/* Simulator instruction semantics for m32rb. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc. This file is part of the GNU Simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef DEFINE_LABELS #undef DEFINE_LABELS /* The labels have the case they have because the enum of insn types is all uppercase and in the non-stdc case the insn symbol is built into the enum name. */ static struct { int index; void *label; } labels[] = { { M32RB_XINSN_ILLEGAL, && case_sem_INSN_ILLEGAL }, { M32RB_XINSN_ADD, && case_sem_INSN_ADD }, { M32RB_XINSN_ADD3, && case_sem_INSN_ADD3 }, { M32RB_XINSN_AND, && case_sem_INSN_AND }, { M32RB_XINSN_AND3, && case_sem_INSN_AND3 }, { M32RB_XINSN_OR, && case_sem_INSN_OR }, { M32RB_XINSN_OR3, && case_sem_INSN_OR3 }, { M32RB_XINSN_XOR, && case_sem_INSN_XOR }, { M32RB_XINSN_XOR3, && case_sem_INSN_XOR3 }, { M32RB_XINSN_ADDI, && case_sem_INSN_ADDI }, { M32RB_XINSN_ADDV, && case_sem_INSN_ADDV }, { M32RB_XINSN_ADDV3, && case_sem_INSN_ADDV3 }, { M32RB_XINSN_ADDX, && case_sem_INSN_ADDX }, { M32RB_XINSN_BC8, && case_sem_INSN_BC8 }, { M32RB_XINSN_BC24, && case_sem_INSN_BC24 }, { M32RB_XINSN_BEQ, && case_sem_INSN_BEQ }, { M32RB_XINSN_BEQZ, && case_sem_INSN_BEQZ }, { M32RB_XINSN_BGEZ, && case_sem_INSN_BGEZ }, { M32RB_XINSN_BGTZ, && case_sem_INSN_BGTZ }, { M32RB_XINSN_BLEZ, && case_sem_INSN_BLEZ }, { M32RB_XINSN_BLTZ, && case_sem_INSN_BLTZ }, { M32RB_XINSN_BNEZ, && case_sem_INSN_BNEZ }, { M32RB_XINSN_BL8, && case_sem_INSN_BL8 }, { M32RB_XINSN_BL24, && case_sem_INSN_BL24 }, { M32RB_XINSN_BNC8, && case_sem_INSN_BNC8 }, { M32RB_XINSN_BNC24, && case_sem_INSN_BNC24 }, { M32RB_XINSN_BNE, && case_sem_INSN_BNE }, { M32RB_XINSN_BRA8, && case_sem_INSN_BRA8 }, { M32RB_XINSN_BRA24, && case_sem_INSN_BRA24 }, { M32RB_XINSN_CMP, && case_sem_INSN_CMP }, { M32RB_XINSN_CMPI, && case_sem_INSN_CMPI }, { M32RB_XINSN_CMPU, && case_sem_INSN_CMPU }, { M32RB_XINSN_CMPUI, && case_sem_INSN_CMPUI }, { M32RB_XINSN_DIV, && case_sem_INSN_DIV }, { M32RB_XINSN_DIVU, && case_sem_INSN_DIVU }, { M32RB_XINSN_REM, && case_sem_INSN_REM }, { M32RB_XINSN_REMU, && case_sem_INSN_REMU }, { M32RB_XINSN_JL, && case_sem_INSN_JL }, { M32RB_XINSN_JMP, && case_sem_INSN_JMP }, { M32RB_XINSN_LD, && case_sem_INSN_LD }, { M32RB_XINSN_LD_D, && case_sem_INSN_LD_D }, { M32RB_XINSN_LDB, && case_sem_INSN_LDB }, { M32RB_XINSN_LDB_D, && case_sem_INSN_LDB_D }, { M32RB_XINSN_LDH, && case_sem_INSN_LDH }, { M32RB_XINSN_LDH_D, && case_sem_INSN_LDH_D }, { M32RB_XINSN_LDUB, && case_sem_INSN_LDUB }, { M32RB_XINSN_LDUB_D, && case_sem_INSN_LDUB_D }, { M32RB_XINSN_LDUH, && case_sem_INSN_LDUH }, { M32RB_XINSN_LDUH_D, && case_sem_INSN_LDUH_D }, { M32RB_XINSN_LD_PLUS, && case_sem_INSN_LD_PLUS }, { M32RB_XINSN_LD24, && case_sem_INSN_LD24 }, { M32RB_XINSN_LDI8, && case_sem_INSN_LDI8 }, { M32RB_XINSN_LDI16, && case_sem_INSN_LDI16 }, { M32RB_XINSN_LOCK, && case_sem_INSN_LOCK }, { M32RB_XINSN_MACHI, && case_sem_INSN_MACHI }, { M32RB_XINSN_MACLO, && case_sem_INSN_MACLO }, { M32RB_XINSN_MACWHI, && case_sem_INSN_MACWHI }, { M32RB_XINSN_MACWLO, && case_sem_INSN_MACWLO }, { M32RB_XINSN_MUL, && case_sem_INSN_MUL }, { M32RB_XINSN_MULHI, && case_sem_INSN_MULHI }, { M32RB_XINSN_MULLO, && case_sem_INSN_MULLO }, { M32RB_XINSN_MULWHI, && case_sem_INSN_MULWHI }, { M32RB_XINSN_MULWLO, && case_sem_INSN_MULWLO }, { M32RB_XINSN_MV, && case_sem_INSN_MV }, { M32RB_XINSN_MVFACHI, && case_sem_INSN_MVFACHI }, { M32RB_XINSN_MVFACLO, && case_sem_INSN_MVFACLO }, { M32RB_XINSN_MVFACMI, && case_sem_INSN_MVFACMI }, { M32RB_XINSN_MVFC, && case_sem_INSN_MVFC }, { M32RB_XINSN_MVTACHI, && case_sem_INSN_MVTACHI }, { M32RB_XINSN_MVTACLO, && case_sem_INSN_MVTACLO }, { M32RB_XINSN_MVTC, && case_sem_INSN_MVTC }, { M32RB_XINSN_NEG, && case_sem_INSN_NEG }, { M32RB_XINSN_NOP, && case_sem_INSN_NOP }, { M32RB_XINSN_NOT, && case_sem_INSN_NOT }, { M32RB_XINSN_RAC, && case_sem_INSN_RAC }, { M32RB_XINSN_RACH, && case_sem_INSN_RACH }, { M32RB_XINSN_RTE, && case_sem_INSN_RTE }, { M32RB_XINSN_SETH, && case_sem_INSN_SETH }, { M32RB_XINSN_SLL, && case_sem_INSN_SLL }, { M32RB_XINSN_SLL3, && case_sem_INSN_SLL3 }, { M32RB_XINSN_SLLI, && case_sem_INSN_SLLI }, { M32RB_XINSN_SRA, && case_sem_INSN_SRA }, { M32RB_XINSN_SRA3, && case_sem_INSN_SRA3 }, { M32RB_XINSN_SRAI, && case_sem_INSN_SRAI }, { M32RB_XINSN_SRL, && case_sem_INSN_SRL }, { M32RB_XINSN_SRL3, && case_sem_INSN_SRL3 }, { M32RB_XINSN_SRLI, && case_sem_INSN_SRLI }, { M32RB_XINSN_ST, && case_sem_INSN_ST }, { M32RB_XINSN_ST_D, && case_sem_INSN_ST_D }, { M32RB_XINSN_STB, && case_sem_INSN_STB }, { M32RB_XINSN_STB_D, && case_sem_INSN_STB_D }, { M32RB_XINSN_STH, && case_sem_INSN_STH }, { M32RB_XINSN_STH_D, && case_sem_INSN_STH_D }, { M32RB_XINSN_ST_PLUS, && case_sem_INSN_ST_PLUS }, { M32RB_XINSN_ST_MINUS, && case_sem_INSN_ST_MINUS }, { M32RB_XINSN_SUB, && case_sem_INSN_SUB }, { M32RB_XINSN_SUBV, && case_sem_INSN_SUBV }, { M32RB_XINSN_SUBX, && case_sem_INSN_SUBX }, { M32RB_XINSN_TRAP, && case_sem_INSN_TRAP }, { M32RB_XINSN_UNLOCK, && case_sem_INSN_UNLOCK }, { 0, 0 } }; int i; for (i = 0; labels[i].label != 0; ++i) CPU_IDESC (current_cpu) [labels[i].index].sem_fast_lab = labels[i].label; #endif /* DEFINE_LABELS */ #ifdef DEFINE_SWITCH #undef DEFINE_SWITCH /* If hyper-fast [well not unnecessarily slow] execution is selected, turn off frills like tracing and profiling. */ /* FIXME: A better way would be to have TRACE_RESULT check for something that can cause it to be optimized out. */ #if FAST_P #undef TRACE_RESULT #define TRACE_RESULT(cpu, name, type, val) #endif #undef GET_ATTR #define GET_ATTR(cpu, num, attr) CGEN_INSN_ATTR (abuf->idesc->opcode, CGEN_INSN_##attr) { SEM_ARG sem_arg = sc; ARGBUF *abuf = SEM_ARGBUF (sem_arg); CIA new_pc; SWITCH (sem, sem_arg->semantic.sem_case) { CASE (sem, INSN_ILLEGAL) : { sim_engine_halt (CPU_STATE (current_cpu), current_cpu, NULL, NULL_CIA/*FIXME*/, sim_stopped, SIM_SIGILL); BREAK (sem); } CASE (sem, INSN_ADD) : /* add $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = ADDSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_ADD3) : /* add3 $dr,$sr,$hash$slo16 */ { #define FLD(f) abuf->fields.fmt_add3.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = ADDSI (* FLD (f_r2), FLD (f_simm16)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_AND) : /* and $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = ANDSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_AND3) : /* and3 $dr,$sr,$uimm16 */ { #define FLD(f) abuf->fields.fmt_and3.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = ANDSI (* FLD (f_r2), FLD (f_uimm16)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_OR) : /* or $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = ORSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_OR3) : /* or3 $dr,$sr,$hash$ulo16 */ { #define FLD(f) abuf->fields.fmt_or3.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = ORSI (* FLD (f_r2), FLD (f_uimm16)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_XOR) : /* xor $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = XORSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_XOR3) : /* xor3 $dr,$sr,$uimm16 */ { #define FLD(f) abuf->fields.fmt_and3.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = XORSI (* FLD (f_r2), FLD (f_uimm16)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_ADDI) : /* addi $dr,$simm8 */ { #define FLD(f) abuf->fields.fmt_addi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = ADDSI (* FLD (f_r1), FLD (f_simm8)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_ADDV) : /* addv $dr,$sr */ { #define FLD(f) abuf->fields.fmt_addv.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { UBI temp1;SI temp0; temp0 = ADDSI (* FLD (f_r1), * FLD (f_r2)); temp1 = ADDOFSI (* FLD (f_r1), * FLD (f_r2), 0); { SI opval = temp0; * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } { UBI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_ADDV3) : /* addv3 $dr,$sr,$simm16 */ { #define FLD(f) abuf->fields.fmt_addv3.f new_pc = SEM_NEXT_PC (sem_arg, 4); do { UBI temp1;SI temp0; temp0 = ADDSI (* FLD (f_r2), FLD (f_simm16)); temp1 = ADDOFSI (* FLD (f_r2), FLD (f_simm16), 0); { SI opval = temp0; * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } { UBI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_ADDX) : /* addx $dr,$sr */ { #define FLD(f) abuf->fields.fmt_addx.