/* Copyright (C) 1998, Cygnus Solutions This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef SIM_MAIN_C #define SIM_MAIN_C #include "sim-main.h" #include "sim-assert.h" #if !(WITH_IGEN) #define SIM_MANIFESTS #include "oengine.c" #undef SIM_MANIFESTS #endif /*---------------------------------------------------------------------------*/ /*-- simulator engine -------------------------------------------------------*/ /*---------------------------------------------------------------------------*/ /* start-sanitize-sky */ #ifdef TARGET_SKY /* Description from page A-22 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* Translate a virtual address to a physical address and cache coherence algorithm describing the mechanism used to resolve the memory reference. Given the virtual address vAddr, and whether the reference is to Instructions ot Data (IorD), find the corresponding physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address is in one of the unmapped address spaces the physical address and the CCA are determined directly by the virtual address. If the virtual address is in one of the mapped address spaces then the TLB is used to determine the physical address and access type; if the required translation is not present in the TLB or the desired access is not permitted the function fails and an exception is taken. NOTE: Normally (RAW == 0), when address translation fails, this function raises an exception and does not return. */ /* This implementation is for the MIPS R4000 family. See MIPS RISC Architecture, Kane & Heinrich, Chapter 4. It is no good for any of the 2000, 3000, or 6000 family. One possible error in the K&H book of note. K&H has the PFN entry in the TLB as being 24 bits. The high-order 4 bits would seem to be unused, as the PFN is only 20-bits long. The 5900 manual shows this as a 20-bit field. At any rate, the high order 4 bits are unused. */ /* A place to remember the last cache hit. */ static r4000_tlb_entry_t *last_hit = 0; /* Try to match a single TLB entry. Three possibilities. 1. No match, returns 0 2. Match w/o exception, pAddr and CCA set, returns 1 3. Match w/ exception, in which case tlb_try_match does not return. */ INLINE_SIM_MAIN (int) tlb_try_match (SIM_DESC SD, sim_cpu *CPU, address_word cia, r4000_tlb_entry_t * entry, unsigned32 asid, unsigned32 vAddr, address_word * pAddr, int *CCA, int LorS) { unsigned32 page_mask, vpn2_mask; page_mask = (entry->mask & 0x01ffe000); vpn2_mask = ~(page_mask | 0x00001fff); if ((vAddr & vpn2_mask) == (entry->hi & vpn2_mask) && ((entry->hi & TLB_HI_ASID_MASK) == asid || (entry->hi & TLB_HI_G_MASK) != 0)) { /* OK. Now, do we match lo0, or lo1? */ unsigned32 offset_mask, vpn_lo_mask, vpn_mask, lo; offset_mask = (page_mask >> 1) | 0xfff; vpn_lo_mask = offset_mask + 1; vpn_mask = ~(offset_mask); ASSERT(vpn_lo_mask == (-vpn2_mask) >> 1); ASSERT(vpn_mask ^ vpn_lo_mask == vpn2_mask); if ((vAddr & vpn_lo_mask) == 0) { lo = entry->lo0; } else { lo = entry->lo1; } /* Warn upon attempted use of scratchpad RAM */ if(entry->lo0 & TLB_LO_S_MASK) { sim_io_printf(SD, "Warning: no scratchpad RAM: virtual 0x%08x maps to physical 0x%08x.\n", vAddr, (vAddr & offset_mask)); /* act as if this is a valid, read/write page. */ lo = TLB_LO_V_MASK | TLB_LO_D_MASK; /* alternately, act as if this TLB entry is not a match */ /* return 0; */ } if ((lo & TLB_LO_V_MASK) == 0) { COP0_BADVADDR = vAddr; COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19); /* Top 19 bits */ COP0_ENTRYHI = (vAddr & 0xffffe) | asid; COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED; if (LorS == isLOAD) SignalExceptionTLBInvalidLoad (); else SignalExceptionTLBInvalidStore (); ASSERT(0); /* Signal should never return. */ } if ((lo & TLB_LO_D_MASK) == 0 && (LorS == isSTORE)) { COP0_BADVADDR = vAddr; COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19); /* Top 