/* m32r exception, interrupt, and trap (EIT) support
   Copyright (C) 1998-2014 Free Software Foundation, Inc.
   Contributed by Renesas.

   This file is part of GDB, the GNU debugger.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "sim-main.h"
#include "syscall.h"
#include "targ-vals.h"
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <sys/resource.h>
#include <sys/sysinfo.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timeb.h>
#include <sys/timex.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/utsname.h>
#include <sys/vfs.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/unistd.h>

#define TRAP_ELF_SYSCALL 0
#define TRAP_LINUX_SYSCALL 2
#define TRAP_FLUSH_CACHE 12

/* The semantic code invokes this for invalid (unrecognized) instructions.  */

SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
{
  SIM_DESC sd = CPU_STATE (current_cpu);

#if 0
  if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
    {
      h_bsm_set (current_cpu, h_sm_get (current_cpu));
      h_bie_set (current_cpu, h_ie_get (current_cpu));
      h_bcond_set (current_cpu, h_cond_get (current_cpu));
      /* sm not changed */
      h_ie_set (current_cpu, 0);
      h_cond_set (current_cpu, 0);

      h_bpc_set (current_cpu, cia);

      sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
			  EIT_RSVD_INSN_ADDR);
    }
  else
#endif
    sim_engine_halt (sd, current_cpu, NULL, cia, sim_stopped, SIM_SIGILL);
  return vpc;
}

/* Process an address exception.  */

void
m32r_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
		  unsigned int map, int nr_bytes, address_word addr,
		  transfer_type transfer, sim_core_signals sig)
{
  if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
    {
      m32rbf_h_cr_set (current_cpu, H_CR_BBPC,
                       m32rbf_h_cr_get (current_cpu, H_CR_BPC));
      if (MACH_NUM (CPU_MACH (current_cpu)) == MACH_M32R)
        {
          m32rbf_h_bpsw_set (current_cpu, m32rbf_h_psw_get (current_cpu));
          /* sm not changed */
          m32rbf_h_psw_set (current_cpu, m32rbf_h_psw_get (current_cpu) & 0x80);
        }
      else if (MACH_NUM (CPU_MACH (current_cpu)) == MACH_M32RX)
        {
          m32rxf_h_bpsw_set (current_cpu, m32rxf_h_psw_get (current_cpu));
          /* sm not changed */
          m32rxf_h_psw_set (current_cpu, m32rxf_h_psw_get (current_cpu) & 0x80);
        }
      else
        {
          m32r2f_h_bpsw_set (current_cpu, m32r2f_h_psw_get (current_cpu));
          /* sm not changed */
          m32r2f_h_psw_set (current_cpu, m32r2f_h_psw_get (current_cpu) & 0x80);
        }
      m32rbf_h_cr_set (current_cpu, H_CR_BPC, cia);

      sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
                          EIT_ADDR_EXCP_ADDR);
    }
  else
    sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr,
                     transfer, sig);
}

/* Read/write functions for system call interface.  */

static int
syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
		  unsigned long taddr, char *buf, int bytes)
{
  SIM_DESC sd = (SIM_DESC) sc->p1;
  SIM_CPU *cpu = (SIM_CPU *) sc->p2;

  return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
}

static int
syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
		   unsigned long taddr, const char *buf, int bytes)
{
  SIM_DESC sd = (SIM_DESC) sc->p1;
  SIM_CPU *cpu = (SIM_CPU *) sc->p2;

  return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
}

/* Translate target's address to host's address.  */

static void *
t2h_addr (host_callback *cb, struct cb_syscall *sc,
          unsigned long taddr)
{
  void *addr;
  SIM_DESC sd = (SIM_DESC) sc->p1;
  SIM_CPU *cpu = (SIM_CPU *) sc->p2;

  if (taddr == 0)
    return NULL;

  return sim_core_trans_addr (sd, cpu, read_map, taddr);
}

static unsigned int
conv_endian (unsigned int tvalue)
{
  unsigned int hvalue;
  unsigned int t1, t2, t3, t4;

  if (CURRENT_HOST_BYTE_ORDER == LITTLE_ENDIAN)
    {
      t1 = tvalue & 0xff000000;
      t2 = tvalue & 0x00ff0000;
      t3 = tvalue & 0x0000ff00;
      t4 = tvalue & 0x000000ff;