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { UBI temp1;SI temp0; temp0 = ADDCSI (* FLD (f_r1), * FLD (f_r2), CPU (h_cond)); temp1 = ADDCFSI (* FLD (f_r1), * FLD (f_r2), CPU (h_cond)); { SI opval = temp0; * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } { UBI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_BC8) : /* bc.s $disp8 */ { #define FLD(f) abuf->fields.fmt_bc8.f new_pc = SEM_NEXT_PC (sem_arg, 2); if (CPU (h_cond)) { { USI opval = FLD (f_disp8); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BC24) : /* bc.l $disp24 */ { #define FLD(f) abuf->fields.fmt_bc24.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (CPU (h_cond)) { { USI opval = FLD (f_disp24); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BEQ) : /* beq $src1,$src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beq.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (EQSI (* FLD (f_r1), * FLD (f_r2))) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BEQZ) : /* beqz $src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beqz.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (EQSI (* FLD (f_r2), 0)) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BGEZ) : /* bgez $src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beqz.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (GESI (* FLD (f_r2), 0)) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BGTZ) : /* bgtz $src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beqz.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (GTSI (* FLD (f_r2), 0)) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BLEZ) : /* blez $src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beqz.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (LESI (* FLD (f_r2), 0)) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BLTZ) : /* bltz $src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beqz.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (LTSI (* FLD (f_r2), 0)) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BNEZ) : /* bnez $src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beqz.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (NESI (* FLD (f_r2), 0)) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BL8) : /* bl.s $disp8 */ { #define FLD(f) abuf->fields.fmt_bl8.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { { SI opval = ADDSI (ANDSI (CPU (h_pc), -4), 4); CPU (h_gr[((HOSTUINT) 14)]) = opval; TRACE_RESULT (current_cpu, "gr-14", 'x', opval); } { USI opval = FLD (f_disp8); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_BL24) : /* bl.l $disp24 */ { #define FLD(f) abuf->fields.fmt_bl24.f new_pc = SEM_NEXT_PC (sem_arg, 4); do { { SI opval = ADDSI (CPU (h_pc), 4); CPU (h_gr[((HOSTUINT) 14)]) = opval; TRACE_RESULT (current_cpu, "gr-14", 'x', opval); } { USI opval = FLD (f_disp24); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_BNC8) : /* bnc.s $disp8 */ { #define FLD(f) abuf->fields.fmt_bc8.f new_pc = SEM_NEXT_PC (sem_arg, 2); if (NOTBI (CPU (h_cond))) { { USI opval = FLD (f_disp8); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BNC24) : /* bnc.l $disp24 */ { #define FLD(f) abuf->fields.fmt_bc24.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (NOTBI (CPU (h_cond))) { { USI opval = FLD (f_disp24); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BNE) : /* bne $src1,$src2,$disp16 */ { #define FLD(f) abuf->fields.fmt_beq.