/*
 * Simulator for the Hitachi H8/300 architecture.
 *
 * Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
 *
 * This file is part of H8/300 sim
 *
 *
 * THIS SOFTWARE IS NOT COPYRIGHTED
 *
 * Cygnus offers the following for use in the public domain.  Cygnus makes no
 * warranty with regard to the software or its performance and the user
 * accepts the software "AS IS" with all faults.
 *
 * CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
 * SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE.
 */

#include <signal.h>
#ifndef WIN32
#include <sys/times.h>
#endif
#include <sys/param.h>
#include "ansidecl.h"
#include "sysdep.h"
#include "remote-sim.h"
#include "bfd.h"

int debug;


#define X(op, size)  op*4+size

#define SP (h8300hmode ? SL:SW)
#define SB 0
#define SW 1
#define SL 2
#define OP_REG 1
#define OP_DEC 2
#define OP_DISP 3
#define OP_INC 4
#define OP_PCREL 5
#define OP_MEM 6
#define OP_CCR 7
#define OP_IMM 8
#define OP_ABS 10
#define h8_opcodes ops
#define DEFINE_TABLE
#include "opcode/h8300.h"

#include "inst.h"

#define LOW_BYTE(x) ((x) & 0xff)
#define HIGH_BYTE(x) (((x)>>8) & 0xff)
#define P(X,Y) ((X<<8) | Y)

#define BUILDSR()   cpu.ccr = (N << 3) | (Z << 2) | (V<<1) | C;

#define GETSR()		    \
  c = (cpu.ccr >> 0) & 1;\
  v = (cpu.ccr >> 1) & 1;\
  nz = !((cpu.ccr >> 2) & 1);\
  n = (cpu.ccr >> 3) & 1;

#ifdef __CHAR_IS_SIGNED__
#define SEXTCHAR(x) ((char)(x))
#endif

#ifndef SEXTCHAR
#define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff):x)
#endif

#define UEXTCHAR(x) ((x) & 0xff)
#define UEXTSHORT(x) ((x) & 0xffff)
#define SEXTSHORT(x) ((short)(x))

static cpu_state_type cpu;

int h8300hmode = 0;


static int
get_now ()
{
#ifndef WIN32
  struct tms b;

  return time (0);
#endif
  return 0;
}

static int
now_persec ()
{
  return 1;
}


static int
bitfrom (x)
{
  switch (x & SIZE)
    {
    case L_8:
      return SB;
    case L_16:
      return SW;
    case L_32:
      return SL;
    case L_P:
      return h8300hmode ? SL : SW;
    }
}

static
unsigned int
lvalue (x, rn)
{
  switch (x / 4)
    {
    case OP_DISP:
      if (rn == 8)
	{
	  return X (OP_IMM, SP);
	}
      return X (OP_REG, SP);

    case OP_MEM:

      return X (OP_MEM, SP);
    default:
      abort ();
    }
}

static unsigned int
decode (addr, data, dst)
     int addr;
     unsigned char *data;
     decoded_inst *dst;

{
  int rs = 0;
  int rd = 0;
  int rdisp = 0;
  int abs = 0;
  int plen = 0;

  struct h8_opcode *q = h8_opcodes;
  int size = 0;
  dst->dst.type = -1;
  dst->src.type = -1;
  /* Find the exact opcode/arg combo */
  while (q->name)
    {
      op_type *nib;
      unsigned int len = 0;

      nib = q->data.nib;

      while (1)
	{
	  op_type looking_for = *nib;
	  int thisnib = data[len >> 1];

	  thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);

	  if (looking_for < 16 && looking_for >= 0)
	    {
	      if (looking_for != thisnib)
		goto fail;
	    }
	  else
	    {
	      if ((int) looking_for & (int) B31)
		{
		  if (!(((int) thisnib & 0x8) != 0))
		    goto fail;
		  looking_for = (op_type) ((int) looking_for & ~(int)
					   B31);
		  thisnib &= 0x7;
		}
	      if ((int) looking_for & (int) B30)
		{
		  if (!(((int) thisnib & 0x8) == 0))
		    goto fail;
		  looking_for = (op_type) ((int) looking_for & ~(int) B30);
		}
	      if (looking_for & DBIT)
		{
		  if ((looking_for & 5) != (thisnib & 5))
		    goto fail;
		  abs = (thisnib & 0x8) ? 2 : 1;
		}
	      else if (looking_for & (REG | IND | INC | DEC))
		{
		  if (looking_for & REG)
		    {
		      /*
		       * Can work out size from the
		       * register
		       */
		      size = bitfrom (looking_for);
		    }
		  if (looking_for & SRC)
		    {
		      rs = thisnib;
		    }
		  else
		    {
		      rd = thisnib;
		    }
		}
	      else if (looking_for & L_16)
		{
		  abs = (data[len >> 1]) * 256 + data[(len + 2) >> 1];
		  plen = 16;
		  if (looking_for & (PCREL | DISP))
		    {
		      abs = (short) (abs);
		    }
		}
	      else if (looking_for & ABSJMP)
		{
		  abs =
		    (data[1] << 16)
		    | (data[2] << 8)
		    | (data[3]);
		}
	      else if (looking_for & MEMIND)
		{
		  abs = data[1];
		}
	      else if (looking_for & L_32)
		{
		  int i = len >> 1;
		  abs = (data[i] << 24)
		    | (data[i + 1] << 16)
		    | (data[i + 2] << 8)
		    | (data[i + 3]);

		  plen = 32;
		}
	      else if (looking_for & L_24)
		{
		  int i = len >> 1;
		  abs = (data[i] << 16) | (data[i + 1] << 8) | (data[i + 2]);
		  plen = 24;
		}
	      else if (looking_for & IGNORE)
		{
		  /* nothing to do */
		}
	      else if (looking_for & DISPREG)
		{
		  rdisp = thisnib & 0x7;
		}
	      else if (looking_for & KBIT)
		{
		  switch (thisnib)
		    {
		    case 9:
		      abs = 4;
		      break;
		    case 8:
		      abs = 2;
		      break;
		    case 0:
		      abs = 1;
		      break;
		    }
		}
	      else if (looking_for & L_8)
		{
		  plen = 8;

		  if (looking_for & PCREL)
		    {
		      abs = SEXTCHAR (data[len >> 1]);
		    }
		  else
		    {
		      abs = data[len >> 1] & 0xff;
		    }
		}
	      else if (looking_for & L_3)
		{
		  plen = 3;

		  abs = thisnib;
		}
	      else if (looking_for == E)
		{
		  dst->op = q;

