// -*- C -*-
//
//    <insn> ::=
//        <insn-word> { "+" <insn-word> }
//        ":" <format-name>
//        ":" <filter-flags>
//        ":" <options>
//        ":" <name>
//        <nl>
//        { <insn-model> }
//        { <insn-mnemonic> }
//        <code-block>
//


// IGEN config - mips16
// :option:16::insn-bit-size:16
// :option:16::hi-bit-nr:15
:option:16::insn-specifying-widths:true
:option:16::gen-delayed-branch:false

// IGEN config - mips32/64..
// :option:32::insn-bit-size:32
// :option:32::hi-bit-nr:31
:option:32::insn-specifying-widths:true
:option:32::gen-delayed-branch:false


// Generate separate simulators for each target
// :option:::multi-sim:true


// Models known by this simulator are defined below.
//
// When placing models in the instruction descriptions, please place
// them one per line, in the order given here.

//  MIPS ISAs:
//
//  Instructions and related functions for these models are included in
//  this file.
:model:::mipsI:mips3000:
:model:::mipsII:mips6000:
:model:::mipsIII:mips4000:
:model:::mipsIV:mips8000:
:model:::mipsV:mipsisaV:
:model:::mips32:mipsisa32:
:model:::mips64:mipsisa64:

//  Vendor ISAs:
//
//  Standard MIPS ISA instructions used for these models are listed here,
//  as are functions needed by those standard instructions.  Instructions
//  which are model-dependent and which are not in the standard MIPS ISAs
//  (or which pre-date or use different encodings than the standard
//  instructions) are (for the most part) in separate .igen files.
:model:::vr4100:mips4100:		// vr.igen
:model:::vr5000:mips5000:
:model:::r3900:mips3900:		// tx.igen

//  MIPS Application Specific Extensions (ASEs)
//
//  Instructions for the ASEs are in separate .igen files.
:model:::mips16:mips16:			// m16.igen (and m16.dc)


// Pseudo instructions known by IGEN
:internal::::illegal:
{
  SignalException (ReservedInstruction, 0);
}


// Pseudo instructions known by interp.c
// For grep - RSVD_INSTRUCTION, RSVD_INSTRUCTION_MASK
000000,5.*,5.*,5.*,5.OP,000101:SPECIAL:32::RSVD
"rsvd <OP>"
{
  SignalException (ReservedInstruction, instruction_0);
}



// Helper:
//
// Simulate a 32 bit delayslot instruction
//

:function:::address_word:delayslot32:address_word target
{
  instruction_word delay_insn;
  sim_events_slip (SD, 1);
  DSPC = CIA;
  CIA = CIA + 4; /* NOTE not mips16 */
  STATE |= simDELAYSLOT;
  delay_insn = IMEM32 (CIA); /* NOTE not mips16 */
  ENGINE_ISSUE_PREFIX_HOOK();
  idecode_issue (CPU_, delay_insn, (CIA));
  STATE &= ~simDELAYSLOT;
  return target;
}

:function:::address_word:nullify_next_insn32:
{
  sim_events_slip (SD, 1);
  dotrace (SD, CPU, tracefh, 2, CIA + 4, 4, "load instruction");
  return CIA + 8;
}


// Helper:
//
// Calculate an effective address given a base and an offset.
//

:function:::address_word:loadstore_ea:address_word base, address_word offset
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*vr4100:
*vr5000:
*r3900:
{
  return base + offset;
}

:function:::address_word:loadstore_ea:address_word base, address_word offset
*mips64:
{
#if 0 /* XXX FIXME: enable this only after some additional testing.  */
  /* If in user mode and UX is not set, use 32-bit compatibility effective
     address computations as defined in the MIPS64 Architecture for
     Programmers Volume III, Revision 0.95, section 4.9.  */
  if ((SR & (status_KSU_mask|status_EXL|status_ERL|status_UX))
      == (ksu_user << status_KSU_shift))
    return (address_word)((signed32)base + (signed32)offset);
#endif
  return base + offset;
}


// Helper:
//
// Check that an access to a HI/LO register meets timing requirements
//
// The following requirements exist:
//
//   -  A MT {HI,LO} update was not immediatly preceeded by a MF {HI,LO} read
//   -  A OP {HI,LO} update was not immediatly preceeded by a MF {HI,LO} read
//   -  A MF {HI,LO} read was not corrupted by a preceeding MT{LO,HI} update
//      corruption occures when MT{LO,HI} is preceeded by a OP {HI,LO}.
//

:function:::int:check_mf_cycles:hilo_history *history, signed64 time, const char *new
{
  if (history->mf.timestamp + 3 > time)
    {
      sim_engine_abort (SD, CPU, CIA, "HILO: %s: %s at 0x%08lx too close to MF at 0x%08lx\n",
			itable[MY_INDEX].name,
			new, (long) CIA,
			(long) history->mf.cia);
      return 0;
    }
  return 1;
}

:function:::int:check_mt_hilo:hilo_history *history
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*vr4100:
*vr5000:
{
  signed64 time = sim_events_time (SD);
  int ok = check_mf_cycles (SD_, history, time, "MT");
  history->mt.timestamp = time;
  history->mt.cia = CIA;
  return ok;
}

:function:::int:check_mt_hilo:hilo_history *history
*mips32:
*mips64:
*r3900:
{
  signed64 time = sim_events_time (SD);
  history->mt.timestamp = time;
  history->mt.cia = CIA;
  return 1;
}


:function:::int:check_mf_hilo:hilo_history *history, hilo_history *peer
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  signed64 time = sim_events_time (SD);
  int ok = 1;
  if (peer != NULL
      && peer->mt.timestamp > history->op.timestamp
      && history->mt.timestamp < history->op.timestamp
      && ! (history->mf.timestamp > history->op.timestamp
	    && history->mf.timestamp < peer->mt.timestamp)
      && ! (peer->mf.timestamp > history->op.timestamp
	    && peer->mf.timestamp < peer->mt.timestamp))
    {
      /* The peer has been written to since the last OP yet we have
         not */
      sim_engine_abort (SD, CPU, CIA, "HILO: %s: MF at 0x%08lx following OP at 0x%08lx corrupted by MT at 0x%08lx\n",
			itable[MY_INDEX].name,
			(long) CIA,
			(long) history->op.cia,
			(long) peer->mt.cia);
      ok = 0;
    }
  history->mf.timestamp = time;
  history->mf.cia = CIA;
  return ok;
}



:function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*vr4100:
*vr5000:
{
  signed64 time = sim_events_time (SD);
  int ok = (check_mf_cycles (SD_, hi, time, "OP")
	    && check_mf_cycles (SD_, lo, time, "OP"));
  hi->op.timestamp = time;
  lo->op.timestamp = time;
  hi->op.cia = CIA;
  lo->op.cia = CIA;
  return ok;
}

// The r3900 mult and multu insns _can_ be exectuted immediatly after
// a mf{hi,lo}
:function:::int:check_mult_hilo:hilo_history *hi, hilo_history *lo
*mips32:
*mips64:
*r3900:
{
  /* FIXME: could record the fact that a stall occured if we want */
  signed64 time = sim_events_time (SD);
  hi->op.timestamp = time;
  lo->op.timestamp = time;
  hi->op.cia = CIA;
  lo->op.cia = CIA;
  return 1;
}


:function:::int:check_div_hilo:hilo_history *hi, hilo_history *lo
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  signed64 time = sim_events_time (SD);
  int ok = (check_mf_cycles (SD_, hi, time, "OP")
	    && check_mf_cycles (SD_, lo, time, "OP"));
  hi->op.timestamp = time;
  lo->op.timestamp = time;
  hi->op.cia = CIA;
  lo->op.cia = CIA;
  return ok;
}


// Helper:
//
// Check that the 64-bit instruction can currently be used, and signal
// a ReservedInstruction exception if not.
//

:function:::void:check_u64:instruction_word insn
*mipsIII:
*mipsIV:
*mipsV:
*vr4100:
*vr5000:
{
  // The check should be similar to mips64 for any with PX/UX bit equivalents.
}

:function:::void:check_u64:instruction_word insn
*mips64:
{
#if 0 /* XXX FIXME: enable this only after some additional testing.  */
  if (UserMode && (SR & (status_UX|status_PX)) == 0)
    SignalException (ReservedInstruction, insn);
#endif
}



//
// MIPS Architecture:
//
//        CPU Instruction Set (mipsI - mipsV, mips32, mips64)
//



000000,5.RS,5.RT,5.RD,00000,100000:SPECIAL:32::ADD
"add r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  {
    ALU32_BEGIN (GPR[RS]);
    ALU32_ADD (GPR[RT]);
    ALU32_END (GPR[RD]);   /* This checks for overflow.  */
  }
  TRACE_ALU_RESULT (GPR[RD]);
}



001000,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDI
"addi r<RT>, r<RS>, <IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE));
  {
    ALU32_BEGIN (GPR[RS]);
    ALU32_ADD (EXTEND16 (IMMEDIATE));
    ALU32_END (GPR[RT]);   /* This checks for overflow.  */
  }
  TRACE_ALU_RESULT (GPR[RT]);
}



:function:::void:do_addiu:int rs, int rt, unsigned16 immediate
{
  TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
  GPR[rt] = EXTEND32 (GPR[rs] + EXTEND16 (immediate));
  TRACE_ALU_RESULT (GPR[rt]);
}

001001,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ADDIU
"addiu r<RT>, r<RS>, <IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_addiu (SD_, RS, RT, IMMEDIATE);
}



:function:::void:do_addu:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = EXTEND32 (GPR[rs] + GPR[rt]);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,100001:SPECIAL:32::ADDU
"addu r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_addu (SD_, RS, RT, RD);
}



:function:::void:do_and:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = GPR[rs] & GPR[rt];
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,100100:SPECIAL:32::AND
"and r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_and (SD_, RS, RT, RD);
}



001100,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ANDI
"andi r<RT>, r<RS>, %#lx<IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  TRACE_ALU_INPUT2 (GPR[RS], IMMEDIATE);
  GPR[RT] = GPR[RS] & IMMEDIATE;
  TRACE_ALU_RESULT (GPR[RT]);
}



000100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQ
"beq r<RS>, r<RT>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



010100,5.RS,5.RT,16.OFFSET:NORMAL:32::BEQL
"beql r<RS>, r<RT>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000001,5.RS,00001,16.OFFSET:REGIMM:32::BGEZ
"bgez r<RS>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] >= 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



000001,5.RS!31,10001,16.OFFSET:REGIMM:32::BGEZAL
"bgezal r<RS>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  RA = (CIA + 8);
  if ((signed_word) GPR[RS] >= 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



000001,5.RS!31,10011,16.OFFSET:REGIMM:32::BGEZALL
"bgezall r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  RA = (CIA + 8);
  /* NOTE: The branch occurs AFTER the next instruction has been
     executed */
  if ((signed_word) GPR[RS] >= 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000001,5.RS,00011,16.OFFSET:REGIMM:32::BGEZL
"bgezl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] >= 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZ
"bgtz r<RS>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] > 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



010111,5.RS,00000,16.OFFSET:NORMAL:32::BGTZL
"bgtzl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  /* NOTE: The branch occurs AFTER the next instruction has been
     executed */
  if ((signed_word) GPR[RS] > 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZ
"blez r<RS>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  /* NOTE: The branch occurs AFTER the next instruction has been
     executed */
  if ((signed_word) GPR[RS] <= 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



