// -*- C -*- // // <insn> ::= // <insn-word> { "+" <insn-word> } // ":" <format-name> // ":" <filter-flags> // ":" <options> // ":" <name> // <nl> // { <insn-model> } // { <insn-mnemonic> } // <code-block> // // IGEN config - mips16 // :option:16::insn-bit-size:16 // :option:16::hi-bit-nr:15 :option:16::insn-specifying-widths:true :option:16::gen-delayed-branch:false // IGEN config - mips32/64.. // :option:32::insn-bit-size:32 // :option:32::hi-bit-nr:31 :option:32::insn-specifying-widths:true :option:32::gen-delayed-branch:false // Generate separate simulators for each target // :option:::multi-sim:true // Models known by this simulator are defined below. // // When placing models in the instruction descriptions, please place // them one per line, in the order given here. // MIPS ISAs: // // Instructions and related functions for these models are included in // this file. :model:::mipsI:mips3000: :model:::mipsII:mips6000: :model:::mipsIII:mips4000: :model:::mipsIV:mips8000: :model:::mipsV:mipsisaV: :model:::mips32:mipsisa32: :model:::mips64:mipsisa64: // Vendor ISAs: // // Standard MIPS ISA instructions used for these models are listed here, // as are functions needed by those standard instructions. Instructions // which are model-dependent and which are not in the standard MIPS ISAs // (or which pre-date or use different encodings than the standard // instructions) are (for the most part) in separate .igen files. :model:::vr4100:mips4100: // vr.igen :model:::vr4120:mips4120: :model:::vr5000:mips5000: :model:::vr5400:mips5400: :model:::vr5500:mips5500: :model:::r3900:mips3900: // tx.igen // MIPS Application Specific Extensions (ASEs) // // Instructions for the ASEs are in separate .igen files. // ASEs add instructions on to a base ISA. :model:::mips16:mips16: // m16.igen (and m16.dc) :model:::mips3d:mips3d: // mips3d.igen :model:::mdmx:mdmx: // mdmx.igen // Vendor Extensions // // Instructions specific to these extensions are in separate .igen files. // Extensions add instructions on to a base ISA. :model:::sb1:sb1: // sb1.igen // Pseudo instructions known by IGEN :internal::::illegal: { SignalException (ReservedInstruction, 0); } // Pseudo instructions known by interp.c // For grep - RSVD_INSTRUCTION, RSVD_INSTRUCTION_MASK 000000,5.*,5.*,5.*,5.OP,000101:SPECIAL:32::RSVD "rsvd <OP>" { SignalException (ReservedInstruction, instruction_0); } // Helper: // // Simulate a 32 bit delayslot instruction // :function:::address_word:delayslot32:address_word target { instruction_word delay_insn; sim_events_slip (SD, 1); DSPC = CIA; CIA = CIA + 4; /* NOTE not mips16 */ STATE |= simDELAYSLOT; delay_insn = IMEM32 (CIA); /* NOTE not mips16 */ ENGINE_ISSUE_PREFIX_HOOK(); idecode_issue (CPU_, delay_insn, (CIA)); STATE &= ~simDELAYSLOT; return target; } :function:::address_word:nullify_next_insn32: { sim_events_slip (SD, 1); dotrace (SD, CPU, tracefh, 2, CIA + 4, 4, "load instruction"); return CIA + 8; } // Helper: // // Calculate an effective address given a base and an offset. // :function:::address_word:loadstore_ea:address_word base, address_word offset *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *vr4100: *vr5000: *r3900: { return base + offset; } :function:::address_word:loadstore_ea:address_word base, address_word offset *mips64: { #if 0 /* XXX FIXME: enable this only after some additional testing. */ /* If in user mode and UX is not set, use 32-bit compatibility effective address computations as defined in the MIPS64 Architecture for Programmers Volume III, Revision 0.95, section 4.9. */ if ((SR & (status_KSU_mask|status_EXL|status_ERL|status_UX)) == (ksu_user << status_KSU_shift)) return (address_word)((signed32)base + (signed32)offset); #endif return base + offset; } // Helper: // // Check that a 32-bit register value is properly sign-extended. // (See NotWordValue in ISA spec.) // :function:::int:not_word_value:unsigned_word value *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *vr4100: *vr5000: *r3900: { /* For historical simulator compatibility (until documentation is found that makes these operations unpredictable on some of these architectures), this check never returns true. */ return 0; } :function:::int:not_word_value:unsigned_word value *mips32: { /* On MIPS32, since registers are 32-bits, there's no check to be done. */ return 0; } :function:::int:not_word_value:unsigned_word value *mips64: { return ((value >> 32) != (value & 0x80000000 ? 0xFFFFFFFF : 0)); } // Helper: // // Handle UNPREDICTABLE operation behaviour. The goal here is to prevent // theoretically portable code which invokes non-portable behaviour from // running with no indication of the portability issue. // (See definition of UNPREDICTABLE in ISA spec.) // :function:::void:unpredictable: *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *vr4100: *vr5000: *r3900: { } :function:::void:unpredictable: *mips32: *mips64: { unpredictable_action (CPU, CIA); } // Helpers: // // Check that an access to a HI/LO register meets timing requirements // // In all MIPS ISAs, // // OP {HI and LO} followed by MT{LO or HI} (and not MT{HI or LO}) // makes subsequent MF{HI or LO} UNPREDICTABLE. (1) // // The following restrictions exist for MIPS I - MIPS III: // // MF{HI or LO} followed by MT{HI or LO} w/ less than 2 instructions // in between makes MF UNPREDICTABLE. (2) // // MF{HI or LO} followed by OP {HI and LO} w/ less than 2 instructions // in between makes MF UNPREDICTABLE. (3) // // On the r3900, restriction (2) is not present, and restriction (3) is not // present for multiplication. // // Unfortunately, there seems to be some confusion about whether the last // two restrictions should apply to "MIPS IV" as well. One edition of // the MIPS IV ISA says they do, but references in later ISA documents // suggest they don't. // // In reality, some MIPS IV parts, such as the VR5000 and VR5400, do have // these restrictions, while others, like the VR5500, don't. To accomodate // such differences, the MIPS IV and MIPS V version of these helper functions // use auxillary routines to determine whether the restriction applies. // check_mf_cycles: // // Helper used by check_mt_hilo, check_mult_hilo, and check_div_hilo // to check for restrictions (2) and (3) above. // :function:::int:check_mf_cycles:hilo_history *history, signed64 time, const char *new { if (history->mf.timestamp + 3 > time) { sim_engine_abort (SD, CPU, CIA, "HILO: %s: %s at 0x%08lx too close to MF at 0x%08lx\n", itable[MY_INDEX].name, new, (long) CIA, (long) history->mf.cia); return 0; } return 1; } // check_mt_hilo: // // Check for restriction (2) above (for ISAs/processors that have it), // and record timestamps for restriction (1) above. // :function:::int:check_mt_hilo:hilo_history *history *mipsI: *mipsII: *mipsIII: *vr4100: *vr5000: { signed64 time = sim_events_time (SD); int ok = check_mf_cycles (SD_, history, time, "MT"); history->mt.timestamp = time; history->mt.cia = CIA; return ok; } :function:::int:check_mt_hilo:hilo_history *history *mipsIV: *mipsV: { signed64 time = sim_events_time (SD); int ok = (! MIPS_MACH_HAS_MT_HILO_HAZARD (SD) || check_mf_cycles (SD_, history, time, "MT")); history->mt.timestamp = time; history->mt.cia = CIA; return ok; } :function:::int:check_mt_hilo:hilo_history *history *mips32: *mips64: *r3900: { signed64 time = sim_events_time (SD); history->mt.timestamp = time; history->mt.cia = CIA; return 1; } // check_mf_hilo: // // Check for restriction (1) above, and record timestamps for // restriction (2) and (3) above. // :function:::int:check_mf_hilo:hilo_history *history, hilo_history *peer *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { signed64 time = sim_events_time (SD); int ok = 1; if (peer != NULL && peer->mt.timestamp > history->op.timestamp && history->mt.timestamp < history->op.timestamp && ! (history->mf.timestamp > history->op.timestamp && history->mf.timestamp < peer->mt.timestamp) && ! (peer->mf.timestamp > history->op.timestamp && peer->mf.timestamp < peer->mt.timestamp)) { /* The peer has been written to since the last OP yet we have not */ sim_engine_abort (SD, CPU, CIA, "HILO: %s: MF at 0x%08lx following OP at 0x%08lx corrupted by MT at 0x%08lx\n", itable[MY_INDEX].name, (long) CIA, (long) history->op.cia, (long) peer->mt.cia); ok = 0; } history->mf.timestamp = time; history->mf.cia = CIA; return ok; } // check_mult_hilo: // // Check for restriction (3) above (for ISAs/processors that have it) // for MULT ops, and record timestamps for restriction (1) above. // :function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo *mipsI: *mipsII: *mipsIII: *vr4100: *vr5000: { signed64 time = sim_events_time (SD); int ok = (check_mf_cycles (SD_, hi, time, "OP") && check_mf_cycles (SD_, lo, time, "OP")); hi->op.timestamp = time; lo->op.timestamp = time; hi->op.cia = CIA; lo->op.cia = CIA; return ok; } :function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo *mipsIV: *mipsV: { signed64 time = sim_events_time (SD); int ok = (! MIPS_MACH_HAS_MULT_HILO_HAZARD (SD) || (check_mf_cycles (SD_, hi, time, "OP") && check_mf_cycles (SD_, lo, time, "OP"))); hi->op.timestamp = time; lo->op.timestamp = time; hi->op.cia = CIA; lo->op.cia = CIA; return ok; } :function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo *mips32: *mips64: *r3900: { /* FIXME: could record the fact that a stall occured if we want */ signed64 time = sim_events_time (SD); hi->op.timestamp = time; lo->op.timestamp = time; hi->op.cia = CIA; lo->op.cia = CIA; return 1; } // check_div_hilo: // // Check for restriction (3) above (for ISAs/processors that have it) // for DIV ops, and record timestamps for restriction (1) above. // :function:::int:check_div_hilo:hilo_history *hi, hilo_history *lo *mipsI: *mipsII: *mipsIII: *vr4100: *vr5000: *r3900: { signed64 time = sim_events_time (SD); int ok = (check_mf_cycles (SD_, hi, time, "OP") && check_mf_cycles (SD_, lo, time, "OP")); hi->op.timestamp = time; lo->op.timestamp = time; hi->op.cia = CIA; lo->op.cia = CIA; return ok; } :function:::int:check_div_hilo:hilo_history *hi, hilo_history *lo *mipsIV: *mipsV: { signed64 time = sim_events_time (SD); int ok = (! MIPS_MACH_HAS_DIV_HILO_HAZARD (SD) || (check_mf_cycles (SD_, hi, time, "OP") && check_mf_cycles (SD_, lo, time, "OP"))); hi->op.timestamp = time; lo->op.timestamp = time; hi->op.cia = CIA; lo->op.cia = CIA; return ok; } :function:::int:check_div_hilo:hilo_history *hi, hilo_history *lo *mips32: *mips64: { signed64 time = sim_events_time (SD); hi->op.timestamp = time; lo->op.timestamp = time; hi->op.cia = CIA; lo->op.cia = CIA; return 1; } // Helper: // // Check that the 64-bit instruction can currently be used, and signal // a