		  /* Fill in the args */
		  {
		    op_type *args = q->args.nib;
		    int hadone = 0;

		    while (*args != E)
		      {
			int x = *args;
			int rn = (x & DST) ? rd : rs;
			ea_type *p;

			if (x & DST)
			  {
			    p = &(dst->dst);
			  }
			else
			  {
			    p = &(dst->src);
			  }

			if (x & (IMM | KBIT | DBIT))
			  {
			    p->type = X (OP_IMM, size);
			    p->literal = abs;
			  }
			else if (x & REG)
			  {
			    /* Reset the size, some
			       ops (like mul) have two sizes */

			    size = bitfrom (x);
			    p->type = X (OP_REG, size);
			    p->reg = rn;
			  }
			else if (x & INC)
			  {
			    p->type = X (OP_INC, size);
			    p->reg = rn & 0x7;
			  }
			else if (x & DEC)
			  {
			    p->type = X (OP_DEC, size);
			    p->reg = rn & 0x7;
			  }
			else if (x & IND)
			  {
			    p->type = X (OP_DISP, size);
			    p->reg = rn & 0x7;
			    p->literal = 0;
			  }
			else if (x & (ABS | ABSJMP | ABSMOV))
			  {
			    p->type = X (OP_DISP, size);
			    p->literal = abs;
			    p->reg = 8;
			  }
			else if (x & MEMIND)
			  {
			    p->type = X (OP_MEM, size);
			    p->literal = abs;
			  }
			else if (x & PCREL)
			  {
			    p->type = X (OP_PCREL, size);
			    p->literal = abs + addr + 2;
			    if (x & L_16)
			      p->literal += 2;
			  }
			else if (x & ABSJMP)
			  {
			    p->type = X (OP_IMM, SP);
			    p->literal = abs;
			  }
			else if (x & DISP)
			  {
			    p->type = X (OP_DISP, size);
			    p->literal = abs;
			    p->reg = rdisp & 0x7;
			  }
			else if (x & CCR)
			  {
			    p->type = OP_CCR;
			  }
			else
			  printf ("Hmmmm %x", x);

			args++;
		      }
		  }

		  /*
		     * But a jmp or a jsr gets
		     * automagically lvalued, since we
		     * branch to their address not their
		     * contents
		   */
		  if (q->how == O (O_JSR, SB)
		      || q->how == O (O_JMP, SB))
		    {
		      dst->src.type = lvalue (dst->src.type, dst->src.reg);
		    }

		  if (dst->dst.type == -1)
		    dst->dst = dst->src;

		  dst->opcode = q->how;
		  dst->cycles = q->time;

		  /* And a jsr to 0xc4 is turned into a magic trap */

		  if (dst->opcode == O (O_JSR, SB))
		    {
		      if (dst->src.literal == 0xc4)
			{
			  dst->opcode = O (O_SYSCALL, SB);
			}
		    }

		  dst->next_pc = addr + len / 2;
		  return;
		}
	      else
		{
		  printf ("Dont understand %x \n", looking_for);
		}
	    }

	  len++;
	  nib++;
	}

    fail:
      q++;
    }

  dst->opcode = O (O_ILL, SB);
}


static void
compile (pc)
{
  int idx;

  /* find the next cache entry to use */

  idx = cpu.cache_top + 1;
  cpu.compiles++;
  if (idx >= cpu.csize)
    {
      idx = 1;
    }
  cpu.cache_top = idx;

  /* Throw away its old meaning */
  cpu.cache_idx[cpu.cache[idx].oldpc] = 0;

  /* set to new address */
  cpu.cache[idx].oldpc = pc;

  /* fill in instruction info */
  decode (pc, cpu.memory + pc, cpu.cache + idx);

  /* point to new cache entry */
  cpu.cache_idx[pc] = idx;
}


static unsigned char *breg[18];
static unsigned short *wreg[18];
static unsigned int *lreg[18];

#define GET_B_REG(x) *(breg[x])
#define SET_B_REG(x,y) (*(breg[x])) = (y)
#define GET_W_REG(x) *(wreg[x])
#define SET_W_REG(x,y) (*(wreg[x])) = (y)

#define GET_L_REG(x) *(lreg[x])
#define SET_L_REG(x,y) (*(lreg[x])) = (y)

#define GET_MEMORY_L(x) \
  ((cpu.memory[x+0] << 24) | (cpu.memory[x+1] << 16) | (cpu.memory[x+2] << 8) | cpu.memory[x+3])

#define GET_MEMORY_W(x) \
  ((cpu.memory[x+0] << 8) | (cpu.memory[x+1] << 0))


#define SET_MEMORY_B(x,y) \
  (cpu.memory[(x)] = y)

#define SET_MEMORY_W(x,y) \
{register unsigned char *_p = cpu.memory+x;\
   register int __y = y;\
     _p[0] = (__y)>>8;\
       _p[1] =(__y);     }