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (NESI (* FLD (f_r1), * FLD (f_r2))) { { USI opval = FLD (f_disp16); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_BRA8) : /* bra.s $disp8 */ { #define FLD(f) abuf->fields.fmt_bra8.f new_pc = SEM_NEXT_PC (sem_arg, 2); { USI opval = FLD (f_disp8); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_BRA24) : /* bra.l $disp24 */ { #define FLD(f) abuf->fields.fmt_bra24.f new_pc = SEM_NEXT_PC (sem_arg, 4); { USI opval = FLD (f_disp24); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_CACHE (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_CMP) : /* cmp $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_cmp.f new_pc = SEM_NEXT_PC (sem_arg, 2); { UBI opval = LTSI (* FLD (f_r1), * FLD (f_r2)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_CMPI) : /* cmpi $src2,$simm16 */ { #define FLD(f) abuf->fields.fmt_cmpi.f new_pc = SEM_NEXT_PC (sem_arg, 4); { UBI opval = LTSI (* FLD (f_r2), FLD (f_simm16)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_CMPU) : /* cmpu $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_cmp.f new_pc = SEM_NEXT_PC (sem_arg, 2); { UBI opval = LTUSI (* FLD (f_r1), * FLD (f_r2)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_CMPUI) : /* cmpui $src2,$simm16 */ { #define FLD(f) abuf->fields.fmt_cmpi.f new_pc = SEM_NEXT_PC (sem_arg, 4); { UBI opval = LTUSI (* FLD (f_r2), FLD (f_simm16)); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_DIV) : /* div $dr,$sr */ { #define FLD(f) abuf->fields.fmt_div.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (NESI (* FLD (f_r2), 0)) { { SI opval = DIVSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_DIVU) : /* divu $dr,$sr */ { #define FLD(f) abuf->fields.fmt_div.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (NESI (* FLD (f_r2), 0)) { { SI opval = UDIVSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_REM) : /* rem $dr,$sr */ { #define FLD(f) abuf->fields.fmt_div.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (NESI (* FLD (f_r2), 0)) { { SI opval = MODSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_REMU) : /* remu $dr,$sr */ { #define FLD(f) abuf->fields.fmt_div.f new_pc = SEM_NEXT_PC (sem_arg, 4); if (NESI (* FLD (f_r2), 0)) { { SI opval = UMODSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } } #undef FLD } BREAK (sem); CASE (sem, INSN_JL) : /* jl $sr */ { #define FLD(f) abuf->fields.fmt_jl.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { USI temp1;SI temp0; temp0 = ADDSI (ANDSI (CPU (h_pc), -4), 4); temp1 = ANDSI (* FLD (f_r2), -4); { SI opval = temp0; CPU (h_gr[((HOSTUINT) 14)]) = opval; TRACE_RESULT (current_cpu, "gr-14", 'x', opval); } { USI opval = temp1; BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_ADDR (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_JMP) : /* jmp $sr */ { #define FLD(f) abuf->fields.fmt_jmp.f new_pc = SEM_NEXT_PC (sem_arg, 2); { USI opval = ANDSI (* FLD (f_r2), -4); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_ADDR (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LD) : /* ld $dr,@$sr */ { #define FLD(f) abuf->fields.fmt_ld.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = GETMEMSI (current_cpu, * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LD_D) : /* ld $dr,@($slo16,$sr) */ { #define FLD(f) abuf->fields.fmt_ld_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = GETMEMSI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDB) : /* ldb $dr,@$sr */ { #define FLD(f) abuf->fields.fmt_ldb.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = EXTQISI (GETMEMQI (current_cpu, * FLD (f_r2))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDB_D) : /* ldb $dr,@($slo16,$sr) */ { #define FLD(f) abuf->fields.fmt_ldb_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = EXTQISI (GETMEMQI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16)))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDH) : /* ldh $dr,@$sr */ { #define FLD(f) abuf->fields.fmt_ldh.