/* frv trap support Copyright (C) 1999-2016 Free Software Foundation, Inc. Contributed by Red Hat. This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #define WANT_CPU frvbf #define WANT_CPU_FRVBF #include "sim-main.h" #include "targ-vals.h" #include "cgen-engine.h" #include "cgen-par.h" #include "sim-fpu.h" #include "bfd.h" #include "libiberty.h" CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot; /* The semantic code invokes this for invalid (unrecognized) instructions. */ SEM_PC sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc) { frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); return vpc; } /* Process an address exception. */ void frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia, unsigned int map, int nr_bytes, address_word addr, transfer_type transfer, sim_core_signals sig) { if (sig == sim_core_unaligned_signal) { if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400 || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450) frv_queue_data_access_error_interrupt (current_cpu, addr); else frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr); } frv_term (sd); sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig); } void frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia) { int i; if (current_cpu != NULL) CPU_PC_SET (current_cpu, cia); /* Invalidate the insn and data caches of all cpus. */ for (i = 0; i < MAX_NR_PROCESSORS; ++i) { current_cpu = STATE_CPU (sd, i); frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0); frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1); } frv_term (sd); } /* Read/write functions for system call interface. */ static int syscall_read_mem (host_callback *cb, struct cb_syscall *sc, unsigned long taddr, char *buf, int bytes) { SIM_DESC sd = (SIM_DESC) sc->p1; SIM_CPU *cpu = (SIM_CPU *) sc->p2; frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes); } static int syscall_write_mem (host_callback *cb, struct cb_syscall *sc, unsigned long taddr, const char *buf, int bytes) { SIM_DESC sd = (SIM_DESC) sc->p1; SIM_CPU *cpu = (SIM_CPU *) sc->p2; frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0); frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes); } /* Handle TRA and TIRA insns. */ void frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset) { SIM_DESC sd = CPU_STATE (current_cpu); host_callback *cb = STATE_CALLBACK (sd); USI num = ((base + offset) & 0x7f) + 0x80; if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT) { frv_queue_software_interrupt (current_cpu, num); return; } switch (num) { case TRAP_SYSCALL : { CB_SYSCALL s; CB_SYSCALL_INIT (&s); s.func = GET_H_GR (7); s.arg1 = GET_H_GR (8); s.arg2 = GET_H_GR (9); s.arg3 = GET_H_GR (10); if (s.func == TARGET_SYS_exit) { sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1); } s.p1 = (PTR) sd; s.p2 = (PTR) current_cpu; s.read_mem = syscall_read_mem; s.write_mem = syscall_write_mem; cb_syscall (cb, &s); SET_H_GR (8, s.result); SET_H_GR (9, s.result2); SET_H_GR (10, s.errcode); break; } case TRAP_BREAKPOINT: sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); break; /* Add support for dumping registers, either at fixed traps, or all unknown traps if configured with --enable-sim-trapdump. */ default: #if !TRAPDUMP frv_queue_software_interrupt (current_cpu, num); return; #endif #ifdef TRAP_REGDUMP1 case TRAP_REGDUMP1: #endif #ifdef TRAP_REGDUMP2 case TRAP_REGDUMP2: #endif #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2)) { char buf[256]; int i, j; buf[0] = 0; if (STATE_TEXT_SECTION (sd) && pc >= STATE_TEXT_START (sd) && pc < STATE_TEXT_END (sd)) { const char *pc_filename = (const char *)0; const char *pc_function = (const char *)0; unsigned int pc_linenum = 0; if (bfd_find_nearest_line (STATE_PROG_BFD (sd), STATE_TEXT_SECTION (sd), (struct bfd_symbol **) 0, pc - STATE_TEXT_START (sd), &pc_filename, &pc_function, &pc_linenum) && (pc_function || pc_filename)) { char *p = buf+2; buf[0] = ' '; buf[1] = '('; if (pc_function) { strcpy (p, pc_function); p += strlen (p); } else { char *q = (char *) strrchr (pc_filename, '/'); strcpy (p, (q) ? q+1 : pc_filename); p += strlen (p); } if (pc_linenum) { sprintf (p, " line %d", pc_linenum); p += strlen (p); } p[0] = ')'; p[1] = '\0'; if ((p+1) - buf > sizeof (buf)) abort (); } } sim_io_printf (sd, "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n", (unsigned)pc, buf, (unsigned)base, (int)offset); for (i = 0; i < 64; i += 8) { long g0 = (long)GET_H_GR (i); long g1 = (long)GET_H_GR (i+1); long g2 = (long)GET_H_GR (i+2); long g3 = (long)GET_H_GR (i+3); long g4 = (long)GET_H_GR (i+4); long g5 = (long)GET_H_GR (i+5); long g6 = (long)GET_H_GR (i+6); long g7 = (long)GET_H_GR (i+7); if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0) sim_io_printf (sd, "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", i, i+7, g0, g1, g2, g3, g4, g5, g6, g7); } for (i = 0; i < 64; i += 8) { long f0 = (long)GET_H_FR (i); long f1 = (long)GET_H_FR (i+1); long f2 = (long)GET_H_FR (i+2); long f3 = (long)GET_H_FR (i+3); long f4 = (long)GET_H_FR (i+4); long f5 = (long)GET_H_FR (i+5); long f6 = (long)GET_H_FR (i+6); long f7 = (long)GET_H_FR (i+7); if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0) sim_io_printf (sd, "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", i, i+7, f0, f1, f2, f3, f4, f5, f6, f7); } sim_io_printf (sd, "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", (long)GET_H_SPR (272), (long)GET_H_SPR (273), (long)GET_H_SPR (256), (long)GET_H_SPR (263)); } break; #endif } } /* Handle the MTRAP insn. */ void frv_mtrap (SIM_CPU *current_cpu) { SIM_DESC sd = CPU_STATE (current_cpu); /* Check the status of media exceptions in MSR0. */ SI msr = GET_MSR (0); if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION); } /* Handle the BREAK insn. */ void frv_break (SIM_CPU *current_cpu) { IADDR pc; SIM_DESC sd = CPU_STATE (current_cpu); if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT) { /* Invalidate the insn cache because the debugger will presumably replace the breakpoint insn with the real one. */ sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); } frv_queue_break_interrupt (current_cpu); } /* Return from trap. */ USI frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field) { USI new_pc; /* if (normal running mode and debug_field==0 PC=PCSR PSR.ET=1 PSR.S=PSR.PS else if (debug running mode and debug_field==1) PC=(BPCSR) PSR.ET=BPSR.BET PSR.S=BPSR.BS change to normal running mode */ int psr_s = GET_H_PSR_S (); int psr_et = GET_H_PSR_ET (); /* Check for exceptions in the priority order listed in the FRV Architecture Volume 2. */ if (! psr_s) { /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */ if (! psr_et) { SIM_DESC sd = CPU_STATE (current_cpu); sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); } /* privileged_instruction interrupt will have already been queued by frv_detect_insn_access_interrupts. */ new_pc = pc + 4; } else if (psr_et) { /* Halt if PSR.S is set. See chapter 6 of the LSI. */ if (psr_s) { SIM_DESC sd = CPU_STATE (current_cpu); sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); } frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); new_pc = pc + 4; } else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0) { USI psr = GET_PSR (); /* Return from normal running state. */ new_pc = GET_H_SPR (H_SPR_PCSR); SET_PSR_ET (psr, 1); SET_PSR_S (psr, GET_PSR_PS (psr)); sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); } else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1) { USI psr = GET_PSR (); /* Return from debug state. */ new_pc = GET_H_SPR (H_SPR_BPCSR); SET_PSR_ET (psr, GET_H_BPSR_BET ()); SET_PSR_S (psr, GET_H_BPSR_BS ()); sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); CPU_DEBUG_STATE (current_cpu) = 0; } else new_pc = pc + 4; return new_pc; } /* Functions for handling non-excepting instruction side effects. */ static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index) { FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); if (control->spr[H_SPR_NECR].implemented) { int limit; USI necr = GET_NECR (); /* See if any NESRs are implemented. First need to check the validity of the NECR. */ if (! GET_NECR_VALID (necr)) return NO_NESR; limit = GET_NECR_NEN (necr); for (++current_index; current_index < limit; ++current_index) { SI nesr = GET_NESR (current_index); if (! GET_NESR_VALID (nesr)) return current_index; } } return NO_NESR; } static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index) { FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); if (control->spr[H_SPR_NECR].implemented) { int limit; USI necr = GET_NECR (); /* See if any NESRs are implemented. First need to check the validity of the NECR. */ if (! GET_NECR_VALID (necr)) return