/* dv-m68hc11.c -- CPU 68HC11&68HC12 as a device.
Copyright (C) 1999-2024 Free Software Foundation, Inc.
Written by Stephane Carrez (stcarrez@nerim.fr)
(From a driver model Contributed by Cygnus Solutions.)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/* This must come before any other includes. */
#include "defs.h"
#include "sim-main.h"
#include "sim-hw.h"
#include "hw-main.h"
#include "sim-options.h"
#include "hw-base.h"
#include
#include
#include "m68hc11-sim.h"
/* DEVICE
m68hc11cpu - m68hc11 cpu virtual device
m68hc12cpu - m68hc12 cpu virtual device
DESCRIPTION
Implements the external m68hc11/68hc12 functionality. This includes
the delivery of of interrupts generated from other devices and the
handling of device specific registers.
PROPERTIES
reg
Register base (should be 0x1000 0x03f for C11, 0x0000 0x3ff for HC12).
clock
Frequency of the quartz used by the processor.
mode [single | expanded | bootstrap | test]
Cpu operating mode (the MODA and MODB external pins).
PORTS
reset (input)
Reset the cpu and generates a cpu-reset event (used to reset
other devices).
nmi (input)
Deliver a non-maskable interrupt to the processor.
set-port-a (input)
set-port-c (input)
set-pord-d (input)
Allow an external device to set the value of port A, C or D inputs.
cpu-reset (output)
Event generated after the CPU performs a reset.
port-a (output)
port-b (output)
port-c (output)
port-d (output)
Event generated when the value of the output port A, B, C or D
changes.
BUGS
When delivering an interrupt, this code assumes that there is only
one processor (number 0).
*/
enum
{
OPTION_OSC_SET = OPTION_START,
OPTION_OSC_CLEAR,
OPTION_OSC_INFO
};
static DECLARE_OPTION_HANDLER (m68hc11_option_handler);
static const OPTION m68hc11_options[] =
{
{ {"osc-set", required_argument, NULL, OPTION_OSC_SET },
'\0', "BIT,FREQ", "Set the oscillator on input port BIT",
m68hc11_option_handler },
{ {"osc-clear", required_argument, NULL, OPTION_OSC_CLEAR },
'\0', "BIT", "Clear oscillator on input port BIT",
m68hc11_option_handler },
{ {"osc-info", no_argument, NULL, OPTION_OSC_INFO },
'\0', NULL, "Print information about current input oscillators",
m68hc11_option_handler },
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
};
struct input_osc
{
int64_t on_time;
int64_t off_time;
int64_t repeat;
struct hw_event *event;
const char *name;
uint8_t mask;
uint8_t value;
uint16_t addr;
};
#define NR_PORT_A_OSC (4)
#define NR_PORT_B_OSC (0)
#define NR_PORT_C_OSC (8)
#define NR_PORT_D_OSC (6)
#define NR_OSC (NR_PORT_A_OSC + NR_PORT_B_OSC + NR_PORT_C_OSC + NR_PORT_D_OSC)
struct m68hc11cpu {
/* Pending interrupts for delivery by event handler. */
int pending_reset;
int pending_nmi;
int pending_level;
struct hw_event *event;
unsigned_word attach_address;
unsigned int attach_size;
int attach_space;
int last_oscillator;
struct input_osc oscillators[NR_OSC];
};
/* input port ID's */
enum {
RESET_PORT,
NMI_PORT,
IRQ_PORT,