ReservedInstruction exception if not. // :function:::void:check_u64:instruction_word insn *mipsIII: *mipsIV: *mipsV: *vr4100: *vr5000: { // The check should be similar to mips64 for any with PX/UX bit equivalents. } :function:::void:check_u64:instruction_word insn *mips64: { #if 0 /* XXX FIXME: enable this only after some additional testing. */ if (UserMode && (SR & (status_UX|status_PX)) == 0) SignalException (ReservedInstruction, insn); #endif } // // MIPS Architecture: // // CPU Instruction Set (mipsI - mipsV, mips32, mips64) // 000000,5.RS,5.RT,5.RD,00000,100000:SPECIAL:32::ADD "add r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { if (NotWordValue (GPR[RS]) || NotWordValue (GPR[RT])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); { ALU32_BEGIN (GPR[RS]); ALU32_ADD (GPR[RT]); ALU32_END (GPR[RD]); /* This checks for overflow. */ } TRACE_ALU_RESULT (GPR[RD]); } 001000,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDI "addi r<RT>, r<RS>, <IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { if (NotWordValue (GPR[RS])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE)); { ALU32_BEGIN (GPR[RS]); ALU32_ADD (EXTEND16 (IMMEDIATE)); ALU32_END (GPR[RT]); /* This checks for overflow. */ } TRACE_ALU_RESULT (GPR[RT]); } :function:::void:do_addiu:int rs, int rt, unsigned16 immediate { if (NotWordValue (GPR[rs])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate)); GPR[rt] = EXTEND32 (GPR[rs] + EXTEND16 (immediate)); TRACE_ALU_RESULT (GPR[rt]); } 001001,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDIU "addiu r<RT>, r<RS>, <IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_addiu (SD_, RS, RT, IMMEDIATE); } :function:::void:do_addu:int rs, int rt, int rd { if (NotWordValue (GPR[rs]) || NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = EXTEND32 (GPR[rs] + GPR[rt]); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,100001:SPECIAL:32::ADDU "addu r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_addu (SD_, RS, RT, RD); } :function:::void:do_and:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = GPR[rs] & GPR[rt]; TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,100100:SPECIAL:32::AND "and r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_and (SD_, RS, RT, RD); } 001100,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ANDI "andi r<RT>, r<RS>, %#lx<IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { TRACE_ALU_INPUT2 (GPR[RS], IMMEDIATE); GPR[RT] = GPR[RS] & IMMEDIATE; TRACE_ALU_RESULT (GPR[RT]); } 000100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQ "beq r<RS>, r<RT>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] == (signed_word) GPR[RT]) { DELAY_SLOT (NIA + offset); } } 010100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQL "beql r<RS>, r<RT>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] == (signed_word) GPR[RT]) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000001,5.RS,00001,16.OFFSET:REGIMM:32::BGEZ "bgez r<RS>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] >= 0) { DELAY_SLOT (NIA + offset); } } 000001,5.RS!31,10001,16.OFFSET:REGIMM:32::BGEZAL "bgezal r<RS>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if (RS == 31) Unpredictable (); RA = (CIA + 8); if ((signed_word) GPR[RS] >= 0) { DELAY_SLOT (NIA + offset); } } 000001,5.RS!31,10011,16.OFFSET:REGIMM:32::BGEZALL "bgezall r<RS>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if (RS == 31) Unpredictable (); RA = (CIA + 8); /* NOTE: The branch occurs AFTER the next instruction has been executed */ if ((signed_word) GPR[RS] >= 0) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000001,5.RS,00011,16.OFFSET:REGIMM:32::BGEZL "bgezl r<RS>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] >= 0) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZ "bgtz r<RS>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] > 0) { DELAY_SLOT (NIA + offset); } } 010111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZL "bgtzl r<RS>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; /* NOTE: The branch occurs AFTER the next instruction has been executed */ if ((signed_word) GPR[RS] > 0) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZ "blez r<RS>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; /* NOTE: The branch occurs AFTER the next instruction has been executed */ if ((signed_word) GPR[RS] <= 0) { DELAY_SLOT (NIA + offset); } } 010110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZL "bgezl r<RS>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] <= 0) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000001,5.RS,00000,16.OFFSET:REGIMM:32::BLTZ "bltz r<RS>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] < 0) { DELAY_SLOT (NIA + offset); } } 000001,5.RS!31,10000,16.OFFSET:REGIMM:32::BLTZAL "bltzal r<RS>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if (RS == 31) Unpredictable (); RA = (CIA + 8); /* NOTE: The branch occurs AFTER the next instruction has been executed */ if ((signed_word) GPR[RS] < 0) { DELAY_SLOT (NIA + offset); } } 000001,5.RS!31,10010,16.OFFSET:REGIMM:32::BLTZALL "bltzall r<RS>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if (RS == 31) Unpredictable (); RA = (CIA + 8); if ((signed_word) GPR[RS] < 0) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000001,5.RS,00010,16.OFFSET:REGIMM:32::BLTZL "bltzl r<RS>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; /* NOTE: The branch occurs AFTER the next instruction has been executed */ if ((signed_word) GPR[RS] < 0) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNE "bne r<RS>, r<RT>, <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] != (signed_word) GPR[RT]) { DELAY_SLOT (NIA + offset); } } 010101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNEL "bnel r<RS>, r<RT>, <OFFSET>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word offset = EXTEND16 (OFFSET) << 2; if ((signed_word) GPR[RS] != (signed_word) GPR[RT]) { DELAY_SLOT (NIA + offset); } else NULLIFY_NEXT_INSTRUCTION (); } 000000,20.CODE,001101:SPECIAL:32::BREAK "break %#lx<CODE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { /* Check for some break instruction which are reserved for use by the simulator. */ unsigned int break_code = instruction_0 & HALT_INSTRUCTION_MASK; if (break_code == (HALT_INSTRUCTION & HALT_INSTRUCTION_MASK) || break_code == (HALT_INSTRUCTION2 & HALT_INSTRUCTION_MASK)) { sim_engine_halt (SD, CPU, NULL, cia, sim_exited, (unsigned int)(A0 & 0xFFFFFFFF)); } else if (break_code == (BREAKPOINT_INSTRUCTION & HALT_INSTRUCTION_MASK) || break_code == (BREAKPOINT_INSTRUCTION2 & HALT_INSTRUCTION_MASK)) { if (STATE & simDELAYSLOT) PC = cia - 4; /* reference the branch instruction */ else PC = cia; SignalException (BreakPoint, instruction_0); } else { /* If we get this far, we're not an instruction reserved by the sim. Raise the exception. */ SignalException (BreakPoint, instruction_0); } } 011100,5.RS,5.RT,5.RD,00000,100001:SPECIAL2:32::CLO "clo r<RD>, r<RS>" *mips32: *mips64: *vr5500: { unsigned32 temp = GPR[RS]; unsigned32 i, mask; if (RT != RD) Unpredictable (); if (NotWordValue (GPR[RS])) Unpredictable (); TRACE_ALU_INPUT1 (GPR[RS]); for (mask = ((unsigned32)1<<31), i = 0; i < 32; ++i) { if ((temp & mask) == 0) break; mask >>= 1; } GPR[RD] = EXTEND32 (i); TRACE_ALU_RESULT (GPR[RD]); } 011100,5.RS,5.RT,5.RD,00000,100000:SPECIAL2:32::CLZ "clz r<RD>, r<RS>" *mips32: *mips64: *vr5500: { unsigned32 temp = GPR[RS]; unsigned32 i, mask; if (RT != RD) Unpredictable (); if (NotWordValue (GPR[RS])) Unpredictable (); TRACE_ALU_INPUT1 (GPR[RS]); for (mask = ((unsigned32)1<<31), i = 0; i < 32; ++i) { if ((temp & mask) != 0) break; mask >>= 1; } GPR[RD] = EXTEND32 (i); TRACE_ALU_RESULT (GPR[RD]); } 000000,5.RS,5.RT,5.RD,00000,101100:SPECIAL:64::DADD "dadd r<RD>, r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); { ALU64_BEGIN (GPR[RS]); ALU64_ADD (GPR[RT]); ALU64_END (GPR[RD]); /* This checks for overflow. */ } TRACE_ALU_RESULT (GPR[RD]); } 011000,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDI "daddi r<RT>, r<RS>, <IMMEDIATE>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE)); { ALU64_BEGIN (GPR[RS]); ALU64_ADD (EXTEND16 (IMMEDIATE)); ALU64_END (GPR[RT]); /* This checks for overflow. */ } TRACE_ALU_RESULT (GPR[RT]); } :function:::void:do_daddiu:int rs, int rt, unsigned16 immediate { TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate)); GPR[rt] = GPR[rs] + EXTEND16 (immediate); TRACE_ALU_RESULT (GPR[rt]); } 011001,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDIU "daddiu r<RT>, r<RS>, <IMMEDIATE>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_daddiu (SD_, RS, RT, IMMEDIATE); } :function:::void:do_daddu:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = GPR[rs] + GPR[rt]; TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,101101:SPECIAL:64::DADDU "daddu r<RD>, r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_daddu (SD_, RS, RT, RD); } 011100,5.RS,5.RT,5.RD,00000,100101:SPECIAL2:64::DCLO "dclo r<RD>, r<RS>" *mips64: *vr5500: { unsigned64 temp = GPR[RS]; unsigned32 i; unsigned64 mask; check_u64 (SD_, instruction_0); if (RT != RD) Unpredictable (); TRACE_ALU_INPUT1 (GPR[RS]); for (mask = ((unsigned64)1<<63), i = 0; i < 64; ++i) { if ((temp & mask) == 0) break; mask >>= 1; } GPR[RD] = EXTEND32 (i); TRACE_ALU_RESULT (GPR[RD]); } 011100,5.RS,5.RT,5.RD,00000,100100:SPECIAL2:64::DCLZ "dclz r<RD>, r<RS>" *mips64: *vr5500: { unsigned64 temp = GPR[RS]; unsigned32 i; unsigned64 mask; check_u64 (SD_, instruction_0); if (RT != RD) Unpredictable (); TRACE_ALU_INPUT1 (GPR[RS]); for (mask = ((unsigned64)1<<63), i = 0; i < 64; ++i) { if ((temp & mask) != 0) break; mask >>= 1; } GPR[RD] = EXTEND32 (i); TRACE_ALU_RESULT (GPR[RD]); } :function:::void:do_ddiv:int rs, int rt { check_div_hilo (SD_, HIHISTORY, LOHISTORY); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); { signed64 n = GPR[rs]; signed64 d = GPR[rt]; signed64 hi; signed64 lo; if (d == 0) { lo = SIGNED64 (0x8000000000000000); hi = 0; } else if (d == -1 && n == SIGNED64 (0x8000000000000000)) { lo = SIGNED64 (0x8000000000000000); hi = 0; } else { lo = (n / d); hi = (n % d); } HI = hi; LO = lo; } TRACE_ALU_RESULT2 (HI, LO); } 000000,5.RS,5.RT,0000000000,011110:SPECIAL:64::DDIV "ddiv r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_ddiv (SD_, RS, RT); } :function:::void:do_ddivu:int rs, int rt { check_div_hilo (SD_, HIHISTORY, LOHISTORY); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); { unsigned64 n = GPR[rs]; unsigned64 d = GPR[rt]; unsigned64 hi; unsigned64 lo; if (d == 0) { lo = SIGNED64 (0x8000000000000000); hi = 0; } else { lo = (n / d); hi = (n % d); } HI = hi; LO = lo; } TRACE_ALU_RESULT2 (HI, LO); } 