/* Simulator instruction semantics for frvbf. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2007 Free Software Foundation, Inc. This file is part of the GNU simulators. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #define WANT_CPU frvbf #define WANT_CPU_FRVBF #include "sim-main.h" #include "cgen-mem.h" #include "cgen-ops.h" #undef GET_ATTR #if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE) #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) #else #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_/**/attr) #endif /* This is used so that we can compile two copies of the semantic code, one with full feature support and one without that runs fast(er). FAST_P, when desired, is defined on the command line, -DFAST_P=1. */ #if FAST_P #define SEM_FN_NAME(cpu,fn) XCONCAT3 (cpu,_semf_,fn) #undef TRACE_RESULT #define TRACE_RESULT(cpu, abuf, name, type, val) #else #define SEM_FN_NAME(cpu,fn) XCONCAT3 (cpu,_sem_,fn) #endif /* x-invalid: --invalid-- */ static SEM_PC SEM_FN_NAME (frvbf,x_invalid) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { /* Update the recorded pc in the cpu state struct. Only necessary for WITH_SCACHE case, but to avoid the conditional compilation .... */ SET_H_PC (pc); /* Virtual insns have zero size. Overwrite vpc with address of next insn using the default-insn-bitsize spec. When executing insns in parallel we may want to queue the fault and continue execution. */ vpc = SEM_NEXT_VPC (sem_arg, pc, 4); vpc = sim_engine_invalid_insn (current_cpu, pc, vpc); } return vpc; #undef FLD } /* x-after: --after-- */ static SEM_PC SEM_FN_NAME (frvbf,x_after) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FRVBF frvbf_pbb_after (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-before: --before-- */ static SEM_PC SEM_FN_NAME (frvbf,x_before) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FRVBF frvbf_pbb_before (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-cti-chain: --cti-chain-- */ static SEM_PC SEM_FN_NAME (frvbf,x_cti_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FRVBF #ifdef DEFINE_SWITCH vpc = frvbf_pbb_cti_chain (current_cpu, sem_arg, pbb_br_type, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = frvbf_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_TYPE (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } return vpc; #undef FLD } /* x-chain: --chain-- */ static SEM_PC SEM_FN_NAME (frvbf,x_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FRVBF vpc = frvbf_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } return vpc; #undef FLD } /* x-begin: --begin-- */ static SEM_PC SEM_FN_NAME (frvbf,x_begin) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FRVBF #if defined DEFINE_SWITCH || defined FAST_P /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = frvbf_pbb_begin (current_cpu, FAST_P); #else #if 0 /* cgen engine can't handle dynamic fast/full switching yet. */ vpc = frvbf_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #else vpc = frvbf_pbb_begin (current_cpu, 0); #endif #endif #endif } return vpc; #undef FLD } /* add: add$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,add) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sub: sub$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,sub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SUBSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* and: and$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,and) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* or: or$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,or) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* xor: xor$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,xor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* not: not$pack $GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,not) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_scutss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sdiv: sdiv$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,sdiv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_signed_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_GRk), 0); ; /*clobber*/ } return vpc; #undef FLD } /* nsdiv: nsdiv$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nsdiv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_signed_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_GRk), 1); ; /*clobber*/ } return vpc; #undef FLD } /* udiv: udiv$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,udiv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_unsigned_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_GRk), 0); ; /*clobber*/ } return vpc; #undef FLD } /* nudiv: nudiv$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nudiv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_unsigned_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_GRk), 1); ; /*clobber*/ } return vpc; #undef FLD } /* smul: smul$pack $GRi,$GRj,$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,smul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } return vpc; #undef FLD } /* umul: umul$pack $GRi,$GRj,$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,umul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = MULDI (ZEXTSIDI (GET_H_GR (FLD (f_GRi))), ZEXTSIDI (GET_H_GR (FLD (f_GRj)))); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } return vpc; #undef FLD } /* smu: smu$pack $GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,smu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smass.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))); sim_queue_fn_di_write (current_cpu, frvbf_h_iacc0_set, ((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "iacc0", 'D', opval); } return vpc; #undef FLD } /* smass: smass$pack $GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,smass) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smass.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = (ANDIF (ANDIF (GTDI (MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))), 0), GTDI (GET_H_IACC0 (((UINT) 0)), 0)), LTDI (SUBDI (MAKEDI (2147483647, 0xffffffff), MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj))))), GET_H_IACC0 (((UINT) 0))))) ? (MAKEDI (2147483647, 0xffffffff)) : (ANDIF (ANDIF (LTDI (MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))), 0), LTDI (GET_H_IACC0 (((UINT) 0)), 0)), GTDI (SUBDI (MAKEDI (0x80000000, 0), MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj))))), GET_H_IACC0 (((UINT) 0))))) ? (MAKEDI (0x80000000, 0)) : (ADDDI (GET_H_IACC0 (((UINT) 0)), MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))))); sim_queue_fn_di_write (current_cpu, frvbf_h_iacc0_set, ((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "iacc0", 'D', opval); } return vpc; #undef FLD } /* smsss: smsss$pack $GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,smsss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smass.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = (ANDIF (ANDIF (LTDI (MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))), 0), GTDI (GET_H_IACC0 (((UINT) 0)), 0)), LTDI (ADDDI (MAKEDI (2147483647, 0xffffffff), MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj))))), GET_H_IACC0 (((UINT) 0))))) ? (MAKEDI (2147483647, 0xffffffff)) : (ANDIF (ANDIF (GTDI (MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))), 0), LTDI (GET_H_IACC0 (((UINT) 0)), 0)), GTDI (ADDDI (MAKEDI (0x80000000, 0), MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj))))), GET_H_IACC0 (((UINT) 0))))) ? (MAKEDI (0x80000000, 0)) : (SUBDI (GET_H_IACC0 (((UINT) 0)), MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))))); sim_queue_fn_di_write (current_cpu, frvbf_h_iacc0_set, ((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "iacc0", 'D', opval); } return vpc; #undef FLD } /* sll: sll$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,sll) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (GET_H_GR (FLD (f_GRi)), ANDSI (GET_H_GR (FLD (f_GRj)), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srl: srl$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,srl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (GET_H_GR (FLD (f_GRi)), ANDSI (GET_H_GR (FLD (f_GRj)), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sra: sra$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,sra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRASI (GET_H_GR (FLD (f_GRi)), ANDSI (GET_H_GR (FLD (f_GRj)), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* slass: slass$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,slass) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_shift_left_arith_saturate (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* scutss: scutss$pack $GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,scutss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_scutss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_iacc_cut (current_cpu, GET_H_IACC0 (((UINT) 0)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* scan: scan$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,scan) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp1; SI tmp_tmp2; tmp_tmp1 = GET_H_GR (FLD (f_GRi)); tmp_tmp2 = SRASI (GET_H_GR (FLD (f_GRj)), 1); { SI opval = frvbf_scan_result (current_cpu, XORSI (tmp_tmp1, tmp_tmp2)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* cadd: cadd$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cadd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* csub: csub$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = SUBSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cand: cand$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cand) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = ANDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cor: cor$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = ORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cxor: cxor$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cxor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = XORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cnot: cnot$pack $GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cnot) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = INVSI (GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* csmul: csmul$pack $GRi,$GRj,$GRdoublek,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csmul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { DI opval = MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } abuf->written = written; return vpc; #undef FLD } /* csdiv: csdiv$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csdiv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { frvbf_signed_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_GRk), 0); ; /*clobber*/ } } abuf->written = written; return vpc; #undef FLD } /* cudiv: cudiv$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cudiv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { frvbf_unsigned_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_GRk), 0); ; /*clobber*/ } } abuf->written = written; return vpc; #undef FLD } /* csll: csll$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csll) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = SLLSI (GET_H_GR (FLD (f_GRi)), ANDSI (GET_H_GR (FLD (f_GRj)), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* csrl: csrl$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csrl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = SRLSI (GET_H_GR (FLD (f_GRi)), ANDSI (GET_H_GR (FLD (f_GRj)), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* csra: csra$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = SRASI (GET_H_GR (FLD (f_GRi)), ANDSI (GET_H_GR (FLD (f_GRj)), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cscan: cscan$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cscan) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_tmp1; SI tmp_tmp2; tmp_tmp1 = GET_H_GR (FLD (f_GRi)); tmp_tmp2 = SRASI (GET_H_GR (FLD (f_GRj)), 1); { SI opval = frvbf_scan_result (current_cpu, XORSI (tmp_tmp1, tmp_tmp2)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* addcc: addcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,addcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_tmp; QI tmp_cc; SI tmp_result; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = ADDOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } tmp_tmp = ADDCFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } tmp_result = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); if (EQSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_result; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* subcc: subcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,subcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_tmp; QI tmp_cc; SI tmp_result; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = SUBOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } tmp_tmp = SUBCFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } tmp_result = SUBSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); if (EQSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_result; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* andcc: andcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,andcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; tmp_tmp = ANDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* orcc: orcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,orcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; tmp_tmp = ORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* xorcc: xorcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,xorcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; tmp_tmp = XORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* sllcc: sllcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,sllcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (GET_H_GR (FLD (f_GRj)), 31); tmp_cc = frvbf_set_icc_for_shift_left (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[FLD (f_ICCi_1)])); tmp_tmp = SLLSI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* srlcc: srlcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,srlcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (GET_H_GR (FLD (f_GRj)), 31); tmp_cc = frvbf_set_icc_for_shift_right (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[FLD (f_ICCi_1)])); tmp_tmp = SRLSI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* sracc: sracc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,sracc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (GET_H_GR (FLD (f_GRj)), 31); tmp_cc = frvbf_set_icc_for_shift_right (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[FLD (f_ICCi_1)])); tmp_tmp = SRASI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* smulcc: smulcc$pack $GRi,$GRj,$GRdoublek,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,smulcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))); if (EQDI (SRLDI (tmp_tmp, 63), 0)) { tmp_cc = ANDQI (tmp_cc, 7); } else { tmp_cc = ORQI (tmp_cc, 8); } if (EQBI (EQDI (tmp_tmp, 0), 0)) { tmp_cc = ANDQI (tmp_cc, 11); } else { tmp_cc = ORQI (tmp_cc, 4); } { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* umulcc: umulcc$pack $GRi,$GRj,$GRdoublek,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,umulcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = MULDI (ZEXTSIDI (GET_H_GR (FLD (f_GRi))), ZEXTSIDI (GET_H_GR (FLD (f_GRj)))); if (EQDI (SRLDI (tmp_tmp, 63), 0)) { tmp_cc = ANDQI (tmp_cc, 7); } else { tmp_cc = ORQI (tmp_cc, 8); } if (EQBI (EQDI (tmp_tmp, 0), 0)) { tmp_cc = ANDQI (tmp_cc, 11); } else { tmp_cc = ORQI (tmp_cc, 4); } { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* caddcc: caddcc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,caddcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { BI tmp_tmp; QI tmp_cc; SI tmp_result; tmp_cc = CPU (h_iccr[((FLD (f_CCi)) & (3))]); tmp_tmp = ADDOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } tmp_tmp = ADDCFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } tmp_result = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); if (EQSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_result; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* csubcc: csubcc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csubcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { BI tmp_tmp; QI tmp_cc; SI tmp_result; tmp_cc = CPU (h_iccr[((FLD (f_CCi)) & (3))]); tmp_tmp = SUBOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } tmp_tmp = SUBCFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } tmp_result = SUBSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); if (EQSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_result; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* csmulcc: csmulcc$pack $GRi,$GRj,$GRdoublek,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csmulcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_csmulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { DI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[((FLD (f_CCi)) & (3))]); tmp_tmp = MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (GET_H_GR (FLD (f_GRj)))); if (EQDI (SRLDI (tmp_tmp, 63), 0)) { tmp_cc = ANDQI (tmp_cc, 7); } else { tmp_cc = ORQI (tmp_cc, 8); } if (EQBI (EQDI (tmp_tmp, 0), 0)) { tmp_cc = ANDQI (tmp_cc, 11); } else { tmp_cc = ORQI (tmp_cc, 4); } { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* candcc: candcc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,candcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_tmp; tmp_tmp = ANDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* corcc: corcc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,corcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_tmp; tmp_tmp = ORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* cxorcc: cxorcc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cxorcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_tmp; tmp_tmp = XORSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[((FLD (f_CCi)) & (3))]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* csllcc: csllcc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csllcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (GET_H_GR (FLD (f_GRj)), 31); tmp_cc = frvbf_set_icc_for_shift_left (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[((FLD (f_CCi)) & (3))])); tmp_tmp = SLLSI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* csrlcc: csrlcc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csrlcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (GET_H_GR (FLD (f_GRj)), 31); tmp_cc = frvbf_set_icc_for_shift_right (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[((FLD (f_CCi)) & (3))])); tmp_tmp = SRLSI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* csracc: csracc$pack $GRi,$GRj,$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csracc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_caddcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (GET_H_GR (FLD (f_GRj)), 31); tmp_cc = frvbf_set_icc_for_shift_right (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[((FLD (f_CCi)) & (3))])); tmp_tmp = SRASI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[((FLD (f_CCi)) & (3))]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* addx: addx$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,addx) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDCSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 1))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* subx: subx$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,subx) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SUBCSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 1))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* addxcc: addxcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,addxcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = ADDCSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (tmp_cc, 1))); if (EQSI (ADDOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } if (EQSI (ADDCFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* subxcc: subxcc$pack $GRi,$GRj,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,subxcc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = SUBCSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (tmp_cc, 1))); if (EQSI (SUBOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } if (EQSI (SUBCFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* addss: addss$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,addss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (ADDOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0)) { { SI opval = (GTSI (GET_H_GR (FLD (f_GRi)), 0)) ? (2147483647) : (LTSI (GET_H_GR (FLD (f_GRi)), 0)) ? (0x80000000) : (0); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } return vpc; #undef FLD } /* subss: subss$pack $GRi,$GRj,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,subss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = SUBSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (SUBOFSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), 0)) { { SI opval = (GTSI (GET_H_GR (FLD (f_GRi)), 0)) ? (2147483647) : (LTSI (GET_H_GR (FLD (f_GRi)), 0)) ? (0x80000000) : (0); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } return vpc; #undef FLD } /* addi: addi$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,addi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* subi: subi$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,subi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SUBSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* andi: andi$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,andi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ori: ori$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ori) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* xori: xori$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,xori) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sdivi: sdivi$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,sdivi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_signed_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), FLD (f_d12), FLD (f_GRk), 0); ; /*clobber*/ } return vpc; #undef FLD } /* nsdivi: nsdivi$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nsdivi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_signed_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), FLD (f_d12), FLD (f_GRk), 1); ; /*clobber*/ } return vpc; #undef FLD } /* udivi: udivi$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,udivi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_unsigned_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), FLD (f_d12), FLD (f_GRk), 0); ; /*clobber*/ } return vpc; #undef FLD } /* nudivi: nudivi$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nudivi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_unsigned_integer_divide (current_cpu, GET_H_GR (FLD (f_GRi)), FLD (f_d12), FLD (f_GRk), 1); ; /*clobber*/ } return vpc; #undef FLD } /* smuli: smuli$pack $GRi,$s12,$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,smuli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smuli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (FLD (f_d12))); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } return vpc; #undef FLD } /* umuli: umuli$pack $GRi,$s12,$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,umuli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smuli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = MULDI (ZEXTSIDI (GET_H_GR (FLD (f_GRi))), ZEXTSIDI (FLD (f_d12))); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } return vpc; #undef FLD } /* slli: slli$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,slli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (GET_H_GR (FLD (f_GRi)), ANDSI (FLD (f_d12), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srli: srli$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,srli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (GET_H_GR (FLD (f_GRi)), ANDSI (FLD (f_d12), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srai: srai$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,srai) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRASI (GET_H_GR (FLD (f_GRi)), ANDSI (FLD (f_d12), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* scani: scani$pack $GRi,$s12,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,scani) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp1; SI tmp_tmp2; tmp_tmp1 = GET_H_GR (FLD (f_GRi)); tmp_tmp2 = SRASI (FLD (f_d12), 1); { SI opval = frvbf_scan_result (current_cpu, XORSI (tmp_tmp1, tmp_tmp2)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* addicc: addicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,addicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_tmp; QI tmp_cc; SI tmp_result; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = ADDOFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } tmp_tmp = ADDCFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } tmp_result = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10)); if (EQSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_result; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* subicc: subicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,subicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_tmp; QI tmp_cc; SI tmp_result; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = SUBOFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } tmp_tmp = SUBCFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), 0); if (EQBI (tmp_tmp, 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } tmp_result = SUBSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10)); if (EQSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_result, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_result; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* andicc: andicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,andicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; tmp_tmp = ANDSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10)); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* oricc: oricc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,oricc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; tmp_tmp = ORSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10)); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* xoricc: xoricc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,xoricc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; tmp_tmp = XORSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10)); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 7), 4); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { if (LTSI (tmp_tmp, 0)) { { UQI opval = ORQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 11), 8); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } else { { UQI opval = ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 3); sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* smulicc: smulicc$pack $GRi,$s10,$GRdoublek,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,smulicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = MULDI (EXTSIDI (GET_H_GR (FLD (f_GRi))), EXTSIDI (FLD (f_s10))); if (EQDI (SRLDI (tmp_tmp, 63), 0)) { tmp_cc = ANDQI (tmp_cc, 7); } else { tmp_cc = ORQI (tmp_cc, 8); } if (EQBI (EQDI (tmp_tmp, 0), 0)) { tmp_cc = ANDQI (tmp_cc, 11); } else { tmp_cc = ORQI (tmp_cc, 4); } { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* umulicc: umulicc$pack $GRi,$s10,$GRdoublek,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,umulicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = MULDI (ZEXTSIDI (GET_H_GR (FLD (f_GRi))), ZEXTSIDI (FLD (f_s10))); if (EQDI (SRLDI (tmp_tmp, 63), 0)) { tmp_cc = ANDQI (tmp_cc, 7); } else { tmp_cc = ORQI (tmp_cc, 8); } if (EQBI (EQDI (tmp_tmp, 0), 0)) { tmp_cc = ANDQI (tmp_cc, 11); } else { tmp_cc = ORQI (tmp_cc, 4); } { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* sllicc: sllicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,sllicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (FLD (f_s10), 31); tmp_cc = frvbf_set_icc_for_shift_left (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[FLD (f_ICCi_1)])); tmp_tmp = SLLSI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* srlicc: srlicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,srlicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (FLD (f_s10), 31); tmp_cc = frvbf_set_icc_for_shift_right (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[FLD (f_ICCi_1)])); tmp_tmp = SRLSI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* sraicc: sraicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,sraicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_shift; SI tmp_tmp; QI tmp_cc; tmp_shift = ANDSI (FLD (f_s10), 31); tmp_cc = frvbf_set_icc_for_shift_right (current_cpu, GET_H_GR (FLD (f_GRi)), tmp_shift, CPU (h_iccr[FLD (f_ICCi_1)])); tmp_tmp = SRASI (GET_H_GR (FLD (f_GRi)), tmp_shift); { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* addxi: addxi$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,addxi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDCSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 1))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* subxi: subxi$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,subxi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SUBCSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_1)]), 1))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* addxicc: addxicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,addxicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = ADDCSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (tmp_cc, 1))); if (EQSI (ADDOFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } if (EQSI (ADDCFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* subxicc: subxicc$pack $GRi,$s10,$GRk,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,subxicc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addicc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; QI tmp_cc; tmp_cc = CPU (h_iccr[FLD (f_ICCi_1)]); tmp_tmp = SUBCSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (tmp_cc, 1))); if (EQSI (SUBOFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } if (EQSI (SUBCFSI (GET_H_GR (FLD (f_GRi)), FLD (f_s10), TRUNCQIBI (ANDQI (tmp_cc, 1))), 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } if (EQSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 7), 4); } else { if (LTSI (tmp_tmp, 0)) { tmp_cc = ORQI (ANDQI (tmp_cc, 11), 8); } else { tmp_cc = ANDQI (tmp_cc, 3); } } { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* cmpb: cmpb$pack $GRi,$GRj,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,cmpb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_cc; if (EQBI (EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 0xff000000), ANDSI (GET_H_GR (FLD (f_GRj)), 0xff000000)), 0)) { tmp_cc = ANDQI (tmp_cc, 7); } else { tmp_cc = ORQI (tmp_cc, 8); } if (EQBI (EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 16711680), ANDSI (GET_H_GR (FLD (f_GRj)), 16711680)), 0)) { tmp_cc = ANDQI (tmp_cc, 11); } else { tmp_cc = ORQI (tmp_cc, 4); } if (EQBI (EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 65280), ANDSI (GET_H_GR (FLD (f_GRj)), 65280)), 0)) { tmp_cc = ANDQI (tmp_cc, 13); } else { tmp_cc = ORQI (tmp_cc, 2); } if (EQBI (EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 255), ANDSI (GET_H_GR (FLD (f_GRj)), 255)), 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* cmpba: cmpba$pack $GRi,$GRj,$ICCi_1 */ static SEM_PC SEM_FN_NAME (frvbf,cmpba) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_cc; tmp_cc = 0; if (EQBI (ORIF (EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 0xff000000), ANDSI (GET_H_GR (FLD (f_GRj)), 0xff000000)), ORIF (EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 16711680), ANDSI (GET_H_GR (FLD (f_GRj)), 16711680)), ORIF (EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 65280), ANDSI (GET_H_GR (FLD (f_GRj)), 65280)), EQSI (ANDSI (GET_H_GR (FLD (f_GRi)), 255), ANDSI (GET_H_GR (FLD (f_GRj)), 255))))), 0)) { tmp_cc = ANDQI (tmp_cc, 14); } else { tmp_cc = ORQI (tmp_cc, 1); } { UQI opval = tmp_cc; sim_queue_qi_write (current_cpu, & CPU (h_iccr[FLD (f_ICCi_1)]), opval); TRACE_RESULT (current_cpu, abuf, "iccr", 'x', opval); } } return vpc; #undef FLD } /* setlo: setlo$pack $ulo16,$GRklo */ static SEM_PC SEM_FN_NAME (frvbf,setlo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_setlo.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI opval = FLD (f_u16); sim_queue_fn_hi_write (current_cpu, frvbf_h_gr_lo_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_lo", 'x', opval); } return vpc; #undef FLD } /* sethi: sethi$pack $uhi16,$GRkhi */ static SEM_PC SEM_FN_NAME (frvbf,sethi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_sethi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI opval = FLD (f_u16); sim_queue_fn_hi_write (current_cpu, frvbf_h_gr_hi_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr_hi", 'x', opval); } return vpc; #undef FLD } /* setlos: setlos$pack $slo16,$GRk */ static SEM_PC SEM_FN_NAME (frvbf,setlos) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_setlos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = FLD (f_s16); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldsb: ldsb$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldsb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldub: ldub$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldsh: ldsh$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldsh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lduh: lduh$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,lduh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ld: ld$pack $ldann($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldbf: ldbf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldbf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* ldhf: ldhf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldhf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* ldf: ldf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* ldc: ldc$pack @($GRi,$GRj),$CPRk */ static SEM_PC SEM_FN_NAME (frvbf,ldc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_si_write (current_cpu, & CPU (h_cpr[FLD (f_CPRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cpr", 'x', opval); } return vpc; #undef FLD } /* nldsb: nldsb$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldsb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 1, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldub: nldub$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 0, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldsh: nldsh$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldsh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 3, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nlduh: nlduh$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nlduh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 2, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nld: nld$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 4, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldbf: nldbf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldbf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 0, 1); if (tmp_do_op) { { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldhf: nldhf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldhf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 2, 1); if (tmp_do_op) { { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldf: nldf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 4, 1); if (tmp_do_op) { { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* ldd: ldd$pack $lddann($GRi,$GRj),$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,ldd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* lddf: lddf$pack @($GRi,$GRj),$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,lddf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } } return vpc; #undef FLD } /* lddc: lddc$pack @($GRi,$GRj),$CPRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,lddc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_lddcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_cpr_double_set, FLD (f_CPRk), opval); TRACE_RESULT (current_cpu, abuf, "cpr_double", 'D', opval); } } } return vpc; #undef FLD } /* nldd: nldd$pack @($GRi,$GRj),$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,nldd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 5, 0); if (tmp_do_op) { if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* nlddf: nlddf$pack @($GRi,$GRj),$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,nlddf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 5, 1); if (tmp_do_op) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* ldq: ldq$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } } return vpc; #undef FLD } /* ldqf: ldqf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldqf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } } return vpc; #undef FLD } /* ldqc: ldqc$pack @($GRi,$GRj),$CPRk */ static SEM_PC SEM_FN_NAME (frvbf,ldqc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_CPR (current_cpu, pc, tmp_address, FLD (f_CPRk)); } } return vpc; #undef FLD } /* nldq: nldq$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 6, 0); if (tmp_do_op) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } } } } return vpc; #undef FLD } /* nldqf: nldqf$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldqf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 6, 1); if (tmp_do_op) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } } } } return vpc; #undef FLD } /* ldsbu: ldsbu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldsbu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_QI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* ldubu: ldubu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldubu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* ldshu: ldshu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldshu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_HI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* lduhu: lduhu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,lduhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* ldu: ldu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_SI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* nldsbu: nldsbu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldsbu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 1, 0); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_QI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } } } abuf->written = written; return vpc; #undef FLD } /* nldubu: nldubu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldubu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 0, 0); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } } } abuf->written = written; return vpc; #undef FLD } /* nldshu: nldshu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldshu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 3, 0); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_HI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } } } abuf->written = written; return vpc; #undef FLD } /* nlduhu: nlduhu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nlduhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 2, 0); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } } } abuf->written = written; return vpc; #undef FLD } /* nldu: nldu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 4, 0); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_SI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } } } abuf->written = written; return vpc; #undef FLD } /* ldbfu: ldbfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldbfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* ldhfu: ldhfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldhfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* ldfu: ldfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_SI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* ldcu: ldcu$pack @($GRi,$GRj),$CPRk */ static SEM_PC SEM_FN_NAME (frvbf,ldcu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_SI (current_cpu, pc, tmp_address); sim_queue_si_write (current_cpu, & CPU (h_cpr[FLD (f_CPRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cpr", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* nldbfu: nldbfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldbfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 0, 1); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* nldhfu: nldhfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldhfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 2, 1); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* nldfu: nldfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 4, 1); if (tmp_do_op) { { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_SI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* lddu: lddu$pack @($GRi,$GRj),$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,lddu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* nlddu: nlddu$pack @($GRi,$GRj),$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,nlddu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 5, 0); if (tmp_do_op) { { SI tmp_address; if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } } } abuf->written = written; return vpc; #undef FLD } /* lddfu: lddfu$pack @($GRi,$GRj),$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,lddfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* lddcu: lddcu$pack @($GRi,$GRj),$CPRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,lddcu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_lddcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_cpr_double_set, FLD (f_CPRk), opval); TRACE_RESULT (current_cpu, abuf, "cpr_double", 'D', opval); } } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* nlddfu: nlddfu$pack @($GRi,$GRj),$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,nlddfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 5, 1); if (tmp_do_op) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* ldqu: ldqu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldqu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* nldqu: nldqu$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldqu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_GRk), 0, 6, 0); if (tmp_do_op) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } } } abuf->written = written; return vpc; #undef FLD } /* ldqfu: ldqfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldqfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* ldqcu: ldqcu$pack @($GRi,$GRj),$CPRk */ static SEM_PC SEM_FN_NAME (frvbf,ldqcu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_CPR (current_cpu, pc, tmp_address, FLD (f_CPRk)); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } return vpc; #undef FLD } /* nldqfu: nldqfu$pack @($GRi,$GRj),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldqfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), FLD (f_GRj), FLD (f_FRk), 0, 6, 1); if (tmp_do_op) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_force_update (current_cpu); } } } abuf->written = written; return vpc; #undef FLD } /* ldsbi: ldsbi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldsbi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldshi: ldshi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldshi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldi: ldi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldubi: ldubi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldubi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lduhi: lduhi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,lduhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ldbfi: ldbfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldbfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* ldhfi: ldhfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldhfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* ldfi: ldfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* nldsbi: nldsbi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldsbi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_GRk), FLD (f_d12), 1, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldubi: nldubi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldubi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_GRk), FLD (f_d12), 0, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldshi: nldshi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldshi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_GRk), FLD (f_d12), 3, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nlduhi: nlduhi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nlduhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_GRk), FLD (f_d12), 2, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldi: nldi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,nldi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_GRk), FLD (f_d12), 4, 0); if (tmp_do_op) { { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldbfi: nldbfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldbfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_FRk), FLD (f_d12), 0, 1); if (tmp_do_op) { { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldhfi: nldhfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldhfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_FRk), FLD (f_d12), 2, 1); if (tmp_do_op) { { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* nldfi: nldfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ldbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_FRk), FLD (f_d12), 4, 1); if (tmp_do_op) { { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* lddi: lddi$pack @($GRi,$d12),$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,lddi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smuli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* lddfi: lddfi$pack @($GRi,$d12),$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,lddfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_lddfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } } return vpc; #undef FLD } /* nlddi: nlddi$pack @($GRi,$d12),$GRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,nlddi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smuli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_GRk), FLD (f_d12), 5, 0); if (tmp_do_op) { if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* nlddfi: nlddfi$pack @($GRi,$d12),$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,nlddfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_lddfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_FRk), FLD (f_d12), 5, 1); if (tmp_do_op) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* ldqi: ldqi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,ldqi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_load_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } } return vpc; #undef FLD } /* ldqfi: ldqfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,ldqfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_load_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } } return vpc; #undef FLD } /* nldqfi: nldqfi$pack @($GRi,$d12),$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nldqfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { BI tmp_do_op; tmp_do_op = frvbf_check_non_excepting_load (current_cpu, FLD (f_GRi), -1, FLD (f_FRk), FLD (f_d12), 6, 1); if (tmp_do_op) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_load_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } } } } return vpc; #undef