CPU_RESET_PORT,
SET_PORT_A,
SET_PORT_C,
SET_PORT_D,
CPU_WRITE_PORT,
PORT_A,
PORT_B,
PORT_C,
PORT_D,
CAPTURE
};
static const struct hw_port_descriptor m68hc11cpu_ports[] = {
/* Interrupt inputs. */
{ "reset", RESET_PORT, 0, input_port, },
{ "nmi", NMI_PORT, 0, input_port, },
{ "irq", IRQ_PORT, 0, input_port, },
{ "set-port-a", SET_PORT_A, 0, input_port, },
{ "set-port-c", SET_PORT_C, 0, input_port, },
{ "set-port-d", SET_PORT_D, 0, input_port, },
{ "cpu-write-port", CPU_WRITE_PORT, 0, input_port, },
/* Events generated for connection to other devices. */
{ "cpu-reset", CPU_RESET_PORT, 0, output_port, },
/* Events generated when the corresponding port is
changed by the program. */
{ "port-a", PORT_A, 0, output_port, },
{ "port-b", PORT_B, 0, output_port, },
{ "port-c", PORT_C, 0, output_port, },
{ "port-d", PORT_D, 0, output_port, },
{ "capture", CAPTURE, 0, output_port, },
{ NULL, },
};
static hw_io_read_buffer_method m68hc11cpu_io_read_buffer;
static hw_io_write_buffer_method m68hc11cpu_io_write_buffer;
static hw_ioctl_method m68hc11_ioctl;
/* Finish off the partially created hw device. Attach our local
callbacks. Wire up our port names etc. */
static hw_port_event_method m68hc11cpu_port_event;
static void make_oscillator (struct m68hc11cpu *controller,
const char *id, uint16_t addr, uint8_t mask);
static struct input_osc *find_oscillator (struct m68hc11cpu *controller,
const char *id);
static void reset_oscillators (struct hw *me);
static void
dv_m6811_attach_address_callback (struct hw *me,
int level,
int space,
address_word addr,
address_word nr_bytes,
struct hw *client)
{
HW_TRACE ((me, "attach - level=%d, space=%d, addr=0x%lx, sz=%ld, client=%s",
level, space, (unsigned long) addr, (unsigned long) nr_bytes,
hw_path (client)));
if (space != io_map)
{
sim_core_attach (hw_system (me),
NULL, /*cpu*/
level,
access_read_write_exec,
space, addr,
nr_bytes,
0, /* modulo */
client,
NULL);
}
else
{
/*printf("Attach from sub device: %d\n", (long) addr);*/
sim_core_attach (hw_system (me),
NULL, /*cpu*/
level,
access_io,
space, addr,
nr_bytes,
0, /* modulo */
client,
NULL);
}
}
static void
m68hc11_delete (struct hw* me)
{
struct m68hc11cpu *controller;
controller = hw_data (me);
reset_oscillators (me);
hw_detach_address (me, M6811_IO_LEVEL,
controller->attach_space,
controller->attach_address,
controller->attach_size, me);
}
static void
attach_m68hc11_regs (struct hw *me,
struct m68hc11cpu *controller)
{
SIM_DESC sd;
sim_cpu *cpu;
struct m68hc11_sim_cpu *m68hc11_cpu;
reg_property_spec reg;
const char *cpu_mode;
if (hw_find_property (me, "reg") == NULL)
hw_abort (me, "Missing \"reg\" property");
if (!hw_find_reg_array_property (me, "reg", 0, ®))
hw_abort (me, "\"reg\" property must contain one addr/size entry");
hw_unit_address_to_attach_address (hw_parent (me),
®.address,
&controller->attach_space,
&controller->attach_address,
me);
hw_unit_size_to_attach_size (hw_parent (me),
®.size,