010110,5.RS,00000,16.OFFSET:NORMAL:32::BLEZL
"bgezl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] <= 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000001,5.RS,00000,16.OFFSET:REGIMM:32::BLTZ
"bltz r<RS>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] < 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



000001,5.RS!31,10000,16.OFFSET:REGIMM:32::BLTZAL
"bltzal r<RS>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  RA = (CIA + 8);
  /* NOTE: The branch occurs AFTER the next instruction has been
     executed */
  if ((signed_word) GPR[RS] < 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



000001,5.RS!31,10010,16.OFFSET:REGIMM:32::BLTZALL
"bltzall r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  RA = (CIA + 8);
  if ((signed_word) GPR[RS] < 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000001,5.RS,00010,16.OFFSET:REGIMM:32::BLTZL
"bltzl r<RS>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  /* NOTE: The branch occurs AFTER the next instruction has been
     executed */
  if ((signed_word) GPR[RS] < 0)
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNE
"bne r<RS>, r<RT>, <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
}



010101,5.RS,5.RT,16.OFFSET:NORMAL:32::BNEL
"bnel r<RS>, r<RT>, <OFFSET>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word offset = EXTEND16 (OFFSET) << 2;
  check_branch_bug ();
  if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
    {
      mark_branch_bug (NIA+offset);
      DELAY_SLOT (NIA + offset);
    }
  else
    NULLIFY_NEXT_INSTRUCTION ();
}



000000,20.CODE,001101:SPECIAL:32::BREAK
"break %#lx<CODE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  /* Check for some break instruction which are reserved for use by the simulator.  */
  unsigned int break_code = instruction_0 & HALT_INSTRUCTION_MASK;
  if (break_code == (HALT_INSTRUCTION  & HALT_INSTRUCTION_MASK) ||
      break_code == (HALT_INSTRUCTION2 & HALT_INSTRUCTION_MASK))
    {
      sim_engine_halt (SD, CPU, NULL, cia,
                       sim_exited, (unsigned int)(A0 & 0xFFFFFFFF));
    }
  else if (break_code == (BREAKPOINT_INSTRUCTION  & HALT_INSTRUCTION_MASK) ||
           break_code == (BREAKPOINT_INSTRUCTION2 & HALT_INSTRUCTION_MASK))
    {
      if (STATE & simDELAYSLOT)
        PC = cia - 4; /* reference the branch instruction */
      else
        PC = cia;
      SignalException (BreakPoint, instruction_0);
    }

  else
    {
      /* If we get this far, we're not an instruction reserved by the sim.  Raise
	 the exception. */
      SignalException (BreakPoint, instruction_0);
    }
}



011100,5.RS,5.RT,5.RD,00000,100001:SPECIAL2:32::CLO
"clo r<RD>, r<RS>"
*mips32:
*mips64:
{
  unsigned32 temp = GPR[RS];
  unsigned32 i, mask;
  if (RT != RD)
    Unpredictable();
  TRACE_ALU_INPUT1 (GPR[RS]);
  for (mask = ((unsigned32)1<<31), i = 0; i < 32; ++i)
    {
      if ((temp & mask) == 0)
	break;
      mask >>= 1;
    }
  GPR[RD] = EXTEND32 (i);
  TRACE_ALU_RESULT (GPR[RD]);
}



011100,5.RS,5.RT,5.RD,00000,100000:SPECIAL2:32::CLZ
"clz r<RD>, r<RS>"
*mips32:
*mips64:
{
  unsigned32 temp = GPR[RS];
  unsigned32 i, mask;
  if (RT != RD)
    Unpredictable();
  TRACE_ALU_INPUT1 (GPR[RS]);
  for (mask = ((unsigned32)1<<31), i = 0; i < 32; ++i)
    {
      if ((temp & mask) != 0)
	break;
      mask >>= 1;
    }
  GPR[RD] = EXTEND32 (i);
  TRACE_ALU_RESULT (GPR[RD]);
}



000000,5.RS,5.RT,5.RD,00000,101100:SPECIAL:64::DADD
"dadd r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  {
    ALU64_BEGIN (GPR[RS]);
    ALU64_ADD (GPR[RT]);
    ALU64_END (GPR[RD]);   /* This checks for overflow.  */
  }
  TRACE_ALU_RESULT (GPR[RD]);
}



011000,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDI
"daddi r<RT>, r<RS>, <IMMEDIATE>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  TRACE_ALU_INPUT2 (GPR[RS], EXTEND16 (IMMEDIATE));
  {
    ALU64_BEGIN (GPR[RS]);
    ALU64_ADD (EXTEND16 (IMMEDIATE));
    ALU64_END (GPR[RT]);   /* This checks for overflow.  */
  }
  TRACE_ALU_RESULT (GPR[RT]);
}



:function:::void:do_daddiu:int rs, int rt, unsigned16 immediate
{
  TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
  GPR[rt] = GPR[rs] + EXTEND16 (immediate);
  TRACE_ALU_RESULT (GPR[rt]);
}

011001,5.RS,5.RT,16.IMMEDIATE:NORMAL:64::DADDIU
"daddiu r<RT>, r<RS>, <IMMEDIATE>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_daddiu (SD_, RS, RT, IMMEDIATE);
}



:function:::void:do_daddu:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = GPR[rs] + GPR[rt];
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,101101:SPECIAL:64::DADDU
"daddu r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_daddu (SD_, RS, RT, RD);
}



011100,5.RS,5.RT,5.RD,00000,100101:SPECIAL2:64::DCLO
"dclo r<RD>, r<RS>"
*mips64:
{
  unsigned64 temp = GPR[RS];
  unsigned32 i;
  unsigned64 mask;
  check_u64 (SD_, instruction_0);
  if (RT != RD)
    Unpredictable();
  TRACE_ALU_INPUT1 (GPR[RS]);
  for (mask = ((unsigned64)1<<63), i = 0; i < 64; ++i)
    {
      if ((temp & mask) == 0)
	break;
      mask >>= 1;
    }
  GPR[RD] = EXTEND32 (i);
  TRACE_ALU_RESULT (GPR[RD]);
}



011100,5.RS,5.RT,5.RD,00000,100100:SPECIAL2:64::DCLZ
"dclz r<RD>, r<RS>"
*mips64:
{
  unsigned64 temp = GPR[RS];
  unsigned32 i;
  unsigned64 mask;
  check_u64 (SD_, instruction_0);
  if (RT != RD)
    Unpredictable();
  TRACE_ALU_INPUT1 (GPR[RS]);
  for (mask = ((unsigned64)1<<63), i = 0; i < 64; ++i)
    {
      if ((temp & mask) != 0)
	break;
      mask >>= 1;
    }
  GPR[RD] = EXTEND32 (i);
  TRACE_ALU_RESULT (GPR[RD]);
}



:function:::void:do_ddiv:int rs, int rt
{
  check_div_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  {
    signed64 n = GPR[rs];
    signed64 d = GPR[rt];
    signed64 hi;
    signed64 lo;
    if (d == 0)
      {
	lo = SIGNED64 (0x8000000000000000);
	hi = 0;
      }
    else if (d == -1 && n == SIGNED64 (0x8000000000000000))
      {
	lo = SIGNED64 (0x8000000000000000);
	hi = 0;
      }
    else
      {
	lo = (n / d);
	hi = (n % d);
      }
    HI = hi;
    LO = lo;
  }
  TRACE_ALU_RESULT2 (HI, LO);
}

000000,5.RS,5.RT,0000000000,011110:SPECIAL:64::DDIV
"ddiv r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_ddiv (SD_, RS, RT);
}



:function:::void:do_ddivu:int rs, int rt
{
  check_div_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  {
    unsigned64 n = GPR[rs];
    unsigned64 d = GPR[rt];
    unsigned64 hi;
    unsigned64 lo;
    if (d == 0)
      {
	lo = SIGNED64 (0x8000000000000000);
	hi = 0;
      }
    else
      {
	lo = (n / d);
	hi = (n % d);
      }
    HI = hi;
    LO = lo;
  }
  TRACE_ALU_RESULT2 (HI, LO);
}

000000,5.RS,5.RT,0000000000,011111:SPECIAL:64::DDIVU
"ddivu r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_ddivu (SD_, RS, RT);
}



:function:::void:do_div:int rs, int rt
{
  check_div_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  {
    signed32 n = GPR[rs];
    signed32 d = GPR[rt];
    if (d == 0)
      {
	LO = EXTEND32 (0x80000000);
	HI = EXTEND32 (0);
      }
    else if (n == SIGNED32 (0x80000000) && d == -1)
      {
	LO = EXTEND32 (0x80000000);
	HI = EXTEND32 (0);
      }
    else
      {
	LO = EXTEND32 (n / d);
	HI = EXTEND32 (n % d);
      }
  }
  TRACE_ALU_RESULT2 (HI, LO);
}

000000,5.RS,5.RT,0000000000,011010:SPECIAL:32::DIV
"div r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_div (SD_, RS, RT);
}



:function:::void:do_divu:int rs, int rt
{
  check_div_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  {
    unsigned32 n = GPR[rs];
    unsigned32 d = GPR[rt];
    if (d == 0)
      {
	LO = EXTEND32 (0x80000000);
	HI = EXTEND32 (0);
      }
    else
      {
	LO = EXTEND32 (n / d);
	HI = EXTEND32 (n % d);
      }
  }
  TRACE_ALU_RESULT2 (HI, LO);
}

000000,5.RS,5.RT,0000000000,011011:SPECIAL:32::DIVU
"divu r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_divu (SD_, RS, RT);
}



:function:::void:do_dmultx:int rs, int rt, int rd, int signed_p
{
  unsigned64 lo;
  unsigned64 hi;
  unsigned64 m00;
  unsigned64 m01;
  unsigned64 m10;
  unsigned64 m11;
  unsigned64 mid;
  int sign;
  unsigned64 op1 = GPR[rs];
  unsigned64 op2 = GPR[rt];
  check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  /* make signed multiply unsigned */
  sign = 0;
  if (signed_p)
    {
      if (op1 < 0)
	{
	  op1 = - op1;
	  ++sign;
	}
      if (op2 < 0)
	{
	  op2 = - op2;
	  ++sign;
	}
    }
  /* multiply out the 4 sub products */
  m00 = ((unsigned64) VL4_8 (op1) * (unsigned64) VL4_8 (op2));
  m10 = ((unsigned64) VH4_8 (op1) * (unsigned64) VL4_8 (op2));
  m01 = ((unsigned64) VL4_8 (op1) * (unsigned64) VH4_8 (op2));
  m11 = ((unsigned64) VH4_8 (op1) * (unsigned64) VH4_8 (op2));
  /* add the products */
  mid = ((unsigned64) VH4_8 (m00)
	 + (unsigned64) VL4_8 (m10)
	 + (unsigned64) VL4_8 (m01));
  lo = U8_4 (mid, m00);
  hi = (m11
	+ (unsigned64) VH4_8 (mid)
	+ (unsigned64) VH4_8 (m01)
	+ (unsigned64) VH4_8 (m10));
  /* fix the sign */
  if (sign & 1)
    {
      lo = -lo;
      if (lo == 0)
	hi = -hi;
      else
	hi = -hi - 1;
    }
  /* save the result HI/LO (and a gpr) */
  LO = lo;
  HI = hi;
  if (rd != 0)
    GPR[rd] = lo;
  TRACE_ALU_RESULT2 (HI, LO);
}

