/* Simulator for Motorola's MCore processor Copyright (C) 1999-2023 Free Software Foundation, Inc. Contributed by Cygnus Solutions. This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This must come before any other includes. */ #include "defs.h" #include #include #include #include #include #include "bfd.h" #include "sim/callback.h" #include "libiberty.h" #include "sim/sim.h" #include "sim-main.h" #include "sim-base.h" #include "sim-signal.h" #include "sim-syscall.h" #include "sim-options.h" #include "target-newlib-syscall.h" #include "mcore-sim.h" #define target_big_endian (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) static unsigned long mcore_extract_unsigned_integer (const unsigned char *addr, int len) { unsigned long retval; unsigned char * p; unsigned char * startaddr = (unsigned char *)addr; unsigned char * endaddr = startaddr + len; if (len > (int) sizeof (unsigned long)) printf ("That operation is not available on integers of more than %zu bytes.", sizeof (unsigned long)); /* Start at the most significant end of the integer, and work towards the least significant. */ retval = 0; if (! target_big_endian) { for (p = endaddr; p > startaddr;) retval = (retval << 8) | * -- p; } else { for (p = startaddr; p < endaddr;) retval = (retval << 8) | * p ++; } return retval; } static void mcore_store_unsigned_integer (unsigned char *addr, int len, unsigned long val) { unsigned char * p; unsigned char * startaddr = (unsigned char *)addr; unsigned char * endaddr = startaddr + len; if (! target_big_endian) { for (p = startaddr; p < endaddr;) { * p ++ = val & 0xff; val >>= 8; } } else { for (p = endaddr; p > startaddr;) { * -- p = val & 0xff; val >>= 8; } } } static int memcycles = 1; #define gr MCORE_SIM_CPU (cpu)->active_gregs #define cr MCORE_SIM_CPU (cpu)->regs.cregs #define sr cr[0] #define vbr cr[1] #define esr cr[2] #define fsr cr[3] #define epc cr[4] #define fpc cr[5] #define ss0 cr[6] #define ss1 cr[7] #define ss2 cr[8] #define ss3 cr[9] #define ss4 cr[10] #define gcr cr[11] #define gsr cr[12] /* maniuplate the carry bit */ #define C_ON() (sr & 1) #define C_VALUE() (sr & 1) #define C_OFF() ((sr & 1) == 0) #define SET_C() {sr |= 1;} #define CLR_C() {sr &= 0xfffffffe;} #define NEW_C(v) {CLR_C(); sr |= ((v) & 1);} #define SR_AF() ((sr >> 1) & 1) static void set_active_regs (SIM_CPU *cpu) { struct mcore_sim_cpu *mcore_cpu = MCORE_SIM_CPU (cpu); if (SR_AF()) mcore_cpu->active_gregs = mcore_cpu->regs.alt_gregs; else mcore_cpu->active_gregs = mcore_cpu->regs.gregs; } #define TRAPCODE 1 /* r1 holds which function we want */ #define PARM1 2 /* first parameter */ #define PARM2 3 #define PARM3 4 #define PARM4 5 #define RET1 2 /* register for return values. */ /* Default to a 8 Mbyte (== 2^23) memory space. */ #define DEFAULT_MEMORY_SIZE 0x800000 static void set_initial_gprs (SIM_CPU *cpu) { struct mcore_sim_cpu *mcore_cpu = MCORE_SIM_CPU (cpu); /* Set up machine just out of reset. */ CPU_PC_SET (cpu, 0); sr = 0; /* Clean out the GPRs and alternate GPRs. */ memset (&mcore_cpu->regs.gregs, 0, sizeof(mcore_cpu->regs.gregs)); memset (&mcore_cpu->regs.alt_gregs, 0, sizeof(mcore_cpu->regs.alt_gregs)); /* Make our register set point to the right place. */ set_active_regs (cpu); /* ABI specifies initial values for these registers. */ gr[0] = DEFAULT_MEMORY_SIZE - 4; /* dac fix, the stack address must be 8-byte aligned! */ gr[0] = gr[0] - gr[0] % 8; gr[PARM1] = 0; gr[PARM2] = 0; gr[PARM3] = 0; gr[PARM4] = gr[0]; } /* Simulate a monitor trap. */ static void handle_trap1 (SIM_DESC sd, SIM_CPU *cpu) { /* XXX: We don't pass back the actual errno value. */ gr[RET1] = sim_syscall (cpu, gr[TRAPCODE], gr[PARM1], gr[PARM2], gr[PARM3], gr[PARM4]); } static void process_stub (SIM_DESC sd, SIM_CPU *cpu, int what) { /* These values should match those in libgloss/mcore/syscalls.s. */ switch (what) { case 3: /* _read */ case 4: /* _write */ case 5: /* _open */ case 6: /* _close */ case 10: /* _unlink */ case 19: /* _lseek */ case 43: /* _times */ gr[TRAPCODE] = what; handle_trap1 (sd, cpu); break; default: if (STATE_VERBOSE_P (sd)) fprintf (stderr, "Unhandled stub opcode: %d\n", what); break; } } static void util (SIM_DESC sd, SIM_CPU *cpu, unsigned what) { struct mcore_sim_cpu *mcore_cpu = MCORE_SIM_CPU (cpu); switch (what) { case 0: /* exit */ sim_engine_halt (sd, cpu, NULL, mcore_cpu->regs.pc, sim_exited, gr[PARM1]); break; case 1: /* printf */ if (STATE_VERBOSE_P (sd)) fprintf (stderr, "WARNING: printf unimplemented\n"); break; case 2: /* scanf */ if (STATE_VERBOSE_P (sd)) fprintf (stderr, "WARNING: scanf unimplemented\n"); break; case 3: /* utime */ gr[RET1] = mcore_cpu->insts; break; case 0xFF: process_stub (sd, cpu, gr[1]); break; default: if (STATE_VERBOSE_P (sd)) fprintf (stderr, "Unhandled util code: %x\n", what); break; } } /* For figuring out whether we carried; addc/subc use this. */ static int iu_carry (unsigned long a, unsigned long b, int cin) { unsigned long x; x = (a & 0xffff) + (b & 0xffff) + cin; x = (x >> 16) + (a >> 16) + (b >> 16); x >>= 16; return (x != 0); } /* TODO: Convert to common watchpoints. */ #undef WATCHFUNCTIONS #ifdef WATCHFUNCTIONS #define MAXWL 80 int32_t WL[MAXWL]; char * WLstr[MAXWL]; int ENDWL=0; int WLincyc; int WLcyc[MAXWL]; int WLcnts[MAXWL]; int WLmax[MAXWL]; int WLmin[MAXWL]; int32_t WLendpc; int WLbcyc; int WLW; #endif #define RD (inst & 0xF) #define RS ((inst >> 4) & 0xF) #define RX ((inst >> 8) & 0xF) #define IMM5 ((inst >> 4) & 0x1F) #define IMM4 ((inst) & 0xF) #define rbat(X) sim_core_read_1 (cpu, 0, read_map, X) #define rhat(X) sim_core_read_2 (cpu, 0, read_map, X) #define rlat(X) sim_core_read_4 (cpu, 0, read_map, X) #define wbat(X, D) sim_core_write_1 (cpu, 0, write_map, X, D) #define what(X, D) sim_core_write_2 (cpu, 0, write_map, X, D) #define wlat(X, D) sim_core_write_4 (cpu, 0, write_map, X, D) static int tracing = 0; #define ILLEGAL() \ sim_engine_halt (sd, cpu, NULL, pc, sim_stopped, SIM_SIGILL) static void step_once (SIM_DESC sd, SIM_CPU *cpu) { struct mcore_sim_cpu *mcore_cpu = MCORE_SIM_CPU (cpu); int needfetch; int32_t ibuf; int32_t pc; unsigned short inst; int memops; int bonus_cycles; int insts; int w; int cycs; #ifdef WATCHFUNCTIONS int32_t WLhash; #endif pc = CPU_PC_GET (cpu); /* Fetch the initial instructions that we'll decode. */ ibuf = rlat (pc & 0xFFFFFFFC); needfetch = 0; memops = 0; bonus_cycles = 0; insts = 0; /* make our register set point to the right place */ set_active_regs (cpu); #ifdef WATCHFUNCTIONS /* make a hash to speed exec loop, hope it's nonzero */ WLhash = 0xFFFFFFFF; for (w = 1; w <= ENDWL; w++) WLhash = WLhash & WL[w]; #endif /* TODO: Unindent this block. */ { int32_t oldpc; insts ++; if (pc & 02) { if (! target_big_endian) inst = ibuf >> 16; else inst = ibuf & 0xFFFF; needfetch = 1; } else { if (! target_big_endian) inst = ibuf & 0xFFFF; else inst = ibuf >> 16; } #ifdef WATCHFUNCTIONS /* now scan list of watch addresses, if match, count it and note return address and count cycles until pc=return address */ if ((WLincyc == 1) && (pc == WLendpc)) { cycs = (mcore_cpu->cycles + (insts + bonus_cycles + (memops * memcycles)) - WLbcyc); if (WLcnts[WLW] == 1) { WLmax[WLW] = cycs; WLmin[WLW] = cycs; WLcyc[WLW] = 0; } if (cycs > WLmax[WLW]) { WLmax[WLW] = cycs; } if (cycs < WLmin[WLW]) { WLmin[WLW] = cycs; } WLcyc[WLW] += cycs; WLincyc = 0; WLendpc = 0; } /* Optimize with a hash to speed loop. */ if (WLincyc == 0) { if ((WLhash == 0) || ((WLhash & pc) != 0)) { for (w=1; w <= ENDWL; w++) { if (pc == WL[w]) { WLcnts[w]++; WLbcyc = mcore_cpu->cycles + insts + bonus_cycles + (memops * memcycles); WLendpc = gr[15]; WLincyc = 1; WLW = w; break; } } } } #endif if (tracing) fprintf (stderr, "%.4x: inst = %.4x ", pc, inst); oldpc = pc; pc += 2; switch (inst >> 8) { case 0x00: switch RS { case 0x0: switch RD { case 0x0: /* bkpt */ pc -= 2; sim_engine_halt (sd, cpu, NULL, pc - 2, sim_stopped, SIM_SIGTRAP); break; case 0x1: /* sync */ break; case 0x2: /* rte */ pc = epc; sr = esr; needfetch = 1; set_active_regs (cpu); break; case 0x3: /* rfi */ pc = fpc; sr = fsr; needfetch = 1; set_active_regs (cpu); break; case 0x4: /* stop */ if (STATE_VERBOSE_P (sd)) fprintf (stderr, "WARNING: stop unimplemented\n"); break; case 0x5: /* wait */ if (STATE_VERBOSE_P (sd)) fprintf (stderr, "WARNING: wait unimplemented\n"); break; case 0x6: /* doze */ if (STATE_VERBOSE_P (sd)) fprintf (stderr, "WARNING: doze unimplemented\n"); break; case 0x7: ILLEGAL (); /* illegal */ break; case 0x8: /* trap 0 */ case 0xA: /* trap 2 */ case 0xB: /* trap 3 */ sim_engine_halt (sd, cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); break; case 0xC: /* trap 4 */ case 0xD: /* trap 5 */ case 0xE: /* trap 6 */ ILLEGAL (); /* illegal */ break; case 0xF: /* trap 7 */ sim_engine_halt (sd, cpu, NULL, pc, /* integer div-by-0 */ sim_stopped, SIM_SIGTRAP); break; case 0x9: /* trap 1 */ handle_trap1 (sd, cpu); break; } break; case 0x1: ILLEGAL (); /* illegal */ break; case 0x2: /* mvc */ gr[RD] = C_VALUE(); break; case 0x3: /* mvcv */ gr[RD] = C_OFF(); break; case 0x4: /* ldq */ { int32_t addr = gr[RD]; int regno = 4; /* always r4-r7 */ bonus_cycles++; memops += 4; do { gr[regno] = rlat (addr); addr += 4; regno++; } while ((regno&0x3) != 0); } break; case 0x5: /* stq */ { int32_t addr = gr[RD]; int regno = 4; /* always r4-r7 */ memops += 4; bonus_cycles++; do { wlat (addr, gr[regno]); addr += 4; regno++; } while ((regno & 0x3) != 0); } break; case 0x6: /* ldm */ { int32_t addr = gr[0]; int regno = RD; /* bonus cycle is really only needed if the next insn shifts the last reg loaded. bonus_cycles++; */ memops += 16-regno; while (regno <= 0xF) { gr[regno] = rlat (addr); addr += 4; regno++; } } break; case 0x7: /* stm */ { int32_t addr = gr[0]; int regno = RD; /* this should be removed! */ /* bonus_cycles ++; */ memops += 16 - regno; while (regno <= 0xF) { wlat (addr, gr[regno]); addr += 4; regno++; } } break; case 0x8: /* dect */ gr[RD] -= C_VALUE(); break; case 0x9: /* decf */ gr[RD] -= C_OFF(); break; case 0xA: /* inct */ gr[RD] += C_VALUE(); break; case 0xB: /* incf */ gr[RD] += C_OFF(); break; case 0xC: /* jmp */ pc = gr[RD]; if (tracing && RD == 15) fprintf (stderr, "Func return, r2 = %xx, r3 = %x\n", gr[2], gr[3]); bonus_cycles++; needfetch = 1; break; case 0xD: /* jsr */ gr[15] = pc; pc = gr[RD]; bonus_cycles++; needfetch = 1; break; case 0xE: /* ff1 */ { int32_t tmp, i; tmp = gr[RD]; for (i = 0; !