#define SET_MEMORY_L(x,y)  \
{register unsigned char *_p = cpu.memory+x;register int __y = y;\
   _p[0] = (__y)>>24;	 _p[1] = (__y)>>16;	 _p[2] = (__y)>>8;	 _p[3] = (__y)>>0;}

#define GET_MEMORY_B(x)  (cpu.memory[x])

int
fetch (arg, n)
     ea_type *arg;
{
  int rn = arg->reg;
  int abs = arg->literal;
  int r;
  int t;

  switch (arg->type)
    {
    case X (OP_REG, SB):
      return GET_B_REG (rn);
    case X (OP_REG, SW):
      return GET_W_REG (rn);
    case X (OP_REG, SL):
      return GET_L_REG (rn);
    case X (OP_IMM, SB):
    case X (OP_IMM, SW):
    case X (OP_IMM, SL):
      return abs;
    case X (OP_DEC, SB):
      abort ();

    case X (OP_INC, SB):
      t = GET_L_REG (rn);
      t &= cpu.mask;
      r = GET_MEMORY_B (t);
      t++;
      t = t & cpu.mask;
      SET_L_REG (rn, t);
      return r;
      break;
    case X (OP_INC, SW):
      t = GET_L_REG (rn);
      t &= cpu.mask;
      r = GET_MEMORY_W (t);
      t += 2;
      t = t & cpu.mask;
      SET_L_REG (rn, t);
      return r;
    case X (OP_INC, SL):
      t = GET_L_REG (rn);
      t &= cpu.mask;
      r = GET_MEMORY_L (t);

      t += 4;
      t = t & cpu.mask;
      SET_L_REG (rn, t);
      return r;

    case X (OP_DISP, SB):
      t = GET_L_REG (rn) + abs;
      t &= cpu.mask;
      return GET_MEMORY_B (t);

    case X (OP_DISP, SW):
      t = GET_L_REG (rn) + abs;
      t &= cpu.mask;
      return GET_MEMORY_W (t);

    case X (OP_DISP, SL):
      t = GET_L_REG (rn) + abs;
      t &= cpu.mask;
      return GET_MEMORY_L (t);

    case X (OP_MEM, SL):
      t = GET_MEMORY_L (abs);
      t &= cpu.mask;
      return t;

    default:
      abort ();

    }
}


static
void
store (arg, n)
     ea_type *arg;
     int n;
{
  int rn = arg->reg;
  int abs = arg->literal;
  int t;

  switch (arg->type)
    {
    case X (OP_REG, SB):
      SET_B_REG (rn, n);
      break;
    case X (OP_REG, SW):
      SET_W_REG (rn, n);
      break;
    case X (OP_REG, SL):
      SET_L_REG (rn, n);
      break;

    case X (OP_DEC, SB):
      t = GET_L_REG (rn) - 1;
      t &= cpu.mask;
      SET_L_REG (rn, t);
      SET_MEMORY_B (t, n);

      break;
    case X (OP_DEC, SW):
      t = (GET_L_REG (rn) - 2) & cpu.mask;
      SET_L_REG (rn, t);
      SET_MEMORY_W (t, n);
      break;

    case X (OP_DEC, SL):
      t = (GET_L_REG (rn) - 4) & cpu.mask;
      SET_L_REG (rn, t);
      SET_MEMORY_L (t, n);
      break;

    case X (OP_DISP, SB):
      t = GET_L_REG (rn) + abs;
      t &= cpu.mask;
      SET_MEMORY_B (t, n);
      break;

    case X (OP_DISP, SW):
      t = GET_L_REG (rn) + abs;
      t &= cpu.mask;
      SET_MEMORY_W (t, n);
      break;

    case X (OP_DISP, SL):
      t = GET_L_REG (rn) + abs;
      t &= cpu.mask;
      SET_MEMORY_L (t, n);
      break;
    default:
      abort ();
    }
}


static union
{
  short int i;
  struct
    {
      char low;
      char high;
    }
  u;
}

littleendian;

static
void
init_pointers ()
{
  static int init;

  if (!init)
    {
      int i;

      init = 1;
      littleendian.i = 1;

      cpu.memory = (unsigned char *) calloc (sizeof (char), MSIZE);
      cpu.cache_idx = (unsigned short *) calloc (sizeof (short), MSIZE);

      cpu.mask = (1 << MPOWER) - 1;
      for (i = 0; i < 9; i++)
	{
	  cpu.regs[i] = 0;
	}

      for (i = 0; i < 8; i++)
	{
	  unsigned char *p = (unsigned char *) (cpu.regs + i);
	  unsigned char *e = (unsigned char *) (cpu.regs + i + 1);
	  unsigned short *q = (unsigned short *) (cpu.regs + i);
	  unsigned short *u = (unsigned short *) (cpu.regs + i + 1);
	  cpu.regs[i] = 0x00112233;
	  while (p < e)
	    {
	      if (*p == 0x22)
		{
		  breg[i] = p;
		}
	      if (*p == 0x33)
		{
		  breg[i + 8] = p;
		}
	      p++;
	    }
	  while (q < u)
	    {
	      if (*q == 0x2233)
		{
		  wreg[i] = q;
		}
	      if (*q == 0x0011)
		{
		  wreg[i + 8] = q;
		}
	      q++;
	    }
	  cpu.regs[i] = 0;
	  lreg[i] = &cpu.regs[i];
	}

      lreg[8] = &cpu.regs[8];

      /* initialize the seg registers */
      if (!cpu.cache)
	sim_csize (CSIZE);
    }
}

static void
control_c (sig, code, scp, addr)
     int sig;
     int code;
     char *scp;
     char *addr;
{
  cpu.exception = SIGINT;
}