FLD } /* stb: stb$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_GR (FLD (f_GRk))); return vpc; #undef FLD } /* sth: sth$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,sth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_GR (FLD (f_GRk))); return vpc; #undef FLD } /* st: st$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,st) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_GR (FLD (f_GRk))); return vpc; #undef FLD } /* stbf: stbf$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stbf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_FR_INT (FLD (f_FRk))); return vpc; #undef FLD } /* sthf: sthf$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,sthf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_FR_INT (FLD (f_FRk))); return vpc; #undef FLD } /* stf: stf$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_FR_INT (FLD (f_FRk))); return vpc; #undef FLD } /* stc: stc$pack $CPRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), CPU (h_cpr[FLD (f_CPRk)])); return vpc; #undef FLD } /* std: std$pack $GRdoublek,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,std) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DI (current_cpu, pc, tmp_address, GET_H_GR_DOUBLE (FLD (f_GRk))); } } return vpc; #undef FLD } /* stdf: stdf$pack $FRdoublek,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stdf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DF (current_cpu, pc, tmp_address, GET_H_FR_DOUBLE (FLD (f_FRk))); } } return vpc; #undef FLD } /* stdc: stdc$pack $CPRdoublek,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stdc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DI (current_cpu, pc, tmp_address, GET_H_CPR_DOUBLE (FLD (f_CPRk))); } } return vpc; #undef FLD } /* stq: stq$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_smulcc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_store_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } } return vpc; #undef FLD } /* stqf: stqf$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stqf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_store_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } } return vpc; #undef FLD } /* stqc: stqc$pack $CPRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stqc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_store_quad_CPR (current_cpu, pc, tmp_address, FLD (f_CPRk)); } } return vpc; #undef FLD } /* stbu: stbu$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stbu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_QI (current_cpu, pc, tmp_address, GET_H_GR (FLD (f_GRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* sthu: sthu$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,sthu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_HI (current_cpu, pc, tmp_address, GET_H_GR (FLD (f_GRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stu: stu$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_WI (current_cpu, pc, tmp_address, GET_H_GR (FLD (f_GRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stbfu: stbfu$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stbfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_QI (current_cpu, pc, tmp_address, GET_H_FR_INT (FLD (f_FRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* sthfu: sthfu$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,sthfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_HI (current_cpu, pc, tmp_address, GET_H_FR_INT (FLD (f_FRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stfu: stfu$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_SI (current_cpu, pc, tmp_address, GET_H_FR_INT (FLD (f_FRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stcu: stcu$pack $CPRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stcu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_SI (current_cpu, pc, tmp_address, CPU (h_cpr[FLD (f_CPRk)])); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stdu: stdu$pack $GRdoublek,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stdu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DI (current_cpu, pc, tmp_address, GET_H_GR_DOUBLE (FLD (f_GRk))); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stdfu: stdfu$pack $FRdoublek,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stdfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DF (current_cpu, pc, tmp_address, GET_H_FR_DOUBLE (FLD (f_FRk))); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stdcu: stdcu$pack $CPRdoublek,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stdcu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DI (current_cpu, pc, tmp_address, GET_H_CPR_DOUBLE (FLD (f_CPRk))); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stqu: stqu$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stqu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_store_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stqfu: stqfu$pack $FRintk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stqfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_store_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* stqcu: stqcu$pack $CPRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,stqcu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdcu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_store_quad_CPR (current_cpu, pc, tmp_address, FLD (f_CPRk)); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } return vpc; #undef FLD } /* cldsb: cldsb$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldsb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cldub: cldub$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cldsh: cldsh$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldsh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* clduh: clduh$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,clduh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cld: cld$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cldbf: cldbf$pack @($GRi,$GRj),$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldbf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_UQI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cldhf: cldhf$pack @($GRi,$GRj),$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldhf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_UHI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cldf: cldf$pack @($GRi,$GRj),$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = frvbf_read_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cldd: cldd$pack @($GRi,$GRj),$GRdoublek,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* clddf: clddf$pack @($GRi,$GRj),$FRdoublek,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,clddf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cldq: cldq$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } } } return vpc; #undef FLD } /* cldsbu: cldsbu$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldsbu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_QI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cldubu: cldubu$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldubu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cldshu: cldshu$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldshu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_HI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* clduhu: clduhu$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,clduhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cldu: cldu$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldsbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_SI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cldbfu: cldbfu$pack @($GRi,$GRj),$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldbfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UQI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cldhfu: cldhfu$pack @($GRi,$GRj),$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldhfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_UHI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cldfu: cldfu$pack @($GRi,$GRj),$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cldbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { SI opval = frvbf_read_mem_SI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* clddu: clddu$pack @($GRi,$GRj),$GRdoublek,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,clddu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; if (NESI (FLD (f_GRk), 0)) { { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DI opval = frvbf_read_mem_DI (current_cpu, pc, tmp_address); sim_queue_fn_di_write (current_cpu, frvbf_h_gr_double_set, FLD (f_GRk), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr_double", 'D', opval); } } } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* clddfu: clddfu$pack @($GRi,$GRj),$FRdoublek,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,clddfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_clddfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); { DF opval = frvbf_read_mem_DF (current_cpu, pc, tmp_address); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cldqu: cldqu$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cldqu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_load_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } if (NESI (FLD (f_GRi), FLD (f_GRk))) { { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cstb: cstb$pack $GRk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { frvbf_write_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_GR (FLD (f_GRk))); } return vpc; #undef FLD } /* csth: csth$pack $GRk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { frvbf_write_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_GR (FLD (f_GRk))); } return vpc; #undef FLD } /* cst: cst$pack $GRk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cst) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { frvbf_write_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_GR (FLD (f_GRk))); } return vpc; #undef FLD } /* cstbf: cstbf$pack $FRintk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstbf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { frvbf_write_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_FR_INT (FLD (f_FRk))); } return vpc; #undef FLD } /* csthf: csthf$pack $FRintk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csthf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { frvbf_write_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_FR_INT (FLD (f_FRk))); } return vpc; #undef FLD } /* cstf: cstf$pack $FRintk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { frvbf_write_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), GET_H_FR_INT (FLD (f_FRk))); } return vpc; #undef FLD } /* cstd: cstd$pack $GRdoublek,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DI (current_cpu, pc, tmp_address, GET_H_GR_DOUBLE (FLD (f_GRk))); } } } return vpc; #undef FLD } /* cstdf: cstdf$pack $FRdoublek,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstdf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DF (current_cpu, pc, tmp_address, GET_H_FR_DOUBLE (FLD (f_FRk))); } } } return vpc; #undef FLD } /* cstq: cstq$pack $GRk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_store_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } } } return vpc; #undef FLD } /* cstbu: cstbu$pack $GRk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstbu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_QI (current_cpu, pc, tmp_address, GET_H_GR (FLD (f_GRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* csthu: csthu$pack $GRk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csthu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_HI (current_cpu, pc, tmp_address, GET_H_GR (FLD (f_GRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cstu: cstu$pack $GRk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_SI (current_cpu, pc, tmp_address, GET_H_GR (FLD (f_GRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cstbfu: cstbfu$pack $FRintk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstbfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_QI (current_cpu, pc, tmp_address, GET_H_FR_INT (FLD (f_FRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* csthfu: csthfu$pack $FRintk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,csthfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_HI (current_cpu, pc, tmp_address, GET_H_FR_INT (FLD (f_FRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cstfu: cstfu$pack $FRintk,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstbfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_SI (current_cpu, pc, tmp_address, GET_H_FR_INT (FLD (f_FRk))); { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cstdu: cstdu$pack $GRdoublek,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstdu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DI (current_cpu, pc, tmp_address, GET_H_GR_DOUBLE (FLD (f_GRk))); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cstdfu: cstdfu$pack $FRdoublek,@($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cstdfu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cstdfu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_write_mem_DF (current_cpu, pc, tmp_address, GET_H_FR_DOUBLE (FLD (f_FRk))); } { SI opval = tmp_address; sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* stbi: stbi$pack $GRk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,stbi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), GET_H_GR (FLD (f_GRk))); return vpc; #undef FLD } /* sthi: sthi$pack $GRk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,sthi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), GET_H_GR (FLD (f_GRk))); return vpc; #undef FLD } /* sti: sti$pack $GRk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,sti) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), GET_H_GR (FLD (f_GRk))); return vpc; #undef FLD } /* stbfi: stbfi$pack $FRintk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,stbfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_QI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), GET_H_FR_INT (FLD (f_FRk))); return vpc; #undef FLD } /* sthfi: sthfi$pack $FRintk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,sthfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_HI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), GET_H_FR_INT (FLD (f_FRk))); return vpc; #undef FLD } /* stfi: stfi$pack $FRintk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,stfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stbfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_write_mem_SI (current_cpu, pc, ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), GET_H_FR_INT (FLD (f_FRk))); return vpc; #undef FLD } /* stdi: stdi$pack $GRdoublek,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,stdi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_write_mem_DI (current_cpu, pc, tmp_address, GET_H_GR_DOUBLE (FLD (f_GRk))); } } return vpc; #undef FLD } /* stdfi: stdfi$pack $FRdoublek,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,stdfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_write_mem_DF (current_cpu, pc, tmp_address, GET_H_FR_DOUBLE (FLD (f_FRk))); } } return vpc; #undef FLD } /* stqi: stqi$pack $GRk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,stqi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_store_quad_GR (current_cpu, pc, tmp_address, FLD (f_GRk)); } } return vpc; #undef FLD } /* stqfi: stqfi$pack $FRintk,@($GRi,$d12) */ static SEM_PC SEM_FN_NAME (frvbf,stqfi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_stdfi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_address; { tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_store_quad_FRint (current_cpu, pc, tmp_address, FLD (f_FRk)); } } return vpc; #undef FLD } /* swap: swap$pack @($GRi,$GRj),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,swap) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; SI tmp_address; tmp_tmp = GET_H_GR (FLD (f_GRk)); tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_check_swap_address (current_cpu, tmp_address); { SI opval = frvbf_read_mem_WI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_write_mem_WI (current_cpu, pc, tmp_address, tmp_tmp); } return vpc; #undef FLD } /* swapi: swapi$pack @($GRi,$d12),$GRk */ static SEM_PC SEM_FN_NAME (frvbf,swapi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; SI tmp_address; tmp_tmp = GET_H_GR (FLD (f_GRk)); tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)); frvbf_check_swap_address (current_cpu, tmp_address); { SI opval = frvbf_read_mem_WI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_write_mem_WI (current_cpu, pc, tmp_address, tmp_tmp); } return vpc; #undef FLD } /* cswap: cswap$pack @($GRi,$GRj),$GRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cswap) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cswap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI tmp_tmp; SI tmp_address; tmp_tmp = GET_H_GR (FLD (f_GRk)); tmp_address = ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); frvbf_check_swap_address (current_cpu, tmp_address); { SI opval = frvbf_read_mem_WI (current_cpu, pc, tmp_address); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } frvbf_write_mem_WI (current_cpu, pc, tmp_address, tmp_tmp); } } abuf->written = written; return vpc; #undef FLD } /* movgf: movgf$pack $GRj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,movgf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovgfd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GET_H_GR (FLD (f_GRj)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* movfg: movfg$pack $FRintk,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,movfg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovfgd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GET_H_FR_INT (FLD (f_FRk)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRj), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* movgfd: movgfd$pack $GRj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,movgfd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovgfd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (FLD (f_GRj), 0)) { { { SI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } else { { { SI opval = GET_H_GR (FLD (f_GRj)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = GET_H_GR (((FLD (f_GRj)) + (1))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* movfgd: movfgd$pack $FRintk,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,movfgd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovfgd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (FLD (f_GRj), 0)) { { { SI opval = GET_H_FR_INT (FLD (f_FRk)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRj), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = GET_H_FR_INT (((FLD (f_FRk)) + (1))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, ((FLD (f_GRj)) + (1)), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* movgfq: movgfq$pack $GRj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,movgfq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_movgfq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (FLD (f_GRj), 0)) { { { SI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (3)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } else { { { SI opval = GET_H_GR (FLD (f_GRj)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = GET_H_GR (((FLD (f_GRj)) + (1))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = GET_H_GR (((FLD (f_GRj)) + (2))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = GET_H_GR (((FLD (f_GRj)) + (3))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (3)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* movfgq: movfgq$pack $FRintk,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,movfgq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_movfgq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (FLD (f_GRj), 0)) { { { SI opval = GET_H_FR_INT (FLD (f_FRk)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRj), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = GET_H_FR_INT (((FLD (f_FRk)) + (1))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, ((FLD (f_GRj)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = GET_H_FR_INT (((FLD (f_FRk)) + (2))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, ((FLD (f_GRj)) + (2)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = GET_H_FR_INT (((FLD (f_FRk)) + (3))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, ((FLD (f_GRj)) + (3)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cmovgf: cmovgf$pack $GRj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmovgf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovgfd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = GET_H_GR (FLD (f_GRj)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cmovfg: cmovfg$pack $FRintk,$GRj,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmovfg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovfgd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = GET_H_FR_INT (FLD (f_FRk)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRj), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cmovgfd: cmovgfd$pack $GRj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmovgfd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovgfd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (EQSI (FLD (f_GRj), 0)) { { { SI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = 0; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } else { { { SI opval = GET_H_GR (FLD (f_GRj)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = GET_H_GR (((FLD (f_GRj)) + (1))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cmovfgd: cmovfgd$pack $FRintk,$GRj,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmovfgd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmovfgd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ANDIF (NESI (FLD (f_GRj), 0), EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2)))) { { { SI opval = GET_H_FR_INT (FLD (f_FRk)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRj), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = GET_H_FR_INT (((FLD (f_FRk)) + (1))); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, ((FLD (f_GRj)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* movgs: movgs$pack $GRj,$spr */ static SEM_PC SEM_FN_NAME (frvbf,movgs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_movgs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = GET_H_GR (FLD (f_GRj)); sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, FLD (f_spr), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } return vpc; #undef FLD } /* movsg: movsg$pack $spr,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,movsg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_movsg.