/* m32r exception, interrupt, and trap (EIT) support
Copyright (C) 1998-2022 Free Software Foundation, Inc.
Contributed by Cygnus Solutions & Renesas.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* This must come before any other includes. */
#include "defs.h"
#include "portability.h"
#include "sim-main.h"
#include "sim-signal.h"
#include "sim-syscall.h"
#include "sim/callback.h"
#include "syscall.h"
#include
#include
#include
#include
#include
#include
#include
/* TODO: The Linux syscall emulation needs work to support non-Linux hosts.
Use an OS hack for now so the CPU emulation is available everywhere.
NB: The emulation is also missing argument conversion (endian & bitsize)
even on Linux hosts. */
#ifdef __linux__
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#endif
#define TRAP_LINUX_SYSCALL 2
#define TRAP_FLUSH_CACHE 12
/* The semantic code invokes this for invalid (unrecognized) instructions. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC pc)
{
SIM_DESC sd = CPU_STATE (current_cpu);
#if 0
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
h_bsm_set (current_cpu, h_sm_get (current_cpu));
h_bie_set (current_cpu, h_ie_get (current_cpu));
h_bcond_set (current_cpu, h_cond_get (current_cpu));
/* sm not changed */
h_ie_set (current_cpu, 0);
h_cond_set (current_cpu, 0);
h_bpc_set (current_cpu, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_RSVD_INSN_ADDR);
}
else
#endif
sim_engine_halt (sd, current_cpu, NULL, cia, sim_stopped, SIM_SIGILL);
return pc;
}
/* Process an address exception. */
void
m32r_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
unsigned int map, int nr_bytes, address_word addr,
transfer_type transfer, sim_core_signals sig)
{
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
m32rbf_h_cr_set (current_cpu, H_CR_BBPC,
m32rbf_h_cr_get (current_cpu, H_CR_BPC));
switch (MACH_NUM (CPU_MACH (current_cpu)))
{
case MACH_M32R:
m32rbf_h_bpsw_set (current_cpu, m32rbf_h_psw_get (current_cpu));
/* sm not changed. */
m32rbf_h_psw_set (current_cpu, m32rbf_h_psw_get (current_cpu) & 0x80);
break;
case MACH_M32RX:
m32rxf_h_bpsw_set (current_cpu, m32rxf_h_psw_get (current_cpu));
/* sm not changed. */
m32rxf_h_psw_set (current_cpu, m32rxf_h_psw_get (current_cpu) & 0x80);
break;
case MACH_M32R2:
m32r2f_h_bpsw_set (current_cpu, m32r2f_h_psw_get (current_cpu));
/* sm not changed. */
m32r2f_h_psw_set (current_cpu, m32r2f_h_psw_get (current_cpu) & 0x80);
break;
default:
abort ();
}
m32rbf_h_cr_set (current_cpu, H_CR_BPC, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_ADDR_EXCP_ADDR);
}
else
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr,
transfer, sig);
}
/* Translate target's address to host's address. */
static void *
t2h_addr (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr)
{
void *addr;
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
if (taddr == 0)
return NULL;
return sim_core_trans_addr (sd, cpu, read_map, taddr);
}
/* TODO: These functions are a big hack and assume that the host runtime has
type sizes and struct layouts that match the target. So the Linux emulation
probaly only really works in 32-bit runtimes. */
static void
translate_endian_h2t (void *addr, size_t size)
{
unsigned int *p = (unsigned int *) addr;
int i;
for (i = 0; i <= size - 4; i += 4,p++)
*p = H2T_4 (*p);
if (i <= size - 2)
*((unsigned short *) p) = H2T_2 (*((unsigned short *) p));
}
static void
translate_endian_t2h (void *addr, size_t size)
{
unsigned int *p = (unsigned int *) addr;
int i;
for (i = 0; i <= size - 4; i += 4,p++)
*p = T2H_4 (*p);
if (i <= size - 2)
*((unsigned short *) p) = T2H_2 (*((unsigned short *) p));
}
/* Trap support.
The result is the pc address to continue at.