&controller->attach_size, me);
hw_attach_address (hw_parent (me), M6811_IO_LEVEL,
controller->attach_space,
controller->attach_address,
controller->attach_size,
me);
set_hw_delete (me, m68hc11_delete);
/* Get cpu frequency. */
sd = hw_system (me);
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
if (hw_find_property (me, "clock") != NULL)
{
m68hc11_cpu->cpu_frequency = hw_find_integer_property (me, "clock");
}
else
{
m68hc11_cpu->cpu_frequency = 8*1000*1000;
}
if (hw_find_property (me, "use_bank") != NULL)
hw_attach_address (hw_parent (me), 0,
exec_map,
m68hc11_cpu->bank_start,
m68hc11_cpu->bank_end - m68hc11_cpu->bank_start,
me);
cpu_mode = "expanded";
if (hw_find_property (me, "mode") != NULL)
cpu_mode = hw_find_string_property (me, "mode");
if (strcmp (cpu_mode, "test") == 0)
m68hc11_cpu->cpu_mode = M6811_MDA | M6811_SMOD;
else if (strcmp (cpu_mode, "bootstrap") == 0)
m68hc11_cpu->cpu_mode = M6811_SMOD;
else if (strcmp (cpu_mode, "single") == 0)
m68hc11_cpu->cpu_mode = 0;
else
m68hc11_cpu->cpu_mode = M6811_MDA;
controller->last_oscillator = 0;
/* Create oscillators for input port A. */
make_oscillator (controller, "A7", M6811_PORTA, 0x80);
make_oscillator (controller, "A2", M6811_PORTA, 0x04);
make_oscillator (controller, "A1", M6811_PORTA, 0x02);
make_oscillator (controller, "A0", M6811_PORTA, 0x01);
/* port B is output only. */
/* Create oscillators for input port C. */
make_oscillator (controller, "C0", M6811_PORTC, 0x01);
make_oscillator (controller, "C1", M6811_PORTC, 0x02);
make_oscillator (controller, "C2", M6811_PORTC, 0x04);
make_oscillator (controller, "C3", M6811_PORTC, 0x08);
make_oscillator (controller, "C4", M6811_PORTC, 0x10);
make_oscillator (controller, "C5", M6811_PORTC, 0x20);
make_oscillator (controller, "C6", M6811_PORTC, 0x40);
make_oscillator (controller, "C7", M6811_PORTC, 0x80);
/* Create oscillators for input port D. */
make_oscillator (controller, "D0", M6811_PORTD, 0x01);
make_oscillator (controller, "D1", M6811_PORTD, 0x02);
make_oscillator (controller, "D2", M6811_PORTD, 0x04);
make_oscillator (controller, "D3", M6811_PORTD, 0x08);
make_oscillator (controller, "D4", M6811_PORTD, 0x10);
make_oscillator (controller, "D5", M6811_PORTD, 0x20);
/* Add oscillator commands. */
sim_add_option_table (sd, 0, m68hc11_options);
}
static void
m68hc11cpu_finish (struct hw *me)
{
struct m68hc11cpu *controller;
controller = HW_ZALLOC (me, struct m68hc11cpu);
set_hw_data (me, controller);
set_hw_io_read_buffer (me, m68hc11cpu_io_read_buffer);
set_hw_io_write_buffer (me, m68hc11cpu_io_write_buffer);
set_hw_ports (me, m68hc11cpu_ports);
set_hw_port_event (me, m68hc11cpu_port_event);
set_hw_attach_address (me, dv_m6811_attach_address_callback);
#ifdef set_hw_ioctl
set_hw_ioctl (me, m68hc11_ioctl);
#else
me->to_ioctl = m68hc11_ioctl;
#endif
/* Initialize the pending interrupt flags. */
controller->pending_level = 0;
controller->pending_reset = 0;