#define C (c != 0)
#define Z (nz == 0)
#define V (v != 0)
#define N (n != 0)

static int
mop (code, bsize, sign)
     decoded_inst *code;
     int bsize;
     int sign;
{
  int multiplier;
  int multiplicand;
  int result;
  int n, nz;

  if (sign)
    {
      multiplicand =
	bsize ? SEXTCHAR (GET_W_REG (code->dst.reg)) :
	SEXTSHORT (GET_W_REG (code->dst.reg));
      multiplier =
	bsize ? SEXTCHAR (GET_B_REG (code->src.reg)) :
	SEXTSHORT (GET_W_REG (code->src.reg));
    }
  else
    {
      multiplicand = bsize ? UEXTCHAR (GET_W_REG (code->dst.reg)) :
	UEXTSHORT (GET_W_REG (code->dst.reg));
      multiplier =
	bsize ? UEXTCHAR (GET_B_REG (code->src.reg)) :
	UEXTSHORT (GET_W_REG (code->src.reg));

    }
  result = multiplier * multiplicand;

  if (sign)
    {
      n = result & (bsize ? 0x8000 : 0x80000000);
      nz = result & (bsize ? 0xffff : 0xffffffff);
    }
  if (bsize)
    {
      SET_W_REG (code->dst.reg, result);
    }
  else
    {
      SET_L_REG (code->dst.reg, result);
    }
/*  return ((n==1) << 1) | (nz==1); */

}

#define OSHIFTS(name, how) \
case O(name, SB):				\
{						\
  int t;					\
  int hm = 0x80;				\
  rd = GET_B_REG (code->src.reg);		\
  how; 						\
  goto shift8;					\
} 						\
case O(name, SW):				\
{ 						\
  int t;					\
  int hm = 0x8000;				\
  rd = GET_W_REG (code->src.reg); 		\
  how; 						\
  goto shift16;					\
} 						\
case O(name, SL):				\
{						\
  int t;					\
  int hm = 0x80000000; 				\
  rd = GET_L_REG (code->src.reg);		\
  how; 						\
  goto shift32;					\
}

#define OBITOP(name,f, s, op) 			\
case  O(name, SB):				\
{						\
  int m;					\
  int b; 					\
  if (f) ea = fetch (&code->dst);		\
  m=1<< fetch(&code->src);			\
  op;						\
  if(s) store (&code->dst,ea); goto next;	\
}

void
sim_resume (step, siggnal)
{
  static int init1;
  int cycles = 0;
  int insts = 0;
  int tick_start = get_now ();
  void (*prev) ();
  int poll_count = 0;
  int res;
  int tmp;
  int rd;
  int ea;
  int bit;
  int pc;
  int c, nz, v, n;
  int oldmask;
  init_pointers ();

  prev = signal (SIGINT, control_c);

  if (step)
    {
      cpu.exception = SIGTRAP;
    }
  else
    {
      cpu.exception = 0;
    }

  pc = cpu.pc;

  GETSR ();
  oldmask = cpu.mask;
  if (!h8300hmode)
    cpu.mask = 0xffff;
  do
    {
      int cidx;
      decoded_inst *code;

    top:
      cidx = cpu.cache_idx[pc];
      code = cpu.cache + cidx;


#define ALUOP(STORE, NAME, HOW) \
    case O(NAME,SB):  HOW; if(STORE)goto alu8;else goto just_flags_alu8;  \
    case O(NAME, SW): HOW; if(STORE)goto alu16;else goto just_flags_alu16; \
    case O(NAME,SL):  HOW; if(STORE)goto alu32;else goto just_flags_alu32;


#define LOGOP(NAME, HOW) \
    case O(NAME,SB): HOW; goto log8;\
    case O(NAME, SW): HOW; goto log16;\
    case O(NAME,SL): HOW; goto log32;



#if ADEBUG
      if (debug)
	{
	  printf ("%x %d %s\n", pc, code->opcode,
		  code->op ? code->op->name : "**");
	}
      cpu.stats[code->opcode]++;

#endif

      cycles += code->cycles;
      insts++;
      switch (code->opcode)
	{
	case 0:
	  /*
	   * This opcode is a fake for when we get to an
	   * instruction which hasnt been compiled
	   */
	  compile (pc);
	  goto top;
	  break;


	case O (O_SUBX, SB):
	  rd = fetch (&code->dst);
	  ea = fetch (&code->src);
	  ea = -(ea + C);
	  res = rd + ea;
	  goto alu8;

	case O (O_ADDX, SB):
	  rd = fetch (&code->dst);
	  ea = fetch (&code->src);
	  ea = C + ea;
	  res = rd + ea;
	  goto alu8;

#define EA    ea = fetch(&code->src);
#define RD_EA ea = fetch(&code->src); rd = fetch(&code->dst);

	  ALUOP (1, O_SUB, RD_EA;
		 ea = -ea;
		 res = rd + ea);
	  ALUOP (1, O_NEG, EA;
		 ea = -ea;
		 rd = 0;
		 res = rd + ea);

	case O (O_ADD, SB):
	  rd = GET_B_REG (code->dst.reg);
	  ea = fetch (&code->src);
	  res = rd + ea;
	  goto alu8;
	case O (O_ADD, SW):
	  rd = GET_W_REG (code->dst.reg);
	  ea = fetch (&code->src);
	  res = rd + ea;
	  goto alu16;
	case O (O_ADD, SL):
	  rd = GET_L_REG (code->dst.reg);
	  ea = fetch (&code->src);
	  res = rd + ea;
	  goto alu32;


	  LOGOP (O_AND, RD_EA;
		 res = rd & ea);

	  LOGOP (O_OR, RD_EA;
		 res = rd | ea);