NO_NESR; limit = GET_NECR_NEN (necr); for (++current_index; current_index < limit; ++current_index) { SI nesr = GET_NESR (current_index); if (GET_NESR_VALID (nesr)) return current_index; } } return NO_NESR; } BI frvbf_check_non_excepting_load ( SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index, SI immediate_disp, QI data_size, BI is_float ) { BI rc = 1; /* perform the load. */ SIM_DESC sd = CPU_STATE (current_cpu); int daec = 0; int rec = 0; int ec = 0; USI necr; int do_elos; SI NE_flags[2]; SI NE_base; SI nesr; SI ne_index; FRV_REGISTER_CONTROL *control; SI address = GET_H_GR (base_index); if (disp_index >= 0) address += GET_H_GR (disp_index); else address += immediate_disp; /* Check for interrupt factors. */ switch (data_size) { case NESR_UQI_SIZE: case NESR_QI_SIZE: break; case NESR_UHI_SIZE: case NESR_HI_SIZE: if (address & 1) ec = 1; break; case NESR_SI_SIZE: if (address & 3) ec = 1; break; case NESR_DI_SIZE: if (address & 7) ec = 1; if (target_index & 1) rec = 1; break; case NESR_XI_SIZE: if (address & 0xf) ec = 1; if (target_index & 3) rec = 1; break; default: { IADDR pc = GET_H_PC (); sim_engine_abort (sd, current_cpu, pc, "check_non_excepting_load: Incorrect data_size\n"); break; } } control = CPU_REGISTER_CONTROL (current_cpu); if (control->spr[H_SPR_NECR].implemented) { necr = GET_NECR (); do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr); } else do_elos = 0; /* NECR, NESR, NEEAR are only implemented for the full frv machine. */ if (do_elos) { ne_index = next_available_nesr (current_cpu, NO_NESR); if (ne_index == NO_NESR) { IADDR pc = GET_H_PC (); sim_engine_abort (sd, current_cpu, pc, "No available NESR register\n"); } /* Fill in the basic fields of the NESR. */ nesr = GET_NESR (ne_index); SET_NESR_VALID (nesr); SET_NESR_EAV (nesr); SET_NESR_DRN (nesr, target_index); SET_NESR_SIZE (nesr, data_size); SET_NESR_NEAN (nesr, ne_index); if (is_float) SET_NESR_FR (nesr); else CLEAR_NESR_FR (nesr); /* Set the corresponding NEEAR. */ SET_NEEAR (ne_index, address); SET_NESR_DAEC (nesr, 0); SET_NESR_REC (nesr, 0); SET_NESR_EC (nesr, 0); } /* Set the NE flag corresponding to the target register if an interrupt factor was detected. daec is not checked here yet, but is declared for future reference. */ if (is_float) NE_base = H_SPR_FNER0; else NE_base = H_SPR_GNER0; GET_NE_FLAGS (NE_flags, NE_base); if (rec) { SET_NE_FLAG (NE_flags, target_index); if (do_elos) SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED); } if (ec) { SET_NE_FLAG (NE_flags, target_index); if (do_elos) SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED); } if (do_elos) SET_NESR (ne_index, nesr); /* If no interrupt factor was detected then set the NE flag on the target register if the NE flag on one of the input registers is already set. */ if (! rec && ! ec && ! daec) { BI ne_flag = GET_NE_FLAG (NE_flags, base_index); if (disp_index >= 0) ne_flag |= GET_NE_FLAG (NE_flags, disp_index); if (ne_flag) { SET_NE_FLAG (NE_flags, target_index); rc = 0; /* Do not perform the load. */ } else CLEAR_NE_FLAG (NE_flags, target_index); } SET_NE_FLAGS (NE_base, NE_flags); return rc; /* perform the load? */ } /* Record state for media exception: media_cr_not_aligned. */ void frvbf_media_cr_not_aligned (SIM_CPU *current_cpu) { SIM_DESC sd = CPU_STATE (current_cpu); /* On some machines this generates an illegal_instruction interrupt. */ switch (STATE_ARCHITECTURE (sd)->mach) { /* Note: there is a discrepancy between V2.2 of the FR400 instruction manual and the various FR4xx LSI specs. The former claims that unaligned registers cause an mp_exception while the latter say it's an illegal_instruction. The LSI specs appear to be correct since MTT is fixed at 1. */ case bfd_mach_fr400: case bfd_mach_fr450: case bfd_mach_fr550: frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); break; default: frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0); break; } } /* Record state for media exception: media_acc_not_aligned. */ void frvbf_media_acc_not_aligned (SIM_CPU *current_cpu) { SIM_DESC sd = CPU_STATE (current_cpu); /* On some machines this generates an illegal_instruction interrupt. */ switch (STATE_ARCHITECTURE (sd)->mach) { /* See comment in frvbf_cr_not_aligned(). */ case bfd_mach_fr400: case bfd_mach_fr450: case bfd_mach_fr550: frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); break; default: frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0); break; } } /* Record state for media exception: media_register_not_aligned. */ void frvbf_media_register_not_aligned (SIM_CPU *current_cpu) { SIM_DESC sd = CPU_STATE (current_cpu); /* On some machines this generates an illegal_instruction interrupt. */ switch (STATE_ARCHITECTURE (sd)->mach) { /* See comment in frvbf_cr_not_aligned(). */ case bfd_mach_fr400: case bfd_mach_fr450: case bfd_mach_fr550: frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); break; default: frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0); break; } } /* Record state for media exception: media_overflow. */ void frvbf_media_overflow (SIM_CPU *current_cpu, int sie) { frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie); } /* Queue a division exception. */ enum frv_dtt frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt, int target_index, int non_excepting) { /* If there was an overflow and it is masked, then record it in ISR.AEXC. */ USI isr = GET_ISR (); if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr)) { dtt &= ~FRV_DTT_OVERFLOW; SET_ISR_AEXC (isr); SET_ISR (isr); } if (dtt != FRV_DTT_NO_EXCEPTION) { if (non_excepting) { /* Non excepting instruction, simply set the NE flag for the target register. */ SI NE_flags[2]; GET_NE_FLAGS (NE_flags, H_SPR_GNER0); SET_NE_FLAG (NE_flags, target_index); SET_NE_FLAGS (H_SPR_GNER0, NE_flags); } else frv_queue_division_exception_interrupt (current_cpu, dtt); } return dtt; } void frvbf_check_recovering_store ( SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float ) { FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); int reg_ix; CPU_RSTR_INVALIDATE(current_cpu) = 0; for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); reg_ix != NO_NESR; reg_ix = next_valid_nesr (current_cpu, reg_ix)) { if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix)) { SI nesr = GET_NESR (reg_ix); int nesr_drn = GET_NESR_DRN (nesr); BI nesr_fr = GET_NESR_FR (nesr); SI remain; /* Invalidate cache block containing this address. If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { CPU_RSTR_INVALIDATE(current_cpu) = 1; CPU_LOAD_ADDRESS (current_cpu) = address; } else frv_cache_invalidate (cache, address, 1/* flush */); /* Copy the stored value to the register indicated by NESR.DRN. */ for (remain = size; remain > 0; remain -= 4) { SI value; if (is_float) value = GET_H_FR (regno); else value = GET_H_GR (regno); switch (size) { case 1: value &= 0xff; break; case 2: value &= 0xffff; break; default: break; } if (nesr_fr) sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn, value); else sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn, value); nesr_drn++; regno++; } break; /* Only consider the first matching register. */ } } /* loop over active neear registers. */ } SI frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno) { /* Only applicable to fr550 */ SIM_DESC sd = CPU_STATE (current_cpu); if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) return; /* On the fr550, media insns in slots 0 and 2 can only access accumulators acc0-acc3. Insns in slots 1 and 3 can only access accumulators acc4-acc7 */ switch (frv_current_fm_slot) { case UNIT_FM0: case UNIT_FM2: if (regno <= 3) return 1; /* all is ok */ break; case UNIT_FM1: case UNIT_FM3: if (regno >= 4) return 1; /* all is ok */ break; } /* The specified accumulator is out of range. Queue an illegal_instruction interrupt. */ frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); return 0; } void frvbf_check_swap_address (SIM_CPU *current_cpu, SI address) { /* Only applicable to fr550 */ SIM_DESC sd = CPU_STATE (current_cpu); if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) return; /* Adress must be aligned on a word boundary. */ if (address & 0x3) frv_queue_data_access_exception_interrupt (current_cpu); } static void clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float) { int reg_ix; /* Only implemented for full frv. */ SIM_DESC sd = CPU_STATE (current_cpu); if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv) return; /* Clear the appropriate NESR and NEEAR registers. */ for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); reg_ix != NO_NESR; reg_ix = next_valid_nesr (current_cpu, reg_ix)) { SI nesr; /* The register is available, now check if it is active. */ nesr = GET_NESR (reg_ix); if (GET_NESR_FR (nesr) == is_float) { if (target_index < 0 || GET_NESR_DRN (nesr) == target_index) { SET_NESR (reg_ix, 0); SET_NEEAR (reg_ix, 0); } } } } static void clear_ne_flags ( SIM_CPU *current_cpu, SI target_index, int hi_available, int lo_available, SI NE_base ) { SI NE_flags[2]; int exception; GET_NE_FLAGS (NE_flags, NE_base); if (target_index >= 0) CLEAR_NE_FLAG (NE_flags, target_index); else { if (lo_available) NE_flags[1] = 0; if (hi_available) NE_flags[0] = 0; } SET_NE_FLAGS (NE_base, NE_flags); } /* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1 means to check for any register available. */ static void which_registers_available ( SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float ) { if (is_float) frv_fr_registers_available (current_cpu, hi_available, lo_available); else frv_gr_registers_available (current_cpu, hi_available, lo_available); } void frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float) { int hi_available; int lo_available; int exception; SI NE_base; USI necr; FRV_REGISTER_CONTROL *control; /* Check for availability of the target register(s). */ which_registers_available (current_cpu, & hi_available, & lo_available, is_float); /* Check to make sure that the target register is available. */ if (! frv_check_register_access (current_cpu, target_index, hi_available, lo_available)) return; /* Determine whether we're working with GR or FR registers. */ if (is_float) NE_base = H_SPR_FNER0; else NE_base = H_SPR_GNER0; /* Always clear the appropriate NE flags. */ clear_ne_flags (current_cpu, target_index, hi_available, lo_available, NE_base); /* Clear the appropriate NESR and NEEAR registers. */ control = CPU_REGISTER_CONTROL (current_cpu); if (control->spr[H_SPR_NECR].implemented) { necr = GET_NECR (); if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr)) clear_nesr_neear (current_cpu, target_index, is_float); } } void frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float) { SI NE_base; SI NE_flags[2]; BI NE_flag; int exception; int hi_available; int lo_available; USI necr; FRV_REGISTER_CONTROL *control; /* Check for availability of the target register(s). */ which_registers_available (current_cpu, & hi_available, & lo_available, is_float); /* Check to make sure that the target register is available. */ if (! frv_check_register_access (current_cpu, target_index, hi_available, lo_available)) return; /* Determine whether we're working with GR or FR registers. */ if (is_float) NE_base = H_SPR_FNER0; else NE_base = H_SPR_GNER0; /* Determine whether a ne exception is pending. */ GET_NE_FLAGS (NE_flags, NE_base); if (target_index >= 0) NE_flag = GET_NE_FLAG (NE_flags, target_index); else { NE_flag = hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0; } /* Always clear the appropriate NE flags. */ clear_ne_flags (current_cpu, target_index, hi_available, lo_available, NE_base); control = CPU_REGISTER_CONTROL (current_cpu); if (control->spr[H_SPR_NECR].implemented) { necr = GET_NECR (); if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag) { /* Clear the appropriate NESR and NEEAR registers. */ clear_nesr_neear (current_cpu, target_index, is_float); frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION); } } } /* Generate the appropriate fp_exception(s) based on the given status code. */ void frvbf_fpu_error (CGEN_FPU* fpu, int status) { struct frv_fp_exception_info fp_info = { FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION }; if (status & (sim_fpu_status_invalid_snan | sim_fpu_status_invalid_qnan | sim_fpu_status_invalid_isi | sim_fpu_status_invalid_idi | sim_fpu_status_invalid_zdz | sim_fpu_status_invalid_imz | sim_fpu_status_invalid_cvi | sim_fpu_status_invalid_cmp | sim_fpu_status_invalid_sqrt)) fp_info.fsr_mask |= FSR_INVALID_OPERATION; if (status & sim_fpu_status_invalid_div0) fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO; if (status & sim_fpu_status_inexact) fp_info.fsr_mask |= FSR_INEXACT; if (status & sim_fpu_status_overflow) fp_info.fsr_mask |= FSR_OVERFLOW; if (status & sim_fpu_status_underflow) fp_info.fsr_mask |= FSR_UNDERFLOW; if (status & sim_fpu_status_denorm) { fp_info.fsr_mask |= FSR_DENORMAL_INPUT; fp_info.ftt = FTT_DENORMAL_INPUT; } if (fp_info.fsr_mask != FSR_NO_EXCEPTION) { SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner; frv_queue_fp_exception_interrupt (current_cpu, & fp_info); } }