19 bits */ COP0_ENTRYHI = (vAddr & 0xffffe) | asid; COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED; SignalExceptionTLBModification (); ASSERT(0); /* Signal should never return. */ } /* Ignore lo.C rule for Cache access */ *pAddr = (((lo & 0x03ffffc0) << 6) & (~offset_mask)) + (vAddr & offset_mask); *CCA = Uncached; /* FOR NOW, no CCA support. */ last_hit = entry; /* Remember last hit. */ return 1; /* Match */ } return 0; /* No Match */ } static void dump_tlb(SIM_DESC SD, sim_cpu *CPU, address_word cia) { int i; /* Now linear search for a match. */ for (i = 0; i < TLB_SIZE; i++) { sim_io_eprintf(SD, "%2d: %08x %08x %08x %08x\n", i, TLB[i].mask, TLB[i].hi, TLB[i].lo0, TLB[i].lo1); } } INLINE_SIM_MAIN (void) tlb_lookup (SIM_DESC SD, sim_cpu * CPU, address_word cia, unsigned32 vAddr, address_word * pAddr, int *CCA, int LorS) { r4000_tlb_entry_t *p; unsigned32 asid; int rc; asid = COP0_ENTRYHI & 0x000000ff; /* Test last hit first. More code, but probably faster on average. */ if (last_hit) { if (tlb_try_match (SD, CPU, cia, last_hit, asid, vAddr, pAddr, CCA, LorS)) return; } /* Now linear search for a match. */ for (p = &TLB[0]; p < &TLB[TLB_SIZE]; p++) { if (tlb_try_match (SD, CPU, cia, p, asid, vAddr, pAddr, CCA, LorS)) return; } /* No match, raise a TLB refill exception. */ COP0_BADVADDR = vAddr; COP0_CONTEXT_set_BADVPN2((vAddr & 0xffffe) >> 19); /* Top 19 bits */ COP0_ENTRYHI = (vAddr & 0xffffe) | asid; COP0_RANDOM = rand()%(TLB_SIZE - COP0_WIRED) + COP0_WIRED; #if 0 sim_io_eprintf(SD, "TLB Refill exception at address 0x%0x\n", vAddr); dump_tlb(SD, CPU, cia); #endif if (LorS == isLOAD) SignalExceptionTLBRefillLoad (); else SignalExceptionTLBRefillStore (); ASSERT(0); /* Signal should never return. */ } INLINE_SIM_MAIN (int) address_translation (SIM_DESC SD, sim_cpu * CPU, address_word cia, address_word vAddr, int IorD, int LorS, address_word * pAddr, int *CCA, int raw) { unsigned32 operating_mode; unsigned32 asid, vpn, offset, offset_bits; #ifdef DEBUG sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD")); #endif vAddr &= 0xFFFFFFFF; /* Determine operating mode. */ operating_mode = SR_KSU; if (SR & status_ERL || SR & status_EXL) operating_mode = ksu_kernel; switch (operating_mode) { case ksu_unknown: sim_io_eprintf (SD, "Invalid operating mode SR.KSU == 0x3. Treated as 0x0.\n"); operating_mode = ksu_kernel; /* Fall-through */ case ksu_kernel: /* Map and return for kseg0 and kseg1. */ if ((vAddr & 0xc0000000) == 0x80000000) { ASSERT (0x80000000 <= vAddr && vAddr < 0xc0000000); if (vAddr < 0xa0000000) { /* kseg0: Unmapped, Cached */ *pAddr = vAddr - 0x80000000; *CCA = Uncached; /* For now, until cache model is supported. */ return -1; } else { /* kseg1: Unmapped, Uncached */ *pAddr = vAddr - 0xa0000000; *CCA = Uncached; return -1; } } break; case ksu_supervisor: { /* Address error for 0x80000000->0xbfffffff and 0xe00000000->0xffffffff. */ unsigned32 top_three = vAddr & 0xe0000000; if (top_three != 0x00000000 && top_three != 0xc0000000) { if (LorS == isLOAD) SignalExceptionAddressLoad (); else SignalExceptionAddressStore (); ASSERT(0); /* Signal should never return. */ } } break; case ksu_user: { if (vAddr & 0x80000000) { if (LorS == isLOAD) SignalExceptionAddressLoad (); else SignalExceptionAddressStore (); ASSERT(0); /* Signal should never return. */ } } break; default: ASSERT(0); } /* OK. If we got this far, we're ready to use the normal virtual->physical memory mapping. */ tlb_lookup (SD, CPU, cia, vAddr, pAddr, CCA, LorS); /* If the preceding call returns, a match was found, and CCA and pAddr have been set. */ return -1; } #else /* TARGET_SKY */ /* end-sanitize-sky */ /* Description from page A-22 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* Translate a virtual address to a physical address and cache