/* sim-main.h -- Simulator for Motorola 68HC11 Copyright (C) 1999, 2000 Free Software Foundation, Inc. Written by Stephane Carrez (stcarrez@worldnet.fr) This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef _SIM_MAIN_H #define _SIM_MAIN_H #define WITH_MODULO_MEMORY 1 #define WITH_WATCHPOINTS 1 #define SIM_HANDLES_LMA 1 #include "sim-basics.h" typedef address_word sim_cia; #include "sim-signal.h" #include "sim-base.h" #include "bfd.h" #include "opcode/m68hc11.h" #include "callback.h" #include "remote-sim.h" #include "opcode/m68hc11.h" #include "sim-types.h" typedef unsigned8 uint8; typedef unsigned16 uint16; typedef signed16 int16; typedef unsigned32 uint32; typedef signed32 int32; typedef unsigned64 uint64; typedef signed64 int64; struct _sim_cpu; #include "interrupts.h" #include #define X_REGNUM 0 #define D_REGNUM 1 #define Y_REGNUM 2 #define SP_REGNUM 3 #define PC_REGNUM 4 #define A_REGNUM 5 #define B_REGNUM 6 #define PSW_REGNUM 7 #define Z_REGNUM 8 #define FP_REGNUM 9 #define TMP_REGNUM 10 #define ZS_REGNUM 11 #define XY_REGNUM 12 #define ZD1_REGNUM 13 #define ZD32_REGNUM (ZD1_REGNUM+31) #define FIRST_SOFT_REGNUM (Z_REGNUM) #define MAX_SOFT_REG (ZD32_REGNUM - Z_REGNUM + 1) typedef struct m6811_regs { unsigned short d; unsigned short ix; unsigned short iy; unsigned short sp; unsigned short pc; unsigned char ccr; } m6811_regs; /* Description of 68HC11 IO registers. Such description is only provided for the info command to display the current setting of IO registers from GDB. */ struct io_reg_desc { int mask; const char *short_name; const char *long_name; }; typedef struct io_reg_desc io_reg_desc; extern void print_io_reg_desc (SIM_DESC sd, io_reg_desc *desc, int val, int mode); extern void print_io_byte (SIM_DESC sd, const char *name, io_reg_desc *desc, uint8 val, uint16 addr); /* List of special 68HC11 instructions that are not handled by the 'gencode.c' generator. These complex instructions are implemented by 'cpu_special'. */ enum M6811_Special { M6811_RTI, M6811_WAI, M6811_SWI, M6811_TEST, M6811_ILLEGAL, M6811_EMUL_SYSCALL }; #define CPU_POP 1 #define CPU_PUSH 2 #define MAX_PORTS 0x40 /* Tentative to keep track of the stack frame. The frame is updated each time a call or a return are made. We also have to take into account changes of stack pointer (either thread switch or longjmp). */ struct cpu_frame { struct cpu_frame *up; uint16 pc; uint16 sp_low; uint16 sp_high; }; /* Represents a list of frames (or a thread). */ struct cpu_frame_list { struct cpu_frame_list *next; struct cpu_frame_list *prev; struct cpu_frame *frame; }; struct _sim_cpu { /* CPU registers. */ struct m6811_regs cpu_regs; /* CPU interrupts. */ struct interrupts cpu_interrupts; struct cpu_frame_list *cpu_frames; struct cpu_frame_list *cpu_current_frame; int cpu_need_update_frame; /* CPU absolute cycle time. The cycle time is updated after each instruction, by the number of cycles taken by the instruction. It is cleared only when reset occurs. */ signed64 cpu_absolute_cycle; /* Number of cycles to increment after the current instruction. This is also the number of ticks for the generic event