000000,5.RS,5.RT,0000000000,011111:SPECIAL:64::DDIVU "ddivu r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_ddivu (SD_, RS, RT); } :function:::void:do_div:int rs, int rt { check_div_hilo (SD_, HIHISTORY, LOHISTORY); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); { signed32 n = GPR[rs]; signed32 d = GPR[rt]; if (d == 0) { LO = EXTEND32 (0x80000000); HI = EXTEND32 (0); } else if (n == SIGNED32 (0x80000000) && d == -1) { LO = EXTEND32 (0x80000000); HI = EXTEND32 (0); } else { LO = EXTEND32 (n / d); HI = EXTEND32 (n % d); } } TRACE_ALU_RESULT2 (HI, LO); } 000000,5.RS,5.RT,0000000000,011010:SPECIAL:32::DIV "div r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_div (SD_, RS, RT); } :function:::void:do_divu:int rs, int rt { check_div_hilo (SD_, HIHISTORY, LOHISTORY); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); { unsigned32 n = GPR[rs]; unsigned32 d = GPR[rt]; if (d == 0) { LO = EXTEND32 (0x80000000); HI = EXTEND32 (0); } else { LO = EXTEND32 (n / d); HI = EXTEND32 (n % d); } } TRACE_ALU_RESULT2 (HI, LO); } 000000,5.RS,5.RT,0000000000,011011:SPECIAL:32::DIVU "divu r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_divu (SD_, RS, RT); } :function:::void:do_dmultx:int rs, int rt, int rd, int signed_p { unsigned64 lo; unsigned64 hi; unsigned64 m00; unsigned64 m01; unsigned64 m10; unsigned64 m11; unsigned64 mid; int sign; unsigned64 op1 = GPR[rs]; unsigned64 op2 = GPR[rt]; check_mult_hilo (SD_, HIHISTORY, LOHISTORY); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); /* make signed multiply unsigned */ sign = 0; if (signed_p) { if ((signed64) op1 < 0) { op1 = - op1; ++sign; } if ((signed64) op2 < 0) { op2 = - op2; ++sign; } } /* multiply out the 4 sub products */ m00 = ((unsigned64) VL4_8 (op1) * (unsigned64) VL4_8 (op2)); m10 = ((unsigned64) VH4_8 (op1) * (unsigned64) VL4_8 (op2)); m01 = ((unsigned64) VL4_8 (op1) * (unsigned64) VH4_8 (op2)); m11 = ((unsigned64) VH4_8 (op1) * (unsigned64) VH4_8 (op2)); /* add the products */ mid = ((unsigned64) VH4_8 (m00) + (unsigned64) VL4_8 (m10) + (unsigned64) VL4_8 (m01)); lo = U8_4 (mid, m00); hi = (m11 + (unsigned64) VH4_8 (mid) + (unsigned64) VH4_8 (m01) + (unsigned64) VH4_8 (m10)); /* fix the sign */ if (sign & 1) { lo = -lo; if (lo == 0) hi = -hi; else hi = -hi - 1; } /* save the result HI/LO (and a gpr) */ LO = lo; HI = hi; if (rd != 0) GPR[rd] = lo; TRACE_ALU_RESULT2 (HI, LO); } :function:::void:do_dmult:int rs, int rt, int rd { do_dmultx (SD_, rs, rt, rd, 1); } 000000,5.RS,5.RT,0000000000,011100:SPECIAL:64::DMULT "dmult r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: { check_u64 (SD_, instruction_0); do_dmult (SD_, RS, RT, 0); } 000000,5.RS,5.RT,5.RD,00000,011100:SPECIAL:64::DMULT "dmult r<RS>, r<RT>":RD == 0 "dmult r<RD>, r<RS>, r<RT>" *vr5000: { check_u64 (SD_, instruction_0); do_dmult (SD_, RS, RT, RD); } :function:::void:do_dmultu:int rs, int rt, int rd { do_dmultx (SD_, rs, rt, rd, 0); } 000000,5.RS,5.RT,0000000000,011101:SPECIAL:64::DMULTU "dmultu r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: { check_u64 (SD_, instruction_0); do_dmultu (SD_, RS, RT, 0); } 000000,5.RS,5.RT,5.RD,00000,011101:SPECIAL:64::DMULTU "dmultu r<RD>, r<RS>, r<RT>":RD == 0 "dmultu r<RS>, r<RT>" *vr5000: { check_u64 (SD_, instruction_0); do_dmultu (SD_, RS, RT, RD); } :function:::void:do_dsll:int rt, int rd, int shift { TRACE_ALU_INPUT2 (GPR[rt], shift); GPR[rd] = GPR[rt] << shift; TRACE_ALU_RESULT (GPR[rd]); } 000000,00000,5.RT,5.RD,5.SHIFT,111000:SPECIAL:64::DSLL "dsll r<RD>, r<RT>, <SHIFT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_dsll (SD_, RT, RD, SHIFT); } 000000,00000,5.RT,5.RD,5.SHIFT,111100:SPECIAL:64::DSLL32 "dsll32 r<RD>, r<RT>, <SHIFT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { int s = 32 + SHIFT; check_u64 (SD_, instruction_0); TRACE_ALU_INPUT2 (GPR[RT], s); GPR[RD] = GPR[RT] << s; TRACE_ALU_RESULT (GPR[RD]); } :function:::void:do_dsllv:int rs, int rt, int rd { int s = MASKED64 (GPR[rs], 5, 0); TRACE_ALU_INPUT2 (GPR[rt], s); GPR[rd] = GPR[rt] << s; TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,010100:SPECIAL:64::DSLLV "dsllv r<RD>, r<RT>, r<RS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_dsllv (SD_, RS, RT, RD); } :function:::void:do_dsra:int rt, int rd, int shift { TRACE_ALU_INPUT2 (GPR[rt], shift); GPR[rd] = ((signed64) GPR[rt]) >> shift; TRACE_ALU_RESULT (GPR[rd]); } 000000,00000,5.RT,5.RD,5.SHIFT,111011:SPECIAL:64::DSRA "dsra r<RD>, r<RT>, <SHIFT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_dsra (SD_, RT, RD, SHIFT); } 000000,00000,5.RT,5.RD,5.SHIFT,111111:SPECIAL:64::DSRA32 "dsra32 r<RD>, r<RT>, <SHIFT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { int s = 32 + SHIFT; check_u64 (SD_, instruction_0); TRACE_ALU_INPUT2 (GPR[RT], s); GPR[RD] = ((signed64) GPR[RT]) >> s; TRACE_ALU_RESULT (GPR[RD]); } :function:::void:do_dsrav:int rs, int rt, int rd { int s = MASKED64 (GPR[rs], 5, 0); TRACE_ALU_INPUT2 (GPR[rt], s); GPR[rd] = ((signed64) GPR[rt]) >> s; TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,010111:SPECIAL:64::DSRAV "dsrav r<RD>, r<RT>, r<RS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_dsrav (SD_, RS, RT, RD); } :function:::void:do_dsrl:int rt, int rd, int shift { TRACE_ALU_INPUT2 (GPR[rt], shift); GPR[rd] = (unsigned64) GPR[rt] >> shift; TRACE_ALU_RESULT (GPR[rd]); } 000000,00000,5.RT,5.RD,5.SHIFT,111010:SPECIAL:64::DSRL "dsrl r<RD>, r<RT>, <SHIFT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_dsrl (SD_, RT, RD, SHIFT); } 000000,00000,5.RT,5.RD,5.SHIFT,111110:SPECIAL:64::DSRL32 "dsrl32 r<RD>, r<RT>, <SHIFT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { int s = 32 + SHIFT; check_u64 (SD_, instruction_0); TRACE_ALU_INPUT2 (GPR[RT], s); GPR[RD] = (unsigned64) GPR[RT] >> s; TRACE_ALU_RESULT (GPR[RD]); } :function:::void:do_dsrlv:int rs, int rt, int rd { int s = MASKED64 (GPR[rs], 5, 0); TRACE_ALU_INPUT2 (GPR[rt], s); GPR[rd] = (unsigned64) GPR[rt] >> s; TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,010110:SPECIAL:64::DSRLV "dsrlv r<RD>, r<RT>, r<RS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_dsrlv (SD_, RS, RT, RD); } 000000,5.RS,5.RT,5.RD,00000,101110:SPECIAL:64::DSUB "dsub r<RD>, r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); { ALU64_BEGIN (GPR[RS]); ALU64_SUB (GPR[RT]); ALU64_END (GPR[RD]); /* This checks for overflow. */ } TRACE_ALU_RESULT (GPR[RD]); } :function:::void:do_dsubu:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = GPR[rs] - GPR[rt]; TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,101111:SPECIAL:64::DSUBU "dsubu r<RD>, r<RS>, r<RT>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_dsubu (SD_, RS, RT, RD); } 000010,26.INSTR_INDEX:NORMAL:32::J "j <INSTR_INDEX>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { /* NOTE: The region used is that of the delay slot NIA and NOT the current instruction */ address_word region = (NIA & MASK (63, 28)); DELAY_SLOT (region | (INSTR_INDEX << 2)); } 000011,26.INSTR_INDEX:NORMAL:32::JAL "jal <INSTR_INDEX>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { /* NOTE: The region used is that of the delay slot and NOT the current instruction */ address_word region = (NIA & MASK (63, 28)); GPR[31] = CIA + 8; DELAY_SLOT (region | (INSTR_INDEX << 2)); } 000000,5.RS,00000,5.RD,00000,001001:SPECIAL:32::JALR "jalr r<RS>":RD == 31 "jalr r<RD>, r<RS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word temp = GPR[RS]; GPR[RD] = CIA + 8; DELAY_SLOT (temp); } 000000,5.RS,000000000000000,001000:SPECIAL:32::JR "jr r<RS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { DELAY_SLOT (GPR[RS]); } :function:::unsigned_word:do_load:unsigned access, address_word base, address_word offset { address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3); address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0); address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0); unsigned int byte; address_word paddr; int uncached; unsigned64 memval; address_word vaddr; vaddr = loadstore_ea (SD_, base, offset); if ((vaddr & access) != 0) { SIM_CORE_SIGNAL (SD, STATE_CPU (SD, 0), cia, read_map, access+1, vaddr, read_transfer, sim_core_unaligned_signal); } AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL); paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian)); LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isDATA, isREAL); byte = ((vaddr & mask) ^ bigendiancpu); return (memval >> (8 * byte)); } :function:::unsigned_word:do_load_left:unsigned access, address_word base, address_word offset, unsigned_word rt { address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3); address_word reverseendian = (ReverseEndian ? -1 : 0); address_word bigendiancpu = (BigEndianCPU ? -1 : 0); unsigned int byte; unsigned int word; address_word paddr; int uncached; unsigned64 memval; address_word vaddr; int nr_lhs_bits; int nr_rhs_bits; unsigned_word lhs_mask; unsigned_word temp; vaddr = loadstore_ea (SD_, base, offset); AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL); paddr = (paddr ^ (reverseendian & mask)); if (BigEndianMem == 0) paddr = paddr & ~access; /* compute where within the word/mem we are */ byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */ word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */ nr_lhs_bits = 8 * byte + 8; nr_rhs_bits = 8 * access - 8 * byte; /* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */ /* fprintf (stderr, "l[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n", (long) ((unsigned64) vaddr >> 32), (long) vaddr, (long) ((unsigned64) paddr >> 32), (long) paddr, word, byte, nr_lhs_bits, nr_rhs_bits); */ LoadMemory (&memval, NULL, uncached, byte, paddr, vaddr, isDATA, isREAL); if (word == 0) { /* GPR{31..32-NR_LHS_BITS} = memval{NR_LHS_BITS-1..0} */ temp = (memval << nr_rhs_bits); } else { /* GPR{31..32-NR_LHS_BITS = memval{32+NR_LHS_BITS..32} */ temp = (memval >> nr_lhs_bits); } lhs_mask = LSMASK (nr_lhs_bits + nr_rhs_bits - 1, nr_rhs_bits); rt = (rt & ~lhs_mask) | (temp & lhs_mask); /* fprintf (stderr, "l[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx & 0x%08lx%08lx -> 0x%08lx%08lx\n", (long) ((unsigned64) memval >> 32), (long) memval, (long) ((unsigned64) temp >> 32), (long) temp, (long) ((unsigned64) lhs_mask >> 32), (long) lhs_mask, (long) (rt >> 32), (long) rt); */ return rt; } :function:::unsigned_word:do_load_right:unsigned access, address_word base, address_word offset, unsigned_word rt { address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3); address_word reverseendian = (ReverseEndian ? -1 : 0); address_word bigendiancpu = (BigEndianCPU ? -1 : 0); unsigned int byte; address_word paddr; int uncached; unsigned64 memval; address_word vaddr; vaddr = loadstore_ea (SD_, base, offset); AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL); /* NOTE: SPEC is wrong, has `BigEndianMem == 0' not `BigEndianMem != 0' */ paddr = (paddr ^ (reverseendian & mask)); if (BigEndianMem != 0) paddr = paddr & ~access; byte = ((vaddr & mask) ^ (bigendiancpu & mask)); /* NOTE: SPEC is wrong, had `byte' not `access - byte'. See SW. */ LoadMemory (&memval, NULL, uncached, access - (access & byte), paddr, vaddr, isDATA, isREAL); /* printf ("lr: 0x%08lx %d@0x%08lx 0x%08lx\n", (long) paddr, byte, (long) paddr, (long) memval); */ { unsigned_word screen = LSMASK (8 * (access - (byte & access) + 1) - 1, 0); rt &= ~screen; rt |= (memval >> (8 * byte)) & screen; } return rt; } 100000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LB "lb r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { GPR[RT] = EXTEND8 (do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET))); } 100100,5.BASE,5.RT,16.OFFSET:NORMAL:32::LBU "lbu r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { GPR[RT] = do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET)); } 110111,5.BASE,5.RT,16.OFFSET:NORMAL:64::LD "ld r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); GPR[RT] = EXTEND64 (do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET))); } 1101,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDCz "ldc<ZZ> r<RT>, <OFFSET>(r<BASE>)" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { COP_LD (ZZ, RT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET))); } 011010,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDL "ldl r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); GPR[RT] = do_load_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 011011,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDR "ldr r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); GPR[RT] = do_load_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 100001,5.BASE,5.RT,16.OFFSET:NORMAL:32::LH "lh r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { GPR[RT] = EXTEND16 (do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET))); } 100101,5.BASE,5.RT,16.OFFSET:NORMAL:32::LHU "lhu r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { GPR[RT] = do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET)); } 110000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LL "ll r<RT>, <OFFSET>(r<BASE>)" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { address_word base = GPR[BASE]; address_word offset = EXTEND16 (OFFSET); { address_word vaddr = loadstore_ea (SD_, base, offset); address_word paddr; int uncached; if ((vaddr & 3) != 0) { SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, read_transfer, sim_core_unaligned_signal); } else { if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL)) { unsigned64 memval = 0; unsigned64 memval1 = 0; unsigned64 mask = 0x7; unsigned int shift = 2; unsigned int reverse = (ReverseEndian ? (mask >> shift) : 0); unsigned int bigend = (BigEndianCPU ? (mask >> shift) : 0); unsigned int byte; paddr = ((paddr & ~mask) | ((paddr & mask) ^ (reverse << shift))); LoadMemory(&memval,&memval1,uncached,AccessLength_WORD,paddr,vaddr,isDATA,isREAL); byte = ((vaddr & mask) ^ (bigend << shift)); GPR[RT] = EXTEND32 (memval >> (8 * byte)); LLBIT = 1; } } } } 110100,5.BASE,5.RT,16.OFFSET:NORMAL:64::LLD "lld r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { address_word base = GPR[BASE]; address_word offset = EXTEND16 (OFFSET); check_u64 (SD_, instruction_0); { address_word vaddr = loadstore_ea (SD_, base, offset); address_word paddr; int uncached; if ((vaddr & 7) != 0) { SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, read_transfer, sim_core_unaligned_signal); } else { if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL)) { unsigned64 memval = 0; unsigned64 memval1 = 0; LoadMemory(&memval,&memval1,uncached,AccessLength_DOUBLEWORD,paddr,vaddr,isDATA,isREAL); GPR[RT] = memval; LLBIT = 1; } } } } 001111,00000,5.RT,16.IMMEDIATE:NORMAL:32::LUI "lui r<RT>, %#lx<IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { TRACE_ALU_INPUT1 (IMMEDIATE); GPR[RT] = EXTEND32 (IMMEDIATE << 16); TRACE_ALU_RESULT (GPR[RT]); } 100011,5.BASE,5.RT,16.OFFSET:NORMAL:32::LW "lw r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { GPR[RT] = EXTEND32 (do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET))); } 1100,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWCz "lwc<ZZ> r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { COP_LW (ZZ, RT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET))); } 100010,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWL "lwl r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { GPR[RT] = EXTEND32 (do_load_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT])); } 100110,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWR "lwr r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { GPR[RT] = EXTEND32 (do_load_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT])); } 100111,5.BASE,5.RT,16.OFFSET:NORMAL:64::LWU "lwu r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); GPR[RT] = do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)); } 011100,5.RS,5.RT,00000,00000,000000:SPECIAL2:32::MADD "madd r<RS>, r<RT>" *mips32: *mips64: *vr5500: { signed64 temp; check_mult_hilo (SD_, HIHISTORY, LOHISTORY); if (NotWordValue (GPR[RS]) || NotWordValue (GPR[RT])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); temp = (U8_4 (VL4_8 (HI), VL4_8 (LO)) + ((signed64) EXTEND32 (GPR[RT]) * (signed64) EXTEND32 (GPR[RS]))); LO = EXTEND32 (temp); HI = EXTEND32 (VH4_8 (temp)); TRACE_ALU_RESULT2 (HI, LO); } 011100,5.RS,5.RT,00000,00000,000001:SPECIAL2:32::MADDU "maddu r<RS>, r<RT>" *mips32: *mips64: *vr5500: { unsigned64 temp; check_mult_hilo (SD_, HIHISTORY, LOHISTORY); if (NotWordValue (GPR[RS]) || NotWordValue (GPR[RT])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); temp = (U8_4 (VL4_8 (HI), VL4_8 (LO)) + ((unsigned64) VL4_8 (GPR[RS]) * (unsigned64) VL4_8 (GPR[RT]))); LO = EXTEND32 (temp); HI = EXTEND32 (VH4_8 (temp)); TRACE_ALU_RESULT2 (HI, LO); } :function:::void:do_mfhi:int rd { check_mf_hilo (SD_, HIHISTORY, LOHISTORY); TRACE_ALU_INPUT1 (HI); GPR[rd] = HI; TRACE_ALU_RESULT (GPR[rd]); } 000000,0000000000,5.RD,00000,010000:SPECIAL:32::MFHI "mfhi r<RD>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_mfhi (SD_, RD); } :function:::void:do_mflo:int rd { check_mf_hilo (SD_, LOHISTORY, HIHISTORY); TRACE_ALU_INPUT1 (LO); GPR[rd] = LO; TRACE_ALU_RESULT (GPR[rd]); } 000000,0000000000,5.RD,00000,010010:SPECIAL:32::MFLO "mflo r<RD>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_mflo (SD_, RD); } 000000,5.RS,5.RT,5.RD,00000,001011:SPECIAL:32::MOVN "movn r<RD>, r<RS>, r<RT>" *mipsIV: *mipsV: *mips32: *mips64: *vr5000: { if (GPR[RT] != 0) { GPR[RD] = GPR[RS]; TRACE_ALU_RESULT (GPR[RD]); } } 000000,5.RS,5.RT,5.RD,00000,001010:SPECIAL:32::MOVZ "movz r<RD>, r<RS>, r<RT>" *mipsIV: *mipsV: *mips32: *mips64: *vr5000: { if (GPR[RT] == 0) { GPR[RD] = GPR[RS]; TRACE_ALU_RESULT (GPR[RD]); } } 011100,5.RS,5.RT,00000,00000,000100:SPECIAL2:32::MSUB "msub r<RS>, r<RT>" *mips32: *mips64: *vr5500: { signed64 temp; check_mult_hilo (SD_, HIHISTORY, LOHISTORY); if (NotWordValue (GPR[RS]) || NotWordValue (GPR[RT])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); temp = (U8_4 (VL4_8 (HI), VL4_8 (LO)) - ((signed64) EXTEND32 (GPR[RT]) * (signed64) EXTEND32 (GPR[RS]))); LO = EXTEND32 (temp); HI = EXTEND32 (VH4_8 (temp)); TRACE_ALU_RESULT2 (HI, LO); } 011100,5.RS,5.RT,00000,00000,000101:SPECIAL2:32::MSUBU "msubu r<RS>, r<RT>" *mips32: *mips64: *vr5500: { unsigned64 temp; check_mult_hilo (SD_, HIHISTORY, LOHISTORY); if (NotWordValue (GPR[RS]) || NotWordValue (GPR[RT])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); temp = (U8_4 (VL4_8 (HI), VL4_8 (LO)) - ((unsigned64) VL4_8 (GPR[RS]) * (unsigned64) VL4_8 (GPR[RT]))); LO = EXTEND32 (temp); HI = EXTEND32 (VH4_8 (temp)); TRACE_ALU_RESULT2 (HI, LO); } 000000,5.RS,000000000000000,010001:SPECIAL:32::MTHI "mthi r<RS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { check_mt_hilo (SD_, HIHISTORY); HI = GPR[RS]; } 000000,5.RS,000000000000000,010011:SPECIAL:32::MTLO "mtlo r<RS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { check_mt_hilo (SD_, LOHISTORY); LO = GPR[RS]; } 011100,5.RS,5.RT,5.RD,00000,000010:SPECIAL2:32::MUL "mul r<RD>, r<RS>, r<RT>" *mips32: *mips64: *vr5500: { signed64 prod; if (NotWordValue (GPR[RS]) || NotWordValue (GPR[RT])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); prod = (((signed64)(signed32) GPR[RS]) * ((signed64)(signed32) GPR[RT])); GPR[RD] = EXTEND32 (VL4_8 (prod)); TRACE_ALU_RESULT (GPR[RD]); } :function:::void:do_mult:int rs, int rt, int rd { signed64 prod; check_mult_hilo (SD_, HIHISTORY, LOHISTORY); if (NotWordValue (GPR[rs]) || NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); prod = (((signed64)(signed32) GPR[rs]) * ((signed64)(signed32) GPR[rt])); LO = EXTEND32 (VL4_8 (prod)); HI = EXTEND32 (VH4_8 (prod)); if (rd != 0) GPR[rd] = LO; TRACE_ALU_RESULT2 (HI, LO); } 000000,5.RS,5.RT,0000000000,011000:SPECIAL:32::MULT "mult r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: { do_mult (SD_, RS, RT, 0); } 000000,5.RS,5.RT,5.RD,00000,011000:SPECIAL:32::MULT "mult r<RS>, r<RT>":RD == 0 "mult r<RD>, r<RS>, r<RT>" *vr5000: *r3900: { do_mult (SD_, RS, RT, RD); } :function:::void:do_multu:int rs, int rt, int rd { unsigned64 prod; check_mult_hilo (SD_, HIHISTORY, LOHISTORY); if (NotWordValue (GPR[rs]) || NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); prod = (((unsigned64)(unsigned32) GPR[rs]) * ((unsigned64)(unsigned32) GPR[rt])); LO = EXTEND32 (VL4_8 (prod)); HI = EXTEND32 (VH4_8 (prod)); if (rd != 0) GPR[rd] = LO; TRACE_ALU_RESULT2 (HI, LO); } 000000,5.RS,5.RT,0000000000,011001:SPECIAL:32::MULTU "multu r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: { do_multu (SD_, RS, RT, 0); } 000000,5.RS,5.RT,5.RD,00000,011001:SPECIAL:32::MULTU "multu r<RS>, r<RT>":RD == 0 "multu r<RD>, r<RS>, r<RT>" *vr5000: *r3900: { do_multu (SD_, RS, RT, RD); } :function:::void:do_nor:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = ~ (GPR[rs] | GPR[rt]); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,100111:SPECIAL:32::NOR "nor r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_nor (SD_, RS, RT, RD); } :function:::void:do_or:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = (GPR[rs] | GPR[rt]); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,100101:SPECIAL:32::OR "or r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_or (SD_, RS, RT, RD); } :function:::void:do_ori:int rs, int rt, unsigned immediate { TRACE_ALU_INPUT2 (GPR[rs], immediate); GPR[rt] = (GPR[rs] | immediate); TRACE_ALU_RESULT (GPR[rt]); } 