controller->pending_nmi = 0;
controller->event = NULL;
attach_m68hc11_regs (me, controller);
}
/* An event arrives on an interrupt port. */
static void
deliver_m68hc11cpu_interrupt (struct hw *me, void *data)
{
}
static void
make_oscillator (struct m68hc11cpu *controller, const char *name,
uint16_t addr, uint8_t mask)
{
struct input_osc *osc;
if (controller->last_oscillator >= NR_OSC)
hw_abort (0, "Too many oscillators");
osc = &controller->oscillators[controller->last_oscillator];
osc->name = name;
osc->addr = addr;
osc->mask = mask;
controller->last_oscillator++;
}
/* Find the oscillator given the input port name. */
static struct input_osc *
find_oscillator (struct m68hc11cpu *controller, const char *name)
{
int i;
for (i = 0; i < controller->last_oscillator; i++)
if (strcasecmp (controller->oscillators[i].name, name) == 0)
return &controller->oscillators[i];
return 0;
}
static void
oscillator_handler (struct hw *me, void *data)
{
struct input_osc *osc = (struct input_osc*) data;
SIM_DESC sd;
sim_cpu *cpu;
struct m68hc11_sim_cpu *m68hc11_cpu;
int64_t dt;
uint8_t val;
sd = hw_system (me);
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
/* Change the input bit. */
osc->value ^= osc->mask;
val = m68hc11_cpu->ios[osc->addr] & ~osc->mask;
val |= osc->value;
m68hc11cpu_set_port (me, cpu, osc->addr, val);
/* Setup event to toggle the bit. */
if (osc->value)
dt = osc->on_time;
else
dt = osc->off_time;
if (dt && --osc->repeat >= 0)
{
sim_events *events = STATE_EVENTS (sd);
dt += events->nr_ticks_to_process;
osc->event = hw_event_queue_schedule (me, dt, oscillator_handler, osc);
}
else
osc->event = 0;
}
static void
reset_oscillators (struct hw *me)
{
struct m68hc11cpu *controller = hw_data (me);
int i;
for (i = 0; i < controller->last_oscillator; i++)
{
if (controller->oscillators[i].event)
{
hw_event_queue_deschedule (me, controller->oscillators[i].event);
controller->oscillators[i].event = 0;
}
}
}
static void
m68hc11cpu_port_event (struct hw *me,
int my_port,
struct hw *source,
int source_port,
int level)
{
struct m68hc11cpu *controller = hw_data (me);
SIM_DESC sd;
sim_cpu *cpu;
sd = hw_system (me);
cpu = STATE_CPU (sd, 0);
switch (my_port)
{
case RESET_PORT:
HW_TRACE ((me, "port-in reset"));
/* The reset is made in 3 steps:
- First, cleanup the current sim_cpu struct.
- Reset the devices.
- Restart the cpu for the reset (get the CPU mode from the
CONFIG register that gets initialized by EEPROM device). */
cpu_reset (cpu);
reset_oscillators (me);
hw_port_event (me, CPU_RESET_PORT, 1);
cpu_restart (cpu);
break;
case NMI_PORT:
controller->pending_nmi = 1;
HW_TRACE ((me, "port-in nmi"));
break;
case IRQ_PORT:
/* level == 0 means that the interrupt was cleared. */
if(level == 0)
controller->pending_level = -1; /* signal end of interrupt */
else
controller->pending_level = level;
HW_TRACE ((me, "port-in level=%d", level));
break;
case SET_PORT_A:
m68hc11cpu_set_port (me, cpu, M6811_PORTA, level);