scheduler. */ uint8 cpu_current_cycle; int cpu_emul_syscall; int cpu_is_initialized; int cpu_running; int cpu_check_memory; int cpu_stop_on_interrupt; /* When this is set, start execution of program at address specified in the ELF header. This is used for testing some programs that do not have an interrupt table linked with them. Programs created during the GCC validation are like this. A normal 68HC11 does not behave like this (unless there is some OS or downloadable feature). */ int cpu_use_elf_start; /* The starting address specified in ELF header. */ int cpu_elf_start; uint16 cpu_insn_pc; unsigned short cpu_nb_pseudo_regs; uint16 cpu_page0_reg[MAX_SOFT_REG]; /* CPU frequency. This is the quartz frequency. It is divided by 4 to get the cycle time. This is used for the timer rate and for the baud rate generation. */ unsigned long cpu_frequency; /* The mode in which the CPU is configured (MODA and MODB pins). */ unsigned int cpu_mode; /* Initial value of the CONFIG register. */ uint8 cpu_config; uint8 cpu_use_local_config; uint8 ios[0x3F]; /* ... base type ... */ sim_cpu_base base; }; /* Returns the cpu absolute cycle time (A virtual counter incremented at each 68HC11 E clock). */ #define cpu_current_cycle(PROC) ((PROC)->cpu_absolute_cycle) #define cpu_add_cycles(PROC,T) ((PROC)->cpu_current_cycle += (signed64) (T)) #define cpu_is_running(PROC) ((PROC)->cpu_running) /* Get the IO/RAM base addresses depending on the M6811_INIT register. */ #define cpu_get_io_base(PROC) \ (((uint16)(((PROC)->ios[M6811_INIT]) & 0x0F))<<12) #define cpu_get_reg_base(PROC) \ (((uint16)(((PROC)->ios[M6811_INIT]) & 0xF0))<<8) /* Returns the different CPU registers. */ #define cpu_get_ccr(PROC) ((PROC)->cpu_regs.ccr) #define cpu_get_pc(PROC) ((PROC)->cpu_regs.pc) #define cpu_get_d(PROC) ((PROC)->cpu_regs.d) #define cpu_get_x(PROC) ((PROC)->cpu_regs.ix) #define cpu_get_y(PROC) ((PROC)->cpu_regs.iy) #define cpu_get_sp(PROC) ((PROC)->cpu_regs.sp) #define cpu_get_a(PROC) ((PROC->cpu_regs.d >> 8) & 0x0FF) #define cpu_get_b(PROC) ((PROC->cpu_regs.d) & 0x0FF) #define cpu_set_d(PROC,VAL) (((PROC)->cpu_regs.d) = (VAL)) #define cpu_set_x(PROC,VAL) (((PROC)->cpu_regs.ix) = (VAL)) #define cpu_set_y(PROC,VAL) (((PROC)->cpu_regs.iy) = (VAL)) #if 0 /* This is a function in m68hc11_sim.c to keep track of the frame. */ #define cpu_set_sp(PROC,VAL) (((PROC)->cpu_regs.sp) = (VAL)) #endif #define cpu_set_pc(PROC,VAL) (((PROC)->cpu_regs.pc) = (VAL)) #define cpu_set_a(PROC,VAL) \ cpu_set_d(PROC,((VAL) << 8) | cpu_get_b(PROC)) #define cpu_set_b(PROC,VAL) \ cpu_set_d(PROC,((cpu_get_a(PROC)) << 8)|(VAL & 0x0FF)) #define cpu_set_ccr(PROC,VAL) ((PROC)->cpu_regs.ccr = (VAL)) #define cpu_get_ccr_H(PROC) ((cpu_get_ccr(PROC) & M6811_H_BIT) ? 1: 0) #define cpu_get_ccr_X(PROC) ((cpu_get_ccr(PROC) & M6811_X_BIT) ? 1: 0) #define cpu_get_ccr_S(PROC) ((cpu_get_ccr(PROC) & M6811_S_BIT) ? 1: 0) #define cpu_get_ccr_N(PROC) ((cpu_get_ccr(PROC) & M6811_N_BIT) ? 1: 0) #define cpu_get_ccr_V(PROC) ((cpu_get_ccr(PROC) & M6811_V_BIT) ? 1: 0) #define cpu_get_ccr_C(PROC) ((cpu_get_ccr(PROC) & M6811_C_BIT) ? 