:function:::void:do_dmult:int rs, int rt, int rd
{
  do_dmultx (SD_, rs, rt, rd, 1);
}

000000,5.RS,5.RT,0000000000,011100:SPECIAL:64::DMULT
"dmult r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
{
  check_u64 (SD_, instruction_0);
  do_dmult (SD_, RS, RT, 0);
}

000000,5.RS,5.RT,5.RD,00000,011100:SPECIAL:64::DMULT
"dmult r<RS>, r<RT>":RD == 0
"dmult r<RD>, r<RS>, r<RT>"
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dmult (SD_, RS, RT, RD);
}



:function:::void:do_dmultu:int rs, int rt, int rd
{
  do_dmultx (SD_, rs, rt, rd, 0);
}

000000,5.RS,5.RT,0000000000,011101:SPECIAL:64::DMULTU
"dmultu r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
{
  check_u64 (SD_, instruction_0);
  do_dmultu (SD_, RS, RT, 0);
}

000000,5.RS,5.RT,5.RD,00000,011101:SPECIAL:64::DMULTU
"dmultu r<RD>, r<RS>, r<RT>":RD == 0
"dmultu r<RS>, r<RT>"
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dmultu (SD_, RS, RT, RD);
}

:function:::void:do_dsll:int rt, int rd, int shift
{
  TRACE_ALU_INPUT2 (GPR[rt], shift);
  GPR[rd] = GPR[rt] << shift;
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,00000,5.RT,5.RD,5.SHIFT,111000:SPECIAL:64::DSLL
"dsll r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dsll (SD_, RT, RD, SHIFT);
}


000000,00000,5.RT,5.RD,5.SHIFT,111100:SPECIAL:64::DSLL32
"dsll32 r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  int s = 32 + SHIFT;
  check_u64 (SD_, instruction_0);
  TRACE_ALU_INPUT2 (GPR[RT], s);
  GPR[RD] = GPR[RT] << s;
  TRACE_ALU_RESULT (GPR[RD]);
}

:function:::void:do_dsllv:int rs, int rt, int rd
{
  int s = MASKED64 (GPR[rs], 5, 0);
  TRACE_ALU_INPUT2 (GPR[rt], s);
  GPR[rd] = GPR[rt] << s;
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,010100:SPECIAL:64::DSLLV
"dsllv r<RD>, r<RT>, r<RS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dsllv (SD_, RS, RT, RD);
}

:function:::void:do_dsra:int rt, int rd, int shift
{
  TRACE_ALU_INPUT2 (GPR[rt], shift);
  GPR[rd] = ((signed64) GPR[rt]) >> shift;
  TRACE_ALU_RESULT (GPR[rd]);
}


000000,00000,5.RT,5.RD,5.SHIFT,111011:SPECIAL:64::DSRA
"dsra r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dsra (SD_, RT, RD, SHIFT);
}


000000,00000,5.RT,5.RD,5.SHIFT,111111:SPECIAL:64::DSRA32
"dsra32 r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  int s = 32 + SHIFT;
  check_u64 (SD_, instruction_0);
  TRACE_ALU_INPUT2 (GPR[RT], s);
  GPR[RD] = ((signed64) GPR[RT]) >> s;
  TRACE_ALU_RESULT (GPR[RD]);
}


:function:::void:do_dsrav:int rs, int rt, int rd
{
  int s = MASKED64 (GPR[rs], 5, 0);
  TRACE_ALU_INPUT2 (GPR[rt], s);
  GPR[rd] = ((signed64) GPR[rt]) >> s;
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,010111:SPECIAL:64::DSRAV
"dsrav r<RD>, r<RT>, r<RS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dsrav (SD_, RS, RT, RD);
}

:function:::void:do_dsrl:int rt, int rd, int shift
{
  TRACE_ALU_INPUT2 (GPR[rt], shift);
  GPR[rd] = (unsigned64) GPR[rt] >> shift;
  TRACE_ALU_RESULT (GPR[rd]);
}


000000,00000,5.RT,5.RD,5.SHIFT,111010:SPECIAL:64::DSRL
"dsrl r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dsrl (SD_, RT, RD, SHIFT);
}


000000,00000,5.RT,5.RD,5.SHIFT,111110:SPECIAL:64::DSRL32
"dsrl32 r<RD>, r<RT>, <SHIFT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  int s = 32 + SHIFT;
  check_u64 (SD_, instruction_0);
  TRACE_ALU_INPUT2 (GPR[RT], s);
  GPR[RD] = (unsigned64) GPR[RT] >> s;
  TRACE_ALU_RESULT (GPR[RD]);
}


:function:::void:do_dsrlv:int rs, int rt, int rd
{
  int s = MASKED64 (GPR[rs], 5, 0);
  TRACE_ALU_INPUT2 (GPR[rt], s);
  GPR[rd] = (unsigned64) GPR[rt] >> s;
  TRACE_ALU_RESULT (GPR[rd]);
}



000000,5.RS,5.RT,5.RD,00000,010110:SPECIAL:64::DSRLV
"dsrlv r<RD>, r<RT>, r<RS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dsrlv (SD_, RS, RT, RD);
}


000000,5.RS,5.RT,5.RD,00000,101110:SPECIAL:64::DSUB
"dsub r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  {
    ALU64_BEGIN (GPR[RS]);
    ALU64_SUB (GPR[RT]);
    ALU64_END (GPR[RD]);   /* This checks for overflow.  */
  }
  TRACE_ALU_RESULT (GPR[RD]);
}


:function:::void:do_dsubu:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = GPR[rs] - GPR[rt];
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,101111:SPECIAL:64::DSUBU
"dsubu r<RD>, r<RS>, r<RT>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_dsubu (SD_, RS, RT, RD);
}


000010,26.INSTR_INDEX:NORMAL:32::J
"j <INSTR_INDEX>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  /* NOTE: The region used is that of the delay slot NIA and NOT the
     current instruction */
  address_word region = (NIA & MASK (63, 28));
  DELAY_SLOT (region | (INSTR_INDEX << 2));
}


000011,26.INSTR_INDEX:NORMAL:32::JAL
"jal <INSTR_INDEX>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  /* NOTE: The region used is that of the delay slot and NOT the
     current instruction */
  address_word region = (NIA & MASK (63, 28));
  GPR[31] = CIA + 8;
  DELAY_SLOT (region | (INSTR_INDEX << 2));
}

000000,5.RS,00000,5.RD,00000,001001:SPECIAL:32::JALR
"jalr r<RS>":RD == 31
"jalr r<RD>, r<RS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word temp = GPR[RS];
  GPR[RD] = CIA + 8;
  DELAY_SLOT (temp);
}


000000,5.RS,000000000000000,001000:SPECIAL:32::JR
"jr r<RS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  DELAY_SLOT (GPR[RS]);
}


:function:::unsigned_word:do_load:unsigned access, address_word base, address_word offset
{
  address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;
  address_word vaddr;

  vaddr = loadstore_ea (SD_, base, offset);
  if ((vaddr & access) != 0)
    {
      SIM_CORE_SIGNAL (SD, STATE_CPU (SD, 0), cia, read_map, access+1, vaddr, read_transfer, sim_core_unaligned_signal);
    }
  AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  LoadMemory (&memval, NULL, uncached, access, paddr, vaddr, isDATA, isREAL);
  byte = ((vaddr & mask) ^ bigendiancpu);
  return (memval >> (8 * byte));
}

:function:::unsigned_word:do_load_left:unsigned access, address_word base, address_word offset, unsigned_word rt
{
  address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
  address_word reverseendian = (ReverseEndian ? -1 : 0);
  address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
  unsigned int byte;
  unsigned int word;
  address_word paddr;
  int uncached;
  unsigned64 memval;
  address_word vaddr;
  int nr_lhs_bits;
  int nr_rhs_bits;
  unsigned_word lhs_mask;
  unsigned_word temp;

  vaddr = loadstore_ea (SD_, base, offset);
  AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  paddr = (paddr ^ (reverseendian & mask));
  if (BigEndianMem == 0)
    paddr = paddr & ~access;

  /* compute where within the word/mem we are */
  byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */
  word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */
  nr_lhs_bits = 8 * byte + 8;
  nr_rhs_bits = 8 * access - 8 * byte;
  /* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */

  /* fprintf (stderr, "l[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n",
	   (long) ((unsigned64) vaddr >> 32), (long) vaddr,
	   (long) ((unsigned64) paddr >> 32), (long) paddr,
	   word, byte, nr_lhs_bits, nr_rhs_bits); */

  LoadMemory (&memval, NULL, uncached, byte, paddr, vaddr, isDATA, isREAL);
  if (word == 0)
    {
      /* GPR{31..32-NR_LHS_BITS} = memval{NR_LHS_BITS-1..0} */
      temp = (memval << nr_rhs_bits);
    }
  else
    {
      /* GPR{31..32-NR_LHS_BITS = memval{32+NR_LHS_BITS..32} */
      temp = (memval >> nr_lhs_bits);
    }
  lhs_mask = LSMASK (nr_lhs_bits + nr_rhs_bits - 1, nr_rhs_bits);
  rt = (rt & ~lhs_mask) | (temp & lhs_mask);

  /* fprintf (stderr, "l[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx & 0x%08lx%08lx -> 0x%08lx%08lx\n",
	   (long) ((unsigned64) memval >> 32), (long) memval,
	   (long) ((unsigned64) temp >> 32), (long) temp,
	   (long) ((unsigned64) lhs_mask >> 32), (long) lhs_mask,
	   (long) (rt >> 32), (long) rt); */
  return rt;
}

:function:::unsigned_word:do_load_right:unsigned access, address_word base, address_word offset, unsigned_word rt
{
  address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
  address_word reverseendian = (ReverseEndian ? -1 : 0);
  address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;
  address_word vaddr;

  vaddr = loadstore_ea (SD_, base, offset);
  AddressTranslation (vaddr, isDATA, isLOAD, &paddr, &uncached, isTARGET, isREAL);
  /* NOTE: SPEC is wrong, has `BigEndianMem == 0' not `BigEndianMem != 0' */
  paddr = (paddr ^ (reverseendian & mask));
  if (BigEndianMem != 0)
    paddr = paddr & ~access;
  byte = ((vaddr & mask) ^ (bigendiancpu & mask));
  /* NOTE: SPEC is wrong, had `byte' not `access - byte'.  See SW. */
  LoadMemory (&memval, NULL, uncached, access - (access & byte), paddr, vaddr, isDATA, isREAL);
  /* printf ("lr: 0x%08lx %d@0x%08lx 0x%08lx\n",
     (long) paddr, byte, (long) paddr, (long) memval); */
  {
    unsigned_word screen = LSMASK (8 * (access - (byte & access) + 1) - 1, 0);
    rt &= ~screen;
    rt |= (memval >> (8 * byte)) & screen;
  }
  return rt;
}


100000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LB
"lb r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  GPR[RT] = EXTEND8 (do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET)));
}


100100,5.BASE,5.RT,16.OFFSET:NORMAL:32::LBU
"lbu r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  GPR[RT] = do_load (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET));
}


110111,5.BASE,5.RT,16.OFFSET:NORMAL:64::LD
"ld r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  GPR[RT] = EXTEND64 (do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
}