	  LOGOP (O_XOR, RD_EA;
		 res = rd ^ ea);


	case O (O_MOV_TO_MEM, SB):
	  res = GET_B_REG (code->src.reg);
	  goto log8;
	case O (O_MOV_TO_MEM, SW):
	  res = GET_W_REG (code->src.reg);
	  goto log16;
	case O (O_MOV_TO_MEM, SL):
	  res = GET_L_REG (code->src.reg);
	  goto log32;


	case O (O_MOV_TO_REG, SB):
	  res = fetch (&code->src);
	  SET_B_REG (code->dst.reg, res);
	  goto just_flags_log8;
	case O (O_MOV_TO_REG, SW):
	  res = fetch (&code->src);
	  SET_W_REG (code->dst.reg, res);
	  goto just_flags_log16;
	case O (O_MOV_TO_REG, SL):
	  res = fetch (&code->src);
	  SET_L_REG (code->dst.reg, res);
	  goto just_flags_log32;


	case O (O_ADDS, SL):
	  SET_L_REG (code->dst.reg,
		     GET_L_REG (code->dst.reg)
		     + code->src.literal);

	  goto next;

	case O (O_SUBS, SL):
	  SET_L_REG (code->dst.reg,
		     GET_L_REG (code->dst.reg)
		     - code->src.literal);
	  goto next;

	case O (O_CMP, SB):
	  rd = fetch (&code->dst);
	  ea = fetch (&code->src);
	  ea = -ea;
	  res = rd + ea;
	  goto just_flags_alu8;

	case O (O_CMP, SW):
	  rd = fetch (&code->dst);
	  ea = fetch (&code->src);
	  ea = -ea;
	  res = rd + ea;
	  goto just_flags_alu16;

	case O (O_CMP, SL):
	  rd = fetch (&code->dst);
	  ea = fetch (&code->src);
	  ea = -ea;
	  res = rd + ea;
	  goto just_flags_alu32;


	case O (O_DEC, SB):
	  rd = GET_B_REG (code->src.reg);
	  ea = -1;
	  res = rd + ea;
	  SET_B_REG (code->src.reg, res);
	  goto just_flags_inc8;

	case O (O_DEC, SW):
	  rd = GET_W_REG (code->dst.reg);
	  ea = -code->src.literal;
	  res = rd + ea;
	  SET_W_REG (code->dst.reg, res);
	  goto just_flags_inc16;

	case O (O_DEC, SL):
	  rd = GET_L_REG (code->dst.reg);
	  ea = -code->src.literal;
	  res = rd + ea;
	  SET_L_REG (code->dst.reg, res);
	  goto just_flags_inc32;


	case O (O_INC, SB):
	  rd = GET_B_REG (code->src.reg);
	  ea = 1;
	  res = rd + ea;
	  SET_B_REG (code->src.reg, res);
	  goto just_flags_inc8;

	case O (O_INC, SW):
	  rd = GET_W_REG (code->dst.reg);
	  ea = code->src.literal;
	  res = rd + ea;
	  SET_W_REG (code->dst.reg, res);
	  goto just_flags_inc16;

	case O (O_INC, SL):
	  rd = GET_L_REG (code->dst.reg);
	  ea = code->src.literal;
	  res = rd + ea;
	  SET_L_REG (code->dst.reg, res);
	  goto just_flags_inc32;


#define GET_CCR(x) BUILDSR();x = cpu.ccr

	case O (O_ANDC, SB):
	  GET_CCR (rd);
	  ea = code->src.literal;
	  res = rd & ea;
	  goto setc;

	case O (O_ORC, SB):
	  GET_CCR (rd);
	  ea = code->src.literal;
	  res = rd | ea;
	  goto setc;

	case O (O_XORC, SB):
	  GET_CCR (rd);
	  ea = code->src.literal;
	  res = rd ^ ea;
	  goto setc;


	case O (O_BRA, SB):
	  if (1)
	    goto condtrue;
	  goto next;

	case O (O_BRN, SB):
	  if (0)
	    goto condtrue;
	  goto next;

	case O (O_BHI, SB):
	  if ((C || Z) == 0)
	    goto condtrue;
	  goto next;


	case O (O_BLS, SB):
	  if ((C || Z))
	    goto condtrue;
	  goto next;

	case O (O_BCS, SB):
	  if ((C == 1))
	    goto condtrue;
	  goto next;

	case O (O_BCC, SB):
	  if ((C == 0))
	    goto condtrue;
	  goto next;

	case O (O_BEQ, SB):
	  if (Z)
	    goto condtrue;
	  goto next;
	case O (O_BGT, SB):
	  if (((Z || (N ^ V)) == 0))
	    goto condtrue;
	  goto next;


	case O (O_BLE, SB):
	  if (((Z || (N ^ V)) == 1))
	    goto condtrue;
	  goto next;

	case O (O_BGE, SB):
	  if ((N ^ V) == 0)
	    goto condtrue;
	  goto next;
	case O (O_BLT, SB):
	  if ((N ^ V))
	    goto condtrue;
	  goto next;
	case O (O_BMI, SB):
	  if ((N))
	    goto condtrue;
	  goto next;
	case O (O_BNE, SB):
	  if ((Z == 0))
	    goto condtrue;
	  goto next;

	case O (O_BPL, SB):
	  if (N == 0)
	    goto condtrue;
	  goto next;
	case O (O_BVC, SB):
	  if ((V == 0))
	    goto condtrue;
	  goto next;
	case O (O_BVS, SB):
	  if ((V == 1))
	    goto condtrue;
	  goto next;

	case O (O_SYSCALL, SB):
	  printf ("%c", cpu.regs[2]);
	  goto next;