001101,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ORI "ori r<RT>, r<RS>, %#lx<IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_ori (SD_, RS, RT, IMMEDIATE); } 110011,5.BASE,5.HINT,16.OFFSET:NORMAL:32::PREF "pref <HINT>, <OFFSET>(r<BASE>)" *mipsIV: *mipsV: *mips32: *mips64: *vr5000: { address_word base = GPR[BASE]; address_word offset = EXTEND16 (OFFSET); { address_word vaddr = loadstore_ea (SD_, base, offset); address_word paddr; int uncached; { if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL)) Prefetch(uncached,paddr,vaddr,isDATA,HINT); } } } :function:::void:do_store:unsigned access, address_word base, address_word offset, unsigned_word word { address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3); address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0); address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0); unsigned int byte; address_word paddr; int uncached; unsigned64 memval; address_word vaddr; vaddr = loadstore_ea (SD_, base, offset); if ((vaddr & access) != 0) { SIM_CORE_SIGNAL (SD, STATE_CPU(SD, 0), cia, read_map, access+1, vaddr, write_transfer, sim_core_unaligned_signal); } AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL); paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian)); byte = ((vaddr & mask) ^ bigendiancpu); memval = (word << (8 * byte)); StoreMemory (uncached, access, memval, 0, paddr, vaddr, isREAL); } :function:::void:do_store_left:unsigned access, address_word base, address_word offset, unsigned_word rt { address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3); address_word reverseendian = (ReverseEndian ? -1 : 0); address_word bigendiancpu = (BigEndianCPU ? -1 : 0); unsigned int byte; unsigned int word; address_word paddr; int uncached; unsigned64 memval; address_word vaddr; int nr_lhs_bits; int nr_rhs_bits; vaddr = loadstore_ea (SD_, base, offset); AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL); paddr = (paddr ^ (reverseendian & mask)); if (BigEndianMem == 0) paddr = paddr & ~access; /* compute where within the word/mem we are */ byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */ word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */ nr_lhs_bits = 8 * byte + 8; nr_rhs_bits = 8 * access - 8 * byte; /* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */ /* fprintf (stderr, "s[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n", (long) ((unsigned64) vaddr >> 32), (long) vaddr, (long) ((unsigned64) paddr >> 32), (long) paddr, word, byte, nr_lhs_bits, nr_rhs_bits); */ if (word == 0) { memval = (rt >> nr_rhs_bits); } else { memval = (rt << nr_lhs_bits); } /* fprintf (stderr, "s[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx\n", (long) ((unsigned64) rt >> 32), (long) rt, (long) ((unsigned64) memval >> 32), (long) memval); */ StoreMemory (uncached, byte, memval, 0, paddr, vaddr, isREAL); } :function:::void:do_store_right:unsigned access, address_word base, address_word offset, unsigned_word rt { address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3); address_word reverseendian = (ReverseEndian ? -1 : 0); address_word bigendiancpu = (BigEndianCPU ? -1 : 0); unsigned int byte; address_word paddr; int uncached; unsigned64 memval; address_word vaddr; vaddr = loadstore_ea (SD_, base, offset); AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL); paddr = (paddr ^ (reverseendian & mask)); if (BigEndianMem != 0) paddr &= ~access; byte = ((vaddr & mask) ^ (bigendiancpu & mask)); memval = (rt << (byte * 8)); StoreMemory (uncached, access - (access & byte), memval, 0, paddr, vaddr, isREAL); } 101000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SB "sb r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_store (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 111000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SC "sc r<RT>, <OFFSET>(r<BASE>)" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { unsigned32 instruction = instruction_0; address_word base = GPR[BASE]; address_word offset = EXTEND16 (OFFSET); { address_word vaddr = loadstore_ea (SD_, base, offset); address_word paddr; int uncached; if ((vaddr & 3) != 0) { SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal); } else { if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL)) { unsigned64 memval = 0; unsigned64 memval1 = 0; unsigned64 mask = 0x7; unsigned int byte; paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2))); byte = ((vaddr & mask) ^ (BigEndianCPU << 2)); memval = ((unsigned64) GPR[RT] << (8 * byte)); if (LLBIT) { StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL); } GPR[RT] = LLBIT; } } } } 111100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SCD "scd r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { address_word base = GPR[BASE]; address_word offset = EXTEND16 (OFFSET); check_u64 (SD_, instruction_0); { address_word vaddr = loadstore_ea (SD_, base, offset); address_word paddr; int uncached; if ((vaddr & 7) != 0) { SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, write_transfer, sim_core_unaligned_signal); } else { if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL)) { unsigned64 memval = 0; unsigned64 memval1 = 0; memval = GPR[RT]; if (LLBIT) { StoreMemory(uncached,AccessLength_DOUBLEWORD,memval,memval1,paddr,vaddr,isREAL); } GPR[RT] = LLBIT; } } } } 111111,5.BASE,5.RT,16.OFFSET:NORMAL:64::SD "sd r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 1111,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDCz "sdc<ZZ> r<RT>, <OFFSET>(r<BASE>)" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (ZZ, RT)); } 101100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDL "sdl r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_store_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 101101,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDR "sdr r<RT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: { check_u64 (SD_, instruction_0); do_store_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 101001,5.BASE,5.RT,16.OFFSET:NORMAL:32::SH "sh r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_store (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } :function:::void:do_sll:int rt, int rd, int shift { unsigned32 temp = (GPR[rt] << shift); TRACE_ALU_INPUT2 (GPR[rt], shift); GPR[rd] = EXTEND32 (temp); TRACE_ALU_RESULT (GPR[rd]); } 000000,00000,5.RT,5.RD,5.SHIFT,000000:SPECIAL:32::SLLa "nop":RD == 0 && RT == 0 && SHIFT == 0 "sll r<RD>, r<RT>, <SHIFT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *vr4100: *vr5000: *r3900: { /* Skip shift for NOP, so that there won't be lots of extraneous trace output. */ if (RD != 0 || RT != 0 || SHIFT != 0) do_sll (SD_, RT, RD, SHIFT); } 000000,00000,5.RT,5.RD,5.SHIFT,000000:SPECIAL:32::SLLb "nop":RD == 0 && RT == 0 && SHIFT == 0 "ssnop":RD == 0 && RT == 0 && SHIFT == 1 "sll r<RD>, r<RT>, <SHIFT>" *mips32: *mips64: { /* Skip shift for NOP and SSNOP, so that there won't be lots of extraneous trace output. */ if (RD != 0 || RT != 0 || (SHIFT != 0 && SHIFT != 1)) do_sll (SD_, RT, RD, SHIFT); } :function:::void:do_sllv:int rs, int rt, int rd { int s = MASKED (GPR[rs], 4, 0); unsigned32 temp = (GPR[rt] << s); TRACE_ALU_INPUT2 (GPR[rt], s); GPR[rd] = EXTEND32 (temp); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,000100:SPECIAL:32::SLLV "sllv r<RD>, r<RT>, r<RS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_sllv (SD_, RS, RT, RD); } :function:::void:do_slt:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = ((signed_word) GPR[rs] < (signed_word) GPR[rt]); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,101010:SPECIAL:32::SLT "slt r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_slt (SD_, RS, RT, RD); } :function:::void:do_slti:int rs, int rt, unsigned16 immediate { TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate)); GPR[rt] = ((signed_word) GPR[rs] < (signed_word) EXTEND16 (immediate)); TRACE_ALU_RESULT (GPR[rt]); } 001010,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTI "slti r<RT>, r<RS>, <IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_slti (SD_, RS, RT, IMMEDIATE); } :function:::void:do_sltiu:int rs, int rt, unsigned16 immediate { TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate)); GPR[rt] = ((unsigned_word) GPR[rs] < (unsigned_word) EXTEND16 (immediate)); TRACE_ALU_RESULT (GPR[rt]); } 001011,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTIU "sltiu r<RT>, r<RS>, <IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_sltiu (SD_, RS, RT, IMMEDIATE); } :function:::void:do_sltu:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = ((unsigned_word) GPR[rs] < (unsigned_word) GPR[rt]); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,101011:SPECIAL:32::SLTU "sltu r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_sltu (SD_, RS, RT, RD); } :function:::void:do_sra:int rt, int rd, int shift { signed32 temp = (signed32) GPR[rt] >> shift; if (NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rt], shift); GPR[rd] = EXTEND32 (temp); TRACE_ALU_RESULT (GPR[rd]); } 000000,00000,5.RT,5.RD,5.SHIFT,000011:SPECIAL:32::SRA "sra r<RD>, r<RT>, <SHIFT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_sra (SD_, RT, RD, SHIFT); } :function:::void:do_srav:int rs, int rt, int rd { int s = MASKED (GPR[rs], 4, 0); signed32 temp = (signed32) GPR[rt] >> s; if (NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rt], s); GPR[rd] = EXTEND32 (temp); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,000111:SPECIAL:32::SRAV "srav r<RD>, r<RT>, r<RS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_srav (SD_, RS, RT, RD); } :function:::void:do_srl:int rt, int rd, int shift { unsigned32 temp = (unsigned32) GPR[rt] >> shift; if (NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rt], shift); GPR[rd] = EXTEND32 (temp); TRACE_ALU_RESULT (GPR[rd]); } 000000,00000,5.RT,5.RD,5.SHIFT,000010:SPECIAL:32::SRL "srl r<RD>, r<RT>, <SHIFT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_srl (SD_, RT, RD, SHIFT); } :function:::void:do_srlv:int rs, int rt, int rd { int s = MASKED (GPR[rs], 4, 0); unsigned32 temp = (unsigned32) GPR[rt] >> s; if (NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rt], s); GPR[rd] = EXTEND32 (temp); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,000110:SPECIAL:32::SRLV "srlv r<RD>, r<RT>, r<RS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_srlv (SD_, RS, RT, RD); } 000000,5.RS,5.RT,5.RD,00000,100010:SPECIAL:32::SUB "sub r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { if (NotWordValue (GPR[RS]) || NotWordValue (GPR[RT])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]); { ALU32_BEGIN (GPR[RS]); ALU32_SUB (GPR[RT]); ALU32_END (GPR[RD]); /* This checks for overflow. */ } TRACE_ALU_RESULT (GPR[RD]); } :function:::void:do_subu:int rs, int rt, int rd { if (NotWordValue (GPR[rs]) || NotWordValue (GPR[rt])) Unpredictable (); TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = EXTEND32 (GPR[rs] - GPR[rt]); TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,100011:SPECIAL:32::SUBU "subu r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_subu (SD_, RS, RT, RD); } 101011,5.BASE,5.RT,16.OFFSET:NORMAL:32::SW "sw r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *r3900: *vr5000: { do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 1110,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWCz "swc<ZZ> r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), COP_SW (ZZ, RT)); } 101010,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWL "swl r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_store_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 101110,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWR "swr r<RT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_store_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]); } 000000,000000000000000,5.STYPE,001111:SPECIAL:32::SYNC "sync":STYPE == 0 "sync <STYPE>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { SyncOperation (STYPE); } 000000,20.CODE,001100:SPECIAL:32::SYSCALL "syscall %#lx<CODE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { SignalException (SystemCall, instruction_0); } 000000,5.RS,5.RT,10.CODE,110100:SPECIAL:32::TEQ "teq r<RS>, r<RT>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] == (signed_word) GPR[RT]) SignalException (Trap, instruction_0); } 000001,5.RS,01100,16.IMMEDIATE:REGIMM:32::TEQI "teqi r<RS>, <IMMEDIATE>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] == (signed_word) EXTEND16 (IMMEDIATE)) SignalException (Trap, instruction_0); } 000000,5.RS,5.RT,10.CODE,110000:SPECIAL:32::TGE "tge r<RS>, r<RT>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] >= (signed_word) GPR[RT]) SignalException (Trap, instruction_0); } 000001,5.RS,01000,16.IMMEDIATE:REGIMM:32::TGEI "tgei r<RS>, <IMMEDIATE>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] >= (signed_word) EXTEND16 (IMMEDIATE)) SignalException (Trap, instruction_0); } 000001,5.RS,01001,16.IMMEDIATE:REGIMM:32::TGEIU "tgeiu r<RS>, <IMMEDIATE>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((unsigned_word) GPR[RS] >= (unsigned_word) EXTEND16 (IMMEDIATE)) SignalException (Trap, instruction_0); } 000000,5.RS,5.RT,10.CODE,110001:SPECIAL:32::TGEU "tgeu r<RS>, r<RT>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((unsigned_word) GPR[RS] >= (unsigned_word) GPR[RT]) SignalException (Trap, instruction_0); } 000000,5.RS,5.RT,10.CODE,110010:SPECIAL:32::TLT "tlt r<RS>, r<RT>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] < (signed_word) GPR[RT]) SignalException (Trap, instruction_0); } 000001,5.RS,01010,16.IMMEDIATE:REGIMM:32::TLTI "tlti r<RS>, <IMMEDIATE>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] < (signed_word) EXTEND16 (IMMEDIATE)) SignalException (Trap, instruction_0); } 000001,5.RS,01011,16.IMMEDIATE:REGIMM:32::TLTIU "tltiu r<RS>, <IMMEDIATE>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((unsigned_word) GPR[RS] < (unsigned_word) EXTEND16 (IMMEDIATE)) SignalException (Trap, instruction_0); } 000000,5.RS,5.RT,10.CODE,110011:SPECIAL:32::TLTU "tltu r<RS>, r<RT>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((unsigned_word) GPR[RS] < (unsigned_word) GPR[RT]) SignalException (Trap, instruction_0); } 000000,5.RS,5.RT,10.CODE,110110:SPECIAL:32::TNE "tne r<RS>, r<RT>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] != (signed_word) GPR[RT]) SignalException (Trap, instruction_0); } 000001,5.RS,01110,16.IMMEDIATE:REGIMM:32::TNEI "tnei r<RS>, <IMMEDIATE>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if ((signed_word) GPR[RS] != (signed_word) EXTEND16 (IMMEDIATE)) SignalException (Trap, instruction_0); } :function:::void:do_xor:int rs, int rt, int rd { TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]); GPR[rd] = GPR[rs] ^ GPR[rt]; TRACE_ALU_RESULT (GPR[rd]); } 000000,5.RS,5.RT,5.RD,00000,100110:SPECIAL:32::XOR "xor r<RD>, r<RS>, r<RT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_xor (SD_, RS, RT, RD); } :function:::void:do_xori:int rs, int rt, unsigned16 immediate { TRACE_ALU_INPUT2 (GPR[rs], immediate); GPR[rt] = GPR[rs] ^ immediate; TRACE_ALU_RESULT (GPR[rt]); } 001110,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::XORI "xori r<RT>, r<RS>, %#lx<IMMEDIATE>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { do_xori (SD_, RS, RT, IMMEDIATE); } // // MIPS Architecture: // // FPU Instruction Set (COP1 & COP1X) // :%s::::FMT:int fmt { switch (fmt) { case fmt_single: return "s"; case fmt_double: return "d"; case fmt_word: return "w"; case fmt_long: return "l"; case fmt_ps: return "ps"; default: return "?"; } } :%s::::TF:int tf { if (tf) return "t"; else return "f"; } :%s::::ND:int nd { if (nd) return "l"; else return ""; } :%s::::COND:int cond { switch (cond) { case 00: return "f"; case 01: return "un"; case 02: return "eq"; case 03: return "ueq"; case 04: return "olt"; case 05: return "ult"; case 06: return "ole"; case 07: return "ule"; case 010: return "sf"; case 011: return "ngle"; case 012: return "seq"; case 013: return "ngl"; case 014: return "lt"; case 015: return "nge"; case 016: return "le"; case 017: return "ngt"; default: return "?"; } } // Helpers: // // Check that the given FPU format is usable, and signal a // ReservedInstruction exception if not. // // check_fmt_p checks that the format is single, double, or paired single. :function:::void:check_fmt_p:int fmt, instruction_word insn *mipsI: *mipsII: *mipsIII: *mipsIV: *mips32: *vr4100: *vr5000: *r3900: { /* None of these ISAs support Paired Single, so just fall back to the single/double check. */ if ((fmt != fmt_single) && (fmt != fmt_double)) SignalException (ReservedInstruction, insn); } :function:::void:check_fmt_p:int fmt, instruction_word insn *mipsV: *mips64: { if ((fmt != fmt_single) && (fmt != fmt_double) && (fmt != fmt_ps || (UserMode && (SR & (status_UX|status_PX)) == 0))) SignalException (ReservedInstruction, insn); } // Helper: // // Check that the FPU is currently usable, and signal a CoProcessorUnusable // exception if not. // :function:::void:check_fpu: *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { if (! COP_Usable (1)) SignalExceptionCoProcessorUnusable (1); } // Helper: // // Load a double word FP value using 2 32-bit memory cycles a la MIPS II // or MIPS32. do_load cannot be used instead because it returns an // unsigned_word, which is limited to the size of the machine's registers. // :function:::unsigned64:do_load_double:address_word base, address_word offset *mipsII: *mips32: { int bigendian = (BigEndianCPU ? ! ReverseEndian : ReverseEndian); address_word vaddr; address_word paddr; int uncached; unsigned64 memval; unsigned64 v; vaddr = loadstore_ea (SD_, base, offset); if ((vaddr & AccessLength_DOUBLEWORD) != 0) { SIM_CORE_SIGNAL (SD, STATE_CPU (SD, 0), cia, read_map, AccessLength_DOUBLEWORD + 1, vaddr, read_transfer, sim_core_unaligned_signal); } AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL); LoadMemory (&memval, NULL, uncached, AccessLength_WORD, paddr, vaddr, isDATA, isREAL); v = (unsigned64)memval; LoadMemory (&memval, NULL, uncached, AccessLength_WORD, paddr + 4, vaddr + 4, isDATA, isREAL); return (bigendian ? ((v << 32) | memval) : (v | (memval << 32))); } // Helper: // // Store a double word FP value using 2 32-bit memory cycles a la MIPS II // or MIPS32. do_load cannot be used instead because it returns an // unsigned_word, which is limited to the size of the machine's registers. // :function:::void:do_store_double:address_word base, address_word offset, unsigned64 v *mipsII: *mips32: { int bigendian = (BigEndianCPU ? ! ReverseEndian : ReverseEndian); address_word vaddr; address_word paddr; int uncached; unsigned64 memval; vaddr = loadstore_ea (SD_, base, offset); if ((vaddr & AccessLength_DOUBLEWORD) != 0) { SIM_CORE_SIGNAL (SD, STATE_CPU(SD, 0), cia, read_map, AccessLength_DOUBLEWORD + 1, vaddr, write_transfer, sim_core_unaligned_signal); } AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL); memval = (bigendian ? (v >> 32) : (v & 0xFFFFFFFF)); StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr, vaddr, isREAL); memval = (bigendian ? (v & 0xFFFFFFFF) : (v >> 32)); StoreMemory (uncached, AccessLength_WORD, memval, 0, paddr + 4, vaddr + 4, isREAL); } 010001,10,3.FMT!2!3!4!5!7,00000,5.FS,5.FD,000101:COP1:32,f::ABS.fmt "abs.%s<FMT> f<FD>, f<FS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, AbsoluteValue (ValueFPR (FS, fmt), fmt)); } 010001,10,3.FMT!2!3!4!5!7,5.FT,5.FS,5.FD,000000:COP1:32,f::ADD.fmt "add.%s<FMT> f<FD>, f<FS>, f<FT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, Add (ValueFPR (FS, fmt), ValueFPR (FT, fmt), fmt)); } 010011,5.RS,5.FT,5.FS,5.FD,011,110:COP1X:64,f::ALNV.PS "alnv.ps f<FD>, f<FS>, f<FT>, r<RS>" *mipsV: *mips64: { unsigned64 fs; unsigned64 ft; unsigned64 fd; check_fpu (SD_); check_u64 (SD_, instruction_0); fs = ValueFPR (FS, fmt_ps); if ((GPR[RS] & 0x3) != 0) Unpredictable (); if ((GPR[RS] & 0x4) == 0) fd = fs; else { ft = ValueFPR (FT, fmt_ps); if (BigEndianCPU) fd = PackPS (PSLower (fs), PSUpper (ft)); else fd = PackPS (PSLower (ft), PSUpper (fs)); } StoreFPR (FD, fmt_ps, fd); } // BC1F // BC1FL // BC1T // BC1TL 010001,01000,3.0,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1a "bc1%s<TF>%s<ND> <OFFSET>" *mipsI: *mipsII: *mipsIII: { check_fpu (SD_); TRACE_BRANCH_INPUT (PREVCOC1()); if (PREVCOC1() == TF) { address_word dest = NIA + (EXTEND16 (OFFSET) << 2); TRACE_BRANCH_RESULT (dest); DELAY_SLOT (dest); } else if (ND) { TRACE_BRANCH_RESULT (0); NULLIFY_NEXT_INSTRUCTION (); } else { TRACE_BRANCH_RESULT (NIA); } } 010001,01000,3.CC,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1b "bc1%s<TF>%s<ND> <OFFSET>":CC == 0 "bc1%s<TF>%s<ND> <CC>, <OFFSET>" *mipsIV: *mipsV: *mips32: *mips64: #*vr4100: *vr5000: *r3900: { check_fpu (SD_); if (GETFCC(CC) == TF) { address_word dest = NIA + (EXTEND16 (OFFSET) << 2); DELAY_SLOT (dest); } else if (ND) { NULLIFY_NEXT_INSTRUCTION (); } } 010001,10,3.FMT!2!3!4!5!6!7,5.FT,5.FS,3.0,00,11,4.COND:COP1:32,f::C.cond.fmta "c.%s<COND>.%s<FMT> f<FS>, f<FT>" *mipsI: *mipsII: *mipsIII: { int fmt = FMT; check_fpu (SD_); Compare (ValueFPR (FS, fmt), ValueFPR (FT, fmt), fmt, COND, 0); TRACE_ALU_RESULT (ValueFCR (31)); } 010001,10,3.FMT!2!3!4!5!7,5.FT,5.FS,3.CC,00,11,4.COND:COP1:32,f::C.cond.fmtb "c.%s<COND>.%s<FMT> f<FS>, f<FT>":CC == 0 "c.%s<COND>.