1101,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDCz
"ldc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  COP_LD (ZZ, RT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
}




011010,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDL
"ldl r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  GPR[RT] = do_load_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


011011,5.BASE,5.RT,16.OFFSET:NORMAL:64::LDR
"ldr r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  GPR[RT] = do_load_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


100001,5.BASE,5.RT,16.OFFSET:NORMAL:32::LH
"lh r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  GPR[RT] = EXTEND16 (do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET)));
}


100101,5.BASE,5.RT,16.OFFSET:NORMAL:32::LHU
"lhu r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  GPR[RT] = do_load (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET));
}


110000,5.BASE,5.RT,16.OFFSET:NORMAL:32::LL
"ll r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  address_word base = GPR[BASE];
  address_word offset = EXTEND16 (OFFSET);
  {
    address_word vaddr = loadstore_ea (SD_, base, offset);
    address_word paddr;
    int uncached;
    if ((vaddr & 3) != 0)
      {
        SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, read_transfer, sim_core_unaligned_signal);
      }
    else
      {
	if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
	  {
	    unsigned64 memval = 0;
	    unsigned64 memval1 = 0;
	    unsigned64 mask = 0x7;
	    unsigned int shift = 2;
	    unsigned int reverse = (ReverseEndian ? (mask >> shift) : 0);
	    unsigned int bigend = (BigEndianCPU ? (mask >> shift) : 0);
	    unsigned int byte;
	    paddr = ((paddr & ~mask) | ((paddr & mask) ^ (reverse << shift)));
	    LoadMemory(&memval,&memval1,uncached,AccessLength_WORD,paddr,vaddr,isDATA,isREAL);
	    byte = ((vaddr & mask) ^ (bigend << shift));
	    GPR[RT] = EXTEND32 (memval >> (8 * byte));
	    LLBIT = 1;
	  }
      }
  }
}


110100,5.BASE,5.RT,16.OFFSET:NORMAL:64::LLD
"lld r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  address_word base = GPR[BASE];
  address_word offset = EXTEND16 (OFFSET);
  check_u64 (SD_, instruction_0);
  {
    address_word vaddr = loadstore_ea (SD_, base, offset);
    address_word paddr;
    int uncached;
    if ((vaddr & 7) != 0)
      {
	SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, read_transfer, sim_core_unaligned_signal);
      }
    else
      {
	if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
	  {
	    unsigned64 memval = 0;
	    unsigned64 memval1 = 0;
	    LoadMemory(&memval,&memval1,uncached,AccessLength_DOUBLEWORD,paddr,vaddr,isDATA,isREAL);
	    GPR[RT] = memval;
	    LLBIT = 1;
	  }
      }
  }
}


001111,00000,5.RT,16.IMMEDIATE:NORMAL:32::LUI
"lui r<RT>, %#lx<IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  TRACE_ALU_INPUT1 (IMMEDIATE);
  GPR[RT] = EXTEND32 (IMMEDIATE << 16);
  TRACE_ALU_RESULT (GPR[RT]);
}


100011,5.BASE,5.RT,16.OFFSET:NORMAL:32::LW
"lw r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  GPR[RT] = EXTEND32 (do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
}


1100,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWCz
"lwc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  COP_LW (ZZ, RT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
}


100010,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWL
"lwl r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  GPR[RT] = EXTEND32 (do_load_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]));
}


100110,5.BASE,5.RT,16.OFFSET:NORMAL:32::LWR
"lwr r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  GPR[RT] = EXTEND32 (do_load_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]));
}


100111,5.BASE,5.RT,16.OFFSET:NORMAL:64::LWU
"lwu r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  GPR[RT] = do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET));
}



011100,5.RS,5.RT,00000,00000,000000:SPECIAL2:32::MADD
"madd r<RS>, r<RT>"
*mips32:
*mips64:
{
  signed64 temp;
  check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  temp = (U8_4 (VL4_8 (HI), VL4_8 (LO))
          + ((signed64) EXTEND32 (GPR[RT]) * (signed64) EXTEND32 (GPR[RS])));
  LO = EXTEND32 (temp);
  HI = EXTEND32 (VH4_8 (temp));
  TRACE_ALU_RESULT2 (HI, LO);
}



011100,5.RS,5.RT,00000,00000,000001:SPECIAL2:32::MADDU
"maddu r<RS>, r<RT>"
*mips32:
*mips64:
{
  unsigned64 temp;
  check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  temp = (U8_4 (VL4_8 (HI), VL4_8 (LO))
          + ((unsigned64) VL4_8 (GPR[RS]) * (unsigned64) VL4_8 (GPR[RT])));
  LO = EXTEND32 (temp);
  HI = EXTEND32 (VH4_8 (temp));
  TRACE_ALU_RESULT2 (HI, LO);
}


:function:::void:do_mfhi:int rd
{
  check_mf_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT1 (HI);
  GPR[rd] = HI;
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,0000000000,5.RD,00000,010000:SPECIAL:32::MFHI
"mfhi r<RD>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_mfhi (SD_, RD);
}



:function:::void:do_mflo:int rd
{
  check_mf_hilo (SD_, LOHISTORY, HIHISTORY);
  TRACE_ALU_INPUT1 (LO);
  GPR[rd] = LO;
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,0000000000,5.RD,00000,010010:SPECIAL:32::MFLO
"mflo r<RD>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_mflo (SD_, RD);
}



000000,5.RS,5.RT,5.RD,00000,001011:SPECIAL:32::MOVN
"movn r<RD>, r<RS>, r<RT>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr5000:
{
  if (GPR[RT] != 0)
    GPR[RD] = GPR[RS];
}



000000,5.RS,5.RT,5.RD,00000,001010:SPECIAL:32::MOVZ
"movz r<RD>, r<RS>, r<RT>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr5000:
{
  if (GPR[RT] == 0)
    GPR[RD] = GPR[RS];
}



011100,5.RS,5.RT,00000,00000,000100:SPECIAL2:32::MSUB
"msub r<RS>, r<RT>"
*mips32:
*mips64:
{
  signed64 temp;
  check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  temp = (U8_4 (VL4_8 (HI), VL4_8 (LO))
          - ((signed64) EXTEND32 (GPR[RT]) * (signed64) EXTEND32 (GPR[RS])));
  LO = EXTEND32 (temp);
  HI = EXTEND32 (VH4_8 (temp));
  TRACE_ALU_RESULT2 (HI, LO);
}



011100,5.RS,5.RT,00000,00000,000101:SPECIAL2:32::MSUBU
"msubu r<RS>, r<RT>"
*mips32:
*mips64:
{
  unsigned64 temp;
  check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  temp = (U8_4 (VL4_8 (HI), VL4_8 (LO))
          - ((unsigned64) VL4_8 (GPR[RS]) * (unsigned64) VL4_8 (GPR[RT])));
  LO = EXTEND32 (temp);
  HI = EXTEND32 (VH4_8 (temp));
  TRACE_ALU_RESULT2 (HI, LO);
}



000000,5.RS,000000000000000,010001:SPECIAL:32::MTHI
"mthi r<RS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  check_mt_hilo (SD_, HIHISTORY);
  HI = GPR[RS];
}



000000,5.RS,000000000000000,010011:SPECIAL:32::MTLO
"mtlo r<RS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  check_mt_hilo (SD_, LOHISTORY);
  LO = GPR[RS];
}



011100,5.RS,5.RT,5.RD,00000,000010:SPECIAL2:32::MUL
"mul r<RD>, r<RS>, r<RT>"
*mips32:
*mips64:
{
  signed64 prod;
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  prod = (((signed64)(signed32) GPR[RS])
          * ((signed64)(signed32) GPR[RT]));
  GPR[RD] = EXTEND32 (VL4_8 (prod));
  TRACE_ALU_RESULT (GPR[RD]);
}



:function:::void:do_mult:int rs, int rt, int rd
{
  signed64 prod;
  check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  prod = (((signed64)(signed32) GPR[rs])
	  * ((signed64)(signed32) GPR[rt]));
  LO = EXTEND32 (VL4_8 (prod));
  HI = EXTEND32 (VH4_8 (prod));
  if (rd != 0)
    GPR[rd] = LO;
  TRACE_ALU_RESULT2 (HI, LO);
}

000000,5.RS,5.RT,0000000000,011000:SPECIAL:32::MULT
"mult r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
{
  do_mult (SD_, RS, RT, 0);
}


000000,5.RS,5.RT,5.RD,00000,011000:SPECIAL:32::MULT
"mult r<RS>, r<RT>":RD == 0
"mult r<RD>, r<RS>, r<RT>"
*vr5000:
*r3900:
{
  do_mult (SD_, RS, RT, RD);
}


:function:::void:do_multu:int rs, int rt, int rd
{
  unsigned64 prod;
  check_mult_hilo (SD_, HIHISTORY, LOHISTORY);
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  prod = (((unsigned64)(unsigned32) GPR[rs])
	  * ((unsigned64)(unsigned32) GPR[rt]));
  LO = EXTEND32 (VL4_8 (prod));
  HI = EXTEND32 (VH4_8 (prod));
  if (rd != 0)
    GPR[rd] = LO;
  TRACE_ALU_RESULT2 (HI, LO);
}

000000,5.RS,5.RT,0000000000,011001:SPECIAL:32::MULTU
"multu r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
{
  do_multu (SD_, RS, RT, 0);
}

000000,5.RS,5.RT,5.RD,00000,011001:SPECIAL:32::MULTU
"multu r<RS>, r<RT>":RD == 0
"multu r<RD>, r<RS>, r<RT>"
*vr5000:
*r3900:
{
  do_multu (SD_, RS, RT, RD);
}


:function:::void:do_nor:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = ~ (GPR[rs] | GPR[rt]);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,100111:SPECIAL:32::NOR
"nor r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_nor (SD_, RS, RT, RD);
}


:function:::void:do_or:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = (GPR[rs] | GPR[rt]);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,100101:SPECIAL:32::OR
"or r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_or (SD_, RS, RT, RD);
}



:function:::void:do_ori:int rs, int rt, unsigned immediate
{
  TRACE_ALU_INPUT2 (GPR[rs], immediate);
  GPR[rt] = (GPR[rs] | immediate);
  TRACE_ALU_RESULT (GPR[rt]);
}

001101,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::ORI
"ori r<RT>, r<RS>, %#lx<IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_ori (SD_, RS, RT, IMMEDIATE);
}


110011,5.BASE,5.HINT,16.OFFSET:NORMAL:32::PREF
"pref <HINT>, <OFFSET>(r<BASE>)"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr5000:
{
  address_word base = GPR[BASE];
  address_word offset = EXTEND16 (OFFSET);
  {
    address_word vaddr = loadstore_ea (SD_, base, offset);
    address_word paddr;
    int uncached;
    {
      if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
	Prefetch(uncached,paddr,vaddr,isDATA,HINT);
    }
  }
}


:function:::void:do_store:unsigned access, address_word base, address_word offset, unsigned_word word
{
  address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
  address_word reverseendian = (ReverseEndian ? (mask ^ access) : 0);
  address_word bigendiancpu = (BigEndianCPU ? (mask ^ access) : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;
  address_word vaddr;

  vaddr = loadstore_ea (SD_, base, offset);
  if ((vaddr & access) != 0)
    {
      SIM_CORE_SIGNAL (SD, STATE_CPU(SD, 0), cia, read_map, access+1, vaddr, write_transfer, sim_core_unaligned_signal);
    }
  AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
  paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
  byte = ((vaddr & mask) ^ bigendiancpu);
  memval = (word << (8 * byte));
  StoreMemory (uncached, access, memval, 0, paddr, vaddr, isREAL);
}