break;
case SET_PORT_C:
m68hc11cpu_set_port (me, cpu, M6811_PORTC, level);
break;
case SET_PORT_D:
m68hc11cpu_set_port (me, cpu, M6811_PORTD, level);
break;
case CPU_WRITE_PORT:
break;
default:
hw_abort (me, "bad switch");
break;
}
/* Schedule an event to be delivered immediately after current
instruction. */
if(controller->event != NULL)
hw_event_queue_deschedule(me, controller->event);
controller->event =
hw_event_queue_schedule (me, 0, deliver_m68hc11cpu_interrupt, NULL);
}
io_reg_desc config_desc[] = {
{ M6811_NOSEC, "NOSEC ", "Security Mode Disable" },
{ M6811_NOCOP, "NOCOP ", "COP System Disable" },
{ M6811_ROMON, "ROMON ", "Enable On-chip Rom" },
{ M6811_EEON, "EEON ", "Enable On-chip EEprom" },
{ 0, 0, 0 }
};
io_reg_desc hprio_desc[] = {
{ M6811_RBOOT, "RBOOT ", "Read Bootstrap ROM" },
{ M6811_SMOD, "SMOD ", "Special Mode" },
{ M6811_MDA, "MDA ", "Mode Select A" },
{ M6811_IRV, "IRV ", "Internal Read Visibility" },
{ 0, 0, 0 }
};
io_reg_desc option_desc[] = {
{ M6811_ADPU, "ADPU ", "A/D Powerup" },
{ M6811_CSEL, "CSEL ", "A/D/EE Charge pump clock source select" },
{ M6811_IRQE, "IRQE ", "IRQ Edge/Level sensitive" },
{ M6811_DLY, "DLY ", "Stop exit turn on delay" },
{ M6811_CME, "CME ", "Clock Monitor Enable" },
{ M6811_CR1, "CR1 ", "COP timer rate select (CR1)" },
{ M6811_CR0, "CR0 ", "COP timer rate select (CR0)" },
{ 0, 0, 0 }
};
static void
m68hc11_info (struct hw *me)
{
SIM_DESC sd;
uint16_t base = 0;
sim_cpu *cpu;
struct m68hc11_sim_cpu *m68hc11_cpu;
uint8_t val;
sd = hw_system (me);
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
base = cpu_get_io_base (cpu);
sim_io_printf (sd, "M68HC11:\n");
val = m68hc11_cpu->ios[M6811_HPRIO];
print_io_byte (sd, "HPRIO ", hprio_desc, val, base + M6811_HPRIO);
switch (m68hc11_cpu->cpu_mode)
{
case M6811_MDA | M6811_SMOD:
sim_io_printf (sd, "[test]\n");
break;
case M6811_SMOD:
sim_io_printf (sd, "[bootstrap]\n");
break;
case M6811_MDA:
sim_io_printf (sd, "[extended]\n");
break;
default:
sim_io_printf (sd, "[single]\n");
break;
}
val = m68hc11_cpu->ios[M6811_CONFIG];
print_io_byte (sd, "CONFIG", config_desc, val, base + M6811_CONFIG);
sim_io_printf (sd, "\n");
val = m68hc11_cpu->ios[M6811_OPTION];
print_io_byte (sd, "OPTION", option_desc, val, base + M6811_OPTION);
sim_io_printf (sd, "\n");
val = m68hc11_cpu->ios[M6811_INIT];
print_io_byte (sd, "INIT ", 0, val, base + M6811_INIT);
sim_io_printf (sd, "Ram = 0x%04x IO = 0x%04x\n",
(((uint16_t) (val & 0xF0)) << 8),
(((uint16_t) (val & 0x0F)) << 12));
cpu_info (sd, cpu);
interrupts_info (sd, &m68hc11_cpu->cpu_interrupts);
}
static int
m68hc11_ioctl (struct hw *me,
hw_ioctl_request request,
va_list ap)
{
m68hc11_info (me);
return 0;
}
/* Setup an oscillator on an input port.
TON represents the time in seconds that the input port should be set to 1.
TOFF is the time in seconds for the input port to be set to 0.
The oscillator frequency is therefore 1 / (ton + toff).