coherence algorithm describing the mechanism used to resolve the memory reference. Given the virtual address vAddr, and whether the reference is to Instructions ot Data (IorD), find the corresponding physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address is in one of the unmapped address spaces the physical address and the CCA are determined directly by the virtual address. If the virtual address is in one of the mapped address spaces then the TLB is used to determine the physical address and access type; if the required translation is not present in the TLB or the desired access is not permitted the function fails and an exception is taken. NOTE: Normally (RAW == 0), when address translation fails, this function raises an exception and does not return. */ INLINE_SIM_MAIN (int) address_translation (SIM_DESC sd, sim_cpu * cpu, address_word cia, address_word vAddr, int IorD, int LorS, address_word * pAddr, int *CCA, int raw) { int res = -1; /* TRUE : Assume good return */ #ifdef DEBUG sim_io_printf (sd, "AddressTranslation(0x%s,%s,%s,...);\n", pr_addr (vAddr), (IorD ? "isDATA" : "isINSTRUCTION"), (LorS ? "iSTORE" : "isLOAD")); #endif /* Check that the address is valid for this memory model */ /* For a simple (flat) memory model, we simply pass virtual addressess through (mostly) unchanged. */ vAddr &= 0xFFFFFFFF; *pAddr = vAddr; /* default for isTARGET */ *CCA = Uncached; /* not used for isHOST */ return (res); } /* start-sanitize-sky */ #endif /* !TARGET_SKY */ /* end-sanitize-sky */ /* Description from page A-23 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* Prefetch data from memory. Prefetch is an advisory instruction for which an implementation specific action is taken. The action taken may increase performance, but must not change the meaning of the program, or alter architecturally-visible state. */ INLINE_SIM_MAIN (void) prefetch (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint) { #ifdef DEBUG sim_io_printf(sd,"Prefetch(%d,0x%s,0x%s,%d,%d);\n",CCA,pr_addr(pAddr),pr_addr(vAddr),DATA,hint); #endif /* DEBUG */ /* For our simple memory model we do nothing */ return; } /* Description from page A-22 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* Load a value from memory. Use the cache and main memory as specified in the Cache Coherence Algorithm (CCA) and the sort of access (IorD) to find the contents of AccessLength memory bytes starting at physical location pAddr. The data is returned in the fixed width naturally-aligned memory element (MemElem). The low-order two (or three) bits of the address and the AccessLength indicate which of the bytes within MemElem needs to be given to the processor. If the memory access type of the reference is uncached then only the referenced bytes are read from memory and valid within the memory element. If the access type is cached, and the data is not present in cache, an implementation specific size and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, the block is the entire memory element. */ INLINE_SIM_MAIN (void) load_memory (SIM_DESC SD, sim_cpu *CPU, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD) { uword64 value = 0; uword64 value1 = 0; #ifdef DEBUG sim_io_printf(sd,"DBG: LoadMemory(%p,%p,%d,%d,0x%s,0x%s,%s)\n",memvalp,memval1p,CCA,AccessLength,pr_addr(pAddr),pr_addr(vAddr),(IorD ? "isDATA" : "isINSTRUCTION")); #endif /* DEBUG */ #if defined(WARN_MEM) if (CCA != uncached) sim_io_eprintf(sd,"LoadMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA); #endif /* WARN_MEM */ #if !