(tmp & 0x80000000) && i < 32; i++) tmp <<= 1; gr[RD] = i; } break; case 0xF: /* brev */ { int32_t tmp; tmp = gr[RD]; tmp = ((tmp & 0xaaaaaaaa) >> 1) | ((tmp & 0x55555555) << 1); tmp = ((tmp & 0xcccccccc) >> 2) | ((tmp & 0x33333333) << 2); tmp = ((tmp & 0xf0f0f0f0) >> 4) | ((tmp & 0x0f0f0f0f) << 4); tmp = ((tmp & 0xff00ff00) >> 8) | ((tmp & 0x00ff00ff) << 8); gr[RD] = ((tmp & 0xffff0000) >> 16) | ((tmp & 0x0000ffff) << 16); } break; } break; case 0x01: switch RS { case 0x0: /* xtrb3 */ gr[1] = (gr[RD]) & 0xFF; NEW_C (gr[RD] != 0); break; case 0x1: /* xtrb2 */ gr[1] = (gr[RD]>>8) & 0xFF; NEW_C (gr[RD] != 0); break; case 0x2: /* xtrb1 */ gr[1] = (gr[RD]>>16) & 0xFF; NEW_C (gr[RD] != 0); break; case 0x3: /* xtrb0 */ gr[1] = (gr[RD]>>24) & 0xFF; NEW_C (gr[RD] != 0); break; case 0x4: /* zextb */ gr[RD] &= 0x000000FF; break; case 0x5: /* sextb */ { long tmp; tmp = gr[RD]; tmp <<= (sizeof (tmp) * 8) - 8; tmp >>= (sizeof (tmp) * 8) - 8; gr[RD] = tmp; } break; case 0x6: /* zexth */ gr[RD] &= 0x0000FFFF; break; case 0x7: /* sexth */ { long tmp; tmp = gr[RD]; tmp <<= (sizeof (tmp) * 8) - 16; tmp >>= (sizeof (tmp) * 8) - 16; gr[RD] = tmp; } break; case 0x8: /* declt */ --gr[RD]; NEW_C ((long)gr[RD] < 0); break; case 0x9: /* tstnbz */ { int32_t tmp = gr[RD]; NEW_C ((tmp & 0xFF000000) != 0 && (tmp & 0x00FF0000) != 0 && (tmp & 0x0000FF00) != 0 && (tmp & 0x000000FF) != 0); } break; case 0xA: /* decgt */ --gr[RD]; NEW_C ((long)gr[RD] > 0); break; case 0xB: /* decne */ --gr[RD]; NEW_C ((long)gr[RD] != 0); break; case 0xC: /* clrt */ if (C_ON()) gr[RD] = 0; break; case 0xD: /* clrf */ if (C_OFF()) gr[RD] = 0; break; case 0xE: /* abs */ if (gr[RD] & 0x80000000) gr[RD] = ~gr[RD] + 1; break; case 0xF: /* not */ gr[RD] = ~gr[RD]; break; } break; case 0x02: /* movt */ if (C_ON()) gr[RD] = gr[RS]; break; case 0x03: /* mult */ /* consume 2 bits per cycle from rs, until rs is 0 */ { unsigned int t = gr[RS]; int ticks; for (ticks = 0; t != 0 ; t >>= 2) ticks++; bonus_cycles += ticks; } bonus_cycles += 2; /* min. is 3, so add 2, plus ticks above */ if (tracing) fprintf (stderr, " mult %x by %x to give %x", gr[RD], gr[RS], gr[RD] * gr[RS]); gr[RD] = gr[RD] * gr[RS]; break; case 0x04: /* loopt */ if (C_ON()) { pc += (IMM4 << 1) - 32; bonus_cycles ++; needfetch = 1; } --gr[RS]; /* not RD! */ NEW_C (((long)gr[RS]) > 0); break; case 0x05: /* subu */ gr[RD] -= gr[RS]; break; case 0x06: /* addc */ { unsigned long tmp, a, b; a = gr[RD]; b = gr[RS]; gr[RD] = a + b + C_VALUE (); tmp = iu_carry (a, b, C_VALUE ()); NEW_C (tmp); } break; case 0x07: /* subc */ { unsigned long tmp, a, b; a = gr[RD]; b = gr[RS]; gr[RD] = a - b + C_VALUE () - 1; tmp = iu_carry (a,~b, C_VALUE ()); NEW_C (tmp); } break; case 0x08: /* illegal */ case 0x09: /* illegal*/ ILLEGAL (); break; case 0x0A: /* movf */ if (C_OFF()) gr[RD] = gr[RS]; break; case 0x0B: /* lsr */ { unsigned long dst, src; dst = gr[RD]; src = gr[RS]; /* We must not rely solely upon the native shift operations, since they may not match the M*Core's behaviour on boundary conditions. */ dst = src > 31 ? 0 : dst >> src; gr[RD] = dst; } break; case 0x0C: /* cmphs */ NEW_C ((unsigned long )gr[RD] >= (unsigned long)gr[RS]); break; case 0x0D: /* cmplt */ NEW_C ((long)gr[RD] < (long)gr[RS]); break; case 0x0E: /* tst */ NEW_C ((gr[RD] & gr[RS]) != 0); break; case 0x0F: /* cmpne */ NEW_C (gr[RD] != gr[RS]); break; case 0x10: case 0x11: /* mfcr */ { unsigned r; r = IMM5; if (r <= LAST_VALID_CREG) gr[RD] = cr[r]; else ILLEGAL (); } break; case 0x12: /* mov */ gr[RD] = gr[RS]; if (tracing) fprintf (stderr, "MOV %x into reg %d", gr[RD], RD); break; case 0x13: /* bgenr */ if (gr[RS] & 0x20) gr[RD] = 0; else gr[RD] = 1 << (gr[RS] & 0x1F); break; case 0x14: /* rsub */ gr[RD] = gr[RS] - gr[RD]; break; case 0x15: /* ixw */ gr[RD] += gr[RS]<<2; break; case 0x16: /* and */ gr[RD] &= gr[RS]; break; case 0x17: /* xor */ gr[RD] ^= gr[RS]; break; case 0x18: case 0x19: /* mtcr */ { unsigned r; r = IMM5; if (r <= LAST_VALID_CREG) cr[r] = gr[RD]; else ILLEGAL (); /* we might have changed register sets... */ set_active_regs (cpu); } break; case 0x1A: /* asr */ /* We must not rely solely upon the native shift operations, since they may not match the M*Core's behaviour on boundary conditions. */ if (gr[RS] > 30) gr[RD] = ((long) gr[RD]) < 0 ? -1 : 0; else gr[RD] = (long) gr[RD] >> gr[RS]; break; case 0x1B: /* lsl */ /* We must not rely solely upon the native shift operations, since they may not match the M*Core's behaviour on boundary conditions. */ gr[RD] = gr[RS] > 31 ? 0 : gr[RD] << gr[RS]; break; case 0x1C: /* addu */ gr[RD] += gr[RS]; break; case 0x1D: /* ixh */ gr[RD] += gr[RS] << 1; break; case 0x1E: /* or */ gr[RD] |= gr[RS]; break; case 0x1F: /* andn */ gr[RD] &= ~gr[RS]; break; case 0x20: case 0x21: /* addi */ gr[RD] = gr[RD] + (IMM5 + 1); break; case 0x22: case 0x23: /* cmplti */ { int tmp = (IMM5 + 1); if (gr[RD] < tmp) { SET_C(); } else { CLR_C(); } } break; case 0x24: case 0x25: /* subi */ gr[RD] = gr[RD] - (IMM5 + 1); break; case 0x26: case 0x27: /* illegal */ ILLEGAL (); break; case 0x28: case 0x29: /* rsubi */ gr[RD] = IMM5 - gr[RD]; break; case 0x2A: case 0x2B: /* cmpnei */ if (gr[RD] != IMM5) { SET_C(); } else { CLR_C(); } break; case 0x2C: case 0x2D: /* bmaski, divu */ { unsigned imm = IMM5; if (imm == 1) { int exe; int rxnlz, r1nlz; unsigned int rx, r1; rx = gr[RD]; r1 = gr[1]; exe = 0; /* unsigned divide */ gr[RD] = (int32_t) ((unsigned int) gr[RD] / (unsigned int)gr[1] ); /* compute bonus_cycles for divu */ for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32); r1nlz ++) r1 = r1 << 1; for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32); rxnlz ++) rx = rx << 1; if (r1nlz < rxnlz) exe += 4; else exe += 5 + r1nlz - rxnlz; if (exe >= (2 * memcycles - 1)) { bonus_cycles += exe - (2 * memcycles) + 1; } } else if (imm == 0 || imm >= 8) { /* bmaski */ if (imm == 0) gr[RD] = -1; else gr[RD] = (1 << imm) - 1; } else { /* illegal */ ILLEGAL (); } } break; case 0x2E: case 0x2F: /* andi */ gr[RD] = gr[RD] & IMM5; break; case 0x30: case 0x31: /* bclri */ gr[RD] = gr[RD] & ~(1< 0)) || ((rx >= 0) && (r1 < 0))) sc = 1; else sc = 0; rx = abs (rx); r1 = abs (r1); /* signed divide, general registers are of type int, so / op is OK */ gr[RD] = gr[RD] / gr[1]; for (r1nlz = 0; ((r1 & 0x80000000) == 0) && (r1nlz < 32) ; r1nlz ++ ) r1 = r1 << 1; for (rxnlz = 0; ((rx & 0x80000000) == 0) && (rxnlz < 32) ; rxnlz ++ ) rx = rx << 1; if (r1nlz < rxnlz) exe += 5; else exe += 6 + r1nlz - rxnlz + sc; if (exe >= (2 * memcycles - 1)) { bonus_cycles += exe - (2 * memcycles) + 1; } } else if (imm >= 7) { /* bgeni */ gr[RD] = (1 << IMM5); } else { /* illegal */ ILLEGAL (); } break; } case 0x34: case 0x35: /* bseti */ gr[RD] = gr[RD] | (1 << IMM5); break; case 0x36: case 0x37: /* btsti */ NEW_C (gr[RD] >> IMM5); break; case 0x38: case 0x39: /* xsr, rotli */ { unsigned imm = IMM5; unsigned long tmp = gr[RD]; if (imm == 0) { int32_t cbit; cbit = C_VALUE(); NEW_C (tmp); gr[RD] = (cbit << 31) | (tmp >> 1); } else gr[RD] = (tmp << imm) | (tmp >> (32 - imm)); } break; case 0x3A: case 0x3B: /* asrc, asri */ { unsigned imm = IMM5; long tmp = gr[RD]; if (imm == 0) { NEW_C (tmp); gr[RD] = tmp >> 1; } else gr[RD] = tmp >> imm; } break; case 0x3C: case 0x3D: /* lslc, lsli */ { unsigned imm = IMM5; unsigned long tmp = gr[RD]; if (imm == 