insn, extension); else { insn &= 0xffff0000; insn |= load_mem (PC + 2, 2); (h->ops->func)(insn, extension); } PC += 4; } /* These are five byte insns. */ else if ((inst & 0xff) == 0xcd || (inst & 0xff) == 0xdc) { insn = load_mem_big (PC, 4); h = lookup_hash (insn, 5); /* This must be a format S4 insn. */ if (h->opcode == 0xdc000000) { /* A "jmp" instruction with a 32bit immediate stored in little endian form. */ unsigned long temp; temp = load_mem (PC + 1, 4); insn &= 0xff000000; insn |= (temp & 0xffffff00) >> 8; extension = temp & 0xff; } else { /* A "call" instruction with a 16bit immediate in little endian form. */ unsigned long temp; temp = load_mem (PC + 1, 2); insn &= 0xff0000ff; insn |= temp << 8; extension = load_mem (PC + 4, 1); } (h->ops->func)(insn, extension); PC += 5; } /* These are six byte insns. */ else if ((inst & 0xff) == 0xfd || (inst & 0xff) == 0xfc) { unsigned long temp; insn = load_mem_big (PC, 4); h = lookup_hash (insn, 6); temp = load_mem (PC + 2, 4); insn &= 0xffff0000; insn |= (temp >> 16) & 0xffff; extension = temp & 0xffff; (h->ops->func)(insn, extension); PC += 6; } /* Else its a seven byte insns (in theory). */ else { insn = load_mem_big (PC, 4); h = lookup_hash (insn, 7); if (h->ops->format == FMT_S6) { unsigned long temp; temp = load_mem (PC + 1, 4); insn &= 0xff000000; insn |= (temp >> 8) & 0xffffff; extension = (temp & 0xff) << 16; extension |= load_mem (PC + 5, 1) << 8; extension |= load_mem (PC + 6, 1); } else { unsigned long temp; temp = load_mem (PC + 2, 4); insn &= 0xffff0000; insn |= (temp >> 16) & 0xffff; extension = (temp & 0xffff) << 8; extension = load_mem (PC + 6, 1); } (h->ops->func)(insn, extension); PC += 7; } } while (!State.exception); } int sim_trace (sd) SIM_DESC sd; { #ifdef DEBUG mn10300_debug = DEBUG; #endif sim_resume (sd, 0, 0); return 1; } void sim_info (sd, verbose) SIM_DESC sd; int verbose; { (*mn10300_callback->printf_filtered) (mn10300_callback, "sim_info\n"); } SIM_RC sim_create_inferior (sd, argv, env) SIM_DESC sd; char **argv; char **env; { return SIM_RC_OK; } void sim_kill (sd) SIM_DESC sd; { /* nothing to do */ } void sim_set_callbacks (sd, p) SIM_DESC sd; host_callback *p; { mn10300_callback = p; } /* All the code for exiting, signals, etc needs to be revamped. This is enough to get c-torture limping though. */ void sim_stop_reason (sd, reason, sigrc) SIM_DESC sd; enum sim_stop *reason; int *sigrc; { *reason = sim_stopped; if (State.exception == SIGQUIT) *sigrc = 0; else *sigrc = State.exception; } void sim_fetch_register (sd, rn, memory) SIM_DESC sd; int rn; unsigned char *memory; { put_word (memory, State.regs[rn]); } void sim_store_register (sd, rn, memory) SIM_DESC sd; int rn; unsigned char *memory; { State.regs[rn] = get_word (memory); } int sim_read (sd, addr, buffer, size) SIM_DESC sd; SIM_ADDR addr; unsigned char *buffer; int size; { int i; for (i = 0; i < size; i++) buffer[i] = load_mem (addr + i, 1); return size; } void sim_do_command (sd, cmd) SIM_DESC sd; char *cmd; { (*mn10300_callback->printf_filtered) (mn10300_callback, "\"%s\" is not a valid mn10300 simulator command.\n", cmd); } SIM_RC sim_load (sd, prog, abfd, from_tty) SIM_DESC sd; char *prog; bfd *abfd; int from_tty; { extern bfd *sim_load_file (); /* ??? Don't know where this should live. */ bfd *prog_bfd; prog_bfd = sim_load_file (sd, myname, mn10300_callback, prog, abfd, sim_kind == SIM_OPEN_DEBUG); if (prog_bfd == NULL) return SIM_RC_FAIL; PC = bfd_get_start_address (prog_bfd); if (abfd == NULL) bfd_close (prog_bfd); return SIM_RC_OK; }