:function:::void:do_store_left:unsigned access, address_word base, address_word offset, unsigned_word rt
{
  address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
  address_word reverseendian = (ReverseEndian ? -1 : 0);
  address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
  unsigned int byte;
  unsigned int word;
  address_word paddr;
  int uncached;
  unsigned64 memval;
  address_word vaddr;
  int nr_lhs_bits;
  int nr_rhs_bits;

  vaddr = loadstore_ea (SD_, base, offset);
  AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
  paddr = (paddr ^ (reverseendian & mask));
  if (BigEndianMem == 0)
    paddr = paddr & ~access;

  /* compute where within the word/mem we are */
  byte = ((vaddr ^ bigendiancpu) & access); /* 0..access */
  word = ((vaddr ^ bigendiancpu) & (mask & ~access)) / (access + 1); /* 0..1 */
  nr_lhs_bits = 8 * byte + 8;
  nr_rhs_bits = 8 * access - 8 * byte;
  /* nr_lhs_bits + nr_rhs_bits == 8 * (accesss + 1) */
  /* fprintf (stderr, "s[wd]l: 0x%08lx%08lx 0x%08lx%08lx %d:%d %d+%d\n",
	   (long) ((unsigned64) vaddr >> 32), (long) vaddr,
	   (long) ((unsigned64) paddr >> 32), (long) paddr,
	   word, byte, nr_lhs_bits, nr_rhs_bits); */

  if (word == 0)
    {
      memval = (rt >> nr_rhs_bits);
    }
  else
    {
      memval = (rt << nr_lhs_bits);
    }
  /* fprintf (stderr, "s[wd]l: 0x%08lx%08lx -> 0x%08lx%08lx\n",
	   (long) ((unsigned64) rt >> 32), (long) rt,
	   (long) ((unsigned64) memval >> 32), (long) memval); */
  StoreMemory (uncached, byte, memval, 0, paddr, vaddr, isREAL);
}

:function:::void:do_store_right:unsigned access, address_word base, address_word offset, unsigned_word rt
{
  address_word mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
  address_word reverseendian = (ReverseEndian ? -1 : 0);
  address_word bigendiancpu = (BigEndianCPU ? -1 : 0);
  unsigned int byte;
  address_word paddr;
  int uncached;
  unsigned64 memval;
  address_word vaddr;

  vaddr = loadstore_ea (SD_, base, offset);
  AddressTranslation (vaddr, isDATA, isSTORE, &paddr, &uncached, isTARGET, isREAL);
  paddr = (paddr ^ (reverseendian & mask));
  if (BigEndianMem != 0)
    paddr &= ~access;
  byte = ((vaddr & mask) ^ (bigendiancpu & mask));
  memval = (rt << (byte * 8));
  StoreMemory (uncached, access - (access & byte), memval, 0, paddr, vaddr, isREAL);
}


101000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SB
"sb r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_store (SD_, AccessLength_BYTE, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


111000,5.BASE,5.RT,16.OFFSET:NORMAL:32::SC
"sc r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  unsigned32 instruction = instruction_0;
  address_word base = GPR[BASE];
  address_word offset = EXTEND16 (OFFSET);
  {
    address_word vaddr = loadstore_ea (SD_, base, offset);
    address_word paddr;
    int uncached;
    if ((vaddr & 3) != 0)
      {
	SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal);
      }
    else
      {
	if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
	  {
	    unsigned64 memval = 0;
	    unsigned64 memval1 = 0;
	    unsigned64 mask = 0x7;
	    unsigned int byte;
	    paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2)));
	    byte = ((vaddr & mask) ^ (BigEndianCPU << 2));
	    memval = ((unsigned64) GPR[RT] << (8 * byte));
	    if (LLBIT)
	      {
		StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
	      }
	    GPR[RT] = LLBIT;
	  }
      }
  }
}


111100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SCD
"scd r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  address_word base = GPR[BASE];
  address_word offset = EXTEND16 (OFFSET);
  check_u64 (SD_, instruction_0);
  {
    address_word vaddr = loadstore_ea (SD_, base, offset);
    address_word paddr;
    int uncached;
    if ((vaddr & 7) != 0)
      {
	SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 8, vaddr, write_transfer, sim_core_unaligned_signal);
      }
    else
      {
	if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
	  {
	    unsigned64 memval = 0;
	    unsigned64 memval1 = 0;
	    memval = GPR[RT];
	    if (LLBIT)
	      {
		StoreMemory(uncached,AccessLength_DOUBLEWORD,memval,memval1,paddr,vaddr,isREAL);
	      }
	    GPR[RT] = LLBIT;
	  }
      }
  }
}


111111,5.BASE,5.RT,16.OFFSET:NORMAL:64::SD
"sd r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


1111,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDCz
"sdc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (ZZ, RT));
}


101100,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDL
"sdl r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_store_left (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


101101,5.BASE,5.RT,16.OFFSET:NORMAL:64::SDR
"sdr r<RT>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
{
  check_u64 (SD_, instruction_0);
  do_store_right (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


101001,5.BASE,5.RT,16.OFFSET:NORMAL:32::SH
"sh r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_store (SD_, AccessLength_HALFWORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


:function:::void:do_sll:int rt, int rd, int shift
{
  unsigned32 temp = (GPR[rt] << shift);
  TRACE_ALU_INPUT2 (GPR[rt], shift);
  GPR[rd] = EXTEND32 (temp);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,00000,5.RT,5.RD,5.SHIFT,000000:SPECIAL:32::SLLa
"nop":RD == 0 && RT == 0 && SHIFT == 0
"sll r<RD>, r<RT>, <SHIFT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*vr4100:
*vr5000:
*r3900:
{
  /* Skip shift for NOP, so that there won't be lots of extraneous
     trace output.  */
  if (RD != 0 || RT != 0 || SHIFT != 0)
    do_sll (SD_, RT, RD, SHIFT);
}

000000,00000,5.RT,5.RD,5.SHIFT,000000:SPECIAL:32::SLLb
"nop":RD == 0 && RT == 0 && SHIFT == 0
"ssnop":RD == 0 && RT == 0 && SHIFT == 1
"sll r<RD>, r<RT>, <SHIFT>"
*mips32:
*mips64:
{
  /* Skip shift for NOP and SSNOP, so that there won't be lots of
     extraneous trace output.  */
  if (RD != 0 || RT != 0 || (SHIFT != 0 && SHIFT != 1))
    do_sll (SD_, RT, RD, SHIFT);
}


:function:::void:do_sllv:int rs, int rt, int rd
{
  int s = MASKED (GPR[rs], 4, 0);
  unsigned32 temp = (GPR[rt] << s);
  TRACE_ALU_INPUT2 (GPR[rt], s);
  GPR[rd] = EXTEND32 (temp);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,000100:SPECIAL:32::SLLV
"sllv r<RD>, r<RT>, r<RS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_sllv (SD_, RS, RT, RD);
}


:function:::void:do_slt:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = ((signed_word) GPR[rs] < (signed_word) GPR[rt]);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,101010:SPECIAL:32::SLT
"slt r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_slt (SD_, RS, RT, RD);
}


:function:::void:do_slti:int rs, int rt, unsigned16 immediate
{
  TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
  GPR[rt] = ((signed_word) GPR[rs] < (signed_word) EXTEND16 (immediate));
  TRACE_ALU_RESULT (GPR[rt]);
}

001010,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTI
"slti r<RT>, r<RS>, <IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_slti (SD_, RS, RT, IMMEDIATE);
}


:function:::void:do_sltiu:int rs, int rt, unsigned16 immediate
{
  TRACE_ALU_INPUT2 (GPR[rs], EXTEND16 (immediate));
  GPR[rt] = ((unsigned_word) GPR[rs] < (unsigned_word) EXTEND16 (immediate));
  TRACE_ALU_RESULT (GPR[rt]);
}

001011,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::SLTIU
"sltiu r<RT>, r<RS>, <IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_sltiu (SD_, RS, RT, IMMEDIATE);
}



:function:::void:do_sltu:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = ((unsigned_word) GPR[rs] < (unsigned_word) GPR[rt]);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,101011:SPECIAL:32::SLTU
"sltu r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_sltu (SD_, RS, RT, RD);
}


:function:::void:do_sra:int rt, int rd, int shift
{
  signed32 temp = (signed32) GPR[rt] >> shift;
  TRACE_ALU_INPUT2 (GPR[rt], shift);
  GPR[rd] = EXTEND32 (temp);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,00000,5.RT,5.RD,5.SHIFT,000011:SPECIAL:32::SRA
"sra r<RD>, r<RT>, <SHIFT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_sra (SD_, RT, RD, SHIFT);
}



:function:::void:do_srav:int rs, int rt, int rd
{
  int s = MASKED (GPR[rs], 4, 0);
  signed32 temp = (signed32) GPR[rt] >> s;
  TRACE_ALU_INPUT2 (GPR[rt], s);
  GPR[rd] = EXTEND32 (temp);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,000111:SPECIAL:32::SRAV
"srav r<RD>, r<RT>, r<RS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_srav (SD_, RS, RT, RD);
}



:function:::void:do_srl:int rt, int rd, int shift
{
  unsigned32 temp = (unsigned32) GPR[rt] >> shift;
  TRACE_ALU_INPUT2 (GPR[rt], shift);
  GPR[rd] = EXTEND32 (temp);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,00000,5.RT,5.RD,5.SHIFT,000010:SPECIAL:32::SRL
"srl r<RD>, r<RT>, <SHIFT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_srl (SD_, RT, RD, SHIFT);
}


:function:::void:do_srlv:int rs, int rt, int rd
{
  int s = MASKED (GPR[rs], 4, 0);
  unsigned32 temp = (unsigned32) GPR[rt] >> s;
  TRACE_ALU_INPUT2 (GPR[rt], s);
  GPR[rd] = EXTEND32 (temp);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,000110:SPECIAL:32::SRLV
"srlv r<RD>, r<RT>, r<RS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_srlv (SD_, RS, RT, RD);
}


000000,5.RS,5.RT,5.RD,00000,100010:SPECIAL:32::SUB
"sub r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  TRACE_ALU_INPUT2 (GPR[RS], GPR[RT]);
  {
    ALU32_BEGIN (GPR[RS]);
    ALU32_SUB (GPR[RT]);
    ALU32_END (GPR[RD]);   /* This checks for overflow.  */
  }
  TRACE_ALU_RESULT (GPR[RD]);
}


:function:::void:do_subu:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = EXTEND32 (GPR[rs] - GPR[rt]);
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,100011:SPECIAL:32::SUBU
"subu r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_subu (SD_, RS, RT, RD);
}


101011,5.BASE,5.RT,16.OFFSET:NORMAL:32::SW
"sw r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*r3900:
*vr5000:
{
  do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


1110,ZZ!0!1!3,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWCz
"swc<ZZ> r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_store (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), COP_SW (ZZ, RT));
}


101010,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWL
"swl r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_store_left (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