      hvalue =  t1 >> 24;
      hvalue += t2 >> 8;
      hvalue += t3 << 8;
      hvalue += t4 << 24;
    }
  else
    hvalue = tvalue;

  return hvalue;
}

static unsigned short
conv_endian16 (unsigned short tvalue)
{
  unsigned short hvalue;
  unsigned short t1, t2;

  if (CURRENT_HOST_BYTE_ORDER == LITTLE_ENDIAN)
    {
      t1 = tvalue & 0xff00;
      t2 = tvalue & 0x00ff;

      hvalue =  t1 >> 8;
      hvalue += t2 << 8;
    }
  else
    hvalue = tvalue;

  return hvalue;
}

static void
translate_endian(void *addr, size_t size)
{
  unsigned int *p = (unsigned int *) addr;
  int i;
  
  for (i = 0; i <= size - 4; i += 4,p++)
    *p = conv_endian(*p);
  
  if (i <= size - 2)
    *((unsigned short *) p) = conv_endian16(*((unsigned short *) p));
}

/* Trap support.
   The result is the pc address to continue at.
   Preprocessing like saving the various registers has already been done.  */

USI
m32r_trap (SIM_CPU *current_cpu, PCADDR pc, int num)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  host_callback *cb = STATE_CALLBACK (sd);

#ifdef SIM_HAVE_BREAKPOINTS
  /* Check for breakpoints "owned" by the simulator first, regardless
     of --environment.  */
  if (num == TRAP_BREAKPOINT)
    {
      /* First try sim-break.c.  If it's a breakpoint the simulator "owns"
	 it doesn't return.  Otherwise it returns and let's us try.  */
      sim_handle_breakpoint (sd, current_cpu, pc);
      /* Fall through.  */
    }
#endif

  switch (num)
    {
    case TRAP_ELF_SYSCALL :
      {
        CB_SYSCALL s;
 
        CB_SYSCALL_INIT (&s);
        s.func = m32rbf_h_gr_get (current_cpu, 0);
        s.arg1 = m32rbf_h_gr_get (current_cpu, 1);
        s.arg2 = m32rbf_h_gr_get (current_cpu, 2);
        s.arg3 = m32rbf_h_gr_get (current_cpu, 3);
 
        if (s.func == TARGET_SYS_exit)
          {
            sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
          }
 
        s.p1 = (PTR) sd;
        s.p2 = (PTR) current_cpu;
        s.read_mem = syscall_read_mem;
        s.write_mem = syscall_write_mem;
        cb_syscall (cb, &s);
        m32rbf_h_gr_set (current_cpu, 2, s.errcode);
        m32rbf_h_gr_set (current_cpu, 0, s.result);
        m32rbf_h_gr_set (current_cpu, 1, s.result2);
        break;
      }

    case TRAP_LINUX_SYSCALL :
      {
	CB_SYSCALL s;
        unsigned int func, arg1, arg2, arg3, arg4, arg5, arg6, arg7;
        int result, result2, errcode;

        if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
          {
            /* The new pc is the trap vector entry.
               We assume there's a branch there to some handler.
	       Use cr5 as EVB (EIT Vector Base) register.  */
            USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
            return new_pc;
          }

	func = m32rbf_h_gr_get (current_cpu, 7);
	arg1 = m32rbf_h_gr_get (current_cpu, 0);
	arg2 = m32rbf_h_gr_get (current_cpu, 1);
	arg3 = m32rbf_h_gr_get (current_cpu, 2);
	arg4 = m32rbf_h_gr_get (current_cpu, 3);
	arg5 = m32rbf_h_gr_get (current_cpu, 4);
	arg6 = m32rbf_h_gr_get (current_cpu, 5);
	arg7 = m32rbf_h_gr_get (current_cpu, 6);