Preprocessing like saving the various registers has already been done. */
USI
m32r_trap (SIM_CPU *current_cpu, PCADDR pc, int num)
{
SIM_DESC sd = CPU_STATE (current_cpu);
host_callback *cb = STATE_CALLBACK (sd);
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
goto case_default;
switch (num)
{
case TRAP_SYSCALL:
{
long result, result2;
int errcode;
sim_syscall_multi (current_cpu,
m32rbf_h_gr_get (current_cpu, 0),
m32rbf_h_gr_get (current_cpu, 1),
m32rbf_h_gr_get (current_cpu, 2),
m32rbf_h_gr_get (current_cpu, 3),
m32rbf_h_gr_get (current_cpu, 4),
&result, &result2, &errcode);
m32rbf_h_gr_set (current_cpu, 2, errcode);
m32rbf_h_gr_set (current_cpu, 0, result);
m32rbf_h_gr_set (current_cpu, 1, result2);
break;
}
#ifdef __linux__
case TRAP_LINUX_SYSCALL:
{
CB_SYSCALL s;
unsigned int func, arg1, arg2, arg3, arg4, arg5, arg6, arg7;
int result, result2, errcode;
if (STATE_ENVIRONMENT (sd) != USER_ENVIRONMENT)
goto case_default;
func = m32rbf_h_gr_get (current_cpu, 7);
arg1 = m32rbf_h_gr_get (current_cpu, 0);
arg2 = m32rbf_h_gr_get (current_cpu, 1);
arg3 = m32rbf_h_gr_get (current_cpu, 2);
arg4 = m32rbf_h_gr_get (current_cpu, 3);
arg5 = m32rbf_h_gr_get (current_cpu, 4);
arg6 = m32rbf_h_gr_get (current_cpu, 5);
arg7 = m32rbf_h_gr_get (current_cpu, 6);
CB_SYSCALL_INIT (&s);
s.func = func;
s.arg1 = arg1;
s.arg2 = arg2;
s.arg3 = arg3;
s.arg4 = arg4;
s.arg5 = arg5;
s.arg6 = arg6;
s.arg7 = arg7;
s.p1 = sd;
s.p2 = current_cpu;
s.read_mem = sim_syscall_read_mem;
s.write_mem = sim_syscall_write_mem;
result = 0;
result2 = 0;
errcode = 0;
switch (func)
{
case TARGET_LINUX_SYS_exit:
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, arg1);
break;
case TARGET_LINUX_SYS_read:
result = read (arg1, t2h_addr (cb, &s, arg2), arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_write:
result = write (arg1, t2h_addr (cb, &s, arg2), arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_open:
result = open ((char *) t2h_addr (cb, &s, arg1), arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_close:
result = close (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_creat:
result = creat ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_link:
result = link ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2));
errcode = errno;
break;
case TARGET_LINUX_SYS_unlink:
result = unlink ((char *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_chdir:
result = chdir ((char *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_time:
{
time_t t;
if (arg1 == 0)
{
result = (int) time (NULL);
errcode = errno;
}
else
{
result = (int) time (&t);
errcode = errno;
if (result != 0)
break;
t = H2T_4 (t);
if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t)) != sizeof(t))
{
result = -1;
errcode = EINVAL;
}
}
}
break;
case TARGET_LINUX_SYS_mknod:
result = mknod ((char *) t2h_addr (cb, &s, arg1),
(mode_t) arg2, (dev_t) arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_chmod:
result = chmod ((char *) t2h_addr (cb, &s, arg1), (mode_t) arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_lchown32:
case TARGET_LINUX_SYS_lchown:
result = lchown ((char *) t2h_addr (cb, &s, arg1),
(uid_t) arg2, (gid_t) arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_lseek:
result = (int) lseek (arg1, (off_t) arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_getpid:
result = getpid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getuid32:
case TARGET_LINUX_SYS_getuid:
result = getuid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_utime:
{
struct utimbuf buf;
if (arg2 == 0)
{
result = utime ((char *) t2h_addr (cb, &s, arg1), NULL);
errcode = errno;
}
else
{
buf = *((struct utimbuf *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&buf, sizeof(buf));
result = utime ((char *) t2h_addr (cb, &s, arg1), &buf);
errcode = errno;
}
}
break;
case TARGET_LINUX_SYS_access:
result = access ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_ftime:
{
struct timeb t;