	  OSHIFTS (O_NOT, rd = ~rd);
	  OSHIFTS (O_SHLL, c = rd & hm;
		   rd <<= 1);
	  OSHIFTS (O_SHLR, c = rd & 1;
		   rd = (unsigned int) rd >> 1);
	  OSHIFTS (O_SHAL, c = rd & hm;
		   rd <<= 1);
	  OSHIFTS (O_SHAR, t = rd & hm;
		   c = rd & 1;
		   rd >>= 1;
		   rd |= t;
		   );
	  OSHIFTS (O_ROTL, c = rd & hm;
		   rd <<= 1;
		   rd |= C);
	  OSHIFTS (O_ROTR, c = rd & 1;
		   rd = (unsigned int) rd >> 1;
		   if (c) rd |= hm;);
	  OSHIFTS (O_ROTXL, t = rd & hm;
		   rd <<= 1;
		   rd |= C;
		   c = t;
		   );
	  OSHIFTS (O_ROTXR, t = rd & 1;
		   rd = (unsigned int) rd >> 1;
		   if (C) rd |= hm; c = t;);

	case O (O_JMP, SB):
	  {
	    pc = fetch (&code->src);
	    goto end;

	  }

	case O (O_JSR, SB):
	  {
	    int tmp;
	    pc = fetch (&code->src);
	  call:
	    tmp = cpu.regs[7];

	    if (h8300hmode)
	      {
		tmp -= 4;
		SET_MEMORY_L (tmp, code->next_pc);
	      }
	    else
	      {
		tmp -= 2;
		SET_MEMORY_W (tmp, code->next_pc);
	      }
	    cpu.regs[7] = tmp;

	    goto end;
	  }
	case O (O_BSR, SB):
	  pc = code->src.literal;
	  goto call;

	case O (O_RTS, SB):
	  {
	    int tmp;

	    tmp = cpu.regs[7];

	    if (h8300hmode)
	      {
		pc = GET_MEMORY_L (tmp);
		tmp += 4;
	      }
	    else
	      {
		pc = GET_MEMORY_W (tmp);
		tmp += 2;
	      }

	    cpu.regs[7] = tmp;
	    goto end;
	  }

	case O (O_ILL, SB):
	  cpu.exception = SIGILL;
	  goto end;
	case O (O_SLEEP, SB):
	case O (O_BPT, SB):
	  cpu.exception = SIGTRAP;
	  goto end;

	  OBITOP (O_BNOT, 1, 1, ea ^= m);
	  OBITOP (O_BTST, 1, 0, nz = ea & m);
	  OBITOP (O_BCLR, 1, 1, ea &= ~m);
	  OBITOP (O_BSET, 1, 1, ea |= m);	
	  OBITOP (O_BLD, 1, 0, c = ea & m);
	  OBITOP (O_BILD, 1, 0, c = !(ea & m));
	  OBITOP (O_BST, 1, 1, ea &= ~m;
		  if (C) ea |= m);
	  OBITOP (O_BIST, 1, 1, ea &= ~m;
		  if (!C) ea |= m);
	  OBITOP (O_BAND, 1, 0, c = (ea & m) && C);
	  OBITOP (O_BIAND, 1, 0, c = !(ea & m) && C);
	  OBITOP (O_BOR, 1, 0, c = (ea & m) || C);
	  OBITOP (O_BIOR, 1, 0, c = !(ea & m) || C);
	  OBITOP (O_BXOR, 1, 0, c = (ea & m) != C);
	  OBITOP (O_BIXOR, 1, 0, c = !(ea & m) != C);


#define MOP(bsize, signed) mop(code, bsize,signed); goto next;

	case O (O_MULS, SB):
	  MOP (1, 1);
	  break;
	case O (O_MULS, SW):
	  MOP (0, 1);
	  break;
	case O (O_MULU, SB):
	  MOP (1, 0);
	  break;
	case O (O_MULU, SW):
	  MOP (0, 0);
	  break;


	case O (O_DIVU, SB):
	  {
	    rd = GET_W_REG (code->dst.reg);
	    ea = GET_B_REG (code->src.reg);
	    if (ea)
	      {
		tmp = rd % ea;
		rd = rd / ea;
	      }
	    SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
	    n = ea & 0x80;
	    nz = ea & 0xff;

	    goto next;
	  }
	case O (O_DIVU, SW):
	  {
	    rd = GET_L_REG (code->dst.reg);
	    ea = GET_W_REG (code->src.reg);
	    n = ea & 0x8000;
	    nz = ea & 0xffff;
	    if (ea)
	      {
		tmp = rd % ea;
		rd = rd / ea;
	      }
	    SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
	    goto next;
	  }

	case O (O_DIVS, SB):
	  {

	    rd = SEXTSHORT (GET_W_REG (code->dst.reg));
	    ea = SEXTCHAR (GET_B_REG (code->src.reg));
	    if (ea)
	      {
		tmp = (int) rd % (int) ea;
		rd = (int) rd / (int) ea;
		n = rd & 0x8000;
		nz = 1;
	      }
	    else
	      nz = 0;
	    SET_W_REG (code->dst.reg, (rd & 0xff) | (tmp << 8));
	    goto next;
	  }
	case O (O_DIVS, SW):
	  {
	    rd = GET_L_REG (code->dst.reg);
	    ea = SEXTSHORT (GET_W_REG (code->src.reg));
	    if (ea)
	      {
		tmp = (int) rd % (int) ea;
		rd = (int) rd / (int) ea;
		n = rd & 0x80000000;
		nz = 1;
	      }
	    else
	      nz = 0;
	    SET_L_REG (code->dst.reg, (rd & 0xffff) | (tmp << 16));
	    goto next;
	  }
	case O (O_EXTS, SW):
	  rd = GET_B_REG (code->src.reg + 8) & 0xff; /* Yes, src, not dst.  */
	  ea = rd & 0x80 ? -256 : 0;
	  res = rd + ea;
	  goto log16;
	case O (O_EXTS, SL):
	  rd = GET_W_REG (code->src.reg) & 0xffff;
	  ea = rd & 0x8000 ? -65536 : 0;
	  res = rd + ea;
	  goto log32;
	case O (O_EXTU, SW):
	  rd = GET_B_REG (code->src.reg + 8) & 0xff;
	  ea = 0;
	  res = rd + ea;
	  goto log16;
	case O (O_EXTU, SL):
	  rd = GET_W_REG (code->src.reg) & 0xffff;
	  ea = 0;
	  res = rd + ea;
	  goto log32;

	case O (O_NOP, SB):
	  goto next;

	default:
	  cpu.exception = SIGILL;
	  goto end;