1: 0) #define cpu_get_ccr_Z(PROC) ((cpu_get_ccr(PROC) & M6811_Z_BIT) ? 1: 0) #define cpu_get_ccr_I(PROC) ((cpu_get_ccr(PROC) & M6811_I_BIT) ? 1: 0) #define cpu_set_ccr_flag(S,B,V) \ cpu_set_ccr(S,(cpu_get_ccr(S) & ~(B)) | ((V) ? B : 0)) #define cpu_set_ccr_H(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_H_BIT, VAL) #define cpu_set_ccr_X(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_X_BIT, VAL) #define cpu_set_ccr_S(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_S_BIT, VAL) #define cpu_set_ccr_N(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_N_BIT, VAL) #define cpu_set_ccr_V(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_V_BIT, VAL) #define cpu_set_ccr_C(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_C_BIT, VAL) #define cpu_set_ccr_Z(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_Z_BIT, VAL) #define cpu_set_ccr_I(PROC,VAL) cpu_set_ccr_flag(PROC, M6811_I_BIT, VAL) #undef inline #define inline static __inline__ extern void cpu_memory_exception (struct _sim_cpu *proc, SIM_SIGNAL excep, uint16 addr, const char *message); inline uint8 memory_read8 (sim_cpu *cpu, uint16 addr) { uint8 val; if (sim_core_read_buffer (CPU_STATE (cpu), cpu, 0, &val, addr, 1) != 1) { cpu_memory_exception (cpu, SIM_SIGSEGV, addr, "Read error"); } return val; } inline void memory_write8 (sim_cpu *cpu, uint16 addr, uint8 val) { if (sim_core_write_buffer (CPU_STATE (cpu), cpu, 0, &val, addr, 1) != 1) { cpu_memory_exception (cpu, SIM_SIGSEGV, addr, "Write error"); } } inline uint16 memory_read16 (sim_cpu *cpu, uint16 addr) { uint8 b[2]; if (sim_core_read_buffer (CPU_STATE (cpu), cpu, 0, b, addr, 2) != 2) { cpu_memory_exception (cpu, SIM_SIGSEGV, addr, "Read error"); } return (((uint16) (b[0])) << 8) | ((uint16) b[1]); } inline void memory_write16 (sim_cpu *cpu, uint16 addr, uint16 val) { uint8 b[2]; b[0] = val >> 8; b[1] = val; if (sim_core_write_buffer (CPU_STATE (cpu), cpu, 0, b, addr, 2) != 2) { cpu_memory_exception (cpu, SIM_SIGSEGV, addr, "Write error"); } } extern void cpu_ccr_update_tst8 (sim_cpu *proc, uint8 val); inline void cpu_ccr_update_tst16 (sim_cpu *proc, uint16 val) { cpu_set_ccr_V (proc, 0); cpu_set_ccr_N (proc, val & 0x8000 ? 1 : 0); cpu_set_ccr_Z (proc, val == 0 ? 1 : 0); } inline void cpu_ccr_update_shift8 (sim_cpu *proc, uint8 val) { cpu_set_ccr_N (proc, val & 0x80 ? 1 : 0); cpu_set_ccr_Z (proc, val == 0 ? 1 : 0); cpu_set_ccr_V (proc, cpu_get_ccr_N (proc) ^ cpu_get_ccr_C (proc)); } inline void cpu_ccr_update_shift16 (sim_cpu *proc, uint16 val) { cpu_set_ccr_N (proc, val & 0x8000 ? 1 : 0); cpu_set_ccr_Z (proc, val == 0 ? 1 : 0); cpu_set_ccr_V (proc, cpu_get_ccr_N (proc) ^ cpu_get_ccr_C (proc)); } inline void cpu_ccr_update_add8 (sim_cpu *proc, uint8 r, uint8 a, uint8 b) { cpu_set_ccr_C (proc, ((a & b) | (b & ~r) | (a & ~r)) & 0x80 ? 1 : 0); cpu_set_ccr_V (proc, ((a & b & ~r) | (~a & ~b & r)) & 0x80 ? 1 : 0); cpu_set_ccr_Z (proc, r == 0); cpu_set_ccr_N (proc, r & 0x80 ? 1 : 0); } inline void cpu_ccr_update_sub8 (sim_cpu *proc, uint8 r, uint8 a, uint8 b) { cpu_set_ccr_C (proc, ((~a & b) | (b & r) | (~a & r)) & 0x80 ? 1 : 0); cpu_set_ccr_V (proc, ((a & ~b & ~r) | (~a & b & r)) & 0x80 ? 