result = ftime (&t);
errcode = errno;
if (result != 0)
break;
t.time = H2T_4 (t.time);
t.millitm = H2T_2 (t.millitm);
t.timezone = H2T_2 (t.timezone);
t.dstflag = H2T_2 (t.dstflag);
if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t))
!= sizeof(t))
{
result = -1;
errcode = EINVAL;
}
}
case TARGET_LINUX_SYS_sync:
sync ();
result = 0;
break;
case TARGET_LINUX_SYS_rename:
result = rename ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2));
errcode = errno;
break;
case TARGET_LINUX_SYS_mkdir:
result = mkdir ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_rmdir:
result = rmdir ((char *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_dup:
result = dup (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_brk:
result = brk ((void *) arg1);
errcode = errno;
//result = arg1;
break;
case TARGET_LINUX_SYS_getgid32:
case TARGET_LINUX_SYS_getgid:
result = getgid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_geteuid32:
case TARGET_LINUX_SYS_geteuid:
result = geteuid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getegid32:
case TARGET_LINUX_SYS_getegid:
result = getegid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_ioctl:
result = ioctl (arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_fcntl:
result = fcntl (arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_dup2:
result = dup2 (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_getppid:
result = getppid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getpgrp:
result = getpgrp ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getrlimit:
{
struct rlimit rlim;
result = getrlimit (arg1, &rlim);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&rlim, sizeof(rlim));
if ((s.write_mem) (cb, &s, arg2, (char *) &rlim, sizeof(rlim))
!= sizeof(rlim))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_getrusage:
{
struct rusage usage;
result = getrusage (arg1, &usage);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&usage, sizeof(usage));
if ((s.write_mem) (cb, &s, arg2, (char *) &usage, sizeof(usage))
!= sizeof(usage))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_gettimeofday:
{
struct timeval tv;
struct timezone tz;
result = gettimeofday (&tv, &tz);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&tv, sizeof(tv));
if ((s.write_mem) (cb, &s, arg1, (char *) &tv, sizeof(tv))
!= sizeof(tv))
{
result = -1;
errcode = EINVAL;
}
translate_endian_h2t (&tz, sizeof(tz));
if ((s.write_mem) (cb, &s, arg2, (char *) &tz, sizeof(tz))
!= sizeof(tz))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_getgroups32:
case TARGET_LINUX_SYS_getgroups:
{
gid_t *list = NULL;
if (arg1 > 0)
list = (gid_t *) malloc (arg1 * sizeof(gid_t));
result = getgroups (arg1, list);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (list, arg1 * sizeof(gid_t));
if (arg1 > 0)
if ((s.write_mem) (cb, &s, arg2, (char *) list, arg1 * sizeof(gid_t))
!= arg1 * sizeof(gid_t))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_select:
{
int n;
fd_set readfds;
fd_set *treadfdsp;
fd_set *hreadfdsp;
fd_set writefds;
fd_set *twritefdsp;
fd_set *hwritefdsp;
fd_set exceptfds;
fd_set *texceptfdsp;
fd_set *hexceptfdsp;
struct timeval *ttimeoutp;
struct timeval timeout;
n = arg1;
treadfdsp = (fd_set *) arg2;
if (treadfdsp != NULL)
{
readfds = *((fd_set *) t2h_addr (cb, &s, (unsigned int) treadfdsp));
translate_endian_t2h (&readfds, sizeof(readfds));
hreadfdsp = &readfds;
}
else
hreadfdsp = NULL;
twritefdsp = (fd_set *) arg3;
if (twritefdsp != NULL)
{
writefds = *((fd_set *) t2h_addr (cb, &s, (unsigned int) twritefdsp));
translate_endian_t2h (&writefds, sizeof(writefds));
hwritefdsp = &writefds;
}
else
hwritefdsp = NULL;
texceptfdsp = (fd_set *) arg4;
if (texceptfdsp != NULL)
{
exceptfds = *((fd_set *) t2h_addr (cb, &s, (unsigned int) texceptfdsp));
translate_endian_t2h (&exceptfds, sizeof(exceptfds));
hexceptfdsp = &exceptfds;
}
else
hexceptfdsp = NULL;
ttimeoutp = (struct timeval *) arg5;