REPEAT indicates the number of 1 <-> 0 transitions until the oscillator
stops. */
int
m68hc11cpu_set_oscillator (SIM_DESC sd, const char *port,
double ton, double toff, int64_t repeat)
{
sim_cpu *cpu;
struct m68hc11_sim_cpu *m68hc11_cpu;
struct input_osc *osc;
double f;
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
/* Find oscillator that corresponds to the input port. */
osc = find_oscillator (hw_data (m68hc11_cpu->hw_cpu), port);
if (osc == 0)
return -1;
/* Compute the ON time in cpu cycles. */
f = (double) (m68hc11_cpu->cpu_frequency) * ton;
osc->on_time = (int64_t) (f / 4.0);
if (osc->on_time < 1)
osc->on_time = 1;
/* Compute the OFF time in cpu cycles. */
f = (double) (m68hc11_cpu->cpu_frequency) * toff;
osc->off_time = (int64_t) (f / 4.0);
if (osc->off_time < 1)
osc->off_time = 1;
osc->repeat = repeat;
if (osc->event)
hw_event_queue_deschedule (m68hc11_cpu->hw_cpu, osc->event);
osc->event = hw_event_queue_schedule (m68hc11_cpu->hw_cpu,
osc->value ? osc->on_time
: osc->off_time,
oscillator_handler, osc);
return 0;
}
/* Clear the oscillator. */
int
m68hc11cpu_clear_oscillator (SIM_DESC sd, const char *port)
{
sim_cpu *cpu;
struct m68hc11_sim_cpu *m68hc11_cpu;
struct input_osc *osc;
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
osc = find_oscillator (hw_data (m68hc11_cpu->hw_cpu), port);
if (osc == 0)
return -1;
if (osc->event)
hw_event_queue_deschedule (m68hc11_cpu->hw_cpu, osc->event);
osc->event = 0;
osc->repeat = 0;
return 0;
}
static int
get_frequency (const char *s, double *f)
{
char *p;
*f = strtod (s, &p);
if (s == p)
return -1;
if (*p)
{
if (strcasecmp (p, "khz") == 0)
*f = *f * 1000.0;
else if (strcasecmp (p, "mhz") == 0)
*f = *f * 1000000.0;
else if (strcasecmp (p, "hz") != 0)
return -1;
}
return 0;
}
static SIM_RC
m68hc11_option_handler (SIM_DESC sd, sim_cpu *cpu,
int opt, char *arg, int is_command)
{
struct m68hc11_sim_cpu *m68hc11_cpu;
struct m68hc11cpu *controller;
double f;
char *p;
int i;
int title_printed = 0;
if (cpu == 0)
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
controller = hw_data (m68hc11_cpu->hw_cpu);
switch (opt)
{
case OPTION_OSC_SET:
p = strchr (arg, ',');
if (p)
*p++ = 0;
if (p == 0)
sim_io_eprintf (sd, "No frequency specified\n");
else if (get_frequency (p, &f) < 0 || f < 1.0e-8)
sim_io_eprintf (sd, "Invalid frequency: '%s'\n", p);
else if (m68hc11cpu_set_oscillator (sd, arg,
1.0 / (f * 2.0),
1.0 / (f * 2.0), LONG_MAX))
sim_io_eprintf (sd, "Invalid input port: '%s'\n", arg);
break;
case OPTION_OSC_CLEAR:
if (m68hc11cpu_clear_oscillator (sd, arg) != 0)
sim_io_eprintf (sd, "Invalid input port: '%s'\n", arg);
break;
case OPTION_OSC_INFO:
for (i = 0; i < controller->last_oscillator; i++)
{
int64_t t;
struct input_osc *osc;
osc = &controller->oscillators[i];
if (osc->event)
{
int cur_value;
int next_value;
char freq[32];
if (title_printed == 0)
{
title_printed = 1;
sim_io_printf (sd, " PORT Frequency Current"
" Next Transition time\n");
}
f = (double) (osc->on_time + osc->off_time);
f = (double) (m68hc11_cpu->cpu_frequency / 4) / f;
t = hw_event_remain_time (m68hc11_cpu->hw_cpu, osc->event);
if (f > 10000.0)