	}
      abort ();

    setc:
      cpu.ccr = res;
      GETSR ();
      goto next;

    condtrue:
      /* When a branch works */
      pc = code->src.literal;
      goto end;

      /* Set the cond codes from res */
    bitop:

      /* Set the flags after an 8 bit inc/dec operation */
    just_flags_inc8:
      n = res & 0x80;
      nz = res & 0xff;
      v = (rd & 0x7f) == 0x7f;
      goto next;


      /* Set the flags after an 16 bit inc/dec operation */
    just_flags_inc16:
      n = res & 0x8000;
      nz = res & 0xffff;
      v = (rd & 0x7fff) == 0x7fff;
      goto next;


      /* Set the flags after an 32 bit inc/dec operation */
    just_flags_inc32:
      n = res & 0x80000000;
      nz = res & 0xffffffff;
      v = (rd & 0x7fffffff) == 0x7fffffff;
      goto next;


    shift8:
      /* Set flags after an 8 bit shift op, carry set in insn */
      n = (rd & 0x80);
      v = 0;
      nz = rd & 0xff;
      SET_B_REG (code->src.reg, rd);
      goto next;


    shift16:
      /* Set flags after an 16 bit shift op, carry set in insn */
      n = (rd & 0x8000);
      v = 0;
      nz = rd & 0xffff;

      SET_W_REG (code->src.reg, rd);
      goto next;

    shift32:
      /* Set flags after an 32 bit shift op, carry set in insn */
      n = (rd & 0x80000000);
      v = 0;
      nz = rd & 0xffffffff;
      SET_L_REG (code->src.reg, rd);
      goto next;

    log32:
      store (&code->dst, res);
    just_flags_log32:
      /* flags after a 32bit logical operation */
      n = res & 0x80000000;
      nz = res & 0xffffffff;
      v = 0;
      goto next;

    log16:
      store (&code->dst, res);
    just_flags_log16:
      /* flags after a 16bit logical operation */
      n = res & 0x8000;
      nz = res & 0xffff;
      v = 0;
      goto next;


    log8:
      store (&code->dst, res);
    just_flags_log8:
      n = res & 0x80;
      nz = res & 0xff;
      v = 0;
      goto next;

    alu8:
      SET_B_REG (code->dst.reg, res);
    just_flags_alu8:
      n = res & 0x80;
      nz = res & 0xff;
      v = ((ea & 0x80) == (rd & 0x80)) && ((ea & 0x80) != (res & 0x80));
      c = (res & 0x100);
      goto next;

    alu16:
      SET_W_REG (code->dst.reg, res);
    just_flags_alu16:
      n = res & 0x8000;
      nz = res & 0xffff;
      v = ((ea & 0x8000) == (rd & 0x8000)) && ((ea & 0x8000) != (res & 0x8000));
      c = (res & 0x10000);
      goto next;

    alu32:
      SET_L_REG (code->dst.reg, res);
    just_flags_alu32:
      n = res & 0x80000000;
      nz = res & 0xffffffff;
      v = ((ea & 0x80000000) == (rd & 0x80000000))
	&& ((ea & 0x80000000) != (res & 0x80000000));
      switch (code->opcode / 4)
	{
	case O_ADD:
	  c = ((unsigned) res < (unsigned) rd) || ((unsigned) res < (unsigned) ea);
	  break;
	case O_SUB:
	case O_CMP:
	  c = (unsigned) rd < (unsigned) -ea;
	  break;
	case O_NEG:
	  c = res != 0;
	  break;
	}
      goto next;

    next:;
      pc = code->next_pc;

    end:
      ;
      /*      if (cpu.regs[8] ) abort(); */

#if defined (WIN32)
      /* Poll after every 100th insn, */
      if (poll_count++ > 100)
	{
	  poll_count = 0;
	  if (win32pollquit())
	    {
	      control_c();
	    }
	}
#endif
#if defined(__GO32__)
      /* Poll after every 100th insn, */
      if (poll_count++ > 100)
	{
	  poll_count = 0;
	  if (kbhit ())
	    {
	      int c = getkey ();
	      control_c ();
	    }
	}
#endif

    }
  while (!cpu.exception);
  cpu.ticks += get_now () - tick_start;
  cpu.cycles += cycles;
  cpu.insts += insts;
  
  cpu.pc = pc;
  BUILDSR ();
  cpu.mask = oldmask;
  signal (SIGINT, prev);
}


int
sim_write (addr, buffer, size)
     SIM_ADDR addr;
     unsigned char *buffer;
     int size;
{
  int i;

  init_pointers ();
  if (addr < 0 || addr + size > MSIZE)
    return 0;
  for (i = 0; i < size; i++)
    {
      cpu.memory[addr + i] = buffer[i];
      cpu.cache_idx[addr + i] = 0;
    }
  return size;
}

int
sim_read (addr, buffer, size)
     SIM_ADDR addr;
     unsigned char *buffer;
     int size;
{
  init_pointers ();
  if (addr < 0 || addr + size > MSIZE)
    return 0;
  memcpy (buffer, cpu.memory + addr, size);
  return size;
}