timeout = *((struct timeval *) t2h_addr (cb, &s, (unsigned int) ttimeoutp));
translate_endian_t2h (&timeout, sizeof(timeout));
result = select (n, hreadfdsp, hwritefdsp, hexceptfdsp, &timeout);
errcode = errno;
if (result != 0)
break;
if (treadfdsp != NULL)
{
translate_endian_h2t (&readfds, sizeof(readfds));
if ((s.write_mem) (cb, &s, (unsigned long) treadfdsp,
(char *) &readfds, sizeof(readfds)) != sizeof(readfds))
{
result = -1;
errcode = EINVAL;
}
}
if (twritefdsp != NULL)
{
translate_endian_h2t (&writefds, sizeof(writefds));
if ((s.write_mem) (cb, &s, (unsigned long) twritefdsp,
(char *) &writefds, sizeof(writefds)) != sizeof(writefds))
{
result = -1;
errcode = EINVAL;
}
}
if (texceptfdsp != NULL)
{
translate_endian_h2t (&exceptfds, sizeof(exceptfds));
if ((s.write_mem) (cb, &s, (unsigned long) texceptfdsp,
(char *) &exceptfds, sizeof(exceptfds)) != sizeof(exceptfds))
{
result = -1;
errcode = EINVAL;
}
}
translate_endian_h2t (&timeout, sizeof(timeout));
if ((s.write_mem) (cb, &s, (unsigned long) ttimeoutp,
(char *) &timeout, sizeof(timeout)) != sizeof(timeout))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_symlink:
result = symlink ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2));
errcode = errno;
break;
case TARGET_LINUX_SYS_readlink:
result = readlink ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2),
arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_readdir:
result = (int) readdir ((DIR *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
#if 0
case TARGET_LINUX_SYS_mmap:
{
result = (int) mmap ((void *) t2h_addr (cb, &s, arg1),
arg2, arg3, arg4, arg5, arg6);
errcode = errno;
if (errno == 0)
{
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, arg2, 0, NULL, NULL);
}
}
break;
#endif
case TARGET_LINUX_SYS_mmap2:
{
void *addr;
size_t len;
int prot, flags, fildes;
off_t off;
addr = (void *) t2h_addr (cb, &s, arg1);
len = arg2;
prot = arg3;
flags = arg4;
fildes = arg5;
off = arg6 << 12;
result = (int) mmap (addr, len, prot, flags, fildes, off);
errcode = errno;
if (result != -1)
{
char c;
if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, len, 0, NULL, NULL);
}
}
break;
case TARGET_LINUX_SYS_mmap:
{
void *addr;
size_t len;
int prot, flags, fildes;
off_t off;
addr = *((void **) t2h_addr (cb, &s, arg1));
len = *((size_t *) t2h_addr (cb, &s, arg1 + 4));
prot = *((int *) t2h_addr (cb, &s, arg1 + 8));
flags = *((int *) t2h_addr (cb, &s, arg1 + 12));
fildes = *((int *) t2h_addr (cb, &s, arg1 + 16));
off = *((off_t *) t2h_addr (cb, &s, arg1 + 20));
addr = (void *) T2H_4 ((unsigned int) addr);
len = T2H_4 (len);
prot = T2H_4 (prot);
flags = T2H_4 (flags);
fildes = T2H_4 (fildes);
off = T2H_4 (off);
//addr = (void *) t2h_addr (cb, &s, (unsigned int) addr);
result = (int) mmap (addr, len, prot, flags, fildes, off);
errcode = errno;
//if (errno == 0)
if (result != -1)
{
char c;
if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, len, 0, NULL, NULL);
}
}
break;
case TARGET_LINUX_SYS_munmap:
result = munmap ((void *)arg1, arg2);
errcode = errno;
if (result != -1)
sim_core_detach (sd, NULL, 0, arg2, result);
break;
case TARGET_LINUX_SYS_truncate:
result = truncate ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_ftruncate:
result = ftruncate (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_fchmod:
result = fchmod (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_fchown32:
case TARGET_LINUX_SYS_fchown:
result = fchown (arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_statfs:
{
struct statfs statbuf;
result = statfs ((char *) t2h_addr (cb, &s, arg1), &statbuf);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&statbuf, sizeof(statbuf));
if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
!= sizeof(statbuf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_fstatfs:
{
struct statfs statbuf;
result = fstatfs (arg1, &statbuf);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&statbuf, sizeof(statbuf));