sprintf (freq, "%6.2f", f / 1000.0);
else
sprintf (freq, "%6.2f", f);
cur_value = osc->value ? 1 : 0;
next_value = osc->value ? 0 : 1;
if (f > 10000.0)
sim_io_printf (sd, " %4.4s %8.8s khz"
" %d %d %35.35s\n",
osc->name, freq,
cur_value, next_value,
cycle_to_string (cpu, t,
PRINT_TIME | PRINT_CYCLE));
else
sim_io_printf (sd, " %4.4s %8.8s hz "
" %d %d %35.35s\n",
osc->name, freq,
cur_value, next_value,
cycle_to_string (cpu, t,
PRINT_TIME | PRINT_CYCLE));
}
}
break;
}
return SIM_RC_OK;
}
/* generic read/write */
static unsigned
m68hc11cpu_io_read_buffer (struct hw *me,
void *dest,
int space,
unsigned_word base,
unsigned nr_bytes)
{
SIM_DESC sd;
struct m68hc11cpu *controller = hw_data (me);
sim_cpu *cpu;
struct m68hc11_sim_cpu *m68hc11_cpu;
unsigned byte = 0;
int result;
HW_TRACE ((me, "read 0x%08lx %d", (long) base, (int) nr_bytes));
sd = hw_system (me);
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
if (base >= m68hc11_cpu->bank_start && base < m68hc11_cpu->bank_end)
{
address_word virt_addr = phys_to_virt (cpu, base);
if (virt_addr != base)
return sim_core_read_buffer (sd, cpu, space, dest,
virt_addr, nr_bytes);
}
/* Handle reads for the sub-devices. */
base -= controller->attach_address;
result = sim_core_read_buffer (sd, cpu,
io_map, dest, base, nr_bytes);
if (result > 0)
return result;
while (nr_bytes)
{
if (base >= controller->attach_size)
break;
memcpy (dest, &m68hc11_cpu->ios[base], 1);
dest = (char*) dest + 1;
base++;
byte++;
nr_bytes--;
}
return byte;
}
void
m68hc11cpu_set_port (struct hw *me, sim_cpu *cpu,
unsigned addr, uint8_t val)
{
struct m68hc11_sim_cpu *m68hc11_cpu = M68HC11_SIM_CPU (cpu);
uint8_t mask;
uint8_t delta;
int check_interrupts = 0;
int i;
switch (addr)
{
case M6811_PORTA:
if (m68hc11_cpu->ios[M6811_PACTL] & M6811_DDRA7)
mask = 3;
else
mask = 0x83;
val = val & mask;
val |= m68hc11_cpu->ios[M6811_PORTA] & ~mask;
delta = val ^ m68hc11_cpu->ios[M6811_PORTA];
m68hc11_cpu->ios[M6811_PORTA] = val;
if (delta & 0x80)
{
/* Pulse accumulator is enabled. */
if ((m68hc11_cpu->ios[M6811_PACTL] & M6811_PAEN)
&& !(m68hc11_cpu->ios[M6811_PACTL] & M6811_PAMOD))
{
int inc;
/* Increment event counter according to rising/falling edge. */
if (m68hc11_cpu->ios[M6811_PACTL] & M6811_PEDGE)
inc = (val & 0x80) ? 1 : 0;
else
inc = (val & 0x80) ? 0 : 1;
m68hc11_cpu->ios[M6811_PACNT] += inc;
/* Event counter overflowed. */
if (inc && m68hc11_cpu->ios[M6811_PACNT] == 0)
{
m68hc11_cpu->ios[M6811_TFLG2] |= M6811_PAOVI;
check_interrupts = 1;
}
}
}
/* Scan IC3, IC2 and IC1. Bit number is 3 - i. */
for (i = 0; i < 3; i++)
{
mask = (1 << i);
if (delta & mask)
{
uint8_t edge;
int captured;
edge = m68hc11_cpu->ios[M6811_TCTL2];
edge = (edge >> (2 * i)) & 0x3;
switch (edge)
{
case 0:
captured = 0;
break;
case 1:
captured = (val & mask) != 0;
break;
case 2:
captured = (val & mask) == 0;
break;
default:
captured = 1;
break;
}
if (captured)
{
m68hc11_cpu->ios[M6811_TFLG1] |= (1 << i);
hw_port_event (me, CAPTURE, M6811_TIC1 + 3 - i);
check_interrupts = 1;
}
}
}
break;
case M6811_PORTC:
mask = m68hc11_cpu->ios[M6811_DDRC];
val = val & mask;