        CB_SYSCALL_INIT (&s);
        s.func = func;
        s.arg1 = arg1;
        s.arg2 = arg2;
        s.arg3 = arg3;

        s.p1 = (PTR) sd;
        s.p2 = (PTR) current_cpu;
        s.read_mem = syscall_read_mem;
        s.write_mem = syscall_write_mem;

        result = 0;
        result2 = 0;
        errcode = 0;

        switch (func)
          {
          case __NR_exit:
	    sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, arg1);
            break;

          case __NR_read:
            result = read(arg1, t2h_addr(cb, &s, arg2), arg3);
            errcode = errno;
            break;

          case __NR_write:
            result = write(arg1, t2h_addr(cb, &s, arg2), arg3);
            errcode = errno;
            break;

          case __NR_open:
            result = open((char *) t2h_addr(cb, &s, arg1), arg2, arg3);
            errcode = errno;
            break;

          case __NR_close:
            result = close(arg1);
            errcode = errno;
            break;

          case __NR_creat:
            result = creat((char *) t2h_addr(cb, &s, arg1), arg2);
            errcode = errno;
            break;

          case __NR_link:
            result = link((char *) t2h_addr(cb, &s, arg1),
                          (char *) t2h_addr(cb, &s, arg2));
            errcode = errno;
            break;

          case __NR_unlink:
            result = unlink((char *) t2h_addr(cb, &s, arg1));
            errcode = errno;
            break;

          case __NR_chdir:
            result = chdir((char *) t2h_addr(cb, &s, arg1));
            errcode = errno;
            break;

          case __NR_time:
            {
              time_t t;

              if (arg1 == 0)
                {
                  result = (int) time(NULL);
                  errcode = errno;
                }
              else
                {
                  result = (int) time(&t);
                  errcode = errno;

                  if (result != 0)
                    break;

                  translate_endian((void *) &t, sizeof(t));
                  if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t)) != sizeof(t))
                    {
                      result = -1;
                      errcode = EINVAL;
                    }
                }
            }
            break;

          case __NR_mknod:
            result = mknod((char *) t2h_addr(cb, &s, arg1),
                           (mode_t) arg2, (dev_t) arg3);
            errcode = errno;
            break;

          case __NR_chmod:
            result = chmod((char *) t2h_addr(cb, &s, arg1), (mode_t) arg2);
            errcode = errno;
            break;

          case __NR_lchown32:
          case __NR_lchown:
            result = lchown((char *) t2h_addr(cb, &s, arg1),
                            (uid_t) arg2, (gid_t) arg3);
            errcode = errno;
            break;

          case __NR_lseek:
            result = (int) lseek(arg1, (off_t) arg2, arg3);
            errcode = errno;
            break;

          case __NR_getpid:
            result = getpid();
            errcode = errno;
            break;

          case __NR_getuid32:
          case __NR_getuid:
            result = getuid();
            errcode = errno;
            break;

          case __NR_utime:
            {
              struct utimbuf buf;

              if (arg2 == 0)
                {
                  result = utime((char *) t2h_addr(cb, &s, arg1), NULL);
                  errcode = errno;
                }
              else
                {
                  buf = *((struct utimbuf *) t2h_addr(cb, &s, arg2));
                  translate_endian((void *) &buf, sizeof(buf));
                  result = utime((char *) t2h_addr(cb, &s, arg1), &buf);
                  errcode = errno;
                }
            }
            break;

          case __NR_access:
            result = access((char *) t2h_addr(cb, &s, arg1), arg2);
            errcode = errno;
            break;

          case __NR_ftime:
            {
              struct timeb t;

              result = ftime(&t);
              errcode = errno;

              if (result != 0)
                break;

              t.time = conv_endian(t.time);
              t.millitm = conv_endian16(t.millitm);
              t.timezone = conv_endian16(t.timezone);
              t.dstflag = conv_endian16(t.dstflag);
              if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t))
                  != sizeof(t))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }

          case __NR_sync:
            sync();
            result = 0;
            break;

          case __NR_rename:
            result = rename((char *) t2h_addr(cb, &s, arg1),
                            (char *) t2h_addr(cb, &s, arg2));
            errcode = errno;
            break;

          case __NR_mkdir:
            result = mkdir((char *) t2h_addr(cb, &s, arg1), arg2);
            errcode = errno;
            break;

          case __NR_rmdir:
            result = rmdir((char *) t2h_addr(cb, &s, arg1));
            errcode = errno;
            break;

          case __NR_dup:
            result = dup(arg1);
            errcode = errno;
            break;

          case __NR_brk:
            result = brk((void *) arg1);
            errcode = errno;
            //result = arg1;
            break;

          case __NR_getgid32:
          case __NR_getgid:
            result = getgid();
            errcode = errno;
            break;