%s<FMT> <CC>, f<FS>, f<FT>" *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); check_fmt_p (SD_, fmt, instruction_0); Compare (ValueFPR (FS, fmt), ValueFPR (FT, fmt), fmt, COND, CC); TRACE_ALU_RESULT (ValueFCR (31)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001010:COP1:64,f::CEIL.L.fmt "ceil.l.%s<FMT> f<FD>, f<FS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_long, Convert (FP_RM_TOPINF, ValueFPR (FS, fmt), fmt, fmt_long)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001110:COP1:32,f::CEIL.W "ceil.w.%s<FMT> f<FD>, f<FS>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_word, Convert (FP_RM_TOPINF, ValueFPR (FS, fmt), fmt, fmt_word)); } 010001,00010,5.RT,5.FS,00000000000:COP1:32,f::CFC1a "cfc1 r<RT>, f<FS>" *mipsI: *mipsII: *mipsIII: { check_fpu (SD_); if (FS == 0) PENDING_FILL (RT, EXTEND32 (FCR0)); else if (FS == 31) PENDING_FILL (RT, EXTEND32 (FCR31)); /* else NOP */ } 010001,00010,5.RT,5.FS,00000000000:COP1:32,f::CFC1b "cfc1 r<RT>, f<FS>" *mipsIV: *vr4100: *vr5000: *r3900: { check_fpu (SD_); if (FS == 0 || FS == 31) { unsigned_word fcr = ValueFCR (FS); TRACE_ALU_INPUT1 (fcr); GPR[RT] = fcr; } /* else NOP */ TRACE_ALU_RESULT (GPR[RT]); } 010001,00010,5.RT,5.FS,00000000000:COP1:32,f::CFC1c "cfc1 r<RT>, f<FS>" *mipsV: *mips32: *mips64: { check_fpu (SD_); if (FS == 0 || FS == 25 || FS == 26 || FS == 28 || FS == 31) { unsigned_word fcr = ValueFCR (FS); TRACE_ALU_INPUT1 (fcr); GPR[RT] = fcr; } /* else NOP */ TRACE_ALU_RESULT (GPR[RT]); } 010001,00110,5.RT,5.FS,00000000000:COP1:32,f::CTC1a "ctc1 r<RT>, f<FS>" *mipsI: *mipsII: *mipsIII: { check_fpu (SD_); if (FS == 31) PENDING_FILL (FCRCS_REGNUM, VL4_8 (GPR[RT])); /* else NOP */ } 010001,00110,5.RT,5.FS,00000000000:COP1:32,f::CTC1b "ctc1 r<RT>, f<FS>" *mipsIV: *vr4100: *vr5000: *r3900: { check_fpu (SD_); TRACE_ALU_INPUT1 (GPR[RT]); if (FS == 31) StoreFCR (FS, GPR[RT]); /* else NOP */ } 010001,00110,5.RT,5.FS,00000000000:COP1:32,f::CTC1c "ctc1 r<RT>, f<FS>" *mipsV: *mips32: *mips64: { check_fpu (SD_); TRACE_ALU_INPUT1 (GPR[RT]); if (FS == 25 || FS == 26 || FS == 28 || FS == 31) StoreFCR (FS, GPR[RT]); /* else NOP */ } // // FIXME: Does not correctly differentiate between mips* // 010001,10,3.FMT!1!2!3!6!7,00000,5.FS,5.FD,100001:COP1:32,f::CVT.D.fmt "cvt.d.%s<FMT> f<FD>, f<FS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); if ((fmt == fmt_double) | 0) SignalException (ReservedInstruction, instruction_0); StoreFPR (FD, fmt_double, Convert (GETRM (), ValueFPR (FS, fmt), fmt, fmt_double)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,100101:COP1:64,f::CVT.L.fmt "cvt.l.%s<FMT> f<FD>, f<FS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); if ((fmt == fmt_long) | ((fmt == fmt_long) || (fmt == fmt_word))) SignalException (ReservedInstruction, instruction_0); StoreFPR (FD, fmt_long, Convert (GETRM (), ValueFPR (FS, fmt), fmt, fmt_long)); } 010001,10,000,5.FT,5.FS,5.FD,100110:COP1:64,f::CVT.PS.S "cvt.ps.s f<FD>, f<FS>, f<FT>" *mipsV: *mips64: { check_fpu (SD_); check_u64 (SD_, instruction_0); StoreFPR (FD, fmt_ps, PackPS (ValueFPR (FS, fmt_single), ValueFPR (FT, fmt_single))); } // // FIXME: Does not correctly differentiate between mips* // 010001,10,3.FMT!0!2!3!6!7,00000,5.FS,5.FD,100000:COP1:32,f::CVT.S.fmt "cvt.s.%s<FMT> f<FD>, f<FS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); if ((fmt == fmt_single) | 0) SignalException (ReservedInstruction, instruction_0); StoreFPR (FD, fmt_single, Convert (GETRM (), ValueFPR (FS, fmt), fmt, fmt_single)); } 010001,10,110,00000,5.FS,5.FD,101000:COP1:64,f::CVT.S.PL "cvt.s.pl f<FD>, f<FS>" *mipsV: *mips64: { check_fpu (SD_); check_u64 (SD_, instruction_0); StoreFPR (FD, fmt_single, PSLower (ValueFPR (FS, fmt_ps))); } 010001,10,110,00000,5.FS,5.FD,100000:COP1:64,f::CVT.S.PU "cvt.s.pu f<FD>, f<FS>" *mipsV: *mips64: { check_fpu (SD_); check_u64 (SD_, instruction_0); StoreFPR (FD, fmt_single, PSUpper (ValueFPR (FS, fmt_ps))); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,100100:COP1:32,f::CVT.W.fmt "cvt.w.%s<FMT> f<FD>, f<FS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); if ((fmt == fmt_word) | ((fmt == fmt_long) || (fmt == fmt_word))) SignalException (ReservedInstruction, instruction_0); StoreFPR (FD, fmt_word, Convert (GETRM (), ValueFPR (FS, fmt), fmt, fmt_word)); } 010001,10,3.FMT!2!3!4!5!6!7,5.FT,5.FS,5.FD,000011:COP1:32,f::DIV.fmt "div.%s<FMT> f<FD>, f<FS>, f<FT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt, Divide (ValueFPR (FS, fmt), ValueFPR (FT, fmt), fmt)); } 010001,00001,5.RT,5.FS,00000000000:COP1:64,f::DMFC1a "dmfc1 r<RT>, f<FS>" *mipsIII: { unsigned64 v; check_fpu (SD_); check_u64 (SD_, instruction_0); if (SizeFGR () == 64) v = FGR[FS]; else if ((FS & 0x1) == 0) v = SET64HI (FGR[FS+1]) | FGR[FS]; else v = SET64HI (0xDEADC0DE) | 0xBAD0BAD0; PENDING_FILL (RT, v); TRACE_ALU_RESULT (v); } 010001,00001,5.RT,5.FS,00000000000:COP1:64,f::DMFC1b "dmfc1 r<RT>, f<FS>" *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { check_fpu (SD_); check_u64 (SD_, instruction_0); if (SizeFGR () == 64) GPR[RT] = FGR[FS]; else if ((FS & 0x1) == 0) GPR[RT] = SET64HI (FGR[FS+1]) | FGR[FS]; else GPR[RT] = SET64HI (0xDEADC0DE) | 0xBAD0BAD0; TRACE_ALU_RESULT (GPR[RT]); } 010001,00101,5.RT,5.FS,00000000000:COP1:64,f::DMTC1a "dmtc1 r<RT>, f<FS>" *mipsIII: { unsigned64 v; check_fpu (SD_); check_u64 (SD_, instruction_0); if (SizeFGR () == 64) PENDING_FILL ((FS + FGR_BASE), GPR[RT]); else if ((FS & 0x1) == 0) { PENDING_FILL (((FS + 1) + FGR_BASE), VH4_8 (GPR[RT])); PENDING_FILL ((FS + FGR_BASE), VL4_8 (GPR[RT])); } else Unpredictable (); TRACE_FP_RESULT (GPR[RT]); } 010001,00101,5.RT,5.FS,00000000000:COP1:64,f::DMTC1b "dmtc1 r<RT>, f<FS>" *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { check_fpu (SD_); check_u64 (SD_, instruction_0); if (SizeFGR () == 64) StoreFPR (FS, fmt_uninterpreted_64, GPR[RT]); else if ((FS & 0x1) == 0) StoreFPR (FS, fmt_uninterpreted_64, GPR[RT]); else Unpredictable (); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001011:COP1:64,f::FLOOR.L.fmt "floor.l.%s<FMT> f<FD>, f<FS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_long, Convert (FP_RM_TOMINF, ValueFPR (FS, fmt), fmt, fmt_long)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001111:COP1:32,f::FLOOR.W.fmt "floor.w.%s<FMT> f<FD>, f<FS>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_word, Convert (FP_RM_TOMINF, ValueFPR (FS, fmt), fmt, fmt_word)); } 110101,5.BASE,5.FT,16.OFFSET:COP1:32,f::LDC1a "ldc1 f<FT>, <OFFSET>(r<BASE>)" *mipsII: *mips32: { check_fpu (SD_); COP_LD (1, FT, do_load_double (SD_, GPR[BASE], EXTEND16 (OFFSET))); } 110101,5.BASE,5.FT,16.OFFSET:COP1:32,f::LDC1b "ldc1 f<FT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { check_fpu (SD_); COP_LD (1, FT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET))); } 010011,5.BASE,5.INDEX,5.0,5.FD,000001:COP1X:64,f::LDXC1 "ldxc1 f<FD>, r<INDEX>(r<BASE>)" *mipsIV: *mipsV: *mips64: *vr5000: { check_fpu (SD_); check_u64 (SD_, instruction_0); COP_LD (1, FD, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX])); } 010011,5.BASE,5.INDEX,5.0,5.FD,000101:COP1X:64,f::LUXC1 "luxc1 f<FD>, r<INDEX>(r<BASE>)" *mipsV: *mips64: { address_word base = GPR[BASE]; address_word index = GPR[INDEX]; address_word vaddr = base + index; check_fpu (SD_); check_u64 (SD_, instruction_0); /* Arrange for the bottom 3 bits of (base + index) to be 0. */ if ((vaddr & 0x7) != 0) index -= (vaddr & 0x7); COP_LD (1, FD, do_load (SD_, AccessLength_DOUBLEWORD, base, index)); } 110001,5.BASE,5.FT,16.OFFSET:COP1:32,f::LWC1 "lwc1 f<FT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { check_fpu (SD_); COP_LW (1, FT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET))); } 010011,5.BASE,5.INDEX,5.0,5.FD,000000:COP1X:64,f::LWXC1 "lwxc1 f<FD>, r<INDEX>(r<BASE>)" *mipsIV: *mipsV: *mips64: *vr5000: { check_fpu (SD_); check_u64 (SD_, instruction_0); COP_LW (1, FD, do_load (SD_, AccessLength_WORD, GPR[BASE], GPR[INDEX])); } 010011,5.FR,5.FT,5.FS,5.FD,100,3.FMT!2!3!4!5!7:COP1X:64,f::MADD.fmt "madd.%s<FMT> f<FD>, f<FR>, f<FS>, f<FT>" *mipsIV: *mipsV: *mips64: *vr5000: { int fmt = FMT; check_fpu (SD_); check_u64 (SD_, instruction_0); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, MultiplyAdd (ValueFPR (FS, fmt), ValueFPR (FT, fmt), ValueFPR (FR, fmt), fmt)); } 010001,00000,5.RT,5.FS,00000000000:COP1:32,f::MFC1a "mfc1 r<RT>, f<FS>" *mipsI: *mipsII: *mipsIII: { unsigned64 v; check_fpu (SD_); v = EXTEND32 (FGR[FS]); PENDING_FILL (RT, v); TRACE_ALU_RESULT (v); } 010001,00000,5.RT,5.FS,00000000000:COP1:32,f::MFC1b "mfc1 r<RT>, f<FS>" *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { check_fpu (SD_); GPR[RT] = EXTEND32 (FGR[FS]); TRACE_ALU_RESULT (GPR[RT]); } 010001,10,3.FMT!2!3!4!5!7,00000,5.FS,5.FD,000110:COP1:32,f::MOV.fmt "mov.%s<FMT> f<FD>, f<FS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, ValueFPR (FS, fmt)); } // MOVF // MOVT 000000,5.RS,3.CC,0,1.TF,5.RD,00000,000001:SPECIAL:32,f::MOVtf "mov%s<TF> r<RD>, r<RS>, <CC>" *mipsIV: *mipsV: *mips32: *mips64: *vr5000: { check_fpu (SD_); if (GETFCC(CC) == TF) GPR[RD] = GPR[RS]; } // MOVF.fmt // MOVT.fmt 010001,10,3.FMT!2!3!4!5!7,3.CC,0,1.TF,5.FS,5.FD,010001:COP1:32,f::MOVtf.fmt "mov%s<TF>.%s<FMT> f<FD>, f<FS>, <CC>" *mipsIV: *mipsV: *mips32: *mips64: *vr5000: { int fmt = FMT; check_fpu (SD_); if (fmt != fmt_ps) { if (GETFCC(CC) == TF) StoreFPR (FD, fmt, ValueFPR (FS, fmt)); else StoreFPR (FD, fmt, ValueFPR (FD, fmt)); /* set fmt */ } else { unsigned64 fd; fd = PackPS (PSUpper (ValueFPR ((GETFCC (CC+1) == TF) ? FS : FD, fmt_ps)), PSLower (ValueFPR ((GETFCC (CC+0) == TF) ? FS : FD, fmt_ps))); StoreFPR (FD, fmt_ps, fd); } } 010001,10,3.FMT!2!3!4!5!7,5.RT,5.FS,5.FD,010011:COP1:32,f::MOVN.fmt "movn.%s<FMT> f<FD>, f<FS>, r<RT>" *mipsIV: *mipsV: *mips32: *mips64: *vr5000: { check_fpu (SD_); if (GPR[RT] != 0) StoreFPR (FD, FMT, ValueFPR (FS, FMT)); else StoreFPR (FD, FMT, ValueFPR (FD, FMT)); } // MOVT see MOVtf // MOVT.fmt see MOVtf.fmt 010001,10,3.FMT!2!3!4!5!7,5.RT,5.FS,5.FD,010010:COP1:32,f::MOVZ.fmt "movz.%s<FMT> f<FD>, f<FS>, r<RT>" *mipsIV: *mipsV: *mips32: *mips64: *vr5000: { check_fpu (SD_); if (GPR[RT] == 0) StoreFPR (FD, FMT, ValueFPR (FS, FMT)); else StoreFPR (FD, FMT, ValueFPR (FD, FMT)); } 010011,5.FR,5.FT,5.FS,5.FD,101,3.FMT!2!3!4!5!7:COP1X:64,f::MSUB.fmt "msub.%s<FMT> f<FD>, f<FR>, f<FS>, f<FT>" *mipsIV: *mipsV: *mips64: *vr5000: { int fmt = FMT; check_fpu (SD_); check_u64 (SD_, instruction_0); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, MultiplySub (ValueFPR (FS, fmt), ValueFPR (FT, fmt), ValueFPR (FR, fmt), fmt)); } 010001,00100,5.RT,5.FS,00000000000:COP1:32,f::MTC1a "mtc1 r<RT>, f<FS>" *mipsI: *mipsII: *mipsIII: { check_fpu (SD_); if (SizeFGR () == 64) PENDING_FILL ((FS + FGR_BASE), (SET64HI (0xDEADC0DE) | VL4_8 (GPR[RT]))); else PENDING_FILL ((FS + FGR_BASE), VL4_8 (GPR[RT])); TRACE_FP_RESULT (GPR[RT]); } 010001,00100,5.RT,5.FS,00000000000:COP1:32,f::MTC1b "mtc1 r<RT>, f<FS>" *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { check_fpu (SD_); StoreFPR (FS, fmt_uninterpreted_32, VL4_8 (GPR[RT])); } 010001,10,3.FMT!2!3!4!5!7,5.FT,5.FS,5.FD,000010:COP1:32,f::MUL.fmt "mul.