(WITH_IGEN) /* IGEN performs this test in ifetch16() / ifetch32() */ /* If instruction fetch then we need to check that the two lo-order bits are zero, otherwise raise a InstructionFetch exception: */ if ((IorD == isINSTRUCTION) && ((pAddr & 0x3) != 0) && (((pAddr & 0x1) != 0) || ((vAddr & 0x1) == 0))) SignalExceptionInstructionFetch (); #endif if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK) { /* In reality this should be a Bus Error */ sim_io_error (SD, "LOAD AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n", AccessLength, (LOADDRMASK + 1) << 3, pr_addr (pAddr)); } #if defined(TRACE) dotrace (SD, CPU, tracefh,((IorD == isDATA) ? 0 : 2),(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"load%s",((IorD == isDATA) ? "" : " instruction")); #endif /* TRACE */ /* Read the specified number of bytes from memory. Adjust for host/target byte ordering/ Align the least significant byte read. */ switch (AccessLength) { case AccessLength_QUADWORD : { unsigned_16 val = sim_core_read_aligned_16 (CPU, NULL_CIA, read_map, pAddr); value1 = VH8_16 (val); value = VL8_16 (val); break; } case AccessLength_DOUBLEWORD : value = sim_core_read_aligned_8 (CPU, NULL_CIA, read_map, pAddr); break; case AccessLength_SEPTIBYTE : value = sim_core_read_misaligned_7 (CPU, NULL_CIA, read_map, pAddr); break; case AccessLength_SEXTIBYTE : value = sim_core_read_misaligned_6 (CPU, NULL_CIA, read_map, pAddr); break; case AccessLength_QUINTIBYTE : value = sim_core_read_misaligned_5 (CPU, NULL_CIA, read_map, pAddr); break; case AccessLength_WORD : value = sim_core_read_aligned_4 (CPU, NULL_CIA, read_map, pAddr); break; case AccessLength_TRIPLEBYTE : value = sim_core_read_misaligned_3 (CPU, NULL_CIA, read_map, pAddr); break; case AccessLength_HALFWORD : value = sim_core_read_aligned_2 (CPU, NULL_CIA, read_map, pAddr); break; case AccessLength_BYTE : value = sim_core_read_aligned_1 (CPU, NULL_CIA, read_map, pAddr); break; default: abort (); } #ifdef DEBUG printf("DBG: LoadMemory() : (offset %d) : value = 0x%s%s\n", (int)(pAddr & LOADDRMASK),pr_uword64(value1),pr_uword64(value)); #endif /* DEBUG */ /* See also store_memory. Position data in correct byte lanes. */ if (AccessLength <= LOADDRMASK) { if (BigEndianMem) /* for big endian target, byte (pAddr&LOADDRMASK == 0) is shifted to the most significant byte position. */ value <<= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8); else /* For little endian target, byte (pAddr&LOADDRMASK == 0) is already in the correct postition. */ value <<= ((pAddr & LOADDRMASK) * 8); } #ifdef DEBUG printf("DBG: LoadMemory() : shifted value = 0x%s%s\n", pr_uword64(value1),pr_uword64(value)); #endif /* DEBUG */ *memvalp = value; if (memval1p) *memval1p = value1; } /* Description from page A-23 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* Store a value to memory. The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main memory) as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data for an aligned, fixed-width memory element (word for 32-bit processors, doubleword for 64-bit processors), though only the bytes that will actually be stored to memory need to be valid. The low-order two (or three) bits of pAddr and the AccessLength field indicates which of the bytes within the MemElem data should actually be stored; only these bytes in memory will be changed. */ INLINE_SIM_MAIN (void) store_memory (SIM_DESC SD, sim_cpu *CPU, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, /* High order 64 bits */ address_word pAddr, address_word vAddr) { #ifdef DEBUG sim_io_printf(sd,"DBG: StoreMemory(%d,%d,0x%s,0x%s,0x%s,0x%s)\n",CCA,AccessLength,pr_uword64(MemElem),pr_uword64(MemElem1),pr_addr(pAddr),pr_addr(vAddr)); #endif /* DEBUG */ #if defined(WARN_MEM) if (CCA != uncached) sim_io_eprintf(sd,"StoreMemory CCA (%d) is not uncached (currently all accesses treated as cached)\n",CCA); #endif /* WARN_MEM */ if (((pAddr & LOADDRMASK) + AccessLength) > LOADDRMASK) sim_io_error (SD, "STORE AccessLength of %d would extend over %d bit aligned boundary for physical address 0x%s\n", AccessLength, (LOADDRMASK + 1) << 3, pr_addr(pAddr)); #if defined(TRACE) dotrace (SD, CPU, tracefh,1,(unsigned int)(pAddr&0xFFFFFFFF),(AccessLength + 1),"store"); #endif /* TRACE */ #ifdef DEBUG printf("DBG: StoreMemory: offset = %d MemElem = 0x%s%s\n",(unsigned int)(pAddr & LOADDRMASK),pr_uword64(MemElem1),pr_uword64(MemElem)); #endif /* DEBUG */ /* See also load_memory. Position data in correct byte lanes. */ if (AccessLength <= LOADDRMASK) { if (BigEndianMem) /* for big endian target, byte (pAddr&LOADDRMASK == 0) is shifted to the most significant byte position. */ MemElem >>= (((LOADDRMASK - (pAddr & LOADDRMASK)) - AccessLength) * 8); else /* For little endian target, byte (pAddr&LOADDRMASK == 0) is already in the correct postition. */ MemElem >>= ((pAddr & LOADDRMASK) * 8); } #ifdef DEBUG printf("DBG: StoreMemory: shift = %d MemElem = 0x%s%s\n",shift,pr_uword64(MemElem1),pr_uword64(MemElem)); #endif /* DEBUG */ switch (AccessLength) { case AccessLength_QUADWORD : { unsigned_16 val = U16_8 (MemElem1, MemElem); sim_core_write_aligned_16 (CPU, NULL_CIA, write_map, pAddr, val); break; } case AccessLength_DOUBLEWORD : sim_core_write_aligned_8 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; case AccessLength_SEPTIBYTE : sim_core_write_misaligned_7 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; case AccessLength_SEXTIBYTE : sim_core_write_misaligned_6 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; case AccessLength_QUINTIBYTE : sim_core_write_misaligned_5 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; case AccessLength_WORD : sim_core_write_aligned_4 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; case AccessLength_TRIPLEBYTE : sim_core_write_misaligned_3 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; case AccessLength_HALFWORD : sim_core_write_aligned_2 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; case AccessLength_BYTE : sim_core_write_aligned_1 (CPU, NULL_CIA, write_map, pAddr, MemElem); break; default: abort (); } return; } INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC SD, sim_cpu *CPU, address_word cia, address_word vaddr) { /* Copy the action of the LW instruction */ address_word mask = LOADDRMASK; address_word access = AccessLength_WORD; address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0); address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0); unsigned int byte; address_word paddr; int uncached; unsigned64 memval; if ((vaddr & access) != 0) SignalExceptionInstructionFetch (); AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL); paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian)); LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL); byte = ((vaddr & mask) ^ bigendiancpu); return (memval >> (8 * byte)); } INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC SD, sim_cpu *CPU, address_word cia, address_word vaddr) { /* Copy the action of the LH instruction */ address_word mask = LOADDRMASK; address_word access = AccessLength_HALFWORD; address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0); address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0); unsigned int byte; address_word paddr; int uncached; unsigned64 memval; if ((vaddr & access) != 0) SignalExceptionInstructionFetch (); AddressTranslation (vaddr, isINSTRUCTION, isLOAD, &paddr, &uncached, isTARGET, isREAL); paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian)); LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isINSTRUCTION, isREAL); byte = ((vaddr & mask) ^ bigendiancpu); return (memval >> (8 * byte)); } /* Description from page A-26 of the "MIPS IV Instruction Set" manual (revision 3.1) */ /* Order loads and stores to synchronise shared memory. Perform the action necessary to make the effects of groups of synchronizable loads and stores indicated by stype occur in the same order for all processors. */ INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype) { #ifdef