          case __NR_geteuid32:
          case __NR_geteuid:
            result = geteuid();
            errcode = errno;
            break;

          case __NR_getegid32:
          case __NR_getegid:
            result = getegid();
            errcode = errno;
            break;

          case __NR_ioctl:
            result = ioctl(arg1, arg2, arg3);
            errcode = errno;
            break;

          case __NR_fcntl:
            result = fcntl(arg1, arg2, arg3);
            errcode = errno;
            break;

          case __NR_dup2:
            result = dup2(arg1, arg2);
            errcode = errno;
            break;

          case __NR_getppid:
            result = getppid();
            errcode = errno;
            break;

          case __NR_getpgrp:
            result = getpgrp();
            errcode = errno;
            break;

          case __NR_getrlimit:
            {
              struct rlimit rlim;

              result = getrlimit(arg1, &rlim);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &rlim, sizeof(rlim));
              if ((s.write_mem) (cb, &s, arg2, (char *) &rlim, sizeof(rlim))
                  != sizeof(rlim))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_getrusage:
            {
              struct rusage usage;

              result = getrusage(arg1, &usage);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &usage, sizeof(usage));
              if ((s.write_mem) (cb, &s, arg2, (char *) &usage, sizeof(usage))
                  != sizeof(usage))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_gettimeofday:
            {
              struct timeval tv;
              struct timezone tz;
              
              result = gettimeofday(&tv, &tz);
              errcode = errno;
              
              if (result != 0)
                break;

              translate_endian((void *) &tv, sizeof(tv));
              if ((s.write_mem) (cb, &s, arg1, (char *) &tv, sizeof(tv))
                  != sizeof(tv))
                {
                  result = -1;
                  errcode = EINVAL;
                }

              translate_endian((void *) &tz, sizeof(tz));
              if ((s.write_mem) (cb, &s, arg2, (char *) &tz, sizeof(tz))
                  != sizeof(tz))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_getgroups32:
          case __NR_getgroups:
            {
              gid_t *list;

              if (arg1 > 0)
                list = (gid_t *) malloc(arg1 * sizeof(gid_t));

              result = getgroups(arg1, list);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) list, arg1 * sizeof(gid_t));
              if (arg1 > 0)
                if ((s.write_mem) (cb, &s, arg2, (char *) list, arg1 * sizeof(gid_t))
                    != arg1 * sizeof(gid_t))
                  {
                    result = -1;
                     errcode = EINVAL;
                  }
            }
            break;

          case __NR_select:
            {
              int n;
              fd_set readfds;
              fd_set *treadfdsp;
              fd_set *hreadfdsp;
              fd_set writefds;
              fd_set *twritefdsp;
              fd_set *hwritefdsp;
              fd_set exceptfds;
              fd_set *texceptfdsp;
              fd_set *hexceptfdsp;
              struct timeval *ttimeoutp;
              struct timeval timeout;
              
              n = arg1;

              treadfdsp = (fd_set *) arg2;
              if (treadfdsp != NULL)
                {
                  readfds = *((fd_set *) t2h_addr(cb, &s, (unsigned int) treadfdsp));
                  translate_endian((void *) &readfds, sizeof(readfds));
                  hreadfdsp = &readfds;
                }
              else
                hreadfdsp = NULL;
              
              twritefdsp  = (fd_set *) arg3;
              if (twritefdsp != NULL)
                {
                  writefds = *((fd_set *) t2h_addr(cb, &s, (unsigned int) twritefdsp));
                  translate_endian((void *) &writefds, sizeof(writefds));
                  hwritefdsp = &writefds;
                }
              else
                hwritefdsp = NULL;
              
              texceptfdsp = (fd_set *) arg4;
              if (texceptfdsp != NULL)
                {
                  exceptfds = *((fd_set *) t2h_addr(cb, &s, (unsigned int) texceptfdsp));
                  translate_endian((void *) &exceptfds, sizeof(exceptfds));
                  hexceptfdsp = &exceptfds;
                }
              else
                hexceptfdsp = NULL;
              
              ttimeoutp = (struct timeval *) arg5;
              timeout = *((struct timeval *) t2h_addr(cb, &s, (unsigned int) ttimeoutp));
              translate_endian((void *) &timeout, sizeof(timeout));