if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
!= sizeof(statbuf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_syslog:
result = syslog (arg1, (char *) t2h_addr (cb, &s, arg2));
errcode = errno;
break;
case TARGET_LINUX_SYS_setitimer:
{
struct itimerval value, ovalue;
value = *((struct itimerval *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&value, sizeof(value));
if (arg2 == 0)
{
result = setitimer (arg1, &value, NULL);
errcode = errno;
}
else
{
result = setitimer (arg1, &value, &ovalue);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&ovalue, sizeof(ovalue));
if ((s.write_mem) (cb, &s, arg3, (char *) &ovalue, sizeof(ovalue))
!= sizeof(ovalue))
{
result = -1;
errcode = EINVAL;
}
}
}
break;
case TARGET_LINUX_SYS_getitimer:
{
struct itimerval value;
result = getitimer (arg1, &value);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&value, sizeof(value));
if ((s.write_mem) (cb, &s, arg2, (char *) &value, sizeof(value))
!= sizeof(value))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_stat:
{
char *buf;
int buflen;
struct stat statbuf;
result = stat ((char *) t2h_addr (cb, &s, arg1), &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case TARGET_LINUX_SYS_lstat:
{
char *buf;
int buflen;
struct stat statbuf;
result = lstat ((char *) t2h_addr (cb, &s, arg1), &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case TARGET_LINUX_SYS_fstat:
{
char *buf;
int buflen;
struct stat statbuf;
result = fstat (arg1, &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case TARGET_LINUX_SYS_sysinfo:
{
struct sysinfo info;
result = sysinfo (&info);
errcode = errno;
if (result != 0)
break;
info.uptime = H2T_4 (info.uptime);
info.loads[0] = H2T_4 (info.loads[0]);
info.loads[1] = H2T_4 (info.loads[1]);
info.loads[2] = H2T_4 (info.loads[2]);
info.totalram = H2T_4 (info.totalram);
info.freeram = H2T_4 (info.freeram);
info.sharedram = H2T_4 (info.sharedram);
info.bufferram = H2T_4 (info.bufferram);
info.totalswap = H2T_4 (info.totalswap);
info.freeswap = H2T_4 (info.freeswap);
info.procs = H2T_2 (info.procs);
#if LINUX_VERSION_CODE >= 0x20400
info.totalhigh = H2T_4 (info.totalhigh);
info.freehigh = H2T_4 (info.freehigh);
info.mem_unit = H2T_4 (info.mem_unit);
#endif
if ((s.write_mem) (cb, &s, arg1, (char *) &info, sizeof(info))
!= sizeof(info))
{
result = -1;
errcode = EINVAL;
}
}
break;
#if 0
case TARGET_LINUX_SYS_ipc:
{
result = ipc (arg1, arg2, arg3, arg4,
(void *) t2h_addr (cb, &s, arg5), arg6);
errcode = errno;
}
break;
#endif
case TARGET_LINUX_SYS_fsync:
result = fsync (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_uname:
/* utsname contains only arrays of char, so it is not necessary
to translate endian. */
result = uname ((struct utsname *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_adjtimex:
{
struct timex buf;
result = adjtimex (&buf);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&buf, sizeof(buf));
if ((s.write_mem) (cb, &s, arg1, (char *) &buf, sizeof(buf))
!= sizeof(buf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_mprotect:
result = mprotect ((void *) arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_fchdir:
result = fchdir (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_setfsuid32:
case TARGET_LINUX_SYS_setfsuid:
result = setfsuid (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_setfsgid32:
case TARGET_LINUX_SYS_setfsgid:
result = setfsgid (arg1);
errcode = errno;
break;
#if 0
case TARGET_LINUX_SYS__llseek:
{
loff_t buf;
result = _llseek (arg1, arg2, arg3, &buf, arg5);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&buf, sizeof(buf));
if ((s.write_mem) (cb, &s, t2h_addr (cb, &s, arg4),
(char *) &buf, sizeof(buf)) != sizeof(buf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_getdents:
{
struct dirent dir;
result = getdents (arg1, &dir, arg3);
errcode = errno;
if (result != 0)
break;
dir.d_ino = H2T_4 (dir.d_ino);
dir.d_off = H2T_4 (dir.d_off);
dir.d_reclen = H2T_2 (dir.d_reclen);