DEBUG sim_io_printf(sd,"SyncOperation(%d) : TODO\n",stype); #endif /* DEBUG */ return; } INLINE_SIM_MAIN (void) cache_op (SIM_DESC SD, sim_cpu *CPU, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction) { #if 1 /* stop warning message being displayed (we should really just remove the code) */ static int icache_warning = 1; static int dcache_warning = 1; #else static int icache_warning = 0; static int dcache_warning = 0; #endif /* If CP0 is not useable (User or Supervisor mode) and the CP0 enable bit in the Status Register is clear - a coprocessor unusable exception is taken. */ #if 0 sim_io_printf(SD,"TODO: Cache availability checking (PC = 0x%s)\n",pr_addr(cia)); #endif switch (op & 0x3) { case 0: /* instruction cache */ switch (op >> 2) { case 0: /* Index Invalidate */ case 1: /* Index Load Tag */ case 2: /* Index Store Tag */ case 4: /* Hit Invalidate */ case 5: /* Fill */ case 6: /* Hit Writeback */ if (!icache_warning) { sim_io_eprintf(SD,"Instruction CACHE operation %d to be coded\n",(op >> 2)); icache_warning = 1; } break; default: SignalException(ReservedInstruction,instruction); break; } break; case 1: /* data cache */ switch (op >> 2) { case 0: /* Index Writeback Invalidate */ case 1: /* Index Load Tag */ case 2: /* Index Store Tag */ case 3: /* Create Dirty */ case 4: /* Hit Invalidate */ case 5: /* Hit Writeback Invalidate */ case 6: /* Hit Writeback */ if (!dcache_warning) { sim_io_eprintf(SD,"Data CACHE operation %d to be coded\n",(op >> 2)); dcache_warning = 1; } break; default: SignalException(ReservedInstruction,instruction); break; } break; default: /* unrecognised cache ID */ SignalException(ReservedInstruction,instruction); break; } return; } INLINE_SIM_MAIN (void) pending_tick (SIM_DESC SD, sim_cpu *CPU, address_word cia) { if (PENDING_TRACE) sim_io_eprintf (SD, "PENDING_DRAIN - 0x%lx - pending_in = %d, pending_out = %d, pending_total = %d\n", (unsigned long) cia, PENDING_IN, PENDING_OUT, PENDING_TOTAL); if (PENDING_OUT != PENDING_IN) { int loop; int index = PENDING_OUT; int total = PENDING_TOTAL; if (PENDING_TOTAL == 0) sim_engine_abort (SD, CPU, cia, "PENDING_DRAIN - Mis-match on pending update pointers\n"); for (loop = 0, index = PENDING_OUT; (loop < total); loop++, index = (index + 1) % PSLOTS) { if (PENDING_SLOT_DEST[index] != NULL) { PENDING_SLOT_DELAY[index] -= 1; if (PENDING_SLOT_DELAY[index] == 0) { if (PENDING_TRACE) sim_io_eprintf (SD, "PENDING_DRAIN - drained - index %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n", index, (unsigned long) PENDING_SLOT_DEST[index], PENDING_SLOT_BIT[index], (unsigned long) PENDING_SLOT_VALUE[index], PENDING_SLOT_SIZE[index]); if (PENDING_SLOT_BIT[index] >= 0) switch (PENDING_SLOT_SIZE[index]) { case 4: if (PENDING_SLOT_VALUE[index]) *(unsigned32*)PENDING_SLOT_DEST[index] |= BIT32 (PENDING_SLOT_BIT[index]); else *(unsigned32*)PENDING_SLOT_DEST[index] &= BIT32 (PENDING_SLOT_BIT[index]); break; case 8: if (PENDING_SLOT_VALUE[index]) *(unsigned64*)PENDING_SLOT_DEST[index] |= BIT64 (PENDING_SLOT_BIT[index]); else *(unsigned64*)PENDING_SLOT_DEST[index] &= BIT64 (PENDING_SLOT_BIT[index]); break; } else switch (PENDING_SLOT_SIZE[index]) { case 4: *(unsigned32*)PENDING_SLOT_DEST[index] = PENDING_SLOT_VALUE[index]; break; case 8: *(unsigned64*)PENDING_SLOT_DEST[index] = PENDING_SLOT_VALUE[index]; break; } if (PENDING_OUT == index) { PENDING_SLOT_DEST[index] = NULL; PENDING_OUT = (PENDING_OUT + 1) % PSLOTS; PENDING_TOTAL--; } } else if (PENDING_TRACE && PENDING_SLOT_DELAY[index] > 0) sim_io_eprintf (SD, "PENDING_DRAIN - queued - index %d, delay %d, dest 0x%lx, bit %d, val 0x%lx, size %d\n", index, PENDING_SLOT_DELAY[index], (unsigned long) PENDING_SLOT_DEST[index], PENDING_SLOT_BIT[index], (unsigned long) PENDING_SLOT_VALUE[index], PENDING_SLOT_SIZE[index]); } } } } #endif