              result = select(n, hreadfdsp, hwritefdsp, hexceptfdsp, &timeout);
              errcode = errno;

              if (result != 0)
                break;

              if (treadfdsp != NULL)
                {
                  translate_endian((void *) &readfds, sizeof(readfds));
                  if ((s.write_mem) (cb, &s, (unsigned long) treadfdsp,
                       (char *) &readfds, sizeof(readfds)) != sizeof(readfds))
                    {
                      result = -1;
                      errcode = EINVAL;
                    }
                }

              if (twritefdsp != NULL)
                {
                  translate_endian((void *) &writefds, sizeof(writefds));
                  if ((s.write_mem) (cb, &s, (unsigned long) twritefdsp,
                       (char *) &writefds, sizeof(writefds)) != sizeof(writefds))
                    {
                      result = -1;
                      errcode = EINVAL;
                    }
                }

              if (texceptfdsp != NULL)
                {
                  translate_endian((void *) &exceptfds, sizeof(exceptfds));
                  if ((s.write_mem) (cb, &s, (unsigned long) texceptfdsp,
                       (char *) &exceptfds, sizeof(exceptfds)) != sizeof(exceptfds))
                    {
                      result = -1;
                      errcode = EINVAL;
                    }
                }

              translate_endian((void *) &timeout, sizeof(timeout));
              if ((s.write_mem) (cb, &s, (unsigned long) ttimeoutp,
                   (char *) &timeout, sizeof(timeout)) != sizeof(timeout))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_symlink:
            result = symlink((char *) t2h_addr(cb, &s, arg1),
                             (char *) t2h_addr(cb, &s, arg2));
            errcode = errno;
            break;

          case __NR_readlink:
            result = readlink((char *) t2h_addr(cb, &s, arg1),
                              (char *) t2h_addr(cb, &s, arg2),
                              arg3);
            errcode = errno;
            break;

          case __NR_readdir:
            result = (int) readdir((DIR *) t2h_addr(cb, &s, arg1));
            errcode = errno;
            break;

#if 0
          case __NR_mmap:
            {
              result = (int) mmap((void *) t2h_addr(cb, &s, arg1),
                                  arg2, arg3, arg4, arg5, arg6);
              errcode = errno;

              if (errno == 0)
                {
                  sim_core_attach (sd, NULL,
                                   0, access_read_write_exec, 0,
                                   result, arg2, 0, NULL, NULL);
                }
            }
            break;
#endif
          case __NR_mmap2:
            {
              void *addr;
              size_t len;
              int prot, flags, fildes;
              off_t off;
              
              addr   = (void *)  t2h_addr(cb, &s, arg1);
              len    = arg2;
              prot   = arg3;
              flags  = arg4;
              fildes = arg5;
              off    = arg6 << 12;

	      result = (int) mmap(addr, len, prot, flags, fildes, off);
              errcode = errno;
              if (result != -1)
                {
                  char c;
		  if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
                    sim_core_attach (sd, NULL,
                                     0, access_read_write_exec, 0,
                                     result, len, 0, NULL, NULL);
                }
            }
            break;

          case __NR_mmap:
            {
              void *addr;
              size_t len;
              int prot, flags, fildes;
              off_t off;
              
              addr   = *((void **)  t2h_addr(cb, &s, arg1));
              len    = *((size_t *) t2h_addr(cb, &s, arg1 + 4));
              prot   = *((int *)    t2h_addr(cb, &s, arg1 + 8));
              flags  = *((int *)    t2h_addr(cb, &s, arg1 + 12));
              fildes = *((int *)    t2h_addr(cb, &s, arg1 + 16));
              off    = *((off_t *)  t2h_addr(cb, &s, arg1 + 20));

              addr   = (void *) conv_endian((unsigned int) addr);
              len    = conv_endian(len);
              prot   = conv_endian(prot);
              flags  = conv_endian(flags);
              fildes = conv_endian(fildes);
              off    = conv_endian(off);

              //addr   = (void *) t2h_addr(cb, &s, (unsigned int) addr);
              result = (int) mmap(addr, len, prot, flags, fildes, off);
              errcode = errno;