#define R0_REGNUM	0
#define R1_REGNUM	1
#define R2_REGNUM	2
#define R3_REGNUM	3
#define R4_REGNUM	4
#define R5_REGNUM	5
#define R6_REGNUM	6
#define R7_REGNUM	7

#define SP_REGNUM       R7_REGNUM	/* Contains address of top of stack */
#define FP_REGNUM       R6_REGNUM	/* Contains address of executing
					   * stack frame */

#define CCR_REGNUM      8	/* Contains processor status */
#define PC_REGNUM       9	/* Contains program counter */

#define CYCLE_REGNUM    10
#define INST_REGNUM     11
#define TICK_REGNUM     12


void
sim_store_register (rn, value)
     int rn;
     unsigned char *value;
{
  int longval;
  int shortval;
  int intval;
  longval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3];
  shortval = (value[0] << 8) | (value[1]);
  intval = h8300hmode ? longval : shortval;

  init_pointers ();
  switch (rn)
    {
    case PC_REGNUM:
      cpu.pc = intval;
      break;
    default:
      abort ();
    case R0_REGNUM:
    case R1_REGNUM:
    case R2_REGNUM:
    case R3_REGNUM:
    case R4_REGNUM:
    case R5_REGNUM:
    case R6_REGNUM:
    case R7_REGNUM:
      cpu.regs[rn] = intval;
      break;
    case CCR_REGNUM:
      cpu.ccr = intval;
      break;
    case CYCLE_REGNUM:
      cpu.cycles = longval;
      break;

    case INST_REGNUM:
      cpu.insts = longval;
      break;

    case TICK_REGNUM:
      cpu.ticks = longval;
      break;
    }
}

void
sim_fetch_register (rn, buf)
     int rn;
     unsigned char *buf;
{
  int v;
  int longreg = 0;

  init_pointers ();

  switch (rn)
    {
    default:
      abort ();
    case 8:
      v = cpu.ccr;
      break;
    case 9:
      v = cpu.pc;
      break;
    case R0_REGNUM:
    case R1_REGNUM:
    case R2_REGNUM:
    case R3_REGNUM:
    case R4_REGNUM:
    case R5_REGNUM:
    case R6_REGNUM:
    case R7_REGNUM:
      v = cpu.regs[rn];
      break;
    case 10:
      v = cpu.cycles;
      longreg = 1;
      break;
    case 11:
      v = cpu.ticks;
      longreg = 1;
      break;
    case 12:
      v = cpu.insts;
      longreg = 1;
      break;
    }
  if (h8300hmode || longreg)
    {
      buf[0] = v >> 24;
      buf[1] = v >> 16;
      buf[2] = v >> 8;
      buf[3] = v >> 0;
    }
  else
    {
      buf[0] = v >> 8;
      buf[1] = v;
    }
}

void
sim_stop_reason (reason, sigrc)
     enum sim_stop *reason;
     int *sigrc;
{
  *reason = sim_stopped;
  *sigrc = cpu.exception;
}

sim_csize (n)
{
  if (cpu.cache)
    free (cpu.cache);
  if (n < 2)
    n = 2;
  cpu.cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
  memset (cpu.cache, 0, sizeof (decoded_inst) * n);
  cpu.csize = n;
}


void
sim_info (verbose)
     int verbose;
{
  double timetaken = (double) cpu.ticks / (double) now_persec ();
  double virttime = cpu.cycles / 10.0e6;

  printf_filtered ("\n\n#instructions executed  %10d\n", cpu.insts);
  printf_filtered ("#cycles (v approximate) %10d\n", cpu.cycles);
  printf_filtered ("#real time taken        %10.4f\n", timetaken);
  printf_filtered ("#virtual time taked     %10.4f\n", virttime);
  if (timetaken != 0.0)
    printf_filtered ("#simulation ratio       %10.4f\n", virttime / timetaken);
  printf_filtered ("#compiles               %10d\n", cpu.compiles);
  printf_filtered ("#cache size             %10d\n", cpu.csize);

#ifdef ADEBUG
  if (verbose)
    {
      int i;
      for (i = 0; i < O_LAST; i++)
	{
	  if (cpu.stats[i])
	    printf_filtered ("%d: %d\n", i, cpu.stats[i]);
	}
    }
#endif
}

/* Indicate whether the cpu is an h8/300 or h8/300h.
   FLAG is non-zero for the h8/300h.  */

void
set_h8300h (flag)
     int flag;
{
  h8300hmode = flag;
}

void
sim_kill ()
{
  /* nothing to do */
}

void
sim_open (args)
     char *args;
{
  /* nothing to do */
}

void
sim_close (quitting)
     int quitting;
{
  /* nothing to do */
}

/* Called by gdb to load a program into memory.  */

int
sim_load (prog, from_tty)
     char *prog;
     int from_tty;
{
  bfd *abfd;

  /* See if the file is for the h8/300 or h8/300h.  */
  /* ??? This may not be the most efficient way.  The z8k simulator
     does this via a different mechanism (INIT_EXTRA_SYMTAB_INFO).  */
  if ((abfd = bfd_openr (prog, "coff-h8300")) != 0)
    {
      if (bfd_check_format (abfd, bfd_object)) 
	set_h8300h (abfd->arch_info->mach == bfd_mach_h8300h);
      bfd_close (abfd);
    }

  /* Return non-zero so gdb will handle it.  */
  return 1;
}

void
sim_create_inferior (start_address, argv, env)
     SIM_ADDR start_address;
     char **argv;
     char **env;
{
  cpu.pc = start_address;
}