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = EXTHISI (GETMEMHI (current_cpu, * FLD (f_r2))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDH_D) : /* ldh $dr,@($slo16,$sr) */ { #define FLD(f) abuf->fields.fmt_ldh_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = EXTHISI (GETMEMHI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16)))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDUB) : /* ldub $dr,@$sr */ { #define FLD(f) abuf->fields.fmt_ldb.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = ZEXTQISI (GETMEMQI (current_cpu, * FLD (f_r2))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDUB_D) : /* ldub $dr,@($slo16,$sr) */ { #define FLD(f) abuf->fields.fmt_ldb_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = ZEXTQISI (GETMEMQI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16)))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDUH) : /* lduh $dr,@$sr */ { #define FLD(f) abuf->fields.fmt_ldh.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = ZEXTHISI (GETMEMHI (current_cpu, * FLD (f_r2))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDUH_D) : /* lduh $dr,@($slo16,$sr) */ { #define FLD(f) abuf->fields.fmt_ldh_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = ZEXTHISI (GETMEMHI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16)))); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LD_PLUS) : /* ld $dr,@$sr+ */ { #define FLD(f) abuf->fields.fmt_ld_plus.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { SI temp1;SI temp0; temp0 = GETMEMSI (current_cpu, * FLD (f_r2)); temp1 = ADDSI (* FLD (f_r2), 4); { SI opval = temp0; * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } { SI opval = temp1; * FLD (f_r2) = opval; TRACE_RESULT (current_cpu, "sr", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_LD24) : /* ld24 $dr,$uimm24 */ { #define FLD(f) abuf->fields.fmt_ld24.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = FLD (f_uimm24); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDI8) : /* ldi8 $dr,$simm8 */ { #define FLD(f) abuf->fields.fmt_ldi8.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = FLD (f_simm8); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LDI16) : /* ldi16 $dr,$hash$slo16 */ { #define FLD(f) abuf->fields.fmt_ldi16.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = FLD (f_simm16); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_LOCK) : /* lock $dr,@$sr */ { #define FLD(f) abuf->fields.fmt_lock.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { { UBI opval = 1; CPU (h_lock) = opval; TRACE_RESULT (current_cpu, "lock-0", 'x', opval); } { SI opval = GETMEMSI (current_cpu, * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_MACHI) : /* machi $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_machi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (ADDDI (m32rb_h_accum_get (current_cpu), MULDI (EXTSIDI (ANDSI (* FLD (f_r1), 0xffff0000)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (f_r2), 16))))), 8), 8); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MACLO) : /* maclo $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_machi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (ADDDI (m32rb_h_accum_get (current_cpu), MULDI (EXTSIDI (SLLSI (* FLD (f_r1), 16)), EXTHIDI (TRUNCSIHI (* FLD (f_r2))))), 8), 8); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MACWHI) : /* macwhi $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_machi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (ADDDI (m32rb_h_accum_get (current_cpu), MULDI (EXTSIDI (* FLD (f_r1)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (f_r2), 16))))), 8), 8); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MACWLO) : /* macwlo $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_machi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (ADDDI (m32rb_h_accum_get (current_cpu), MULDI (EXTSIDI (* FLD (f_r1)), EXTHIDI (TRUNCSIHI (* FLD (f_r2))))), 8), 8); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MUL) : /* mul $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = MULSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MULHI) : /* mulhi $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_mulhi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (ANDSI (* FLD (f_r1), 0xffff0000)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (f_r2), 16)))), 16), 16); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MULLO) : /* mullo $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_mulhi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (SLLSI (* FLD (f_r1), 16)), EXTHIDI (TRUNCSIHI (* FLD (f_r2)))), 16), 16); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MULWHI) : /* mulwhi $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_mulhi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (* FLD (f_r1)), EXTHIDI (TRUNCSIHI (SRASI (* FLD (f_r2), 16)))), 8), 8); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MULWLO) : /* mulwlo $src1,$src2 */ { #define FLD(f) abuf->fields.fmt_mulhi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = SRADI (SLLDI (MULDI (EXTSIDI (* FLD (f_r1)), EXTHIDI (TRUNCSIHI (* FLD (f_r2)))), 8), 8); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MV) : /* mv $dr,$sr */ { #define FLD(f) abuf->fields.fmt_mv.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = * FLD (f_r2); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MVFACHI) : /* mvfachi $dr */ { #define FLD(f) abuf->fields.fmt_mvfachi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = TRUNCDISI (SRADI (m32rb_h_accum_get (current_cpu), 32)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MVFACLO) : /* mvfaclo $dr */ { #define FLD(f) abuf->fields.fmt_mvfachi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = TRUNCDISI (m32rb_h_accum_get (current_cpu)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MVFACMI) : /* mvfacmi $dr */ { #define FLD(f) abuf->fields.fmt_mvfachi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = TRUNCDISI (SRADI (m32rb_h_accum_get (current_cpu), 16)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MVFC) : /* mvfc $dr,$scr */ { #define FLD(f) abuf->fields.fmt_mvfc.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = m32rb_h_cr_get (current_cpu, FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MVTACHI) : /* mvtachi $src1 */ { #define FLD(f) abuf->fields.fmt_mvtachi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = ORDI (ANDDI (m32rb_h_accum_get (current_cpu), MAKEDI (0, 0xffffffff)), SLLDI (EXTSIDI (* FLD (f_r1)), 32)); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MVTACLO) : /* mvtaclo $src1 */ { #define FLD(f) abuf->fields.fmt_mvtachi.f new_pc = SEM_NEXT_PC (sem_arg, 2); { DI opval = ORDI (ANDDI (m32rb_h_accum_get (current_cpu), MAKEDI (0xffffffff, 0)), ZEXTSIDI (* FLD (f_r1))); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_MVTC) : /* mvtc $sr,$dcr */ { #define FLD(f) abuf->fields.fmt_mvtc.f new_pc = SEM_NEXT_PC (sem_arg, 2); { USI opval = * FLD (f_r2); m32rb_h_cr_set (current_cpu, FLD (f_r1), opval); TRACE_RESULT (current_cpu, "dcr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_NEG) : /* neg $dr,$sr */ { #define FLD(f) abuf->fields.fmt_mv.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = NEGSI (* FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_NOP) : /* nop */ { #define FLD(f) abuf->fields.fmt_nop.f new_pc = SEM_NEXT_PC (sem_arg, 2); PROFILE_COUNT_FILLNOPS (current_cpu, abuf->addr); #undef FLD } BREAK (sem); CASE (sem, INSN_NOT) : /* not $dr,$sr */ { #define FLD(f) abuf->fields.fmt_mv.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = INVSI (* FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_RAC) : /* rac */ { #define FLD(f) abuf->fields.fmt_rac.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { DI tmp_tmp1; tmp_tmp1 = SLLDI (m32rb_h_accum_get (current_cpu), 1); tmp_tmp1 = ADDDI (tmp_tmp1, MAKEDI (0, 32768)); { DI opval = (GTDI (tmp_tmp1, MAKEDI (32767, 0xffff0000))) ? (MAKEDI (32767, 0xffff0000)) : (LTDI (tmp_tmp1, MAKEDI (0xffff8000, 0))) ? (MAKEDI (0xffff8000, 0)) : (ANDDI (tmp_tmp1, MAKEDI (0xffffffff, 0xffff0000))); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_RACH) : /* rach */ { #define FLD(f) abuf->fields.fmt_rac.