              //if (errno == 0)
              if (result != -1)
                {
                  char c;
		  if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
                    sim_core_attach (sd, NULL,
                                     0, access_read_write_exec, 0,
                                     result, len, 0, NULL, NULL);
                }
            }
            break;

          case __NR_munmap:
            {
            result = munmap((void *)arg1, arg2);
            errcode = errno;
            if (result != -1)
              {
                sim_core_detach (sd, NULL, 0, arg2, result);
              }
            }
            break;

          case __NR_truncate:
            result = truncate((char *) t2h_addr(cb, &s, arg1), arg2);
            errcode = errno;
            break;

          case __NR_ftruncate:
            result = ftruncate(arg1, arg2);
            errcode = errno;
            break;

          case __NR_fchmod:
            result = fchmod(arg1, arg2);
            errcode = errno;
            break;

          case __NR_fchown32:
          case __NR_fchown:
            result = fchown(arg1, arg2, arg3);
            errcode = errno;
            break;

          case __NR_statfs:
            {
              struct statfs statbuf;

              result = statfs((char *) t2h_addr(cb, &s, arg1), &statbuf);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &statbuf, sizeof(statbuf));
              if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
                  != sizeof(statbuf))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_fstatfs:
            {
              struct statfs statbuf;

              result = fstatfs(arg1, &statbuf);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &statbuf, sizeof(statbuf));
              if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
                  != sizeof(statbuf))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_syslog:
            result = syslog(arg1, (char *) t2h_addr(cb, &s, arg2));
            errcode = errno;
            break;

          case __NR_setitimer:
            {
              struct itimerval value, ovalue;

              value = *((struct itimerval *) t2h_addr(cb, &s, arg2));
              translate_endian((void *) &value, sizeof(value));

              if (arg2 == 0)
                {
                  result = setitimer(arg1, &value, NULL);
                  errcode = errno;
                }
              else
                {
                  result = setitimer(arg1, &value, &ovalue);
                  errcode = errno;

                  if (result != 0)
                    break;

                  translate_endian((void *) &ovalue, sizeof(ovalue));
                  if ((s.write_mem) (cb, &s, arg3, (char *) &ovalue, sizeof(ovalue))
                      != sizeof(ovalue))
                    {
                      result = -1;
                      errcode = EINVAL;
                    }
                }
            }
            break;

          case __NR_getitimer:
            {
              struct itimerval value;

              result = getitimer(arg1, &value);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &value, sizeof(value));
              if ((s.write_mem) (cb, &s, arg2, (char *) &value, sizeof(value))
                  != sizeof(value))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_stat:
            {
              char *buf;
              int buflen;
              struct stat statbuf;

              result = stat((char *) t2h_addr(cb, &s, arg1), &statbuf);
              errcode = errno;
              if (result < 0)
                break;

              buflen = cb_host_to_target_stat (cb, NULL, NULL);
              buf = xmalloc (buflen);
              if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
                {
                  /* The translation failed.  This is due to an internal
                     host program error, not the target's fault.  */
                  free (buf);
                  result = -1;
                  errcode = ENOSYS;
                  break;
                }
              if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
                {
                  free (buf);
                  result = -1;
                  errcode = EINVAL;
                  break;
                }
              free (buf);
            }
            break;

          case __NR_lstat:
            {
              char *buf;
              int buflen;
              struct stat statbuf;

              result = lstat((char *) t2h_addr(cb, &s, arg1), &statbuf);
              errcode = errno;
              if (result < 0)
                break;

              buflen = cb_host_to_target_stat (cb, NULL, NULL);
              buf = xmalloc (buflen);
              if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
                {
                  /* The translation failed.  This is due to an internal
                     host program error, not the target's fault.  */
                  free (buf);
                  result = -1;
                  errcode = ENOSYS;
                  break;
                }
              if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
                {
                  free (buf);
                  result = -1;
                  errcode = EINVAL;
                  break;
                }
              free (buf);
            }
            break;

          case __NR_fstat:
            {
              char *buf;
              int buflen;
              struct stat statbuf;

              result = fstat(arg1, &statbuf);
              errcode = errno;
              if (result < 0)
                break;

              buflen = cb_host_to_target_stat (cb, NULL, NULL);
              buf = xmalloc (buflen);
              if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
                {
                  /* The translation failed.  This is due to an internal
                     host program error, not the target's fault.  */
                  free (buf);
                  result = -1;
                  errcode = ENOSYS;
                  break;
                }
              if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
                {
                  free (buf);
                  result = -1;
                  errcode = EINVAL;
                  break;
                }
              free (buf);
            }
            break;

