/* Main simulator entry points specific to Lattice Mico32. Contributed by Jon Beniston Copyright (C) 2009-2021 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "sim-main.h" #include "sim-options.h" #include "libiberty.h" #include "bfd.h" #include /* Cover function of sim_state_free to free the cpu buffers as well. */ static void free_state (SIM_DESC sd) { if (STATE_MODULES (sd) != NULL) sim_module_uninstall (sd); sim_cpu_free_all (sd); sim_state_free (sd); } /* Find memory range used by program. */ static unsigned long find_base (bfd *prog_bfd) { int found; unsigned long base = ~(0UL); asection *s; found = 0; for (s = prog_bfd->sections; s; s = s->next) { if ((strcmp (bfd_section_name (s), ".boot") == 0) || (strcmp (bfd_section_name (s), ".text") == 0) || (strcmp (bfd_section_name (s), ".data") == 0) || (strcmp (bfd_section_name (s), ".bss") == 0)) { if (!found) { base = bfd_section_vma (s); found = 1; } else base = bfd_section_vma (s) < base ? bfd_section_vma (s) : base; } } return base & ~(0xffffUL); } static unsigned long find_limit (SIM_DESC sd) { bfd_vma addr; addr = trace_sym_value (sd, "_fstack"); if (addr == -1) return 0; return (addr + 65536) & ~(0xffffUL); } /* Create an instance of the simulator. */ SIM_DESC sim_open (kind, callback, abfd, argv) SIM_OPEN_KIND kind; host_callback *callback; struct bfd *abfd; char * const *argv; { SIM_DESC sd = sim_state_alloc (kind, callback); char c; int i; unsigned long base, limit; /* The cpu data is kept in a separately allocated chunk of memory. */ if (sim_cpu_alloc_all (sd, 1, cgen_cpu_max_extra_bytes ()) != SIM_RC_OK) { free_state (sd); return 0; } if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) { free_state (sd); return 0; } /* The parser will print an error message for us, so we silently return. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { free_state (sd); return 0; } #if 0 /* Allocate a handler for I/O devices if no memory for that range has been allocated by the user. All are allocated in one chunk to keep things from being unnecessarily complicated. */ if (sim_core_read_buffer (sd, NULL, read_map, &c, LM32_DEVICE_ADDR, 1) == 0) sim_core_attach (sd, NULL, 0 /*level */ , access_read_write, 0 /*space ??? */ , LM32_DEVICE_ADDR, LM32_DEVICE_LEN /*nr_bytes */ , 0 /*modulo */ , &lm32_devices, NULL /*buffer */ ); #endif /* check for/establish the reference program image. */ if (sim_analyze_program (sd, (STATE_PROG_ARGV (sd) != NULL ? *STATE_PROG_ARGV (sd) : NULL), abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* Check to see if memory exists at programs start address. */ if (sim_core_read_buffer (sd, NULL, read_map, &c, STATE_START_ADDR (sd), 1) == 0) { if (STATE_PROG_BFD (sd) != NULL) { /* It doesn't, so we should try to allocate enough memory to hold program. */ base = find_base (STATE_PROG_BFD (sd)); limit = find_limit (sd); if (limit == 0) { sim_io_eprintf (sd, "Failed to find symbol _fstack in program. You must specify memory regions with --memory-region.\n"); free_state (sd); return 0; } /*sim_io_printf (sd, "Allocating memory at 0x%x size 0x%x\n", base, limit); */ sim_do_commandf (sd, "memory region 0x%x,0x%x", base, limit); } } /* Establish any remaining configuration options. */ if (sim_config (sd) != SIM_RC_OK) { free_state (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { free_state (sd); return 0; } /* Open a copy of the cpu descriptor table. */ { CGEN_CPU_DESC cd = lm32_cgen_cpu_open_1 (STATE_ARCHITECTURE (sd)->printable_name, CGEN_ENDIAN_BIG); for (i = 0; i < MAX_NR_PROCESSORS; ++i) { SIM_CPU *cpu = STATE_CPU (sd, i); CPU_CPU_DESC (cpu) = cd; CPU_DISASSEMBLER (cpu) = sim_cgen_disassemble_insn; } lm32_cgen_init_dis (cd); } /* Initialize various cgen things not done by common framework. Must be done after lm32_cgen_cpu_open. */ cgen_init (sd); return sd; } SIM_RC sim_create_inferior (sd, abfd, argv, envp) SIM_DESC sd; struct bfd *abfd; char * const *argv; char * const *envp; { SIM_CPU *current_cpu = STATE_CPU (sd, 0); SIM_ADDR addr; if (abfd != NULL) addr = bfd_get_start_address (abfd); else addr = 0; sim_pc_set (current_cpu, addr); /* Standalone mode (i.e. `run`) will take care of the argv for us in sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim' with `gdb`), we need to handle it because the user can change the argv on the fly via gdb's 'run'. */ if (STATE_PROG_ARGV (sd) != argv) { freeargv (STATE_PROG_ARGV (sd)); STATE_PROG_ARGV (sd) = dupargv (argv); } return SIM_RC_OK; }