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { DI tmp_tmp1; tmp_tmp1 = ANDDI (m32rb_h_accum_get (current_cpu), MAKEDI (16777215, 0xffffffff)); if (ANDIF (GEDI (tmp_tmp1, MAKEDI (16383, 0x80000000)), LEDI (tmp_tmp1, MAKEDI (8388607, 0xffffffff)))) { tmp_tmp1 = MAKEDI (16383, 0x80000000); } else { if (ANDIF (GEDI (tmp_tmp1, MAKEDI (8388608, 0)), LEDI (tmp_tmp1, MAKEDI (16760832, 0)))) { tmp_tmp1 = MAKEDI (16760832, 0); } else { tmp_tmp1 = ANDDI (ADDDI (m32rb_h_accum_get (current_cpu), MAKEDI (0, 1073741824)), MAKEDI (0xffffffff, 0x80000000)); } } tmp_tmp1 = SLLDI (tmp_tmp1, 1); { DI opval = SRADI (SLLDI (tmp_tmp1, 7), 7); m32rb_h_accum_set (current_cpu, opval); TRACE_RESULT (current_cpu, "accum", 'D', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_RTE) : /* rte */ { #define FLD(f) abuf->fields.fmt_rte.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { { UBI opval = CPU (h_bsm); CPU (h_sm) = opval; TRACE_RESULT (current_cpu, "sm-0", 'x', opval); } { UBI opval = CPU (h_bie); CPU (h_ie) = opval; TRACE_RESULT (current_cpu, "ie-0", 'x', opval); } { UBI opval = CPU (h_bcond); CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } { USI opval = ANDSI (CPU (h_bpc), -4); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_ADDR (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_SETH) : /* seth $dr,$hash$hi16 */ { #define FLD(f) abuf->fields.fmt_seth.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = SLLSI (FLD (f_hi16), 16); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SLL) : /* sll $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = SLLSI (* FLD (f_r1), ANDSI (* FLD (f_r2), 31)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SLL3) : /* sll3 $dr,$sr,$simm16 */ { #define FLD(f) abuf->fields.fmt_sll3.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = SLLSI (* FLD (f_r2), ANDSI (FLD (f_simm16), 31)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SLLI) : /* slli $dr,$uimm5 */ { #define FLD(f) abuf->fields.fmt_slli.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = SLLSI (* FLD (f_r1), FLD (f_uimm5)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SRA) : /* sra $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = SRASI (* FLD (f_r1), ANDSI (* FLD (f_r2), 31)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SRA3) : /* sra3 $dr,$sr,$simm16 */ { #define FLD(f) abuf->fields.fmt_sll3.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = SRASI (* FLD (f_r2), ANDSI (FLD (f_simm16), 31)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SRAI) : /* srai $dr,$uimm5 */ { #define FLD(f) abuf->fields.fmt_slli.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = SRASI (* FLD (f_r1), FLD (f_uimm5)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SRL) : /* srl $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = SRLSI (* FLD (f_r1), ANDSI (* FLD (f_r2), 31)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SRL3) : /* srl3 $dr,$sr,$simm16 */ { #define FLD(f) abuf->fields.fmt_sll3.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = SRLSI (* FLD (f_r2), ANDSI (FLD (f_simm16), 31)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SRLI) : /* srli $dr,$uimm5 */ { #define FLD(f) abuf->fields.fmt_slli.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = SRLSI (* FLD (f_r1), FLD (f_uimm5)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_ST) : /* st $src1,@$src2 */ { #define FLD(f) abuf->fields.fmt_st.