          case __NR_sysinfo:
            {
              struct sysinfo info;

              result = sysinfo(&info);
              errcode = errno;

              if (result != 0)
                break;

              info.uptime    = conv_endian(info.uptime);
              info.loads[0]  = conv_endian(info.loads[0]);
              info.loads[1]  = conv_endian(info.loads[1]);
              info.loads[2]  = conv_endian(info.loads[2]);
              info.totalram  = conv_endian(info.totalram);
              info.freeram   = conv_endian(info.freeram);
              info.sharedram = conv_endian(info.sharedram);
              info.bufferram = conv_endian(info.bufferram);
              info.totalswap = conv_endian(info.totalswap);
              info.freeswap  = conv_endian(info.freeswap);
              info.procs     = conv_endian16(info.procs);
#if LINUX_VERSION_CODE >= 0x20400
              info.totalhigh = conv_endian(info.totalhigh);
              info.freehigh  = conv_endian(info.freehigh);
              info.mem_unit  = conv_endian(info.mem_unit);
#endif
              if ((s.write_mem) (cb, &s, arg1, (char *) &info, sizeof(info))
                  != sizeof(info))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

#if 0
          case __NR_ipc:
            {
              result = ipc(arg1, arg2, arg3, arg4,
                           (void *) t2h_addr(cb, &s, arg5), arg6);
              errcode = errno;
            }
            break;
#endif

          case __NR_fsync:
            result = fsync(arg1);
            errcode = errno;
            break;

          case __NR_uname:
            /* utsname contains only arrays of char, so it is not necessary
               to translate endian. */
            result = uname((struct utsname *) t2h_addr(cb, &s, arg1));
            errcode = errno;
            break;

          case __NR_adjtimex:
            {
              struct timex buf;

              result = adjtimex(&buf);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &buf, sizeof(buf));
              if ((s.write_mem) (cb, &s, arg1, (char *) &buf, sizeof(buf))
                  != sizeof(buf))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_mprotect:
            result = mprotect((void *) arg1, arg2, arg3);
            errcode = errno;
            break;

          case __NR_fchdir:
            result = fchdir(arg1);
            errcode = errno;
            break;

          case __NR_setfsuid32:
          case __NR_setfsuid:
            result = setfsuid(arg1);
            errcode = errno;
            break;

          case __NR_setfsgid32:
          case __NR_setfsgid:
            result = setfsgid(arg1);
            errcode = errno;
            break;

#if 0
          case __NR__llseek:
            {
              loff_t buf;

              result = _llseek(arg1, arg2, arg3, &buf, arg5);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &buf, sizeof(buf));
              if ((s.write_mem) (cb, &s, t2h_addr(cb, &s, arg4),
                                 (char *) &buf, sizeof(buf)) != sizeof(buf))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_getdents:
            {
              struct dirent dir;

              result = getdents(arg1, &dir, arg3);
              errcode = errno;

              if (result != 0)
                break;

              dir.d_ino = conv_endian(dir.d_ino);
              dir.d_off = conv_endian(dir.d_off);
              dir.d_reclen = conv_endian16(dir.d_reclen);
              if ((s.write_mem) (cb, &s, arg2, (char *) &dir, sizeof(dir))
                  != sizeof(dir))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;
#endif

          case __NR_flock:
            result = flock(arg1, arg2);
            errcode = errno;
            break;

          case __NR_msync:
            result = msync((void *) arg1, arg2, arg3);
            errcode = errno;
            break;

          case __NR_readv:
            {
              struct iovec vector;

              vector = *((struct iovec *) t2h_addr(cb, &s, arg2));
              translate_endian((void *) &vector, sizeof(vector));

              result = readv(arg1, &vector, arg3);
              errcode = errno;
            }
            break;

          case __NR_writev:
            {
              struct iovec vector;

              vector = *((struct iovec *) t2h_addr(cb, &s, arg2));
              translate_endian((void *) &vector, sizeof(vector));

              result = writev(arg1, &vector, arg3);
              errcode = errno;
            }
            break;

          case __NR_fdatasync:
            result = fdatasync(arg1);
            errcode = errno;
            break;

          case __NR_mlock:
            result = mlock((void *) t2h_addr(cb, &s, arg1), arg2);
            errcode = errno;
            break;