101110,5.BASE,5.RT,16.OFFSET:NORMAL:32::SWR
"swr r<RT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_store_right (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET), GPR[RT]);
}


000000,000000000000000,5.STYPE,001111:SPECIAL:32::SYNC
"sync":STYPE == 0
"sync <STYPE>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  SyncOperation (STYPE);
}


000000,20.CODE,001100:SPECIAL:32::SYSCALL
"syscall %#lx<CODE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  SignalException (SystemCall, instruction_0);
}


000000,5.RS,5.RT,10.CODE,110100:SPECIAL:32::TEQ
"teq r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] == (signed_word) GPR[RT])
    SignalException (Trap, instruction_0);
}


000001,5.RS,01100,16.IMMEDIATE:REGIMM:32::TEQI
"teqi r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] == (signed_word) EXTEND16 (IMMEDIATE))
    SignalException (Trap, instruction_0);
}


000000,5.RS,5.RT,10.CODE,110000:SPECIAL:32::TGE
"tge r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] >= (signed_word) GPR[RT])
    SignalException (Trap, instruction_0);
}


000001,5.RS,01000,16.IMMEDIATE:REGIMM:32::TGEI
"tgei r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] >= (signed_word) EXTEND16 (IMMEDIATE))
    SignalException (Trap, instruction_0);
}


000001,5.RS,01001,16.IMMEDIATE:REGIMM:32::TGEIU
"tgeiu r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((unsigned_word) GPR[RS] >= (unsigned_word) EXTEND16 (IMMEDIATE))
    SignalException (Trap, instruction_0);
}


000000,5.RS,5.RT,10.CODE,110001:SPECIAL:32::TGEU
"tgeu r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((unsigned_word) GPR[RS] >= (unsigned_word) GPR[RT])
    SignalException (Trap, instruction_0);
}


000000,5.RS,5.RT,10.CODE,110010:SPECIAL:32::TLT
"tlt r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] < (signed_word) GPR[RT])
    SignalException (Trap, instruction_0);
}


000001,5.RS,01010,16.IMMEDIATE:REGIMM:32::TLTI
"tlti r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] < (signed_word) EXTEND16 (IMMEDIATE))
    SignalException (Trap, instruction_0);
}


000001,5.RS,01011,16.IMMEDIATE:REGIMM:32::TLTIU
"tltiu r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((unsigned_word) GPR[RS] < (unsigned_word) EXTEND16 (IMMEDIATE))
    SignalException (Trap, instruction_0);
}


000000,5.RS,5.RT,10.CODE,110011:SPECIAL:32::TLTU
"tltu r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((unsigned_word) GPR[RS] < (unsigned_word) GPR[RT])
    SignalException (Trap, instruction_0);
}


000000,5.RS,5.RT,10.CODE,110110:SPECIAL:32::TNE
"tne r<RS>, r<RT>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] != (signed_word) GPR[RT])
    SignalException (Trap, instruction_0);
}


000001,5.RS,01110,16.IMMEDIATE:REGIMM:32::TNEI
"tne r<RS>, <IMMEDIATE>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if ((signed_word) GPR[RS] != (signed_word) EXTEND16 (IMMEDIATE))
    SignalException (Trap, instruction_0);
}


:function:::void:do_xor:int rs, int rt, int rd
{
  TRACE_ALU_INPUT2 (GPR[rs], GPR[rt]);
  GPR[rd] = GPR[rs] ^ GPR[rt];
  TRACE_ALU_RESULT (GPR[rd]);
}

000000,5.RS,5.RT,5.RD,00000,100110:SPECIAL:32::XOR
"xor r<RD>, r<RS>, r<RT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_xor (SD_, RS, RT, RD);
}


:function:::void:do_xori:int rs, int rt, unsigned16 immediate
{
  TRACE_ALU_INPUT2 (GPR[rs], immediate);
  GPR[rt] = GPR[rs] ^ immediate;
  TRACE_ALU_RESULT (GPR[rt]);
}

001110,5.RS,5.RT,16.IMMEDIATE:NORMAL:32::XORI
"xori r<RT>, r<RS>, %#lx<IMMEDIATE>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  do_xori (SD_, RS, RT, IMMEDIATE);
}


//
// MIPS Architecture:
//
//        FPU Instruction Set (COP1 & COP1X)
//


:%s::::FMT:int fmt
{
  switch (fmt)
    {
    case fmt_single: return "s";
    case fmt_double: return "d";
    case fmt_word: return "w";
    case fmt_long: return "l";
    default: return "?";
    }
}

:%s::::X:int x
{
  switch (x)
    {
    case 0: return "f";
    case 1: return "t";
    default: return "?";
    }
}

:%s::::TF:int tf
{
  if (tf)
    return "t";
  else
    return "f";
}

:%s::::ND:int nd
{
  if (nd)
    return "l";
  else
    return "";
}

:%s::::COND:int cond
{
  switch (cond)
    {
    case 00: return "f";
    case 01: return "un";
    case 02: return "eq";
    case 03: return "ueq";
    case 04: return "olt";
    case 05: return "ult";
    case 06: return "ole";
    case 07: return "ule";
    case 010: return "sf";
    case 011: return "ngle";
    case 012: return "seq";
    case 013: return "ngl";
    case 014: return "lt";
    case 015: return "nge";
    case 016: return "le";
    case 017: return "ngt";
    default: return "?";
    }
}


// Helpers:
//
// Check that the given FPU format is usable, and signal a
// ReservedInstruction exception if not.
//

// check_fmt checks that the format is single or double.
:function:::void:check_fmt:int fmt, instruction_word insn
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  if ((fmt != fmt_single) && (fmt != fmt_double))
    SignalException (ReservedInstruction, insn);
}

// check_fmt_p checks that the format is single, double, or paired single.
:function:::void:check_fmt_p:int fmt, instruction_word insn
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mips32:
*vr4100:
*vr5000:
*r3900:
{
  /* None of these ISAs support Paired Single, so just fall back to
     the single/double check.  */
  check_fmt (SD_, fmt, insn);
}

:function:::void:check_fmt_p:int fmt, instruction_word insn
*mipsV:
*mips64:
{
#if 0 /* XXX FIXME: FP code doesn't yet support paired single ops.  */
  if ((fmt != fmt_single) && (fmt != fmt_double)
      && (fmt != fmt_ps || (UserMode && (SR & (status_UX|status_PX)) == 0)))
    SignalException (ReservedInstruction, insn);
#else
  check_fmt (SD_, fmt, insn);
#endif
}


// Helper:
//
// Check that the FPU is currently usable, and signal a CoProcessorUnusable
// exception if not.
//

:function:::void:check_fpu:
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  if (! COP_Usable (1))
    SignalExceptionCoProcessorUnusable (1);
}


010001,10,3.FMT,00000,5.FS,5.FD,000101:COP1:32,f::ABS.fmt
"abs.%s<FMT> f<FD>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,AbsoluteValue(ValueFPR(FS,fmt),fmt));
}



010001,10,3.FMT,5.FT,5.FS,5.FD,000000:COP1:32,f::ADD.fmt
"add.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,Add(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
}



// BC1F
// BC1FL
// BC1T
// BC1TL

010001,01000,3.0,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1a
"bc1%s<TF>%s<ND> <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
{
  check_fpu (SD_);
  check_branch_bug ();
  TRACE_BRANCH_INPUT (PREVCOC1());
  if (PREVCOC1() == TF)
    {
      address_word dest = NIA + (EXTEND16 (OFFSET) << 2);
      TRACE_BRANCH_RESULT (dest);
      mark_branch_bug (dest);
      DELAY_SLOT (dest);
    }
  else if (ND)
    {
      TRACE_BRANCH_RESULT (0);
      NULLIFY_NEXT_INSTRUCTION ();
    }
  else
    {
      TRACE_BRANCH_RESULT (NIA);
    }
}

010001,01000,3.CC,1.ND,1.TF,16.OFFSET:COP1S:32,f::BC1b
"bc1%s<TF>%s<ND> <OFFSET>":CC == 0
"bc1%s<TF>%s<ND> <CC>, <OFFSET>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
#*vr4100:
*vr5000:
*r3900:
{
  check_fpu (SD_);
  check_branch_bug ();
  if (GETFCC(CC) == TF)
    {
      address_word dest = NIA + (EXTEND16 (OFFSET) << 2);
      mark_branch_bug (dest);
      DELAY_SLOT (dest);
    }
  else if (ND)
    {
      NULLIFY_NEXT_INSTRUCTION ();
    }
}






// C.EQ.S
// C.EQ.D
// ...

:function:::void:do_c_cond_fmt:int fmt, int ft, int fs, int cc, int cond, instruction_word insn
{
  int less;
  int equal;
  int unordered;
  int condition;
  unsigned64 ofs = ValueFPR (fs, fmt);
  unsigned64 oft = ValueFPR (ft, fmt);
  if (NaN (ofs, fmt) || NaN (oft, fmt))
    {
      if (FCSR & FP_ENABLE (IO))
	{
	  FCSR |= FP_CAUSE (IO);
	  SignalExceptionFPE ();
	}
      less = 0;
      equal = 0;
      unordered = 1;
    }
  else
    {
      less = Less (ofs, oft, fmt);
      equal = Equal (ofs, oft, fmt);
      unordered = 0;
    }
  condition = (((cond & (1 << 2)) && less)
	       || ((cond & (1 << 1)) && equal)
	       || ((cond & (1 << 0)) && unordered));
  SETFCC (cc, condition);
}

010001,10,3.FMT,5.FT,5.FS,3.0,00,11,4.COND:COP1:32,f::C.cond.fmta
"c.%s<COND>.%s<FMT> f<FS>, f<FT>"
*mipsI:
*mipsII:
*mipsIII:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  do_c_cond_fmt (SD_, fmt, FT, FS, 0, COND, instruction_0);
}

010001,10,3.FMT,5.FT,5.FS,3.CC,00,11,4.COND:COP1:32,f::C.cond.fmtb
"c.%s<COND>.%s<FMT> f<FS>, f<FT>":CC == 0
"c.%s<COND>.%s<FMT> <CC>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  do_c_cond_fmt (SD_, fmt, FT, FS, CC, COND, instruction_0);
}


010001,10,3.FMT,00000,5.FS,5.FD,001010:COP1:64,f::CEIL.L.fmt
"ceil.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_long,Convert(FP_RM_TOPINF,ValueFPR(FS,fmt),fmt,fmt_long));
}


010001,10,3.FMT,00000,5.FS,5.FD,001110:COP1:32,f::CEIL.W
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_word,Convert(FP_RM_TOPINF,ValueFPR(FS,fmt),fmt,fmt_word));
}