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GET_H_SPR (FLD (f_spr)); sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, FLD (f_GRj), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* bra: bra$pack $hint_taken$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } return vpc; #undef FLD } /* bno: bno$pack$hint_not_taken */ static SEM_PC SEM_FN_NAME (frvbf,bno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); return vpc; #undef FLD } /* beq: beq$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,beq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bne: bne$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* ble: ble$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,ble) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bgt: bgt$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (NOTBI (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* blt: blt$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,blt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bge: bge$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (NOTBI (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bls: bls$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bhi: bhi$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (NOTBI (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bc: bc$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bnc: bnc$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bnc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (NOTBI (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bn: bn$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bn) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bp: bp$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bv: bv$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bnv: bnv$pack $ICCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,bnv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_beq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbra: fbra$pack $hint_taken$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } return vpc; #undef FLD } /* fbno: fbno$pack$hint_not_taken */ static SEM_PC SEM_FN_NAME (frvbf,fbno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); return vpc; #undef FLD } /* fbne: fbne$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbeq: fbeq$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbeq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fblg: fblg$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fblg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbue: fbue$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbue) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbul: fbul$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbge: fbge$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fblt: fblt$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fblt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbuge: fbuge$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbuge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbug: fbug$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbug) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fble: fble$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fble) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbgt: fbgt$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbule: fbule$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbule) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbu: fbu$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbo: fbo$pack $FCCi_2,$hint,$label16 */ static SEM_PC SEM_FN_NAME (frvbf,fbo) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fbne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, FLD (i_label16), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))))) { { USI opval = FLD (i_label16); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bctrlr: bctrlr$pack $ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bctrlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* bralr: bralr$pack$hint_taken */ static SEM_PC SEM_FN_NAME (frvbf,bralr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } return vpc; #undef FLD } /* bnolr: bnolr$pack$hint_not_taken */ static SEM_PC SEM_FN_NAME (frvbf,bnolr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); return vpc; #undef FLD } /* beqlr: beqlr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,beqlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bnelr: bnelr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bnelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* blelr: blelr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,blelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bgtlr: bgtlr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bgtlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (NOTBI (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bltlr: bltlr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bltlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bgelr: bgelr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bgelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (NOTBI (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* blslr: blslr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,blslr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bhilr: bhilr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bhilr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (NOTBI (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bclr: bclr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bclr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bnclr: bnclr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bnclr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (NOTBI (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bnlr: bnlr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bnlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bplr: bplr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bplr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bvlr: bvlr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bvlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bnvlr: bnvlr$pack $ICCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bnvlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbralr: fbralr$pack$hint_taken */ static SEM_PC SEM_FN_NAME (frvbf,fbralr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } return vpc; #undef FLD } /* fbnolr: fbnolr$pack$hint_not_taken */ static SEM_PC SEM_FN_NAME (frvbf,fbnolr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); return vpc; #undef FLD } /* fbeqlr: fbeqlr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbeqlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbnelr: fbnelr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbnelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fblglr: fblglr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fblglr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbuelr: fbuelr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbuelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbullr: fbullr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbullr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbgelr: fbgelr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbgelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbltlr: fbltlr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbltlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbugelr: fbugelr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbugelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbuglr: fbuglr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbuglr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fblelr: fblelr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fblelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbgtlr: fbgtlr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbgtlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbulelr: fbulelr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbulelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbulr: fbulr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbulr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fbolr: fbolr$pack $FCCi_2,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fbolr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))))) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* bcralr: bcralr$pack $ccond$hint_taken */ static SEM_PC SEM_FN_NAME (frvbf,bcralr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* bcnolr: bcnolr$pack$hint_not_taken */ static SEM_PC SEM_FN_NAME (frvbf,bcnolr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } ((void) 0); /*nop*/ } } return vpc; #undef FLD } /* bceqlr: bceqlr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bceqlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcnelr: bcnelr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcnelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bclelr: bclelr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bclelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcgtlr: bcgtlr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcgtlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (NOTBI (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcltlr: bcltlr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcltlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcgelr: bcgelr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcgelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (NOTBI (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bclslr: bclslr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bclslr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bchilr: bchilr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bchilr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (NOTBI (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcclr: bcclr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcclr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcnclr: bcnclr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcnclr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (NOTBI (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcnlr: bcnlr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcnlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcplr: bcplr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcplr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcvlr: bcvlr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcvlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* bcnvlr: bcnvlr$pack $ICCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,bcnvlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bceqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbralr: fcbralr$pack $ccond$hint_taken */ static SEM_PC SEM_FN_NAME (frvbf,fcbralr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbnolr: fcbnolr$pack$hint_not_taken */ static SEM_PC SEM_FN_NAME (frvbf,fcbnolr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } ((void) 0); /*nop*/ } } return vpc; #undef FLD } /* fcbeqlr: fcbeqlr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbeqlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbnelr: fcbnelr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbnelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcblglr: fcblglr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcblglr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbuelr: fcbuelr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbuelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbullr: fcbullr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbullr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbgelr: fcbgelr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbgelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbltlr: fcbltlr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbltlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbugelr: fcbugelr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbugelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbuglr: fcbuglr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbuglr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcblelr: fcblelr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcblelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbgtlr: fcbgtlr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbgtlr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbulelr: fcbulelr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbulelr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbulr: fcbulr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbulr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* fcbolr: fcbolr$pack $FCCi_2,$ccond,$hint */ static SEM_PC SEM_FN_NAME (frvbf,fcbolr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcbeqlr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_model_branch (current_cpu, GET_H_SPR (((UINT) 272)), FLD (f_hint)); { SI tmp_tmp; tmp_tmp = SUBSI (GET_H_SPR (((UINT) 273)), 1); { USI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, ((UINT) 273), opval); TRACE_RESULT (current_cpu, abuf, "spr", 'x', opval); } if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))))) { if (EQSI (FLD (f_ccond), 0)) { if (NESI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } else { if (EQSI (tmp_tmp, 0)) { { USI opval = GET_H_SPR (((UINT) 272)); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* jmpl: jmpl$pack @($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,jmpl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cjmpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { if (EQSI (FLD (f_LI), 1)) { frvbf_set_write_next_vliw_addr_to_LR (current_cpu, 1); } { USI opval = ANDSI (ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), 0xfffffffc); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } return vpc; #undef FLD } /* calll: calll$pack $callann($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,calll) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cjmpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { if (EQSI (FLD (f_LI), 1)) { frvbf_set_write_next_vliw_addr_to_LR (current_cpu, 1); } { USI opval = ANDSI (ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), 0xfffffffc); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } return vpc; #undef FLD } /* jmpil: jmpil$pack @($GRi,$s12) */ static SEM_PC SEM_FN_NAME (frvbf,jmpil) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_jmpil.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { if (EQSI (FLD (f_LI), 1)) { frvbf_set_write_next_vliw_addr_to_LR (current_cpu, 1); } { USI opval = ANDSI (ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), 0xfffffffc); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } return vpc; #undef FLD } /* callil: callil$pack @($GRi,$s12) */ static SEM_PC SEM_FN_NAME (frvbf,callil) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_jmpil.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { if (EQSI (FLD (f_LI), 1)) { frvbf_set_write_next_vliw_addr_to_LR (current_cpu, 1); } { USI opval = ANDSI (ADDSI (GET_H_GR (FLD (f_GRi)), FLD (f_d12)), 0xfffffffc); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } return vpc; #undef FLD } /* call: call$pack $label24 */ static SEM_PC SEM_FN_NAME (frvbf,call) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_call.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_write_next_vliw_addr_to_LR (current_cpu, 1); { USI opval = FLD (i_label24); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } return vpc; #undef FLD } /* rett: rett$pack $debug */ static SEM_PC SEM_FN_NAME (frvbf,rett) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_rett.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { USI opval = frv_rett (current_cpu, pc, FLD (f_debug)); sim_queue_pc_write (current_cpu, opval); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } return vpc; #undef FLD } /* rei: rei$pack $eir */ static SEM_PC SEM_FN_NAME (frvbf,rei) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* tra: tra$pack $GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } abuf->written = written; return vpc; #undef FLD } /* tno: tno$pack */ static SEM_PC SEM_FN_NAME (frvbf,tno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* teq: teq$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,teq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tne: tne$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tle: tle$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tle) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tgt: tgt$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tlt: tlt$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tlt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tge: tge$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tls: tls$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* thi: thi$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,thi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tc: tc$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tnc: tnc$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tnc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tn: tn$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tn) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tp: tp$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tv: tv$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tnv: tnv$pack $ICCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,tnv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_teq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftra: ftra$pack $GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } abuf->written = written; return vpc; #undef FLD } /* ftno: ftno$pack */ static SEM_PC SEM_FN_NAME (frvbf,ftno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* ftne: ftne$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* fteq: fteq$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,fteq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftlg: ftlg$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftlg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftue: ftue$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftue) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftul: ftul$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftge: ftge$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftlt: ftlt$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftlt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftuge: ftuge$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftuge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftug: ftug$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftug) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftle: ftle$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftle) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftgt: ftgt$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftule: ftule$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftule) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* ftu: ftu$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,ftu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* fto: fto$pack $FCCi_2,$GRi,$GRj */ static SEM_PC SEM_FN_NAME (frvbf,fto) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))); } } abuf->written = written; return vpc; #undef FLD } /* tira: tira$pack $GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tira) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } abuf->written = written; return vpc; #undef FLD } /* tino: tino$pack */ static SEM_PC SEM_FN_NAME (frvbf,tino) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* tieq: tieq$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tieq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tine: tine$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tine) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tile: tile$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tile) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tigt: tigt$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tigt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tilt: tilt$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tilt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tige: tige$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tige) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tils: tils$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tils) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tihi: tihi$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tihi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 4), 2))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tic: tic$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tic) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tinc: tinc$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tinc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tin: tin$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tin) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tip: tip$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tip) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 8), 3)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tiv: tiv$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tiv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* tinv: tinv$pack $ICCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,tinv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_tieq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftira: ftira$pack $GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftira) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } abuf->written = written; return vpc; #undef FLD } /* ftino: ftino$pack */ static SEM_PC SEM_FN_NAME (frvbf,ftino) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* ftine: ftine$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftine) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftieq: ftieq$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftieq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftilg: ftilg$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftilg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftiue: ftiue$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftiue) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftiul: ftiul$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftiul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftige: ftige$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftige) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftilt: ftilt$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftilt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftiuge: ftiuge$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftiuge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftiug: ftiug$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftiug) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftile: ftile$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftile) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftigt: ftigt$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftigt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftiule: ftiule$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftiule) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftiu: ftiu$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftiu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 1))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* ftio: ftio$pack $FCCi_2,$GRi,$s12 */ static SEM_PC SEM_FN_NAME (frvbf,ftio) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_ftine.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_2)]), 2), 1))))) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ if (NEBI (CPU (h_psr_esr), 0)) { { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ } } frv_itrap (current_cpu, pc, GET_H_GR (FLD (f_GRi)), FLD (f_d12)); } } abuf->written = written; return vpc; #undef FLD } /* break: break$pack */ static SEM_PC SEM_FN_NAME (frvbf,break) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_break.