1 : 0); cpu_set_ccr_Z (proc, r == 0); cpu_set_ccr_N (proc, r & 0x80 ? 1 : 0); } inline void cpu_ccr_update_add16 (sim_cpu *proc, uint16 r, uint16 a, uint16 b) { cpu_set_ccr_C (proc, ((a & b) | (b & ~r) | (a & ~r)) & 0x8000 ? 1 : 0); cpu_set_ccr_V (proc, ((a & b & ~r) | (~a & ~b & r)) & 0x8000 ? 1 : 0); cpu_set_ccr_Z (proc, r == 0); cpu_set_ccr_N (proc, r & 0x8000 ? 1 : 0); } inline void cpu_ccr_update_sub16 (sim_cpu *proc, uint16 r, uint16 a, uint16 b) { cpu_set_ccr_C (proc, ((~a & b) | (b & r) | (~a & r)) & 0x8000 ? 1 : 0); cpu_set_ccr_V (proc, ((a & ~b & ~r) | (~a & b & r)) & 0x8000 ? 1 : 0); cpu_set_ccr_Z (proc, r == 0); cpu_set_ccr_N (proc, r & 0x8000 ? 1 : 0); } inline void cpu_push_uint8 (sim_cpu *proc, uint8 val) { uint16 addr = proc->cpu_regs.sp; memory_write8 (proc, addr, val); proc->cpu_regs.sp = addr - 1; proc->cpu_need_update_frame |= CPU_PUSH; } inline void cpu_push_uint16 (sim_cpu *proc, uint16 val) { uint16 addr = proc->cpu_regs.sp - 1; memory_write16 (proc, addr, val); proc->cpu_regs.sp = addr - 1; proc->cpu_need_update_frame |= CPU_PUSH; } inline uint8 cpu_pop_uint8 (sim_cpu *proc) { uint16 addr = proc->cpu_regs.sp; uint8 val; val = memory_read8 (proc, addr + 1); proc->cpu_regs.sp = addr + 1; proc->cpu_need_update_frame |= CPU_POP; return val; } inline uint16 cpu_pop_uint16 (sim_cpu *proc) { uint16 addr = proc->cpu_regs.sp; uint16 val; val = memory_read16 (proc, addr + 1); proc->cpu_regs.sp = addr + 2; proc->cpu_need_update_frame |= CPU_POP; return val; } inline uint8 cpu_fetch8 (sim_cpu *proc) { uint16 addr = proc->cpu_regs.pc; uint8 val; val = memory_read8 (proc, addr); proc->cpu_regs.pc = addr + 1; return val; } inline uint16 cpu_fetch16 (sim_cpu *proc) { uint16 addr = proc->cpu_regs.pc; uint16 val; val = memory_read16 (proc, addr); proc->cpu_regs.pc = addr + 2; return val; } extern void cpu_call (sim_cpu* proc, uint16 addr); extern void cpu_special (sim_cpu *proc, enum M6811_Special special); extern uint16 cpu_fetch_relbranch (sim_cpu *proc); extern void cpu_push_all (sim_cpu *proc); extern void cpu_single_step (sim_cpu *proc); extern void cpu_info (SIM_DESC sd, sim_cpu *proc); extern int cpu_initialize (SIM_DESC sd, sim_cpu *cpu); extern void cpu_print_frame (SIM_DESC sd, sim_cpu *cpu); extern void cpu_set_sp (sim_cpu *cpu, uint16 val); extern uint16 cpu_frame_reg (sim_cpu *cpu, uint16 rn); extern int cpu_reset (sim_cpu *cpu); extern int cpu_restart (sim_cpu *cpu); extern void sim_memory_error (sim_cpu *cpu, SIM_SIGNAL excep, uint16 addr, const char *message, ...); extern void emul_os (int op, sim_cpu *cpu); extern void cpu_interp (sim_cpu *cpu); /* The current state of the processor; registers, memory, etc. */ #define CIA_GET(CPU) (cpu_get_pc (CPU)) #define CIA_SET(CPU,VAL) (cpu_set_pc ((CPU), (VAL))) #if (WITH_SMP) #define STATE_CPU(sd,n) (&(sd)->cpu[n]) #else #define STATE_CPU(sd,n) (&(sd)->cpu[0]) #endif struct sim_state { sim_cpu cpu[MAX_NR_PROCESSORS]; device *devices; sim_state_base base; }; extern void sim_set_profile (int n); extern void sim_set_profile_size (int n); extern void sim_board_reset (SIM_DESC sd); #endif