%s<FMT> f<FD>, f<FS>, f<FT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, Multiply (ValueFPR (FS, fmt), ValueFPR (FT, fmt), fmt)); } 010001,10,3.FMT!2!3!4!5!7,00000,5.FS,5.FD,000111:COP1:32,f::NEG.fmt "neg.%s<FMT> f<FD>, f<FS>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, Negate (ValueFPR (FS, fmt), fmt)); } 010011,5.FR,5.FT,5.FS,5.FD,110,3.FMT!2!3!4!5!7:COP1X:64,f::NMADD.fmt "nmadd.%s<FMT> f<FD>, f<FR>, f<FS>, f<FT>" *mipsIV: *mipsV: *mips64: *vr5000: { int fmt = FMT; check_fpu (SD_); check_u64 (SD_, instruction_0); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, NegMultiplyAdd (ValueFPR (FS, fmt), ValueFPR (FT, fmt), ValueFPR (FR, fmt), fmt)); } 010011,5.FR,5.FT,5.FS,5.FD,111,3.FMT!2!3!4!5!7:COP1X:64,f::NMSUB.fmt "nmsub.%s<FMT> f<FD>, f<FR>, f<FS>, f<FT>" *mipsIV: *mipsV: *mips64: *vr5000: { int fmt = FMT; check_fpu (SD_); check_u64 (SD_, instruction_0); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, NegMultiplySub (ValueFPR (FS, fmt), ValueFPR (FT, fmt), ValueFPR (FR, fmt), fmt)); } 010001,10,110,5.FT,5.FS,5.FD,101100:COP1:64,f::PLL.PS "pll.ps f<FD>, f<FS>, f<FT>" *mipsV: *mips64: { check_fpu (SD_); check_u64 (SD_, instruction_0); StoreFPR (FD, fmt_ps, PackPS (PSLower (ValueFPR (FS, fmt_ps)), PSLower (ValueFPR (FT, fmt_ps)))); } 010001,10,110,5.FT,5.FS,5.FD,101101:COP1:64,f::PLU.PS "plu.ps f<FD>, f<FS>, f<FT>" *mipsV: *mips64: { check_fpu (SD_); check_u64 (SD_, instruction_0); StoreFPR (FD, fmt_ps, PackPS (PSLower (ValueFPR (FS, fmt_ps)), PSUpper (ValueFPR (FT, fmt_ps)))); } 010011,5.BASE,5.INDEX,5.HINT,00000,001111:COP1X:64::PREFX "prefx <HINT>, r<INDEX>(r<BASE>)" *mipsIV: *mipsV: *mips64: *vr5000: { address_word base = GPR[BASE]; address_word index = GPR[INDEX]; { address_word vaddr = loadstore_ea (SD_, base, index); address_word paddr; int uncached; if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL)) Prefetch(uncached,paddr,vaddr,isDATA,HINT); } } 010001,10,110,5.FT,5.FS,5.FD,101110:COP1:64,f::PUL.PS "pul.ps f<FD>, f<FS>, f<FT>" *mipsV: *mips64: { check_fpu (SD_); check_u64 (SD_, instruction_0); StoreFPR (FD, fmt_ps, PackPS (PSUpper (ValueFPR (FS, fmt_ps)), PSLower (ValueFPR (FT, fmt_ps)))); } 010001,10,110,5.FT,5.FS,5.FD,101111:COP1:64,f::PUU.PS "puu.ps f<FD>, f<FS>, f<FT>" *mipsV: *mips64: { check_fpu (SD_); check_u64 (SD_, instruction_0); StoreFPR (FD, fmt_ps, PackPS (PSUpper (ValueFPR (FS, fmt_ps)), PSUpper (ValueFPR (FT, fmt_ps)))); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,010101:COP1:32,f::RECIP.fmt "recip.%s<FMT> f<FD>, f<FS>" *mipsIV: *mipsV: *mips64: *vr5000: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt, Recip (ValueFPR (FS, fmt), fmt)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001000:COP1:64,f::ROUND.L.fmt "round.l.%s<FMT> f<FD>, f<FS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_long, Convert (FP_RM_NEAREST, ValueFPR (FS, fmt), fmt, fmt_long)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001100:COP1:32,f::ROUND.W.fmt "round.w.%s<FMT> f<FD>, f<FS>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_word, Convert (FP_RM_NEAREST, ValueFPR (FS, fmt), fmt, fmt_word)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,010110:COP1:32,f::RSQRT.fmt "rsqrt.%s<FMT> f<FD>, f<FS>" *mipsIV: *mipsV: *mips64: *vr5000: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt, RSquareRoot (ValueFPR (FS, fmt), fmt)); } 111101,5.BASE,5.FT,16.OFFSET:COP1:32,f::SDC1a "sdc1 f<FT>, <OFFSET>(r<BASE>)" *mipsII: *mips32: { check_fpu (SD_); do_store_double (SD_, GPR[BASE], EXTEND16 (OFFSET), COP_SD (1, FT)); } 111101,5.BASE,5.FT,16.OFFSET:COP1:32,f::SDC1b "sdc1 f<FT>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { check_fpu (SD_); do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (1, FT)); } 010011,5.BASE,5.INDEX,5.FS,00000001001:COP1X:64,f::SDXC1 "sdxc1 f<FS>, r<INDEX>(r<BASE>)" *mipsIV: *mipsV: *mips64: *vr5000: { check_fpu (SD_); check_u64 (SD_, instruction_0); do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX], COP_SD (1, FS)); } 010011,5.BASE,5.INDEX,5.FS,00000,001101:COP1X:64,f::SUXC1 "suxc1 f<FS>, r<INDEX>(r<BASE>)" *mipsV: *mips64: { unsigned64 v; address_word base = GPR[BASE]; address_word index = GPR[INDEX]; address_word vaddr = base + index; check_fpu (SD_); check_u64 (SD_, instruction_0); /* Arrange for the bottom 3 bits of (base + index) to be 0. */ if ((vaddr & 0x7) != 0) index -= (vaddr & 0x7); do_store (SD_, AccessLength_DOUBLEWORD, base, index, COP_SD (1, FS)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,000100:COP1:32,f::SQRT.fmt "sqrt.%s<FMT> f<FD>, f<FS>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt, (SquareRoot (ValueFPR (FS, fmt), fmt))); } 010001,10,3.FMT!2!3!4!5!7,5.FT,5.FS,5.FD,000001:COP1:32,f::SUB.fmt "sub.%s<FMT> f<FD>, f<FS>, f<FT>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); check_fmt_p (SD_, fmt, instruction_0); StoreFPR (FD, fmt, Sub (ValueFPR (FS, fmt), ValueFPR (FT, fmt), fmt)); } 111001,5.BASE,5.FT,16.OFFSET:COP1:32,f::SWC1 "swc1 f<FT>, <OFFSET>(r<BASE>)" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word base = GPR[BASE]; address_word offset = EXTEND16 (OFFSET); check_fpu (SD_); { address_word vaddr = loadstore_ea (SD_, base, offset); address_word paddr; int uncached; if ((vaddr & 3) != 0) { SIM_CORE_SIGNAL (SD, CPU, cia, read_map, AccessLength_WORD+1, vaddr, write_transfer, sim_core_unaligned_signal); } else { if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL)) { uword64 memval = 0; uword64 memval1 = 0; uword64 mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3); address_word reverseendian = (ReverseEndian ?(mask ^ AccessLength_WORD): 0); address_word bigendiancpu = (BigEndianCPU ?(mask ^ AccessLength_WORD): 0); unsigned int byte; paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian)); byte = ((vaddr & mask) ^ bigendiancpu); memval = (((uword64)COP_SW(((instruction_0 >> 26) & 0x3),FT)) << (8 * byte)); StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL); } } } } 010011,5.BASE,5.INDEX,5.FS,00000,001000:COP1X:32,f::SWXC1 "swxc1 f<FS>, r<INDEX>(r<BASE>)" *mipsIV: *mipsV: *mips64: *vr5000: { address_word base = GPR[BASE]; address_word index = GPR[INDEX]; check_fpu (SD_); check_u64 (SD_, instruction_0); { address_word vaddr = loadstore_ea (SD_, base, index); address_word paddr; int uncached; if ((vaddr & 3) != 0) { SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal); } else { if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL)) { unsigned64 memval = 0; unsigned64 memval1 = 0; unsigned64 mask = 0x7; unsigned int byte; paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2))); byte = ((vaddr & mask) ^ (BigEndianCPU << 2)); memval = (((unsigned64)COP_SW(1,FS)) << (8 * byte)); { StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL); } } } } } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001001:COP1:64,f::TRUNC.L.fmt "trunc.l.%s<FMT> f<FD>, f<FS>" *mipsIII: *mipsIV: *mipsV: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_long, Convert (FP_RM_TOZERO, ValueFPR (FS, fmt), fmt, fmt_long)); } 010001,10,3.FMT!2!3!4!5!6!7,00000,5.FS,5.FD,001101:COP1:32,f::TRUNC.W "trunc.w.%s<FMT> f<FD>, f<FS>" *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { int fmt = FMT; check_fpu (SD_); StoreFPR (FD, fmt_word, Convert (FP_RM_TOZERO, ValueFPR (FS, fmt), fmt, fmt_word)); } // // MIPS Architecture: // // System Control Instruction Set (COP0) // 010000,01000,00000,16.OFFSET:COP0:32::BC0F "bc0f <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: 010000,01000,00000,16.OFFSET:COP0:32::BC0F "bc0f <OFFSET>" // stub needed for eCos as tx39 hardware bug workaround *r3900: { /* do nothing */ } 010000,01000,00010,16.OFFSET:COP0:32::BC0FL "bc0fl <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: 010000,01000,00001,16.OFFSET:COP0:32::BC0T "bc0t <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: 010000,01000,00011,16.OFFSET:COP0:32::BC0TL "bc0tl <OFFSET>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: 101111,5.BASE,5.OP,16.OFFSET:NORMAL:32::CACHE "cache <OP>, <OFFSET>(r<BASE>)" *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { address_word base = GPR[BASE]; address_word offset = EXTEND16 (OFFSET); { address_word vaddr = loadstore_ea (SD_, base, offset); address_word paddr; int uncached; if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL)) CacheOp(OP,vaddr,paddr,instruction_0); } } 010000,00001,5.RT,5.RD,00000000000:COP0:64::DMFC0 "dmfc0 r<RT>, r<RD>" *mipsIII: *mipsIV: *mipsV: *mips64: { check_u64 (SD_, instruction_0); DecodeCoproc (instruction_0); } 010000,00101,5.RT,5.RD,00000000000:COP0:64::DMTC0 "dmtc0 r<RT>, r<RD>" *mipsIII: *mipsIV: *mipsV: *mips64: { check_u64 (SD_, instruction_0); DecodeCoproc (instruction_0); } 010000,1,0000000000000000000,011000:COP0:32::ERET "eret" *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: { if (SR & status_ERL) { /* Oops, not yet available */ sim_io_printf (SD, "Warning: ERET when SR[ERL] set not supported"); NIA = EPC; SR &= ~status_ERL; } else { NIA = EPC; SR &= ~status_EXL; } } 010000,00000,5.RT,5.RD,00000,6.REGX:COP0:32::MFC0 "mfc0 r<RT>, r<RD> # <REGX>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { TRACE_ALU_INPUT0 (); DecodeCoproc (instruction_0); TRACE_ALU_RESULT (GPR[RT]); } 010000,00100,5.RT,5.RD,00000,6.REGX:COP0:32::MTC0 "mtc0 r<RT>, r<RD> # <REGX>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: *r3900: { DecodeCoproc (instruction_0); } 010000,1,0000000000000000000,010000:COP0:32::RFE "rfe" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *vr4100: *vr5000: *r3900: { DecodeCoproc (instruction_0); } 0100,ZZ!0!1!3,5.COP_FUN0!8,5.COP_FUN1,16.COP_FUN2:NORMAL:32::COPz "cop<ZZ> <COP_FUN0><COP_FUN1><COP_FUN2>" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *r3900: { DecodeCoproc (instruction_0); } 010000,1,0000000000000000000,001000:COP0:32::TLBP "tlbp" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: 010000,1,0000000000000000000,000001:COP0:32::TLBR "tlbr" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: 010000,1,0000000000000000000,000010:COP0:32::TLBWI "tlbwi" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: 010000,1,0000000000000000000,000110:COP0:32::TLBWR "tlbwr" *mipsI: *mipsII: *mipsIII: *mipsIV: *mipsV: *mips32: *mips64: *vr4100: *vr5000: :include:::m16.igen :include:::mdmx.igen :include:::mips3d.igen :include:::sb1.igen :include:::tx.igen :include:::vr.igen