// CFC1
// CTC1
010001,00,X,10,5.RT,5.FS,00000000000:COP1Sa:32,f::CxC1
"c%s<X>c1 r<RT>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
{
  check_fpu (SD_);
  if (X)
    {
      if (FS == 0)
	PENDING_FILL(FCR0IDX,VL4_8(GPR[RT]));
      else if (FS == 31)
	PENDING_FILL(FCR31IDX,VL4_8(GPR[RT]));
      /* else NOP */
      PENDING_SCHED(FCSR, FCR31 & (1<<23), 1, 23);
    }
  else
    { /* control from */
      if (FS == 0)
 	PENDING_FILL(RT, EXTEND32 (FCR0));
      else if (FS == 31)
 	PENDING_FILL(RT, EXTEND32 (FCR31));
      /* else NOP */
    }
}
010001,00,X,10,5.RT,5.FS,00000000000:COP1Sb:32,f::CxC1
"c%s<X>c1 r<RT>, f<FS>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  check_fpu (SD_);
  if (X)
    {
      /* control to */
      TRACE_ALU_INPUT1 (GPR[RT]);
      if (FS == 0)
	{
	  FCR0 = VL4_8(GPR[RT]);
	  TRACE_ALU_RESULT (FCR0);
	}
      else if (FS == 31)
	{
	  FCR31 = VL4_8(GPR[RT]);
	  SETFCC(0,((FCR31 & (1 << 23)) ? 1 : 0));
	  TRACE_ALU_RESULT (FCR31);
	}
      else
	{
	  TRACE_ALU_RESULT0 ();
	}
      /* else NOP */
    }
  else
    { /* control from */
      if (FS == 0)
	{
	  TRACE_ALU_INPUT1 (FCR0);
	  GPR[RT] = EXTEND32 (FCR0);
	}
      else if (FS == 31)
	{
	  TRACE_ALU_INPUT1 (FCR31);
	  GPR[RT] = EXTEND32 (FCR31);
	}
      TRACE_ALU_RESULT (GPR[RT]);
      /* else NOP */
    }
}


//
// FIXME: Does not correctly differentiate between mips*
//
010001,10,3.FMT,00000,5.FS,5.FD,100001:COP1:32,f::CVT.D.fmt
"cvt.d.%s<FMT> f<FD>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  {
    if ((fmt == fmt_double) | 0)
      SignalException (ReservedInstruction, instruction_0);
    else
      StoreFPR(FD,fmt_double,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_double));
  }
}


010001,10,3.FMT,00000,5.FS,5.FD,100101:COP1:64,f::CVT.L.fmt
"cvt.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  {
    if ((fmt == fmt_long) | ((fmt == fmt_long) || (fmt == fmt_word)))
      SignalException (ReservedInstruction, instruction_0);
    else
      StoreFPR(FD,fmt_long,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_long));
  }
}


//
// FIXME: Does not correctly differentiate between mips*
//
010001,10,3.FMT,00000,5.FS,5.FD,100000:COP1:32,f::CVT.S.fmt
"cvt.s.%s<FMT> f<FD>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  {
    if ((fmt == fmt_single) | 0)
      SignalException (ReservedInstruction, instruction_0);
    else
      StoreFPR(FD,fmt_single,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_single));
  }
}


010001,10,3.FMT,00000,5.FS,5.FD,100100:COP1:32,f::CVT.W.fmt
"cvt.w.%s<FMT> f<FD>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  {
    if ((fmt == fmt_word) | ((fmt == fmt_long) || (fmt == fmt_word)))
      SignalException (ReservedInstruction, instruction_0);
    else
      StoreFPR(FD,fmt_word,Convert(GETRM(),ValueFPR(FS,fmt),fmt,fmt_word));
  }
}


010001,10,3.FMT,5.FT,5.FS,5.FD,000011:COP1:32,f::DIV.fmt
"div.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,Divide(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
}


// DMFC1
// DMTC1
010001,00,X,01,5.RT,5.FS,00000000000:COP1Sa:64,f::DMxC1
"dm%s<X>c1 r<RT>, f<FS>"
*mipsIII:
{
  check_fpu (SD_);
  check_u64 (SD_, instruction_0);
  if (X)
    {
      if (SizeFGR() == 64)
	PENDING_FILL((FS + FGRIDX),GPR[RT]);
      else if ((FS & 0x1) == 0)
	{
	  PENDING_FILL(((FS + 1) + FGRIDX),VH4_8(GPR[RT]));
	  PENDING_FILL((FS + FGRIDX),VL4_8(GPR[RT]));
	}
    }
  else
    {
      if (SizeFGR() == 64)
	PENDING_FILL(RT,FGR[FS]);
      else if ((FS & 0x1) == 0)
	PENDING_FILL(RT,(SET64HI(FGR[FS+1]) | FGR[FS]));
      else
	{
	  if (STATE_VERBOSE_P(SD))
	    sim_io_eprintf (SD,
	      "Warning: PC 0x%lx: semantic_DMxC1_COP1Sa 32-bit use of odd FPR number\n",
	      (long) CIA);
	  PENDING_FILL(RT,SET64HI(0xDEADC0DE) | 0xBAD0BAD0);
	}
    }
}
010001,00,X,01,5.RT,5.FS,00000000000:COP1Sb:64,f::DMxC1
"dm%s<X>c1 r<RT>, f<FS>"
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  check_fpu (SD_);
  check_u64 (SD_, instruction_0);
  if (X)
    {
      if (SizeFGR() == 64)
	StoreFPR (FS, fmt_uninterpreted_64, GPR[RT]);
      else if ((FS & 0x1) == 0)
	StoreFPR (FS, fmt_uninterpreted_64, SET64HI (FGR[FS+1]) | FGR[FS]);
    }
  else
    {
      if (SizeFGR() == 64)
	GPR[RT] = FGR[FS];
      else if ((FS & 0x1) == 0)
	GPR[RT] = SET64HI (FGR[FS+1]) | FGR[FS];
      else
	{
	  if (STATE_VERBOSE_P(SD))
	    sim_io_eprintf (SD,
	      "Warning: PC 0x%lx: DMxC1 32-bit use of odd FPR number\n",
			    (long) CIA);
	  GPR[RT] = SET64HI (0xDEADC0DE) | 0xBAD0BAD0;
	}
    }
}


010001,10,3.FMT,00000,5.FS,5.FD,001011:COP1:64,f::FLOOR.L.fmt
"floor.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_long,Convert(FP_RM_TOMINF,ValueFPR(FS,fmt),fmt,fmt_long));
}


010001,10,3.FMT,00000,5.FS,5.FD,001111:COP1:32,f::FLOOR.W.fmt
"floor.w.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_word,Convert(FP_RM_TOMINF,ValueFPR(FS,fmt),fmt,fmt_word));
}


110101,5.BASE,5.FT,16.OFFSET:COP1:32,f::LDC1
"ldc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  check_fpu (SD_);
  COP_LD (1, FT, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET)));
}


010011,5.BASE,5.INDEX,5.0,5.FD,000001:COP1X:64,f::LDXC1
"ldxc1 f<FD>, r<INDEX>(r<BASE>)"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  check_u64 (SD_, instruction_0);
  COP_LD (1, FD, do_load (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX]));
}



110001,5.BASE,5.FT,16.OFFSET:COP1:32,f::LWC1
"lwc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  check_fpu (SD_);
  COP_LW (1, FT, do_load (SD_, AccessLength_WORD, GPR[BASE], EXTEND16 (OFFSET)));
}


010011,5.BASE,5.INDEX,5.0,5.FD,000000:COP1X:64,f::LWXC1
"lwxc1 f<FD>, r<INDEX>(r<BASE>)"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  check_u64 (SD_, instruction_0);
  COP_LW (1, FD, do_load (SD_, AccessLength_WORD, GPR[BASE], GPR[INDEX]));
}



//
// FIXME: Not correct for mips*
//
010011,5.FR,5.FT,5.FS,5.FD,100,001:COP1X:32,f::MADD.D
"madd.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  {
    StoreFPR(FD,fmt_double,Add(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double));
  }
}


010011,5.FR,5.FT,5.FS,5.FD,100,000:COP1X:32,f::MADD.S
"madd.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  {
    StoreFPR(FD,fmt_single,Add(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single));
  }
}


// MFC1
// MTC1
010001,00,X,00,5.RT,5.FS,00000000000:COP1Sa:32,f::MxC1
"m%s<X>c1 r<RT>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
{
  check_fpu (SD_);
  if (X)
    { /*MTC1*/
      if (SizeFGR() == 64)
	{
	  if (STATE_VERBOSE_P(SD))
	    sim_io_eprintf (SD,
			    "Warning:  PC 0x%lx: MTC1 not DMTC1 with 64 bit regs\n",
			    (long) CIA);
	  PENDING_FILL ((FS + FGRIDX), (SET64HI(0xDEADC0DE) | VL4_8(GPR[RT])));
	}
      else
	PENDING_FILL ((FS + FGRIDX), VL4_8(GPR[RT]));
    }
  else /*MFC1*/
    PENDING_FILL (RT, EXTEND32 (FGR[FS]));
}
010001,00,X,00,5.RT,5.FS,00000000000:COP1Sb:32,f::MxC1
"m%s<X>c1 r<RT>, f<FS>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fs = FS;
  check_fpu (SD_);
  if (X)
    /*MTC1*/
    StoreFPR (FS, fmt_uninterpreted_32, VL4_8 (GPR[RT]));
  else /*MFC1*/
    GPR[RT] = EXTEND32 (FGR[FS]);
}


010001,10,3.FMT,00000,5.FS,5.FD,000110:COP1:32,f::MOV.fmt
"mov.%s<FMT> f<FD>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,ValueFPR(FS,fmt));
}


// MOVF
// MOVT
000000,5.RS,3.CC,0,1.TF,5.RD,00000,000001:SPECIAL:32,f::MOVtf
"mov%s<TF> r<RD>, r<RS>, <CC>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  if (GETFCC(CC) == TF)
    GPR[RD] = GPR[RS];
}


// MOVF.fmt
// MOVT.fmt
010001,10,3.FMT,3.CC,0,1.TF,5.FS,5.FD,010001:COP1:32,f::MOVtf.fmt
"mov%s<TF>.%s<FMT> f<FD>, f<FS>, <CC>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr5000:
{
  int fmt = FMT;
  check_fpu (SD_);
  {
   if (GETFCC(CC) == TF)
     StoreFPR (FD, fmt, ValueFPR (FS, fmt));
   else
     StoreFPR (FD, fmt, ValueFPR (FD, fmt));
  }
}


010001,10,3.FMT,5.RT,5.FS,5.FD,010011:COP1:32,f::MOVN.fmt
"movn.%s<FMT> f<FD>, f<FS>, r<RT>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  if (GPR[RT] != 0)
    StoreFPR (FD, FMT, ValueFPR (FS, FMT));
  else
    StoreFPR (FD, FMT, ValueFPR (FD, FMT));
}


// MOVT see MOVtf


// MOVT.fmt see MOVtf.fmt



010001,10,3.FMT,5.RT,5.FS,5.FD,010010:COP1:32,f::MOVZ.fmt
"movz.%s<FMT> f<FD>, f<FS>, r<RT>"
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  if (GPR[RT] == 0)
    StoreFPR (FD, FMT, ValueFPR (FS, FMT));
  else
    StoreFPR (FD, FMT, ValueFPR (FD, FMT));
}


// MSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,101,001:COP1X:32,f::MSUB.D
"msub.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  StoreFPR(FD,fmt_double,Sub(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double));
}


// MSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,101000:COP1X:32,f::MSUB.S
"msub.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  StoreFPR(FD,fmt_single,Sub(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single));
}


// MTC1 see MxC1


010001,10,3.FMT,5.FT,5.FS,5.FD,000010:COP1:32,f::MUL.fmt
"mul.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,Multiply(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
}


010001,10,3.FMT,00000,5.FS,5.FD,000111:COP1:32,f::NEG.fmt
"neg.%s<FMT> f<FD>, f<FS>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,Negate(ValueFPR(FS,fmt),fmt));
}