          case __NR_munlock:
            result = munlock((void *) t2h_addr(cb, &s, arg1), arg2);
            errcode = errno;
            break;

          case __NR_nanosleep:
            {
              struct timespec req, rem;

              req = *((struct timespec *) t2h_addr(cb, &s, arg2));
              translate_endian((void *) &req, sizeof(req));

              result = nanosleep(&req, &rem);
              errcode = errno;

              if (result != 0)
                break;

              translate_endian((void *) &rem, sizeof(rem));
              if ((s.write_mem) (cb, &s, arg2, (char *) &rem, sizeof(rem))
                  != sizeof(rem))
                {
                  result = -1;
                  errcode = EINVAL;
                }
            }
            break;

          case __NR_mremap: /* FIXME */
            result = (int) mremap((void *) t2h_addr(cb, &s, arg1), arg2, arg3, arg4); 
            errcode = errno;
            break;

          case __NR_getresuid32:
          case __NR_getresuid:
            {
              uid_t ruid, euid, suid;

              result = getresuid(&ruid, &euid, &suid);
              errcode = errno;

              if (result != 0)
                break;

              *((uid_t *) t2h_addr(cb, &s, arg1)) = conv_endian(ruid);
              *((uid_t *) t2h_addr(cb, &s, arg2)) = conv_endian(euid);
              *((uid_t *) t2h_addr(cb, &s, arg3)) = conv_endian(suid);
            }
            break;

          case __NR_poll:
            {
              struct pollfd ufds;

              ufds = *((struct pollfd *) t2h_addr(cb, &s, arg1));
              ufds.fd = conv_endian(ufds.fd);
              ufds.events = conv_endian16(ufds.events);
              ufds.revents = conv_endian16(ufds.revents);

              result = poll(&ufds, arg2, arg3);
              errcode = errno;
            }
            break;

          case __NR_getresgid32:
          case __NR_getresgid:
            {
              uid_t rgid, egid, sgid;

              result = getresgid(&rgid, &egid, &sgid);
              errcode = errno;

              if (result != 0)
                break;

              *((uid_t *) t2h_addr(cb, &s, arg1)) = conv_endian(rgid);
              *((uid_t *) t2h_addr(cb, &s, arg2)) = conv_endian(egid);
              *((uid_t *) t2h_addr(cb, &s, arg3)) = conv_endian(sgid);
            }
            break;

          case __NR_pread:
            result =  pread(arg1, (void *) t2h_addr(cb, &s, arg2), arg3, arg4); 
            errcode = errno;
            break;

          case __NR_pwrite:
            result =  pwrite(arg1, (void *) t2h_addr(cb, &s, arg2), arg3, arg4); 
            errcode = errno;
            break;

          case __NR_chown32:
          case __NR_chown:
            result = chown((char *) t2h_addr(cb, &s, arg1), arg2, arg3);
            errcode = errno;
            break;

          case __NR_getcwd:
            result = (int) getcwd((char *) t2h_addr(cb, &s, arg1), arg2);
            errcode = errno;
            break;

          case __NR_sendfile:
            {
              off_t offset;

              offset = *((off_t *) t2h_addr(cb, &s, arg3));
              offset = conv_endian(offset);

              result = sendfile(arg1, arg2, &offset, arg3);
              errcode = errno;

              if (result != 0)
                break;

              *((off_t *) t2h_addr(cb, &s, arg3)) = conv_endian(offset);
            }
            break;

          default:
            result = -1;
            errcode = ENOSYS;
            break;
          }
        
        if (result == -1)
	  m32rbf_h_gr_set (current_cpu, 0, -errcode);
        else
	  m32rbf_h_gr_set (current_cpu, 0, result);
	break;
      }

    case TRAP_BREAKPOINT:
      sim_engine_halt (sd, current_cpu, NULL, pc,
		       sim_stopped, SIM_SIGTRAP);
      break;

    case TRAP_FLUSH_CACHE:
      /* Do nothing.  */
      break;

    default :
      {
	/* Use cr5 as EVB (EIT Vector Base) register.  */
        USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
	return new_pc;
      }
    }

  /* Fake an "rte" insn.  */
  /* FIXME: Should duplicate all of rte processing.  */
  return (pc & -4) + 4;
}