0) { NEW_C (tmp >> 31); gr[RD] = tmp << 1; } else gr[RD] = tmp << imm; } break; case 0x3E: case 0x3F: /* lsrc, lsri */ { unsigned imm = IMM5; unsigned long tmp = gr[RD]; if (imm == 0) { NEW_C (tmp); gr[RD] = tmp >> 1; } else gr[RD] = tmp >> imm; } break; case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: case 0x48: case 0x49: case 0x4A: case 0x4B: case 0x4C: case 0x4D: case 0x4E: case 0x4F: ILLEGAL (); break; case 0x50: util (sd, cpu, inst & 0xFF); break; case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: case 0x58: case 0x59: case 0x5A: case 0x5B: case 0x5C: case 0x5D: case 0x5E: case 0x5F: ILLEGAL (); break; case 0x60: case 0x61: case 0x62: case 0x63: /* movi */ case 0x64: case 0x65: case 0x66: case 0x67: gr[RD] = (inst >> 4) & 0x7F; break; case 0x68: case 0x69: case 0x6A: case 0x6B: case 0x6C: case 0x6D: case 0x6E: case 0x6F: /* illegal */ ILLEGAL (); break; case 0x71: case 0x72: case 0x73: case 0x74: case 0x75: case 0x76: case 0x77: case 0x78: case 0x79: case 0x7A: case 0x7B: case 0x7C: case 0x7D: case 0x7E: /* lrw */ gr[RX] = rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC); if (tracing) fprintf (stderr, "LRW of 0x%x from 0x%x to reg %d", rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC), (pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC, RX); memops++; break; case 0x7F: /* jsri */ gr[15] = pc; if (tracing) fprintf (stderr, "func call: r2 = %x r3 = %x r4 = %x r5 = %x r6 = %x r7 = %x\n", gr[2], gr[3], gr[4], gr[5], gr[6], gr[7]); case 0x70: /* jmpi */ pc = rlat ((pc + ((inst & 0xFF) << 2)) & 0xFFFFFFFC); memops++; bonus_cycles++; needfetch = 1; break; case 0x80: case 0x81: case 0x82: case 0x83: case 0x84: case 0x85: case 0x86: case 0x87: case 0x88: case 0x89: case 0x8A: case 0x8B: case 0x8C: case 0x8D: case 0x8E: case 0x8F: /* ld */ gr[RX] = rlat (gr[RD] + ((inst >> 2) & 0x003C)); if (tracing) fprintf (stderr, "load reg %d from 0x%x with 0x%x", RX, gr[RD] + ((inst >> 2) & 0x003C), gr[RX]); memops++; break; case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x99: case 0x9A: case 0x9B: case 0x9C: case 0x9D: case 0x9E: case 0x9F: /* st */ wlat (gr[RD] + ((inst >> 2) & 0x003C), gr[RX]); if (tracing) fprintf (stderr, "store reg %d (containing 0x%x) to 0x%x", RX, gr[RX], gr[RD] + ((inst >> 2) & 0x003C)); memops++; break; case 0xA0: case 0xA1: case 0xA2: case 0xA3: case 0xA4: case 0xA5: case 0xA6: case 0xA7: case 0xA8: case 0xA9: case 0xAA: case 0xAB: case 0xAC: case 0xAD: case 0xAE: case 0xAF: /* ld.b */ gr[RX] = rbat (gr[RD] + RS); memops++; break; case 0xB0: case 0xB1: case 0xB2: case 0xB3: case 0xB4: case 0xB5: case 0xB6: case 0xB7: case 0xB8: case 0xB9: case 0xBA: case 0xBB: case 0xBC: case 0xBD: case 0xBE: case 0xBF: /* st.b */ wbat (gr[RD] + RS, gr[RX]); memops++; break; case 0xC0: case 0xC1: case 0xC2: case 0xC3: case 0xC4: case 0xC5: case 0xC6: case 0xC7: case 0xC8: case 0xC9: case 0xCA: case 0xCB: case 0xCC: case 0xCD: case 0xCE: case 0xCF: /* ld.h */ gr[RX] = rhat (gr[RD] + ((inst >> 3) & 0x001E)); memops++; break; case 0xD0: case 0xD1: case 0xD2: case 0xD3: case 0xD4: case 0xD5: case 0xD6: case 0xD7: case 0xD8: case 0xD9: case 0xDA: case 0xDB: case 0xDC: case 0xDD: case 0xDE: case 0xDF: /* st.h */ what (gr[RD] + ((inst >> 3) & 0x001E), gr[RX]); memops++; break; case 0xE8: case 0xE9: case 0xEA: case 0xEB: case 0xEC: case 0xED: case 0xEE: case 0xEF: /* bf */ if (C_OFF()) { int disp; disp = inst & 0x03FF; if (inst & 0x0400) disp |= 0xFFFFFC00; pc += disp<<1; bonus_cycles++; needfetch = 1; } break; case 0xE0: case 0xE1: case 0xE2: case 0xE3: case 0xE4: case 0xE5: case 0xE6: case 0xE7: /* bt */ if (C_ON()) { int disp; disp = inst & 0x03FF; if (inst & 0x0400) disp |= 0xFFFFFC00; pc += disp<<1; bonus_cycles++; needfetch = 1; } break; case 0xF8: case 0xF9: case 0xFA: case 0xFB: case 0xFC: case 0xFD: case 0xFE: case 0xFF: /* bsr */ gr[15] = pc; case 0xF0: case 0xF1: case 0xF2: case 0xF3: case 0xF4: case 0xF5: case 0xF6: case 0xF7: /* br */ { int disp; disp = inst & 0x03FF; if (inst & 0x0400) disp |= 0xFFFFFC00; pc += disp<<1; bonus_cycles++; needfetch = 1; } break; } if (tracing) fprintf (stderr, "\n"); if (needfetch) { ibuf = rlat (pc & 0xFFFFFFFC); needfetch = 0; } } /* Hide away the things we've cached while executing. */ CPU_PC_SET (cpu, pc); mcore_cpu->insts += insts; /* instructions done ... */ mcore_cpu->cycles += insts; /* and each takes a cycle */ mcore_cpu->cycles += bonus_cycles; /* and extra cycles for branches */ mcore_cpu->cycles += memops * memcycles; /* and memop cycle delays */ } void sim_engine_run (SIM_DESC sd, int next_cpu_nr, /* ignore */ int nr_cpus, /* ignore */ int siggnal) /* ignore */ { sim_cpu *cpu; SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); cpu = STATE_CPU (sd, 0); while (1) { step_once (sd, cpu); if (sim_events_tick (sd)) sim_events_process (sd); } } static int mcore_reg_store (SIM_CPU *cpu, int rn, const void *memory, int length) { struct mcore_sim_cpu *mcore_cpu = MCORE_SIM_CPU (cpu); if (rn < NUM_MCORE_REGS && rn >= 0) { if (length == 4) { long ival; /* misalignment safe */ ival = mcore_extract_unsigned_integer (memory, 4); mcore_cpu->asints[rn] = ival; } return 4; } else return 0; } static int mcore_reg_fetch (SIM_CPU *cpu, int rn, void *memory, int length) { struct mcore_sim_cpu *mcore_cpu = MCORE_SIM_CPU (cpu); if (rn < NUM_MCORE_REGS && rn >= 0) { if (length == 4) { long ival = mcore_cpu->asints[rn]; /* misalignment-safe */ mcore_store_unsigned_integer (memory, 4, ival); } return 4; } else return 0; } void sim_info (SIM_DESC sd, bool verbose) { SIM_CPU *cpu = STATE_CPU (sd, 0); struct mcore_sim_cpu *mcore_cpu = MCORE_SIM_CPU (cpu); #ifdef WATCHFUNCTIONS int w, wcyc; #endif double virttime = mcore_cpu->cycles / 36.0e6; host_callback *callback = STATE_CALLBACK (sd); callback->printf_filtered (callback, "\n\n# instructions executed %10d\n", mcore_cpu->insts); callback->printf_filtered (callback, "# cycles %10d\n", mcore_cpu->cycles); callback->printf_filtered (callback, "# pipeline stalls %10d\n", mcore_cpu->stalls); callback->printf_filtered (callback, "# virtual time taken %10.4f\n", virttime); #ifdef WATCHFUNCTIONS callback->printf_filtered (callback, "\nNumber of watched functions: %d\n", ENDWL); wcyc = 0; for (w = 1; w <= ENDWL; w++) { callback->printf_filtered (callback, "WL = %s %8x\n",WLstr[w],WL[w]); callback->printf_filtered (callback, " calls = %d, cycles = %d\n", WLcnts[w],WLcyc[w]); if (WLcnts[w] != 0) callback->printf_filtered (callback, " maxcpc = %d, mincpc = %d, avecpc = %d\n", WLmax[w],WLmin[w],WLcyc[w]/WLcnts[w]); wcyc += WLcyc[w]; } callback->printf_filtered (callback, "Total cycles for watched functions: %d\n",wcyc); #endif } static sim_cia mcore_pc_get (sim_cpu *cpu) { return MCORE_SIM_CPU (cpu)->regs.pc; } static void mcore_pc_set (sim_cpu *cpu, sim_cia pc) { MCORE_SIM_CPU (cpu)->regs.pc = pc; } static void free_state (SIM_DESC sd) { if (STATE_MODULES (sd) != NULL) sim_module_uninstall (sd); sim_cpu_free_all (sd); sim_state_free (sd); } SIM_DESC sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char * const *argv) { int i; SIM_DESC sd = sim_state_alloc (kind, cb); SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); /* Set default options before parsing user options. */ cb->syscall_map = cb_mcore_syscall_map; /* The cpu data is kept in a separately allocated chunk of memory. */ if (sim_cpu_alloc_all_extra (sd, 0, sizeof (struct mcore_sim_cpu)) != SIM_RC_OK) { free_state (sd); return 0; } if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) { free_state (sd); return 0; } /* The parser will print an error message for us, so we silently return. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { free_state (sd); return 0; } /* Check for/establish the a reference program image. */ if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* Configure/verify the target byte order and other runtime configuration options. */ if (sim_config (sd) != SIM_RC_OK) { sim_module_uninstall (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ sim_module_uninstall (sd); return 0; } /* CPU specific initialization. */ for (i = 0; i < MAX_NR_PROCESSORS; ++i) { SIM_CPU *cpu = STATE_CPU (sd, i); CPU_REG_FETCH (cpu) = mcore_reg_fetch; CPU_REG_STORE (cpu) = mcore_reg_store; CPU_PC_FETCH (cpu) = mcore_pc_get; CPU_PC_STORE (cpu) = mcore_pc_set; set_initial_gprs (cpu); /* Reset the GPR registers. */ } /* Default to a 8 Mbyte (== 2^23) memory space. */ sim_do_commandf (sd, "memory-size %#x", DEFAULT_MEMORY_SIZE); return sd; } SIM_RC sim_create_inferior (SIM_DESC sd, struct bfd *prog_bfd, char * const *argv, char * const *env) { SIM_CPU *cpu = STATE_CPU (sd, 0); char * const *avp; int nargs = 0; int nenv = 0; int s_length; int l; unsigned long strings; unsigned long pointers; unsigned long hi_stack; /* Set the initial register set. */ set_initial_gprs (cpu); hi_stack = DEFAULT_MEMORY_SIZE - 4; CPU_PC_SET (cpu, bfd_get_start_address (prog_bfd)); /* Calculate the argument and environment strings. */ s_length = 0; nargs = 0; avp = argv; while (avp && *avp) { l = strlen (*avp) + 1; /* include the null */ s_length += (l + 3) & ~3; /* make it a 4 byte boundary */ nargs++; avp++; } nenv = 0; avp = env; while (avp && *avp) { l = strlen (*avp) + 1; /* include the null */ s_length += (l + 3) & ~ 3;/* make it a 4 byte boundary */ nenv++; avp++; } /* Claim some memory for the pointers and strings. */ pointers = hi_stack - sizeof(int32_t) * (nenv+1+nargs+1); pointers &= ~3; /* must be 4-byte aligned */ gr[0] = pointers; strings = gr[0] - s_length; strings &= ~3; /* want to make it 4-byte aligned */ gr[0] = strings; /* dac fix, the stack address must be 8-byte aligned! */ gr[0] = gr[0] - gr[0] % 8; /* Loop through the arguments and fill them in. */ gr[PARM1] = nargs; if (nargs == 0) { /* No strings to fill in. */ gr[PARM2] = 0; } else { gr[PARM2] = pointers; avp = argv; while (avp && *avp) { /* Save where we're putting it. */ wlat (pointers, strings); /* Copy the string. */ l = strlen (* avp) + 1; sim_core_write_buffer (sd, cpu, write_map, *avp, strings, l); /* Bump the pointers. */ avp++; pointers += 4; strings += l+1; } /* A null to finish the list. */ wlat (pointers, 0); pointers += 4; } /* Now do the environment pointers. */ if (nenv == 0) { /* No strings to fill in. */ gr[PARM3] = 0; } else { gr[PARM3] = pointers; avp = env; while (avp && *avp) { /* Save where we're putting it. */ wlat (pointers, strings); /* Copy the string. */ l = strlen (* avp) + 1; sim_core_write_buffer (sd, cpu, write_map, *avp, strings, l); /* Bump the pointers. */ avp++; pointers += 4; strings += l+1; } /* A null to finish the list. */ wlat (pointers, 0); pointers += 4; } return SIM_RC_OK; }