if ((s.write_mem) (cb, &s, arg2, (char *) &dir, sizeof(dir))
!= sizeof(dir))
{
result = -1;
errcode = EINVAL;
}
}
break;
#endif
case TARGET_LINUX_SYS_flock:
result = flock (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_msync:
result = msync ((void *) arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_readv:
{
struct iovec vector;
vector = *((struct iovec *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&vector, sizeof(vector));
result = readv (arg1, &vector, arg3);
errcode = errno;
}
break;
case TARGET_LINUX_SYS_writev:
{
struct iovec vector;
vector = *((struct iovec *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&vector, sizeof(vector));
result = writev (arg1, &vector, arg3);
errcode = errno;
}
break;
case TARGET_LINUX_SYS_fdatasync:
result = fdatasync (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_mlock:
result = mlock ((void *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_munlock:
result = munlock ((void *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_nanosleep:
{
struct timespec req, rem;
req = *((struct timespec *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&req, sizeof(req));
result = nanosleep (&req, &rem);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&rem, sizeof(rem));
if ((s.write_mem) (cb, &s, arg2, (char *) &rem, sizeof(rem))
!= sizeof(rem))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_mremap: /* FIXME */
result = (int) mremap ((void *) t2h_addr (cb, &s, arg1), arg2, arg3, arg4);
errcode = errno;
break;
case TARGET_LINUX_SYS_getresuid32:
case TARGET_LINUX_SYS_getresuid:
{
uid_t ruid, euid, suid;
result = getresuid (&ruid, &euid, &suid);
errcode = errno;
if (result != 0)
break;
*((uid_t *) t2h_addr (cb, &s, arg1)) = H2T_4 (ruid);
*((uid_t *) t2h_addr (cb, &s, arg2)) = H2T_4 (euid);
*((uid_t *) t2h_addr (cb, &s, arg3)) = H2T_4 (suid);
}
break;
case TARGET_LINUX_SYS_poll:
{
struct pollfd ufds;
ufds = *((struct pollfd *) t2h_addr (cb, &s, arg1));
ufds.fd = T2H_4 (ufds.fd);
ufds.events = T2H_2 (ufds.events);
ufds.revents = T2H_2 (ufds.revents);
result = poll (&ufds, arg2, arg3);
errcode = errno;
}
break;
case TARGET_LINUX_SYS_getresgid32:
case TARGET_LINUX_SYS_getresgid:
{
uid_t rgid, egid, sgid;
result = getresgid (&rgid, &egid, &sgid);
errcode = errno;
if (result != 0)
break;
*((uid_t *) t2h_addr (cb, &s, arg1)) = H2T_4 (rgid);
*((uid_t *) t2h_addr (cb, &s, arg2)) = H2T_4 (egid);
*((uid_t *) t2h_addr (cb, &s, arg3)) = H2T_4 (sgid);
}
break;
case TARGET_LINUX_SYS_pread:
result = pread (arg1, (void *) t2h_addr (cb, &s, arg2), arg3, arg4);
errcode = errno;
break;
case TARGET_LINUX_SYS_pwrite:
result = pwrite (arg1, (void *) t2h_addr (cb, &s, arg2), arg3, arg4);
errcode = errno;
break;
case TARGET_LINUX_SYS_chown32:
case TARGET_LINUX_SYS_chown:
result = chown ((char *) t2h_addr (cb, &s, arg1), arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_getcwd:
result = (int) getcwd ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_sendfile:
{
off_t offset;
offset = *((off_t *) t2h_addr (cb, &s, arg3));
offset = T2H_4 (offset);
result = sendfile (arg1, arg2, &offset, arg3);
errcode = errno;
if (result != 0)
break;
*((off_t *) t2h_addr (cb, &s, arg3)) = H2T_4 (offset);
}
break;
default:
result = -1;
errcode = ENOSYS;
break;
}
if (result == -1)
m32rbf_h_gr_set (current_cpu, 0, -errcode);
else
m32rbf_h_gr_set (current_cpu, 0, result);
break;
}
#endif
case TRAP_BREAKPOINT:
sim_engine_halt (sd, current_cpu, NULL, pc,
sim_stopped, SIM_SIGTRAP);
break;
case TRAP_FLUSH_CACHE:
/* Do nothing. */
break;
case_default:
default:
{
/* The new pc is the trap vector entry.
We assume there's a branch there to some handler.
Use cr5 as EVB (EIT Vector Base) register. */
/* USI new_pc = EIT_TRAP_BASE_ADDR + num * 4; */
USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
return new_pc;
}
}
/* Fake an "rte" insn. */
/* FIXME: Should duplicate all of rte processing. */
return (pc & -4) + 4;
}