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = * FLD (f_r1); SETMEMSI (current_cpu, * FLD (f_r2), opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_ST_D) : /* st $src1,@($slo16,$src2) */ { #define FLD(f) abuf->fields.fmt_st_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { SI opval = * FLD (f_r1); SETMEMSI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_STB) : /* stb $src1,@$src2 */ { #define FLD(f) abuf->fields.fmt_stb.f new_pc = SEM_NEXT_PC (sem_arg, 2); { QI opval = * FLD (f_r1); SETMEMQI (current_cpu, * FLD (f_r2), opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_STB_D) : /* stb $src1,@($slo16,$src2) */ { #define FLD(f) abuf->fields.fmt_stb_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { QI opval = * FLD (f_r1); SETMEMQI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_STH) : /* sth $src1,@$src2 */ { #define FLD(f) abuf->fields.fmt_sth.f new_pc = SEM_NEXT_PC (sem_arg, 2); { HI opval = * FLD (f_r1); SETMEMHI (current_cpu, * FLD (f_r2), opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_STH_D) : /* sth $src1,@($slo16,$src2) */ { #define FLD(f) abuf->fields.fmt_sth_d.f new_pc = SEM_NEXT_PC (sem_arg, 4); { HI opval = * FLD (f_r1); SETMEMHI (current_cpu, ADDSI (* FLD (f_r2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_ST_PLUS) : /* st $src1,@+$src2 */ { #define FLD(f) abuf->fields.fmt_st_plus.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { SI tmp_new_src2; tmp_new_src2 = ADDSI (* FLD (f_r2), 4); { SI opval = * FLD (f_r1); SETMEMSI (current_cpu, tmp_new_src2, opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } { SI opval = tmp_new_src2; * FLD (f_r2) = opval; TRACE_RESULT (current_cpu, "src2", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_ST_MINUS) : /* st $src1,@-$src2 */ { #define FLD(f) abuf->fields.fmt_st_plus.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { SI tmp_new_src2; tmp_new_src2 = SUBSI (* FLD (f_r2), 4); { SI opval = * FLD (f_r1); SETMEMSI (current_cpu, tmp_new_src2, opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } { SI opval = tmp_new_src2; * FLD (f_r2) = opval; TRACE_RESULT (current_cpu, "src2", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_SUB) : /* sub $dr,$sr */ { #define FLD(f) abuf->fields.fmt_add.f new_pc = SEM_NEXT_PC (sem_arg, 2); { SI opval = SUBSI (* FLD (f_r1), * FLD (f_r2)); * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } #undef FLD } BREAK (sem); CASE (sem, INSN_SUBV) : /* subv $dr,$sr */ { #define FLD(f) abuf->fields.fmt_addv.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { UBI temp1;SI temp0; temp0 = SUBSI (* FLD (f_r1), * FLD (f_r2)); temp1 = SUBOFSI (* FLD (f_r1), * FLD (f_r2), 0); { SI opval = temp0; * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } { UBI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_SUBX) : /* subx $dr,$sr */ { #define FLD(f) abuf->fields.fmt_addx.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { UBI temp1;SI temp0; temp0 = SUBCSI (* FLD (f_r1), * FLD (f_r2), CPU (h_cond)); temp1 = SUBCFSI (* FLD (f_r1), * FLD (f_r2), CPU (h_cond)); { SI opval = temp0; * FLD (f_r1) = opval; TRACE_RESULT (current_cpu, "dr", 'x', opval); } { UBI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, "condbit", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_TRAP) : /* trap $uimm4 */ { #define FLD(f) abuf->fields.fmt_trap.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { { USI opval = ADDSI (CPU (h_pc), 4); m32rb_h_cr_set (current_cpu, ((HOSTUINT) 6), opval); TRACE_RESULT (current_cpu, "cr-6", 'x', opval); } { USI opval = ANDSI (SLLSI (m32rb_h_cr_get (current_cpu, ((HOSTUINT) 0)), 8), 65408); m32rb_h_cr_set (current_cpu, ((HOSTUINT) 0), opval); TRACE_RESULT (current_cpu, "cr-0", 'x', opval); } { SI opval = m32r_trap (current_cpu, CPU (h_pc), FLD (f_uimm4)); BRANCH_NEW_PC (new_pc, SEM_BRANCH_VIA_ADDR (sem_arg, opval)); TRACE_RESULT (current_cpu, "pc", 'x', opval); } } while (0); #undef FLD } BREAK (sem); CASE (sem, INSN_UNLOCK) : /* unlock $src1,@$src2 */ { #define FLD(f) abuf->fields.fmt_unlock.f new_pc = SEM_NEXT_PC (sem_arg, 2); do { if (CPU (h_lock)) { { SI opval = * FLD (f_r1); SETMEMSI (current_cpu, * FLD (f_r2), opval); TRACE_RESULT (current_cpu, "memory", 'x', opval); } } { UBI opval = 0; CPU (h_lock) = opval; TRACE_RESULT (current_cpu, "lock-0", 'x', opval); } } while (0); #undef FLD } BREAK (sem); } ENDSWITCH (sem) /* End of semantic switch. */ PC = new_pc; } #endif /* DEFINE_SWITCH */