// NMADD.fmt
010011,5.FR,5.FT,5.FS,5.FD,110001:COP1X:32,f::NMADD.D
"nmadd.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  StoreFPR(FD,fmt_double,Negate(Add(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double),fmt_double));
}


// NMADD.fmt
010011,5.FR,5.FT,5.FS,5.FD,110000:COP1X:32,f::NMADD.S
"nmadd.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  StoreFPR(FD,fmt_single,Negate(Add(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single),fmt_single));
}


// NMSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,111001:COP1X:32,f::NMSUB.D
"nmsub.d f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  StoreFPR(FD,fmt_double,Negate(Sub(Multiply(ValueFPR(FS,fmt_double),ValueFPR(FT,fmt_double),fmt_double),ValueFPR(FR,fmt_double),fmt_double),fmt_double));
}


// NMSUB.fmt
010011,5.FR,5.FT,5.FS,5.FD,111000:COP1X:32,f::NMSUB.S
"nmsub.s f<FD>, f<FR>, f<FS>, f<FT>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  StoreFPR(FD,fmt_single,Negate(Sub(Multiply(ValueFPR(FS,fmt_single),ValueFPR(FT,fmt_single),fmt_single),ValueFPR(FR,fmt_single),fmt_single),fmt_single));
}


010011,5.BASE,5.INDEX,5.HINT,00000,001111:COP1X:64::PREFX
"prefx <HINT>, r<INDEX>(r<BASE>)"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  address_word base = GPR[BASE];
  address_word index = GPR[INDEX];
  {
    address_word vaddr = loadstore_ea (SD_, base, index);
    address_word paddr;
    int uncached;
    if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
      Prefetch(uncached,paddr,vaddr,isDATA,HINT);
  }
}

010001,10,3.FMT,00000,5.FS,5.FD,010101:COP1:32,f::RECIP.fmt
"recip.%s<FMT> f<FD>, f<FS>"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,Recip(ValueFPR(FS,fmt),fmt));
}


010001,10,3.FMT,00000,5.FS,5.FD,001000:COP1:64,f::ROUND.L.fmt
"round.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_long,Convert(FP_RM_NEAREST,ValueFPR(FS,fmt),fmt,fmt_long));
}


010001,10,3.FMT,00000,5.FS,5.FD,001100:COP1:32,f::ROUND.W.fmt
"round.w.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_word,Convert(FP_RM_NEAREST,ValueFPR(FS,fmt),fmt,fmt_word));
}


010001,10,3.FMT,00000,5.FS,5.FD,010110:COP1:32,f::RSQRT.fmt
*mipsIV:
*mipsV:
*mips64:
"rsqrt.%s<FMT> f<FD>, f<FS>"
*vr5000:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,Recip(SquareRoot(ValueFPR(FS,fmt),fmt),fmt));
}


111101,5.BASE,5.FT,16.OFFSET:COP1:32,f::SDC1
"sdc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  check_fpu (SD_);
  do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], EXTEND16 (OFFSET), COP_SD (1, FT));
}


010011,5.BASE,5.INDEX,5.FS,00000001001:COP1X:64,f::SDXC1
"sdxc1 f<FS>, r<INDEX>(r<BASE>)"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{
  check_fpu (SD_);
  check_u64 (SD_, instruction_0);
  do_store (SD_, AccessLength_DOUBLEWORD, GPR[BASE], GPR[INDEX], COP_SD (1, FS));
}


010001,10,3.FMT,00000,5.FS,5.FD,000100:COP1:32,f::SQRT.fmt
"sqrt.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,(SquareRoot(ValueFPR(FS,fmt),fmt)));
}


010001,10,3.FMT,5.FT,5.FS,5.FD,000001:COP1:32,f::SUB.fmt
"sub.%s<FMT> f<FD>, f<FS>, f<FT>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt_p (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt,Sub(ValueFPR(FS,fmt),ValueFPR(FT,fmt),fmt));
}



111001,5.BASE,5.FT,16.OFFSET:COP1:32,f::SWC1
"swc1 f<FT>, <OFFSET>(r<BASE>)"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word base = GPR[BASE];
  address_word offset = EXTEND16 (OFFSET);
  check_fpu (SD_);
  {
    address_word vaddr = loadstore_ea (SD_, base, offset);
    address_word paddr;
    int uncached;
    if ((vaddr & 3) != 0)
      {
	SIM_CORE_SIGNAL (SD, CPU, cia, read_map, AccessLength_WORD+1, vaddr, write_transfer, sim_core_unaligned_signal);
      }
    else
      {
	if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
	  {
	    uword64 memval = 0;
	    uword64 memval1 = 0;
	    uword64 mask = (WITH_TARGET_WORD_BITSIZE == 64 ? 0x7 : 0x3);
	    address_word reverseendian = (ReverseEndian ?(mask ^ AccessLength_WORD): 0);
	    address_word bigendiancpu = (BigEndianCPU ?(mask ^ AccessLength_WORD): 0);
	    unsigned int byte;
	    paddr = ((paddr & ~mask) | ((paddr & mask) ^ reverseendian));
	    byte = ((vaddr & mask) ^ bigendiancpu);
	    memval = (((uword64)COP_SW(((instruction_0 >> 26) & 0x3),FT)) << (8 * byte));
	    StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
	  }
      }
  }
}


010011,5.BASE,5.INDEX,5.FS,00000,001000:COP1X:32,f::SWXC1
"swxc1 f<FS>, r<INDEX>(r<BASE>)"
*mipsIV:
*mipsV:
*mips64:
*vr5000:
{

  address_word base = GPR[BASE];
  address_word index = GPR[INDEX];
  check_fpu (SD_);
  check_u64 (SD_, instruction_0);
  {
   address_word vaddr = loadstore_ea (SD_, base, index);
   address_word paddr;
   int uncached;
   if ((vaddr & 3) != 0)
     {
       SIM_CORE_SIGNAL (SD, CPU, cia, read_map, 4, vaddr, write_transfer, sim_core_unaligned_signal);
     }
   else
   {
    if (AddressTranslation(vaddr,isDATA,isSTORE,&paddr,&uncached,isTARGET,isREAL))
    {
     unsigned64 memval = 0;
     unsigned64 memval1 = 0;
     unsigned64 mask = 0x7;
     unsigned int byte;
     paddr = ((paddr & ~mask) | ((paddr & mask) ^ (ReverseEndian << 2)));
     byte = ((vaddr & mask) ^ (BigEndianCPU << 2));
     memval = (((unsigned64)COP_SW(1,FS)) << (8 * byte));
      {
       StoreMemory(uncached,AccessLength_WORD,memval,memval1,paddr,vaddr,isREAL);
      }
    }
   }
  }
}


010001,10,3.FMT,00000,5.FS,5.FD,001001:COP1:64,f::TRUNC.L.fmt
"trunc.l.%s<FMT> f<FD>, f<FS>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_long,Convert(FP_RM_TOZERO,ValueFPR(FS,fmt),fmt,fmt_long));
}


010001,10,3.FMT,00000,5.FS,5.FD,001101:COP1:32,f::TRUNC.W
"trunc.w.%s<FMT> f<FD>, f<FS>"
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  int fmt = FMT;
  check_fpu (SD_);
  check_fmt (SD_, fmt, instruction_0);
  StoreFPR(FD,fmt_word,Convert(FP_RM_TOZERO,ValueFPR(FS,fmt),fmt,fmt_word));
}


//
// MIPS Architecture:
//
//        System Control Instruction Set (COP0)
//


010000,01000,00000,16.OFFSET:COP0:32::BC0F
"bc0f <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:

010000,01000,00000,16.OFFSET:COP0:32::BC0F
"bc0f <OFFSET>"
// stub needed for eCos as tx39 hardware bug workaround
*r3900:
{
  /* do nothing */
}


010000,01000,00010,16.OFFSET:COP0:32::BC0FL
"bc0fl <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:


010000,01000,00001,16.OFFSET:COP0:32::BC0T
"bc0t <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:


010000,01000,00011,16.OFFSET:COP0:32::BC0TL
"bc0tl <OFFSET>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:


101111,5.BASE,5.OP,16.OFFSET:NORMAL:32::CACHE
"cache <OP>, <OFFSET>(r<BASE>)"
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  address_word base = GPR[BASE];
  address_word offset = EXTEND16 (OFFSET);
  {
    address_word vaddr = loadstore_ea (SD_, base, offset);
    address_word paddr;
    int uncached;
    if (AddressTranslation(vaddr,isDATA,isLOAD,&paddr,&uncached,isTARGET,isREAL))
      CacheOp(OP,vaddr,paddr,instruction_0);
  }
}


010000,1,0000000000000000000,111001:COP0:32::DI
"di"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*vr4100:
*vr5000:


010000,00001,5.RT,5.RD,00000000000:COP0:64::DMFC0
"dmfc0 r<RT>, r<RD>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
{
  check_u64 (SD_, instruction_0);
  DecodeCoproc (instruction_0);
}


010000,00101,5.RT,5.RD,00000000000:COP0:64::DMTC0
"dmtc0 r<RT>, r<RD>"
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
{
  check_u64 (SD_, instruction_0);
  DecodeCoproc (instruction_0);
}


010000,1,0000000000000000000,111000:COP0:32::EI
"ei"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips64:
*vr4100:
*vr5000:


010000,1,0000000000000000000,011000:COP0:32::ERET
"eret"
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
{
  if (SR & status_ERL)
    {
      /* Oops, not yet available */
      sim_io_printf (SD, "Warning: ERET when SR[ERL] set not supported");
      NIA = EPC;
      SR &= ~status_ERL;
    }
  else
    {
      NIA = EPC;
      SR &= ~status_EXL;
    }
}


010000,00000,5.RT,5.RD,00000,6.REGX:COP0:32::MFC0
"mfc0 r<RT>, r<RD> # <REGX>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  TRACE_ALU_INPUT0 ();
  DecodeCoproc (instruction_0);
  TRACE_ALU_RESULT (GPR[RT]);
}

010000,00100,5.RT,5.RD,00000,6.REGX:COP0:32::MTC0
"mtc0 r<RT>, r<RD> # <REGX>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:
*r3900:
{
  DecodeCoproc (instruction_0);
}


010000,1,0000000000000000000,010000:COP0:32::RFE
"rfe"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*vr4100:
*vr5000:
*r3900:
{
  DecodeCoproc (instruction_0);
}


0100,ZZ!0!1!3,5.COP_FUN0!8,5.COP_FUN1,16.COP_FUN2:NORMAL:32::COPz
"cop<ZZ> <COP_FUN0><COP_FUN1><COP_FUN2>"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*r3900:
{
  DecodeCoproc (instruction_0);
}



010000,1,0000000000000000000,001000:COP0:32::TLBP
"tlbp"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:


010000,1,0000000000000000000,000001:COP0:32::TLBR
"tlbr"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:


010000,1,0000000000000000000,000010:COP0:32::TLBWI
"tlbwi"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:


010000,1,0000000000000000000,000110:COP0:32::TLBWR
"tlbwr"
*mipsI:
*mipsII:
*mipsIII:
*mipsIV:
*mipsV:
*mips32:
*mips64:
*vr4100:
*vr5000:


:include:::m16.igen
:include:::tx.igen
:include:::vr.igen