val |= m68hc11_cpu->ios[M6811_PORTC] & ~mask;
m68hc11_cpu->ios[M6811_PORTC] = val;
break;
case M6811_PORTD:
mask = m68hc11_cpu->ios[M6811_DDRD];
val = val & mask;
val |= m68hc11_cpu->ios[M6811_PORTD] & ~mask;
m68hc11_cpu->ios[M6811_PORTD] = val;
break;
default:
break;
}
if (check_interrupts)
interrupts_update_pending (&m68hc11_cpu->cpu_interrupts);
}
static void
m68hc11cpu_io_write (struct hw *me, sim_cpu *cpu,
unsigned_word addr, uint8_t val)
{
struct m68hc11_sim_cpu *m68hc11_cpu = M68HC11_SIM_CPU (cpu);
switch (addr)
{
case M6811_PORTA:
hw_port_event (me, PORT_A, val);
break;
case M6811_PIOC:
break;
case M6811_PORTC:
hw_port_event (me, PORT_C, val);
break;
case M6811_PORTB:
hw_port_event (me, PORT_B, val);
break;
case M6811_PORTCL:
break;
case M6811_DDRC:
break;
case M6811_PORTD:
hw_port_event (me, PORT_D, val);
break;
case M6811_DDRD:
break;
case M6811_TMSK2:
break;
/* Change the RAM and I/O mapping. */
case M6811_INIT:
{
uint8_t old_bank = m68hc11_cpu->ios[M6811_INIT];
m68hc11_cpu->ios[M6811_INIT] = val;
/* Update IO mapping. Detach from the old address
and attach to the new one. */
if ((old_bank & 0x0F) != (val & 0x0F))
{
struct m68hc11cpu *controller = hw_data (me);
hw_detach_address (hw_parent (me), M6811_IO_LEVEL,
controller->attach_space,
controller->attach_address,
controller->attach_size,
me);
controller->attach_address = (val & 0x0F0) << 12;
hw_attach_address (hw_parent (me), M6811_IO_LEVEL,
controller->attach_space,
controller->attach_address,
controller->attach_size,
me);
}
if ((old_bank & 0xF0) != (val & 0xF0))
{
;
}
return;
}
/* Writing the config is similar to programing the eeprom.
The config register value is the last byte of the EEPROM.
This last byte is not mapped in memory (that's why we have
to add '1' to 'end_addr'). */
case M6811_CONFIG:
{
return;
}
/* COP reset. */
case M6811_COPRST:
if (val == 0xAA && m68hc11_cpu->ios[addr] == 0x55)
{
val = 0;
/* COP reset here. */
}
break;
default:
break;
}
m68hc11_cpu->ios[addr] = val;
}
static unsigned
m68hc11cpu_io_write_buffer (struct hw *me,
const void *source,
int space,
unsigned_word base,
unsigned nr_bytes)
{
SIM_DESC sd;
struct m68hc11cpu *controller = hw_data (me);
unsigned byte;
sim_cpu *cpu;
struct m68hc11_sim_cpu *m68hc11_cpu;
int result;
HW_TRACE ((me, "write 0x%08lx %d", (long) base, (int) nr_bytes));
sd = hw_system (me);
cpu = STATE_CPU (sd, 0);
m68hc11_cpu = M68HC11_SIM_CPU (cpu);
if (base >= m68hc11_cpu->bank_start && base < m68hc11_cpu->bank_end)
{
address_word virt_addr = phys_to_virt (cpu, base);
if (virt_addr != base)
return sim_core_write_buffer (sd, cpu, space, source,
virt_addr, nr_bytes);
}
base -= controller->attach_address;
result = sim_core_write_buffer (sd, cpu,
io_map, source, base, nr_bytes);
if (result > 0)
return result;
byte = 0;
while (nr_bytes)
{
uint8_t val;
if (base >= controller->attach_size)
break;
val = *((uint8_t*) source);
m68hc11cpu_io_write (me, cpu, base, val);
source = (char*) source + 1;
base++;
byte++;
nr_bytes--;
}
return byte;
}
const struct hw_descriptor dv_m68hc11_descriptor[] = {
{ "m68hc11", m68hc11cpu_finish },
{ "m68hc12", m68hc11cpu_finish },
{ NULL },
};