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ frv_break (current_cpu); } return vpc; #undef FLD } /* mtrap: mtrap$pack */ static SEM_PC SEM_FN_NAME (frvbf,mtrap) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frv_mtrap (current_cpu); return vpc; #undef FLD } /* andcr: andcr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,andcr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 0, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* orcr: orcr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,orcr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 1, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* xorcr: xorcr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,xorcr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 2, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* nandcr: nandcr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,nandcr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 3, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* norcr: norcr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,norcr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 4, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* andncr: andncr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,andncr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 5, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* orncr: orncr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,orncr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 6, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* nandncr: nandncr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,nandncr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 7, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* norncr: norncr$pack $CRi,$CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,norncr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = frvbf_cr_logic (current_cpu, 8, CPU (h_cccr[FLD (f_CRi)]), CPU (h_cccr[FLD (f_CRj)])); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* notcr: notcr$pack $CRj,$CRk */ static SEM_PC SEM_FN_NAME (frvbf,notcr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andcr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = XORQI (CPU (h_cccr[FLD (f_CRj)]), 1); sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRk)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* ckra: ckra$pack $CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* ckno: ckno$pack $CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* ckeq: ckeq$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckeq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckne: ckne$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckle: ckle$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckle) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckgt: ckgt$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1)))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cklt: cklt$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,cklt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckge: ckge$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckls: ckls$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckhi: ckhi$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckc: ckc$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cknc: cknc$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,cknc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckn: ckn$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckn) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckp: ckp$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ckv: ckv$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,ckv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cknv: cknv$pack $ICCi_3,$CRj_int */ static SEM_PC SEM_FN_NAME (frvbf,cknv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckra: fckra$pack $CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* fckno: fckno$pack $CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } return vpc; #undef FLD } /* fckne: fckne$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckeq: fckeq$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckeq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fcklg: fcklg$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fcklg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckue: fckue$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckue) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckul: fckul$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckge: fckge$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fcklt: fcklt$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fcklt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckuge: fckuge$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckuge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckug: fckug$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckug) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckle: fckle$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckle) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckgt: fckgt$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fckule: fckule$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fckule) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fcku: fcku$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fcku) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* fcko: fcko$pack $FCCi_3,$CRj_float */ static SEM_PC SEM_FN_NAME (frvbf,fcko) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckra: cckra$pack $CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckno: cckno$pack $CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckeq: cckeq$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckeq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckne: cckne$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckle: cckle$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckle) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckgt: cckgt$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (NOTBI (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)), XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1)))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ccklt: ccklt$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,ccklt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckge: cckge$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (NOTBI (XORBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckls: cckls$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckhi: cckhi$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (NOTBI (ORIF (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 4), 2))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckc: cckc$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ccknc: ccknc$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,ccknc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (NOTBI (TRUNCQIBI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckn: cckn$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckn) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckp: cckp$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 8), 3)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cckv: cckv$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cckv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ccknv: ccknv$pack $ICCi_3,$CRj_int,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,ccknv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cckeq.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (NOTBI (TRUNCQIBI (SRLQI (ANDQI (CPU (h_iccr[FLD (f_ICCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_int)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckra: cfckra$pack $CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckno: cfckno$pack $CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckne: cfckne$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckeq: cfckeq$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckeq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfcklg: cfcklg$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfcklg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckue: cfckue$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckue) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckul: cfckul$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckge: cfckge$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfcklt: cfcklt$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfcklt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckuge: cfckuge$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckuge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckug: cfckug$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckug) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckle: cfckle$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckle) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckgt: cfckgt$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfckule: cfckule$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfckule) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfcku: cfcku$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfcku) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (TRUNCQIBI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 1))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfcko: cfcko$pack $FCCi_3,$CRj_float,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfcko) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfckne.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 8), 3)), ORIF (TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 4), 2)), TRUNCQIBI (SRLQI (ANDQI (CPU (h_fccr[FLD (f_FCCi_3)]), 2), 1))))) { { UQI opval = 3; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } else { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } } else { { UQI opval = 0; sim_queue_qi_write (current_cpu, & CPU (h_cccr[FLD (f_CRj_float)]), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cccr", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cjmpl: cjmpl$pack @($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cjmpl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cjmpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { if (EQSI (FLD (f_LI), 1)) { frvbf_set_write_next_vliw_addr_to_LR (current_cpu, 1); } { USI opval = ANDSI (ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), 0xfffffffc); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } } abuf->written = written; return vpc; #undef FLD } /* ccalll: ccalll$pack @($GRi,$GRj),$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,ccalll) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cjmpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { if (EQSI (FLD (f_LI), 1)) { frvbf_set_write_next_vliw_addr_to_LR (current_cpu, 1); } { USI opval = ANDSI (ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), 0xfffffffc); sim_queue_pc_write (current_cpu, opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } frvbf_model_branch (current_cpu, pc, 2); } } abuf->written = written; return vpc; #undef FLD } /* ici: ici$pack @($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,ici) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_insn_cache_invalidate (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), 0); return vpc; #undef FLD } /* dci: dci$pack @($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,dci) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_data_cache_invalidate (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), 0); return vpc; #undef FLD } /* icei: icei$pack @($GRi,$GRj),$ae */ static SEM_PC SEM_FN_NAME (frvbf,icei) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icei.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (FLD (f_ae), 0)) { frvbf_insn_cache_invalidate (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), -1); } else { frvbf_insn_cache_invalidate (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), FLD (f_ae)); } return vpc; #undef FLD } /* dcei: dcei$pack @($GRi,$GRj),$ae */ static SEM_PC SEM_FN_NAME (frvbf,dcei) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icei.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (FLD (f_ae), 0)) { frvbf_data_cache_invalidate (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), -1); } else { frvbf_data_cache_invalidate (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), FLD (f_ae)); } return vpc; #undef FLD } /* dcf: dcf$pack @($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,dcf) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_data_cache_flush (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), 0); return vpc; #undef FLD } /* dcef: dcef$pack @($GRi,$GRj),$ae */ static SEM_PC SEM_FN_NAME (frvbf,dcef) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icei.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (FLD (f_ae), 0)) { frvbf_data_cache_flush (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), -1); } else { frvbf_data_cache_flush (current_cpu, ADDSI (GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj))), FLD (f_ae)); } return vpc; #undef FLD } /* witlb: witlb$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,witlb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* wdtlb: wdtlb$pack $GRk,@($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,wdtlb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* itlbi: itlbi$pack @($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,itlbi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* dtlbi: dtlbi$pack @($GRi,$GRj) */ static SEM_PC SEM_FN_NAME (frvbf,dtlbi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* icpl: icpl$pack $GRi,$GRj,$lock */ static SEM_PC SEM_FN_NAME (frvbf,icpl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_insn_cache_preload (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_lock)); return vpc; #undef FLD } /* dcpl: dcpl$pack $GRi,$GRj,$lock */ static SEM_PC SEM_FN_NAME (frvbf,dcpl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_icpl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_data_cache_preload (current_cpu, GET_H_GR (FLD (f_GRi)), GET_H_GR (FLD (f_GRj)), FLD (f_lock)); return vpc; #undef FLD } /* icul: icul$pack $GRi */ static SEM_PC SEM_FN_NAME (frvbf,icul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_jmpil.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_insn_cache_unlock (current_cpu, GET_H_GR (FLD (f_GRi))); return vpc; #undef FLD } /* dcul: dcul$pack $GRi */ static SEM_PC SEM_FN_NAME (frvbf,dcul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_jmpil.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_data_cache_unlock (current_cpu, GET_H_GR (FLD (f_GRi))); return vpc; #undef FLD } /* bar: bar$pack */ static SEM_PC SEM_FN_NAME (frvbf,bar) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* membar: membar$pack */ static SEM_PC SEM_FN_NAME (frvbf,membar) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* lrai: lrai$pack $GRi,$GRk,$LRAE,$LRAD,$LRAS */ static SEM_PC SEM_FN_NAME (frvbf,lrai) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* lrad: lrad$pack $GRi,$GRk,$LRAE,$LRAD,$LRAS */ static SEM_PC SEM_FN_NAME (frvbf,lrad) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* tlbpr: tlbpr$pack $GRi,$GRj,$TLBPRopx,$TLBPRL */ static SEM_PC SEM_FN_NAME (frvbf,tlbpr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* cop1: cop1$pack $s6_1,$CPRi,$CPRj,$CPRk */ static SEM_PC SEM_FN_NAME (frvbf,cop1) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* cop2: cop2$pack $s6_1,$CPRi,$CPRj,$CPRk */ static SEM_PC SEM_FN_NAME (frvbf,cop2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* clrgr: clrgr$pack $GRk */ static SEM_PC SEM_FN_NAME (frvbf,clrgr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_swapi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frv_ref_SI (GET_H_GR (FLD (f_GRk))); frvbf_clear_ne_flags (current_cpu, FLD (f_GRk), 0); } return vpc; #undef FLD } /* clrfr: clrfr$pack $FRk */ static SEM_PC SEM_FN_NAME (frvbf,clrfr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frv_ref_SI (GET_H_FR (FLD (f_FRk))); frvbf_clear_ne_flags (current_cpu, FLD (f_FRk), 1); } return vpc; #undef FLD } /* clrga: clrga$pack */ static SEM_PC SEM_FN_NAME (frvbf,clrga) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_clear_ne_flags (current_cpu, -1, 0); return vpc; #undef FLD } /* clrfa: clrfa$pack */ static SEM_PC SEM_FN_NAME (frvbf,clrfa) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_clear_ne_flags (current_cpu, -1, 1); return vpc; #undef FLD } /* commitgr: commitgr$pack $GRk */ static SEM_PC SEM_FN_NAME (frvbf,commitgr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_setlos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_commit (current_cpu, FLD (f_GRk), 0); return vpc; #undef FLD } /* commitfr: commitfr$pack $FRk */ static SEM_PC SEM_FN_NAME (frvbf,commitfr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mhsethis.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_commit (current_cpu, FLD (f_FRk), 1); return vpc; #undef FLD } /* commitga: commitga$pack */ static SEM_PC SEM_FN_NAME (frvbf,commitga) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_commit (current_cpu, -1, 0); return vpc; #undef FLD } /* commitfa: commitfa$pack */ static SEM_PC SEM_FN_NAME (frvbf,commitfa) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_commit (current_cpu, -1, 1); return vpc; #undef FLD } /* fitos: fitos$pack $FRintj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fitos) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fditos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsisf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fstoi: fstoi$pack $FRj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,fstoi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdstoi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = CGEN_CPU_FPU (current_cpu)->ops->fixsfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* fitod: fitod$pack $FRintj,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fitod) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fitod.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsidf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fdtoi: fdtoi$pack $FRdoublej,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,fdtoi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdtoi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = CGEN_CPU_FPU (current_cpu)->ops->fixdfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* fditos: fditos$pack $FRintj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fditos) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fditos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsisf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsisf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdstoi: fdstoi$pack $FRj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,fdstoi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdstoi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = CGEN_CPU_FPU (current_cpu)->ops->fixsfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = CGEN_CPU_FPU (current_cpu)->ops->fixsfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } return vpc; #undef FLD } /* nfditos: nfditos$pack $FRintj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfditos) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fditos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsisf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsisf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdstoi: nfdstoi$pack $FRj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nfdstoi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdstoi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SI opval = CGEN_CPU_FPU (current_cpu)->ops->fixsfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { USI opval = CGEN_CPU_FPU (current_cpu)->ops->fixsfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } return vpc; #undef FLD } /* cfitos: cfitos$pack $FRintj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfitos) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfitos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsisf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfstoi: cfstoi$pack $FRj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfstoi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfstoi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = CGEN_CPU_FPU (current_cpu)->ops->fixsfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* nfitos: nfitos$pack $FRintj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfitos) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fditos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->floatsisf (CGEN_CPU_FPU (current_cpu), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfstoi: nfstoi$pack $FRj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,nfstoi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdstoi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SI opval = CGEN_CPU_FPU (current_cpu)->ops->fixsfsi (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } return vpc; #undef FLD } /* fmovs: fmovs$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmovs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = GET_H_FR (FLD (f_FRj)); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fmovd: fmovd$pack $FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fmovd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = GET_H_FR_DOUBLE (FLD (f_FRj)); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fdmovs: fdmovs$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdmovs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = GET_H_FR (FLD (f_FRj)); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = GET_H_FR (((FLD (f_FRj)) + (1))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* cfmovs: cfmovs$pack $FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfmovs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = GET_H_FR (FLD (f_FRj)); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* fnegs: fnegs$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fnegs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->negsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fnegd: fnegd$pack $FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fnegd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->negdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fdnegs: fdnegs$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdnegs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->negsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->negsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* cfnegs: cfnegs$pack $FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfnegs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->negsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* fabss: fabss$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fabss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->abssf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fabsd: fabsd$pack $FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fabsd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->absdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fdabss: fdabss$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdabss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->abssf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->abssf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* cfabss: cfabss$pack $FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfabss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->abssf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* fsqrts: fsqrts$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fsqrts) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fdsqrts: fdsqrts$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdsqrts) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdsqrts: nfdsqrts$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdsqrts) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fsqrtd: fsqrtd$pack $FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fsqrtd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* cfsqrts: cfsqrts$pack $FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfsqrts) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* nfsqrts: nfsqrts$pack $FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfsqrts) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->sqrtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fadds: fadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fsubs: fsubs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fmuls: fmuls$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmuls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fdivs: fdivs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdivs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->divsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* faddd: faddd$pack $FRdoublei,$FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,faddd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->adddf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fsubd: fsubd$pack $FRdoublei,$FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fsubd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->subdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fmuld: fmuld$pack $FRdoublei,$FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fmuld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->muldf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fdivd: fdivd$pack $FRdoublei,$FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fdivd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->divdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* cfadds: cfadds$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfsubs: cfsubs$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfmuls: cfmuls$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfmuls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfdivs: cfdivs$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfdivs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->divsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* nfadds: nfadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfsubs: nfsubs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfmuls: nfmuls$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfmuls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdivs: nfdivs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdivs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->divsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fcmps: fcmps$pack $FRi,$FRj,$FCCi_2 */ static SEM_PC SEM_FN_NAME (frvbf,fcmps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfcmps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (CGEN_CPU_FPU (current_cpu)->ops->gtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->eqsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->ltsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* fcmpd: fcmpd$pack $FRdoublei,$FRdoublej,$FCCi_2 */ static SEM_PC SEM_FN_NAME (frvbf,fcmpd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fcmpd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (CGEN_CPU_FPU (current_cpu)->ops->gtdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj)))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->eqdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj)))) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->ltdf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj)))) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cfcmps: cfcmps$pack $FRi,$FRj,$FCCi_2,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfcmps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfcmps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (CGEN_CPU_FPU (current_cpu)->ops->gtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->eqsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->ltsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* fdcmps: fdcmps$pack $FRi,$FRj,$FCCi_2 */ static SEM_PC SEM_FN_NAME (frvbf,fdcmps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_nfdcmps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { if (CGEN_CPU_FPU (current_cpu)->ops->gtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->eqsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->ltsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } if (CGEN_CPU_FPU (current_cpu)->ops->gtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1))))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->eqsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1))))) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->ltsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1))))) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* fmadds: fmadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fmsubs: fmsubs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } return vpc; #undef FLD } /* fmaddd: fmaddd$pack $FRdoublei,$FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fmaddd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->adddf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->muldf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj))), GET_H_FR_DOUBLE (FLD (f_FRk))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fmsubd: fmsubd$pack $FRdoublei,$FRdoublej,$FRdoublek */ static SEM_PC SEM_FN_NAME (frvbf,fmsubd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fmaddd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DF opval = CGEN_CPU_FPU (current_cpu)->ops->subdf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->muldf (CGEN_CPU_FPU (current_cpu), GET_H_FR_DOUBLE (FLD (f_FRi)), GET_H_FR_DOUBLE (FLD (f_FRj))), GET_H_FR_DOUBLE (FLD (f_FRk))); sim_queue_fn_df_write (current_cpu, frvbf_h_fr_double_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_double", 'f', opval); } return vpc; #undef FLD } /* fdmadds: fdmadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdmadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))), GET_H_FR (((FLD (f_FRk)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdmadds: nfdmadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdmadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))), GET_H_FR (((FLD (f_FRk)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* cfmadds: cfmadds$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfmadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* cfmsubs: cfmsubs$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfmsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } abuf->written = written; return vpc; #undef FLD } /* nfmadds: nfmadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfmadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfmsubs: nfmsubs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfmsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))), GET_H_FR (FLD (f_FRk))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fmas: fmas$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmas) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fmss: fmss$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdmas: fdmas$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdmas) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmas.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (2))), GET_H_FR (((FLD (f_FRj)) + (2)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (2)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (3))), GET_H_FR (((FLD (f_FRj)) + (3)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (3)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdmss: fdmss$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdmss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmas.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (2))), GET_H_FR (((FLD (f_FRj)) + (2)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (2)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (3))), GET_H_FR (((FLD (f_FRj)) + (3)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (3)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdmas: nfdmas$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdmas) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmas.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 2)); frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 3)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (2))), GET_H_FR (((FLD (f_FRj)) + (2)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (2)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (3))), GET_H_FR (((FLD (f_FRj)) + (3)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (3)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdmss: nfdmss$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdmss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmas.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 2)); frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 3)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (2))), GET_H_FR (((FLD (f_FRj)) + (2)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (2)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (3))), GET_H_FR (((FLD (f_FRj)) + (3)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (3)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* cfmas: cfmas$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfmas) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmas.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cfmss: cfmss$pack $FRi,$FRj,$FRk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cfmss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cfmas.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } } abuf->written = written; return vpc; #undef FLD } /* fmad: fmad$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmad) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->ftruncdfsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->muldf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi))), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->ftruncdfsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->adddf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1)))), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fmsd: fmsd$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fmsd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->ftruncdfsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->muldf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi))), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRj))))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->ftruncdfsf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->subdf (CGEN_CPU_FPU (current_cpu), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1)))), CGEN_CPU_FPU (current_cpu)->ops->fextsfdf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRj)) + (1)))))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfmas: nfmas$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfmas) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfmss: nfmss$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfmss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdadds: fdadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdsubs: fdsubs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdmuls: fdmuls$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdmuls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fddivs: fddivs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fddivs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->divsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->divsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdsads: fdsads$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdsads) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* fdmulcs: fdmulcs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,fdmulcs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdmulcs: nfdmulcs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdmulcs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdadds: nfdadds$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdadds) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdsubs: nfdsubs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdsubs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdmuls: nfdmuls$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdmuls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->mulsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfddivs: nfddivs$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfddivs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->divsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->divsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdsads: nfdsads$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,nfdsads) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_fdmadds.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->addsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); { SF opval = CGEN_CPU_FPU (current_cpu)->ops->subsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1)))); sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, ((FLD (f_FRk)) + (1)), opval); TRACE_RESULT (current_cpu, abuf, "fr", 'f', opval); } } return vpc; #undef FLD } /* nfdcmps: nfdcmps$pack $FRi,$FRj,$FCCi_2 */ static SEM_PC SEM_FN_NAME (frvbf,nfdcmps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_nfdcmps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frvbf_set_ne_index (current_cpu, FLD (f_FRk)); if (CGEN_CPU_FPU (current_cpu)->ops->gtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->eqsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->ltsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (FLD (f_FRi)), GET_H_FR (FLD (f_FRj)))) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCi_2)]), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } frvbf_set_ne_index (current_cpu, ADDSI (FLD (f_FRk), 1)); if (CGEN_CPU_FPU (current_cpu)->ops->gtsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1))))) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->eqsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1))))) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (CGEN_CPU_FPU (current_cpu)->ops->ltsf (CGEN_CPU_FPU (current_cpu), GET_H_FR (((FLD (f_FRi)) + (1))), GET_H_FR (((FLD (f_FRj)) + (1))))) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCi_2)) + (1))]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mhsetlos: mhsetlos$pack $u12,$FRklo */ static SEM_PC SEM_FN_NAME (frvbf,mhsetlos) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mhsetlos.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI opval = FLD (f_u12); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } return vpc; #undef FLD } /* mhsethis: mhsethis$pack $u12,$FRkhi */ static SEM_PC SEM_FN_NAME (frvbf,mhsethis) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mhsethis.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI opval = FLD (f_u12); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } return vpc; #undef FLD } /* mhdsets: mhdsets$pack $u12,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mhdsets) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mhdsets.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { UHI opval = FLD (f_u12); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = FLD (f_u12); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } return vpc; #undef FLD } /* mhsetloh: mhsetloh$pack $s5,$FRklo */ static SEM_PC SEM_FN_NAME (frvbf,mhsetloh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mhsetloh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmp; tmp_tmp = GET_H_FR_LO (FLD (f_FRk)); tmp_tmp = ANDHI (tmp_tmp, 2047); tmp_tmp = ORHI (tmp_tmp, SLLSI (ANDSI (FLD (f_s5), 31), 11)); { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } return vpc; #undef FLD } /* mhsethih: mhsethih$pack $s5,$FRkhi */ static SEM_PC SEM_FN_NAME (frvbf,mhsethih) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mhsethih.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmp; tmp_tmp = GET_H_FR_HI (FLD (f_FRk)); tmp_tmp = ANDHI (tmp_tmp, 2047); tmp_tmp = ORHI (tmp_tmp, SLLSI (ANDSI (FLD (f_s5), 31), 11)); { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } return vpc; #undef FLD } /* mhdseth: mhdseth$pack $s5,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mhdseth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mhdseth.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { HI tmp_tmp; tmp_tmp = GET_H_FR_HI (((FLD (f_FRk)) + (0))); tmp_tmp = ANDHI (tmp_tmp, 2047); tmp_tmp = ORHI (tmp_tmp, SLLSI (ANDSI (FLD (f_s5), 31), 11)); { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } { HI tmp_tmp; tmp_tmp = GET_H_FR_LO (((FLD (f_FRk)) + (0))); tmp_tmp = ANDHI (tmp_tmp, 2047); tmp_tmp = ORHI (tmp_tmp, SLLSI (ANDSI (FLD (f_s5), 31), 11)); { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } return vpc; #undef FLD } /* mand: mand$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mand) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mor: mor$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mxor: mxor$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mxor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* cmand: cmand$pack $FRinti,$FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmand) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmand.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = ANDSI (GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cmor: cmor$pack $FRinti,$FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmand.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = ORSI (GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* cmxor: cmxor$pack $FRinti,$FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmxor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmand.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = XORSI (GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* mnot: mnot$pack $FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mnot) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* cmnot: cmnot$pack $FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmnot) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmand.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { SI opval = INVSI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* mrotli: mrotli$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mrotli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcuti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ROLSI (GET_H_FR_INT (FLD (f_FRi)), ANDSI (FLD (f_u6), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mrotri: mrotri$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mrotri) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcuti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = RORSI (GET_H_FR_INT (FLD (f_FRi)), ANDSI (FLD (f_u6), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mwcut: mwcut$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mwcut) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_cut (current_cpu, GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (((FLD (f_FRi)) + (1))), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mwcuti: mwcuti$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mwcuti) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcuti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_cut (current_cpu, GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (((FLD (f_FRi)) + (1))), FLD (f_u6)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mcut: mcut$pack $ACC40Si,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mcut) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_media_cut (current_cpu, GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mcuti: mcuti$pack $ACC40Si,$s6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mcuti) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcuti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_media_cut (current_cpu, GET_H_ACC40S (FLD (f_ACC40Si)), FLD (f_s6)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mcutss: mcutss$pack $ACC40Si,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mcutss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_media_cut_ss (current_cpu, GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mcutssi: mcutssi$pack $ACC40Si,$s6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mcutssi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcuti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_media_cut_ss (current_cpu, GET_H_ACC40S (FLD (f_ACC40Si)), FLD (f_s6)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mdcutssi: mdcutssi$pack $ACC40Si,$s6,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mdcutssi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdcutssi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ANDSI (FLD (f_ACC40Si), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ANDSI (FLD (f_FRk), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { { { SI opval = frvbf_media_cut_ss (current_cpu, GET_H_ACC40S (FLD (f_ACC40Si)), FLD (f_s6)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = frvbf_media_cut_ss (current_cpu, GET_H_ACC40S (((FLD (f_ACC40Si)) + (1))), FLD (f_s6)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* maveh: maveh$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,maveh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcut.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = frvbf_media_average (current_cpu, GET_H_FR_INT (FLD (f_FRi)), GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* msllhi: msllhi$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,msllhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_msllhi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { UHI opval = SLLHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = SLLHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } return vpc; #undef FLD } /* msrlhi: msrlhi$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,msrlhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_msllhi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { UHI opval = SRLHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = SRLHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } return vpc; #undef FLD } /* msrahi: msrahi$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,msrahi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_msllhi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { UHI opval = SRAHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = SRAHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } return vpc; #undef FLD } /* mdrotli: mdrotli$pack $FRintieven,$s6,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mdrotli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdrotli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { { SI opval = ROLSI (GET_H_FR_INT (FLD (f_FRi)), ANDSI (FLD (f_s6), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { USI opval = ROLSI (GET_H_FR_INT (((FLD (f_FRi)) + (1))), ANDSI (FLD (f_s6), 31)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* mcplhi: mcplhi$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mcplhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcplhi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_arg1; HI tmp_arg2; HI tmp_shift; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } tmp_shift = ANDSI (FLD (f_u6), 15); tmp_arg1 = SLLHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), tmp_shift); if (NEHI (tmp_shift, 0)) { { tmp_arg2 = GET_H_FR_HI (((FLD (f_FRi)) + (1))); tmp_arg2 = SRLHI (SLLHI (tmp_arg2, SUBSI (15, tmp_shift)), SUBSI (15, tmp_shift)); tmp_arg1 = ORHI (tmp_arg1, tmp_arg2); } } { UHI opval = tmp_arg1; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } return vpc; #undef FLD } /* mcpli: mcpli$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mcpli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwcuti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmp; SI tmp_shift; tmp_shift = ANDSI (FLD (f_u6), 31); tmp_tmp = SLLSI (GET_H_FR_INT (FLD (f_FRi)), tmp_shift); if (NESI (tmp_shift, 0)) { { SI tmp_tmp1; tmp_tmp1 = SRLSI (SLLSI (GET_H_FR_INT (((FLD (f_FRi)) + (1))), SUBSI (31, tmp_shift)), SUBSI (31, tmp_shift)); tmp_tmp = ORSI (tmp_tmp, tmp_tmp1); } } { SI opval = tmp_tmp; sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } } return vpc; #undef FLD } /* msaths: msaths$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,msaths) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } if (GTHI (tmp_argihi, tmp_argjhi)) { { UHI opval = tmp_argjhi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } else { if (LTHI (tmp_argihi, INVHI (tmp_argjhi))) { { UHI opval = INVHI (tmp_argjhi); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } else { { UHI opval = tmp_argihi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } if (GTHI (tmp_argilo, tmp_argjlo)) { { UHI opval = tmp_argjlo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } else { if (LTHI (tmp_argilo, INVHI (tmp_argjlo))) { { UHI opval = INVHI (tmp_argjlo); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } else { { UHI opval = tmp_argilo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* mqsaths: mqsaths$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqsaths) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } if (GTHI (tmp_argihi, tmp_argjhi)) { { UHI opval = tmp_argjhi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } else { if (LTHI (tmp_argihi, INVHI (tmp_argjhi))) { { UHI opval = INVHI (tmp_argjhi); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } else { { UHI opval = tmp_argihi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } if (GTHI (tmp_argilo, tmp_argjlo)) { { UHI opval = tmp_argjlo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } else { if (LTHI (tmp_argilo, INVHI (tmp_argjlo))) { { UHI opval = INVHI (tmp_argjlo); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } else { { UHI opval = tmp_argilo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } if (GTHI (tmp_argihi, tmp_argjhi)) { { UHI opval = tmp_argjhi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } else { if (LTHI (tmp_argihi, INVHI (tmp_argjhi))) { { UHI opval = INVHI (tmp_argjhi); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } else { { UHI opval = tmp_argihi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } if (GTHI (tmp_argilo, tmp_argjlo)) { { UHI opval = tmp_argjlo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } else { if (LTHI (tmp_argilo, INVHI (tmp_argjlo))) { { UHI opval = INVHI (tmp_argjlo); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } else { { UHI opval = tmp_argilo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* msathu: msathu$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,msathu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } if (GTUHI (tmp_argihi, tmp_argjhi)) { { UHI opval = tmp_argjhi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } else { { UHI opval = tmp_argihi; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } if (GTUHI (tmp_argilo, tmp_argjlo)) { { UHI opval = tmp_argjlo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } else { { UHI opval = tmp_argilo; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* mcmpsh: mcmpsh$pack $FRinti,$FRintj,$FCCk */ static SEM_PC SEM_FN_NAME (frvbf,mcmpsh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcmpsh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ANDSI (FLD (f_FCCk), SUBSI (2, 1))) { frvbf_media_cr_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } if (GTHI (tmp_argihi, tmp_argjhi)) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (EQHI (tmp_argihi, tmp_argjhi)) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (LTHI (tmp_argihi, tmp_argjhi)) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } if (GTHI (tmp_argilo, tmp_argjlo)) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (EQHI (tmp_argilo, tmp_argjlo)) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (LTHI (tmp_argilo, tmp_argjlo)) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mcmpuh: mcmpuh$pack $FRinti,$FRintj,$FCCk */ static SEM_PC SEM_FN_NAME (frvbf,mcmpuh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcmpsh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ANDSI (FLD (f_FCCk), SUBSI (2, 1))) { frvbf_media_cr_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } if (GTUHI (tmp_argihi, tmp_argjhi)) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (EQHI (tmp_argihi, tmp_argjhi)) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (LTUHI (tmp_argihi, tmp_argjhi)) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[FLD (f_FCCk)]), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } if (GTUHI (tmp_argilo, tmp_argjlo)) { { UQI opval = 2; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (EQHI (tmp_argilo, tmp_argjlo)) { { UQI opval = 8; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { if (LTUHI (tmp_argilo, tmp_argjlo)) { { UQI opval = 4; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } else { { UQI opval = 1; sim_queue_qi_write (current_cpu, & CPU (h_fccr[((FLD (f_FCCk)) + (1))]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fccr", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mabshs: mabshs$pack $FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mabshs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mabshs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_arghi; HI tmp_arglo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } tmp_arghi = GET_H_FR_HI (((FLD (f_FRj)) + (0))); tmp_arglo = GET_H_FR_LO (((FLD (f_FRj)) + (0))); if (GTDI (ABSHI (tmp_arghi), 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (ABSHI (tmp_arghi), -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = ABSHI (tmp_arghi); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } if (GTDI (ABSHI (tmp_arglo), 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (ABSHI (tmp_arglo), -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = ABSHI (tmp_arglo); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* maddhss: maddhss$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,maddhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* maddhus: maddhus$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,maddhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* msubhss: msubhss$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,msubhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* msubhus: msubhus$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,msubhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* cmaddhss: cmaddhss$pack $FRinti,$FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmaddhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmaddhus: cmaddhus$pack $FRinti,$FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmaddhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmsubhss: cmsubhss$pack $FRinti,$FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmsubhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmsubhus: cmsubhus$pack $FRinti,$FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmsubhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqaddhss: mqaddhss$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqaddhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqaddhus: mqaddhus$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqaddhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqsubhss: mqsubhss$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqsubhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqsubhus: mqsubhus$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqsubhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqaddhss: cmqaddhss$pack $FRintieven,$FRintjeven,$FRintkeven,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqaddhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqaddhus: cmqaddhus$pack $FRintieven,$FRintjeven,$FRintkeven,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqaddhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqsubhss: cmqsubhss$pack $FRintieven,$FRintjeven,$FRintkeven,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqsubhss) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 32767)) { { { UHI opval = 32767; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, -32768)) { { { UHI opval = -32768; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqsubhus: cmqsubhus$pack $FRintieven,$FRintjeven,$FRintkeven,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqsubhus) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argihi, tmp_argjhi); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBHI (tmp_argilo, tmp_argjlo); if (GTDI (tmp_tmp, 65535)) { { { UHI opval = 65535; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, 0)) { { { UHI opval = 0; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqlclrhs: mqlclrhs$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqlclrhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_a1; HI tmp_a2; HI tmp_a3; HI tmp_a4; HI tmp_b1; HI tmp_b2; HI tmp_b3; HI tmp_b4; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_a1 = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_a2 = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_b1 = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_b2 = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { tmp_a3 = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_a4 = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_b3 = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_b4 = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { UHI opval = (LEUHI (ABSHI (tmp_a1), ABSHI (tmp_b1))) ? (0) : (LEHI (0, tmp_b1)) ? (tmp_a1) : (EQHI (tmp_a1, -32768)) ? (32767) : (NEGHI (tmp_a1)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = (LEUHI (ABSHI (tmp_a2), ABSHI (tmp_b2))) ? (0) : (LEHI (0, tmp_b2)) ? (tmp_a2) : (EQHI (tmp_a2, -32768)) ? (32767) : (NEGHI (tmp_a2)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = (LEUHI (ABSHI (tmp_a3), ABSHI (tmp_b3))) ? (0) : (LEHI (0, tmp_b3)) ? (tmp_a3) : (EQHI (tmp_a3, -32768)) ? (32767) : (NEGHI (tmp_a3)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = (LEUHI (ABSHI (tmp_a4), ABSHI (tmp_b4))) ? (0) : (LEHI (0, tmp_b4)) ? (tmp_a4) : (EQHI (tmp_a4, -32768)) ? (32767) : (NEGHI (tmp_a4)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* mqlmths: mqlmths$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqlmths) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_a1; HI tmp_a2; HI tmp_a3; HI tmp_a4; HI tmp_b1; HI tmp_b2; HI tmp_b3; HI tmp_b4; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { tmp_a1 = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_a2 = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_b1 = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_b2 = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { tmp_a3 = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_a4 = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_b3 = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_b4 = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { UHI opval = (ANDIF (GTHI (tmp_b1, -32768), GEHI (tmp_a1, ABSHI (tmp_b1)))) ? (tmp_b1) : (GTHI (tmp_a1, NEGHI (ABSHI (tmp_b1)))) ? (tmp_a1) : (EQHI (tmp_b1, -32768)) ? (32767) : (NEGHI (tmp_b1)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = (ANDIF (GTHI (tmp_b2, -32768), GEHI (tmp_a2, ABSHI (tmp_b2)))) ? (tmp_b2) : (GTHI (tmp_a2, NEGHI (ABSHI (tmp_b2)))) ? (tmp_a2) : (EQHI (tmp_b2, -32768)) ? (32767) : (NEGHI (tmp_b2)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = (ANDIF (GTHI (tmp_b3, -32768), GEHI (tmp_a3, ABSHI (tmp_b3)))) ? (tmp_b3) : (GTHI (tmp_a3, NEGHI (ABSHI (tmp_b3)))) ? (tmp_a3) : (EQHI (tmp_b3, -32768)) ? (32767) : (NEGHI (tmp_b3)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = (ANDIF (GTHI (tmp_b4, -32768), GEHI (tmp_a4, ABSHI (tmp_b4)))) ? (tmp_b4) : (GTHI (tmp_a4, NEGHI (ABSHI (tmp_b4)))) ? (tmp_a4) : (EQHI (tmp_b4, -32768)) ? (32767) : (NEGHI (tmp_b4)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* mqsllhi: mqsllhi$pack $FRintieven,$u6,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqsllhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mqsllhi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { UHI opval = SLLHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = SLLHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = SLLHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = SLLHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* mqsrahi: mqsrahi$pack $FRintieven,$u6,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mqsrahi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mqsllhi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { UHI opval = SRAHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = SRAHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = SRAHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = SRAHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), ANDSI (FLD (f_u6), 15)); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* maddaccs: maddaccs$pack $ACC40Si,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,maddaccs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Si))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Si), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* msubaccs: msubaccs$pack $ACC40Si,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,msubaccs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Si))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Si), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mdaddaccs: mdaddaccs$pack $ACC40Si,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mdaddaccs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Si))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Si), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Si)) + (2))), GET_H_ACC40S (((FLD (f_ACC40Si)) + (3)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mdsubaccs: mdsubaccs$pack $ACC40Si,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mdsubaccs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Si))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Si), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (((FLD (f_ACC40Si)) + (2))), GET_H_ACC40S (((FLD (f_ACC40Si)) + (3)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* masaccs: masaccs$pack $ACC40Si,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,masaccs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Si))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Si), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mdasaccs: mdasaccs$pack $ACC40Si,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mdasaccs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Si))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Si), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (FLD (f_ACC40Si)), GET_H_ACC40S (((FLD (f_ACC40Si)) + (1)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Si)) + (2))), GET_H_ACC40S (((FLD (f_ACC40Si)) + (3)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (((FLD (f_ACC40Si)) + (2))), GET_H_ACC40S (((FLD (f_ACC40Si)) + (3)))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, INVDI (MAKEDI (127, 0xffffffff)))) { { { DI opval = INVDI (MAKEDI (127, 0xffffffff)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mmulhs: mmulhs$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mmulhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* mmulhu: mmulhu$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mmulhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* mmulxhs: mmulxhs$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mmulxhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* mmulxhu: mmulxhu$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mmulxhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cmmulhs: cmmulhs$pack $FRinti,$FRintj,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmmulhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* cmmulhu: cmmulhu$pack $FRinti,$FRintj,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmmulhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mqmulhs: mqmulhs$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqmulhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mqmulhu: mqmulhu$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqmulhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mqmulxhs: mqmulxhs$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqmulxhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mqmulxhu: mqmulxhu$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqmulxhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqmulhs: cmqmulhs$pack $FRintieven,$FRintjeven,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqmulhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqmulhu: cmqmulhu$pack $FRintieven,$FRintjeven,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqmulhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI opval = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } { DI opval = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mmachs: mmachs$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mmachs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mmachu: mmachu$pack $FRinti,$FRintj,$ACC40Uk */ static SEM_PC SEM_FN_NAME (frvbf,mmachu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Uk))) { if (ANDSI (FLD (f_ACC40Uk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (FLD (f_ACC40Uk)), MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (1))), MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mmrdhs: mmrdhs$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mmrdhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mmrdhu: mmrdhu$pack $FRinti,$FRintj,$ACC40Uk */ static SEM_PC SEM_FN_NAME (frvbf,mmrdhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Uk))) { if (ANDSI (FLD (f_ACC40Uk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40U (FLD (f_ACC40Uk)), MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = SUBDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (1))), MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmmachs: cmmachs$pack $FRinti,$FRintj,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmmachs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmmachu: cmmachu$pack $FRinti,$FRintj,$ACC40Uk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmmachu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Uk))) { if (ANDSI (FLD (f_ACC40Uk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (FLD (f_ACC40Uk)), MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (1))), MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqmachs: mqmachs$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqmachs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (2))), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (3))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqmachu: mqmachu$pack $FRintieven,$FRintjeven,$ACC40Uk */ static SEM_PC SEM_FN_NAME (frvbf,mqmachu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Uk))) { if (ANDSI (FLD (f_ACC40Uk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (FLD (f_ACC40Uk)), MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (1))), MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (2))), MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (3))), MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqmachs: cmqmachs$pack $FRintieven,$FRintjeven,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqmachs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (2))), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (3))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmqmachu: cmqmachu$pack $FRintieven,$FRintjeven,$ACC40Uk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmqmachu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Uk))) { if (ANDSI (FLD (f_ACC40Uk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (FLD (f_ACC40Uk)), MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, FLD (f_ACC40Uk), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (1))), MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (1)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (2))), MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (2)), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (2)), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (2)), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40U (((FLD (f_ACC40Uk)) + (3))), MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (255, 0xffffffff))) { { { UDI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (3)), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, MAKEDI (0, 0))) { { { UDI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (3)), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { UDI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40U_set, ((FLD (f_ACC40Uk)) + (3)), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "acc40U", 'D', opval); } } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqxmachs: mqxmachs$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqxmachs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (2))), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (3))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqxmacxhs: mqxmacxhs$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqxmacxhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (2))), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (3))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqmacxhs: mqmacxhs$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqmacxhs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (4, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (1))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (2))), MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 2); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (2)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { DI tmp_tmp; tmp_tmp = ADDDI (GET_H_ACC40S (((FLD (f_ACC40Sk)) + (3))), MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi))); if (GTDI (tmp_tmp, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { if (LTDI (tmp_tmp, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 1); } } else { { DI opval = tmp_tmp; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (3)), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mcpxrs: mcpxrs$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mcpxrs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mcpxru: mcpxru$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mcpxru) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mcpxis: mcpxis$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mcpxis) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* mcpxiu: mcpxiu$pack $FRinti,$FRintj,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mcpxiu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmcpxrs: cmcpxrs$pack $FRinti,$FRintj,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmcpxrs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmcpxru: cmcpxru$pack $FRinti,$FRintj,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmcpxru) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmcpxis: cmcpxis$pack $FRinti,$FRintj,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmcpxis) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* cmcpxiu: cmcpxiu$pack $FRinti,$FRintj,$ACC40Sk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmcpxiu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqcpxrs: mqcpxrs$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqcpxrs) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqcpxru: mqcpxru$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqcpxru) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjhi)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjlo)); tmp_tmp1 = SUBDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqcpxis: mqcpxis$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqcpxis) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { HI tmp_argihi; HI tmp_argilo; HI tmp_argjhi; HI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (EXTHIDI (tmp_argihi), EXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (EXTHIDI (tmp_argilo), EXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (127, 0xffffffff))) { { { DI opval = MAKEDI (127, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp1, MAKEDI (0xffffff80, 0))) { { { DI opval = MAKEDI (0xffffff80, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mqcpxiu: mqcpxiu$pack $FRintieven,$FRintjeven,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mqcpxiu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmqmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (frvbf_check_acc_range (current_cpu, FLD (f_ACC40Sk))) { if (ANDSI (FLD (f_ACC40Sk), SUBSI (2, 1))) { frvbf_media_acc_not_aligned (current_cpu); } else { if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRj), SUBSI (2, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_argihi; UHI tmp_argilo; UHI tmp_argjhi; UHI tmp_argjlo; { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (0))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 8); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } { tmp_argihi = ADDHI (GET_H_FR_HI (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argilo = ADDHI (GET_H_FR_LO (((FLD (f_FRi)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRi)), 0)); tmp_argjhi = ADDHI (GET_H_FR_HI (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); tmp_argjlo = ADDHI (GET_H_FR_LO (((FLD (f_FRj)) + (1))), MULSI (GET_H_FR_INT (FLD (f_FRj)), 0)); } { DI tmp_tmp1; DI tmp_tmp2; tmp_tmp1 = MULDI (ZEXTHIDI (tmp_argihi), ZEXTHIDI (tmp_argjlo)); tmp_tmp2 = MULDI (ZEXTHIDI (tmp_argilo), ZEXTHIDI (tmp_argjhi)); tmp_tmp1 = ADDDI (tmp_tmp1, tmp_tmp2); if (GTDI (tmp_tmp1, MAKEDI (255, 0xffffffff))) { { { DI opval = MAKEDI (255, 0xffffffff); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { if (LTDI (tmp_tmp1, MAKEDI (0, 0))) { { { DI opval = MAKEDI (0, 0); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } frvbf_media_overflow (current_cpu, 4); } } else { { DI opval = tmp_tmp1; sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, ((FLD (f_ACC40Sk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } } } } } } } } abuf->written = written; return vpc; #undef FLD } /* mexpdhw: mexpdhw$pack $FRinti,$u6,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mexpdhw) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmexpdhw.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { UHI tmp_tmp; if (ANDSI (FLD (f_u6), 1)) { tmp_tmp = GET_H_FR_LO (((FLD (f_FRi)) + (0))); } else { tmp_tmp = GET_H_FR_HI (((FLD (f_FRi)) + (0))); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } return vpc; #undef FLD } /* cmexpdhw: cmexpdhw$pack $FRinti,$u6,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmexpdhw) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmexpdhw.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_tmp; if (ANDSI (FLD (f_u6), 1)) { tmp_tmp = GET_H_FR_LO (((FLD (f_FRi)) + (0))); } else { tmp_tmp = GET_H_FR_HI (((FLD (f_FRi)) + (0))); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* mexpdhd: mexpdhd$pack $FRinti,$u6,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mexpdhd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmexpdhd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ANDSI (FLD (f_FRk), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { { UHI tmp_tmp; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_u6), 1)) { tmp_tmp = GET_H_FR_LO (((FLD (f_FRi)) + (0))); } else { tmp_tmp = GET_H_FR_HI (((FLD (f_FRi)) + (0))); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* cmexpdhd: cmexpdhd$pack $FRinti,$u6,$FRintkeven,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmexpdhd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmexpdhd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ANDSI (FLD (f_FRk), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { UHI tmp_tmp; { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_u6), 1)) { tmp_tmp = GET_H_FR_LO (((FLD (f_FRi)) + (0))); } else { tmp_tmp = GET_H_FR_HI (((FLD (f_FRi)) + (0))); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = tmp_tmp; sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* mpackh: mpackh$pack $FRinti,$FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mpackh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmaddhss.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } return vpc; #undef FLD } /* mdpackh: mdpackh$pack $FRintieven,$FRintjeven,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mdpackh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdpackh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ORIF (ANDSI (FLD (f_FRj), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (2, 1))))) { frvbf_media_register_not_aligned (current_cpu); } else { { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } { { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRj)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* munpackh: munpackh$pack $FRinti,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,munpackh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_munpackh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ANDSI (FLD (f_FRk), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { { UHI opval = GET_H_FR_HI (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_HI (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (ADDSI (0, 1))), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (ADDSI (0, 1))), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* mdunpackh: mdunpackh$pack $FRintieven,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mdunpackh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdunpackh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (ORIF (ANDSI (FLD (f_FRi), SUBSI (2, 1)), ANDSI (FLD (f_FRk), SUBSI (4, 1)))) { frvbf_media_register_not_aligned (current_cpu); } else { { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRi), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { { UHI opval = GET_H_FR_HI (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_HI (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (ADDSI (0, 1))), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (ADDSI (0, 1))), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } { { UHI opval = GET_H_FR_HI (((FLD (f_FRi)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_HI (((FLD (f_FRi)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (ADDSI (2, 1))), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRi)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (ADDSI (2, 1))), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* mbtoh: mbtoh$pack $FRintj,$FRintkeven */ static SEM_PC SEM_FN_NAME (frvbf,mbtoh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmbtoh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_FRk), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { { { UHI opval = GET_H_FR_3 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_2 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_1 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_0 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cmbtoh: cmbtoh$pack $FRintj,$FRintkeven,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmbtoh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmbtoh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_FRk), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { { UHI opval = GET_H_FR_3 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_2 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_1 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_0 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mhtob: mhtob$pack $FRintjeven,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mhtob) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmhtob.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_FRj), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { { { UHI opval = GET_H_FR_HI (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_3_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_3", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_2_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_2", 'x', opval); } { UHI opval = GET_H_FR_HI (((FLD (f_FRj)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_1_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_1", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRj)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_0_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_0", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cmhtob: cmhtob$pack $FRintjeven,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmhtob) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmhtob.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_FRj), SUBSI (2, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { { UHI opval = GET_H_FR_HI (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_3_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_3", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_2_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_2", 'x', opval); } { UHI opval = GET_H_FR_HI (((FLD (f_FRj)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_1_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_1", 'x', opval); } { UHI opval = GET_H_FR_LO (((FLD (f_FRj)) + (1))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_0_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_0", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mbtohe: mbtohe$pack $FRintj,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mbtohe) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmbtohe.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_FRk), SUBSI (4, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { { { UHI opval = GET_H_FR_3 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_3 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_2 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_2 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_1 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_1 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_0 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (3)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_0 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (3)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* cmbtohe: cmbtohe$pack $FRintj,$FRintk,$CCi,$cond */ static SEM_PC SEM_FN_NAME (frvbf,cmbtohe) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmbtohe.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRj))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRj), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } { SI opval = frv_ref_SI (GET_H_FR_INT (FLD (f_FRk))); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } if (ANDSI (FLD (f_FRk), SUBSI (4, 1))) { frvbf_media_register_not_aligned (current_cpu); } else { if (EQQI (CPU (h_cccr[FLD (f_CCi)]), ORSI (FLD (f_cond), 2))) { { { UHI opval = GET_H_FR_3 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_3 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (0)), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_2 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_2 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (1)), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_1 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_1 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (2)), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } { UHI opval = GET_H_FR_0 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_hi_set, ((FLD (f_FRk)) + (3)), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "fr_hi", 'x', opval); } { UHI opval = GET_H_FR_0 (((FLD (f_FRj)) + (0))); sim_queue_fn_hi_write (current_cpu, frvbf_h_fr_lo_set, ((FLD (f_FRk)) + (3)), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "fr_lo", 'x', opval); } } } } } abuf->written = written; return vpc; #undef FLD } /* mnop: mnop$pack */ static SEM_PC SEM_FN_NAME (frvbf,mnop) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* mclracc-0: mclracc$pack $ACC40Sk,$A0 */ static SEM_PC SEM_FN_NAME (frvbf,mclracc_0) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_clear_accumulators (current_cpu, FLD (f_ACC40Sk), 0); return vpc; #undef FLD } /* mclracc-1: mclracc$pack $ACC40Sk,$A1 */ static SEM_PC SEM_FN_NAME (frvbf,mclracc_1) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mdasaccs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_clear_accumulators (current_cpu, FLD (f_ACC40Sk), 1); return vpc; #undef FLD } /* mrdacc: mrdacc$pack $ACC40Si,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mrdacc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mcuti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GET_H_ACC40S (FLD (f_ACC40Si)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mrdaccg: mrdaccg$pack $ACCGi,$FRintk */ static SEM_PC SEM_FN_NAME (frvbf,mrdaccg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mrdaccg.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GET_H_ACCG (FLD (f_ACCGi)); sim_queue_fn_si_write (current_cpu, frvbf_h_fr_int_set, FLD (f_FRk), opval); TRACE_RESULT (current_cpu, abuf, "fr_int", 'x', opval); } return vpc; #undef FLD } /* mwtacc: mwtacc$pack $FRinti,$ACC40Sk */ static SEM_PC SEM_FN_NAME (frvbf,mwtacc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_cmmachs.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { DI opval = ORDI (ANDDI (GET_H_ACC40S (FLD (f_ACC40Sk)), MAKEDI (0xffffffff, 0)), GET_H_FR_INT (FLD (f_FRi))); sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, FLD (f_ACC40Sk), opval); TRACE_RESULT (current_cpu, abuf, "acc40S", 'D', opval); } return vpc; #undef FLD } /* mwtaccg: mwtaccg$pack $FRinti,$ACCGk */ static SEM_PC SEM_FN_NAME (frvbf,mwtaccg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_mwtaccg.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { frv_ref_SI (GET_H_ACCG (FLD (f_ACCGk))); { USI opval = GET_H_FR_INT (FLD (f_FRi)); sim_queue_fn_si_write (current_cpu, frvbf_h_accg_set, FLD (f_ACCGk), opval); TRACE_RESULT (current_cpu, abuf, "accg", 'x', opval); } } return vpc; #undef FLD } /* mcop1: mcop1$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,mcop1) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_media_cop (current_cpu, 1); return vpc; #undef FLD } /* mcop2: mcop2$pack $FRi,$FRj,$FRk */ static SEM_PC SEM_FN_NAME (frvbf,mcop2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); frvbf_media_cop (current_cpu, 2); return vpc; #undef FLD } /* fnop: fnop$pack */ static SEM_PC SEM_FN_NAME (frvbf,fnop) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); ((void) 0); /*nop*/ return vpc; #undef FLD } /* Table of all semantic fns. */ static const struct sem_fn_desc sem_fns[] = { { FRVBF_INSN_X_INVALID, SEM_FN_NAME (frvbf,x_invalid) }, { FRVBF_INSN_X_AFTER, SEM_FN_NAME (frvbf,x_after) }, { FRVBF_INSN_X_BEFORE, SEM_FN_NAME (frvbf,x_before) }, { FRVBF_INSN_X_CTI_CHAIN, SEM_FN_NAME (frvbf,x_cti_chain) }, { FRVBF_INSN_X_CHAIN, SEM_FN_NAME (frvbf,x_chain) }, { FRVBF_INSN_X_BEGIN, SEM_FN_NAME (frvbf,x_begin) }, { FRVBF_INSN_ADD, SEM_FN_NAME (frvbf,add) }, { FRVBF_INSN_SUB, SEM_FN_NAME (frvbf,sub) }, { FRVBF_INSN_AND, SEM_FN_NAME (frvbf,and) }, { FRVBF_INSN_OR, SEM_FN_NAME (frvbf,or) }, { FRVBF_INSN_XOR, SEM_FN_NAME (frvbf,xor) }, { FRVBF_INSN_NOT, SEM_FN_NAME (frvbf,not) }, { FRVBF_INSN_SDIV, SEM_FN_NAME (frvbf,sdiv) }, { FRVBF_INSN_NSDIV, SEM_FN_NAME (frvbf,nsdiv) }, { FRVBF_INSN_UDIV, SEM_FN_NAME (frvbf,udiv) }, { FRVBF_INSN_NUDIV, SEM_FN_NAME (frvbf,nudiv) }, { FRVBF_INSN_SMUL, SEM_FN_NAME (frvbf,smul) }, { FRVBF_INSN_UMUL, SEM_FN_NAME (frvbf,umul) }, { FRVBF_INSN_SMU, SEM_FN_NAME (frvbf,smu) }, { FRVBF_INSN_SMASS, SEM_FN_NAME (frvbf,smass) }, { FRVBF_INSN_SMSSS, SEM_FN_NAME (frvbf,smsss) }, { FRVBF_INSN_SLL, SEM_FN_NAME (frvbf,sll) }, { FRVBF_INSN_SRL, SEM_FN_NAME (frvbf,srl) }, { FRVBF_INSN_SRA, SEM_FN_NAME (frvbf,sra) }, { FRVBF_INSN_SLASS, SEM_FN_NAME (frvbf,slass) }, { FRVBF_INSN_SCUTSS, SEM_FN_NAME (frvbf,scutss) }, { FRVBF_INSN_SCAN, SEM_FN_NAME (frvbf,scan) }, { FRVBF_INSN_CADD, SEM_FN_NAME (frvbf,cadd) }, { FRVBF_INSN_CSUB, SEM_FN_NAME (frvbf,csub) }, { FRVBF_INSN_CAND, SEM_FN_NAME (frvbf,cand) }, { FRVBF_INSN_COR, SEM_FN_NAME (frvbf,cor) }, { FRVBF_INSN_CXOR, SEM_FN_NAME (frvbf,cxor) }, { FRVBF_INSN_CNOT, SEM_FN_NAME (frvbf,cnot) }, { FRVBF_INSN_CSMUL, SEM_FN_NAME (frvbf,csmul) }, { FRVBF_INSN_CSDIV, SEM_FN_NAME (frvbf,csdiv) }, { FRVBF_INSN_CUDIV, SEM_FN_NAME (frvbf,cudiv) }, { FRVBF_INSN_CSLL, SEM_FN_NAME (frvbf,csll) }, { FRVBF_INSN_CSRL, SEM_FN_NAME (frvbf,csrl) }, { FRVBF_INSN_CSRA, SEM_FN_NAME (frvbf,csra) }, { FRVBF_INSN_CSCAN, SEM_FN_NAME (frvbf,cscan) }, { FRVBF_INSN_ADDCC, SEM_FN_NAME (frvbf,addcc) }, { FRVBF_INSN_SUBCC, SEM_FN_NAME (frvbf,subcc) }, { FRVBF_INSN_ANDCC, SEM_FN_NAME (frvbf,andcc) }, { FRVBF_INSN_ORCC, SEM_FN_NAME (frvbf,orcc) }, { FRVBF_INSN_XORCC, SEM_FN_NAME (frvbf,xorcc) }, { FRVBF_INSN_SLLCC, SEM_FN_NAME (frvbf,sllcc) }, { FRVBF_INSN_SRLCC, SEM_FN_NAME (frvbf,srlcc) }, { FRVBF_INSN_SRACC, SEM_FN_NAME (frvbf,sracc) }, { FRVBF_INSN_SMULCC, SEM_FN_NAME (frvbf,smulcc) }, { FRVBF_INSN_UMULCC, SEM_FN_NAME (frvbf,umulcc) }, { FRVBF_INSN_CADDCC, SEM_FN_NAME (frvbf,caddcc) }, { FRVBF_INSN_CSUBCC, SEM_FN_NAME (frvbf,csubcc) }, { FRVBF_INSN_CSMULCC, SEM_FN_NAME (frvbf,csmulcc) }, { FRVBF_INSN_CANDCC, SEM_FN_NAME (frvbf,candcc) }, { FRVBF_INSN_CORCC, SEM_FN_NAME (frvbf,corcc) }, { FRVBF_INSN_CXORCC, SEM_FN_NAME (frvbf,cxorcc) }, { FRVBF_INSN_CSLLCC, SEM_FN_NAME (frvbf,csllcc) }, { FRVBF_INSN_CSRLCC, SEM_FN_NAME (frvbf,csrlcc) }, { FRVBF_INSN_CSRACC, SEM_FN_NAME (frvbf,csracc) }, { FRVBF_INSN_ADDX, SEM_FN_NAME (frvbf,addx) }, { FRVBF_INSN_SUBX, SEM_FN_NAME (frvbf,subx) }, { FRVBF_INSN_ADDXCC, SEM_FN_NAME (frvbf,addxcc) }, { FRVBF_INSN_SUBXCC, SEM_FN_NAME (frvbf,subxcc) }, { FRVBF_INSN_ADDSS, SEM_FN_NAME (frvbf,addss) }, { FRVBF_INSN_SUBSS, SEM_FN_NAME (frvbf,subss) }, { FRVBF_INSN_ADDI, SEM_FN_NAME (frvbf,addi) }, { FRVBF_INSN_SUBI, SEM_FN_NAME (frvbf,subi) }, { FRVBF_INSN_ANDI, SEM_FN_NAME (frvbf,andi) }, { FRVBF_INSN_ORI, SEM_FN_NAME (frvbf,ori) }, { FRVBF_INSN_XORI, SEM_FN_NAME (frvbf,xori) }, { FRVBF_INSN_SDIVI, SEM_FN_NAME (frvbf,sdivi) }, { FRVBF_INSN_NSDIVI, SEM_FN_NAME (frvbf,nsdivi) }, { FRVBF_INSN_UDIVI, SEM_FN_NAME (frvbf,udivi) }, { FRVBF_INSN_NUDIVI, SEM_FN_NAME (frvbf,nudivi) }, { FRVBF_INSN_SMULI, SEM_FN_NAME (frvbf,smuli) }, { FRVBF_INSN_UMULI, SEM_FN_NAME (frvbf,umuli) }, { FRVBF_INSN_SLLI, SEM_FN_NAME (frvbf,slli) }, { FRVBF_INSN_SRLI, SEM_FN_NAME (frvbf,srli) }, { FRVBF_INSN_SRAI, SEM_FN_NAME (frvbf,srai) }, { FRVBF_INSN_SCANI, SEM_FN_NAME (frvbf,scani) }, { FRVBF_INSN_ADDICC, SEM_FN_NAME (frvbf,addicc) }, { FRVBF_INSN_SUBICC, SEM_FN_NAME (frvbf,subicc) }, { FRVBF_INSN_ANDICC, SEM_FN_NAME (frvbf,andicc) }, { FRVBF_INSN_ORICC, SEM_FN_NAME (frvbf,oricc) }, { FRVBF_INSN_XORICC, SEM_FN_NAME (frvbf,xoricc) }, { FRVBF_INSN_SMULICC, SEM_FN_NAME (frvbf,smulicc) }, { FRVBF_INSN_UMULICC, SEM_FN_NAME (frvbf,umulicc) }, { FRVBF_INSN_SLLICC, SEM_FN_NAME (frvbf,sllicc) }, { FRVBF_INSN_SRLICC, SEM_FN_NAME (frvbf,srlicc) }, { FRVBF_INSN_SRAICC, SEM_FN_NAME (frvbf,sraicc) }, { FRVBF_INSN_ADDXI, SEM_FN_NAME (frvbf,addxi) }, { FRVBF_INSN_SUBXI, SEM_FN_NAME (frvbf,subxi) }, { FRVBF_INSN_ADDXICC, SEM_FN_NAME (frvbf,addxicc) }, { FRVBF_INSN_SUBXICC, SEM_FN_NAME (frvbf,subxicc) }, { FRVBF_INSN_CMPB, SEM_FN_NAME (frvbf,cmpb) }, { FRVBF_INSN_CMPBA, SEM_FN_NAME (frvbf,cmpba) }, { FRVBF_INSN_SETLO, SEM_FN_NAME (frvbf,setlo) }, { FRVBF_INSN_SETHI, SEM_FN_NAME (frvbf,sethi) }, { FRVBF_INSN_SETLOS, SEM_FN_NAME (frvbf,setlos) }, { FRVBF_INSN_LDSB, SEM_FN_NAME (frvbf,ldsb) }, { FRVBF_INSN_LDUB, SEM_FN_NAME (frvbf,ldub) }, { FRVBF_INSN_LDSH, SEM_FN_NAME (frvbf,ldsh) }, { FRVBF_INSN_LDUH, SEM_FN_NAME (frvbf,lduh) }, { FRVBF_INSN_LD, SEM_FN_NAME (frvbf,ld) }, { FRVBF_INSN_LDBF, SEM_FN_NAME (frvbf,ldbf) }, { FRVBF_INSN_LDHF, SEM_FN_NAME (frvbf,ldhf) }, { FRVBF_INSN_LDF, SEM_FN_NAME (frvbf,ldf) }, { FRVBF_INSN_LDC, SEM_FN_NAME (frvbf,ldc) }, { FRVBF_INSN_NLDSB, SEM_FN_NAME (frvbf,nldsb) }, { FRVBF_INSN_NLDUB, SEM_FN_NAME (frvbf,nldub) }, { FRVBF_INSN_NLDSH, SEM_FN_NAME (frvbf,nldsh) }, { FRVBF_INSN_NLDUH, SEM_FN_NAME (frvbf,nlduh) }, { FRVBF_INSN_NLD, SEM_FN_NAME (frvbf,nld) }, { FRVBF_INSN_NLDBF, SEM_FN_NAME (frvbf,nldbf) }, { FRVBF_INSN_NLDHF, SEM_FN_NAME (frvbf,nldhf) }, { FRVBF_INSN_NLDF, SEM_FN_NAME (frvbf,nldf) }, { FRVBF_INSN_LDD, SEM_FN_NAME (frvbf,ldd) }, { FRVBF_INSN_LDDF, SEM_FN_NAME (frvbf,lddf) }, { FRVBF_INSN_LDDC, SEM_FN_NAME (frvbf,lddc) }, { FRVBF_INSN_NLDD, SEM_FN_NAME (frvbf,nldd) }, { FRVBF_INSN_NLDDF, SEM_FN_NAME (frvbf,nlddf) }, { FRVBF_INSN_LDQ, SEM_FN_NAME (frvbf,ldq) }, { FRVBF_INSN_LDQF, SEM_FN_NAME (frvbf,ldqf) }, { FRVBF_INSN_LDQC, SEM_FN_NAME (frvbf,ldqc) }, { FRVBF_INSN_NLDQ, SEM_FN_NAME (frvbf,nldq) }, { FRVBF_INSN_NLDQF, SEM_FN_NAME (frvbf,nldqf) }, { FRVBF_INSN_LDSBU, SEM_FN_NAME (frvbf,ldsbu) }, { FRVBF_INSN_LDUBU, SEM_FN_NAME (frvbf,ldubu) }, { FRVBF_INSN_LDSHU, SEM_FN_NAME (frvbf,ldshu) }, { FRVBF_INSN_LDUHU, SEM_FN_NAME (frvbf,lduhu) }, { FRVBF_INSN_LDU, SEM_FN_NAME (frvbf,ldu) }, { FRVBF_INSN_NLDSBU, SEM_FN_NAME (frvbf,nldsbu) }, { FRVBF_INSN_NLDUBU, SEM_FN_NAME (frvbf,nldubu) }, { FRVBF_INSN_NLDSHU, SEM_FN_NAME (frvbf,nldshu) }, { FRVBF_INSN_NLDUHU, SEM_FN_NAME (frvbf,nlduhu) }, { FRVBF_INSN_NLDU, SEM_FN_NAME (frvbf,nldu) }, { FRVBF_INSN_LDBFU, SEM_FN_NAME (frvbf,ldbfu) }, { FRVBF_INSN_LDHFU, SEM_FN_NAME (frvbf,ldhfu) }, { FRVBF_INSN_LDFU, SEM_FN_NAME (frvbf,ldfu) }, { FRVBF_INSN_LDCU, SEM_FN_NAME (frvbf,ldcu) }, { FRVBF_INSN_NLDBFU, SEM_FN_NAME (frvbf,nldbfu) }, { FRVBF_INSN_NLDHFU, SEM_FN_NAME (frvbf,nldhfu) }, { FRVBF_INSN_NLDFU, SEM_FN_NAME (frvbf,nldfu) }, { FRVBF_INSN_LDDU, SEM_FN_NAME (frvbf,lddu) }, { FRVBF_INSN_NLDDU, SEM_FN_NAME (frvbf,nlddu) }, { FRVBF_INSN_LDDFU, SEM_FN_NAME (frvbf,lddfu) }, { FRVBF_INSN_LDDCU, SEM_FN_NAME (frvbf,lddcu) }, { FRVBF_INSN_NLDDFU, SEM_FN_NAME (frvbf,nlddfu) }, { FRVBF_INSN_LDQU, SEM_FN_NAME (frvbf,ldqu) }, { FRVBF_INSN_NLDQU, SEM_FN_NAME (frvbf,nldqu) }, { FRVBF_INSN_LDQFU, SEM_FN_NAME (frvbf,ldqfu) }, { FRVBF_INSN_LDQCU, SEM_FN_NAME (frvbf,ldqcu) }, { FRVBF_INSN_NLDQFU, SEM_FN_NAME (frvbf,nldqfu) }, { FRVBF_INSN_LDSBI, SEM_FN_NAME (frvbf,ldsbi) }, { FRVBF_INSN_LDSHI, SEM_FN_NAME (frvbf,ldshi) }, { FRVBF_INSN_LDI, SEM_FN_NAME (frvbf,ldi) }, { FRVBF_INSN_LDUBI, SEM_FN_NAME (frvbf,ldubi) }, { FRVBF_INSN_LDUHI, SEM_FN_NAME (frvbf,lduhi) }, { FRVBF_INSN_LDBFI, SEM_FN_NAME (frvbf,ldbfi) }, { FRVBF_INSN_LDHFI, SEM_FN_NAME (frvbf,ldhfi) }, { FRVBF_INSN_LDFI, SEM_FN_NAME (frvbf,ldfi) }, { FRVBF_INSN_NLDSBI, SEM_FN_NAME (frvbf,nldsbi) }, { FRVBF_INSN_NLDUBI, SEM_FN_NAME (frvbf,nldubi) }, { FRVBF_INSN_NLDSHI, SEM_FN_NAME (frvbf,nldshi) }, { FRVBF_INSN_NLDUHI, SEM_FN_NAME (frvbf,nlduhi) }, { FRVBF_INSN_NLDI, SEM_FN_NAME (frvbf,nldi) }, { FRVBF_INSN_NLDBFI, SEM_FN_NAME (frvbf,nldbfi) }, { FRVBF_INSN_NLDHFI, SEM_FN_NAME (frvbf,nldhfi) }, { FRVBF_INSN_NLDFI, SEM_FN_NAME (frvbf,nldfi) }, { FRVBF_INSN_LDDI, SEM_FN_NAME (frvbf,lddi) }, { FRVBF_INSN_LDDFI, SEM_FN_NAME (frvbf,lddfi) }, { FRVBF_INSN_NLDDI, SEM_FN_NAME (frvbf,nlddi) }, { FRVBF_INSN_NLDDFI, SEM_FN_NAME (frvbf,nlddfi) }, { FRVBF_INSN_LDQI, SEM_FN_NAME (frvbf,ldqi) }, { FRVBF_INSN_LDQFI, SEM_FN_NAME (frvbf,ldqfi) }, { FRVBF_INSN_NLDQFI, SEM_FN_NAME (frvbf,nldqfi) }, { FRVBF_INSN_STB, SEM_FN_NAME (frvbf,stb) }, { FRVBF_INSN_STH, SEM_FN_NAME (frvbf,sth) }, { FRVBF_INSN_ST, SEM_FN_NAME (frvbf,st) }, { FRVBF_INSN_STBF, SEM_FN_NAME (frvbf,stbf) }, { FRVBF_INSN_STHF, SEM_FN_NAME (frvbf,sthf) }, { FRVBF_INSN_STF, SEM_FN_NAME (frvbf,stf) }, { FRVBF_INSN_STC, SEM_FN_NAME (frvbf,stc) }, { FRVBF_INSN_STD, SEM_FN_NAME (frvbf,std) }, { FRVBF_INSN_STDF, SEM_FN_NAME (frvbf,stdf) }, { FRVBF_INSN_STDC, SEM_FN_NAME (frvbf,stdc) }, { FRVBF_INSN_STQ, SEM_FN_NAME (frvbf,stq) }, { FRVBF_INSN_STQF, SEM_FN_NAME (frvbf,stqf) }, { FRVBF_INSN_STQC, SEM_FN_NAME (frvbf,stqc) }, { FRVBF_INSN_STBU, SEM_FN_NAME (frvbf,stbu) }, { FRVBF_INSN_STHU, SEM_FN_NAME (frvbf,sthu) }, { FRVBF_INSN_STU, SEM_FN_NAME (frvbf,stu) }, { FRVBF_INSN_STBFU, SEM_FN_NAME (frvbf,stbfu) }, { FRVBF_INSN_STHFU, SEM_FN_NAME (frvbf,sthfu) }, { FRVBF_INSN_STFU, SEM_FN_NAME (frvbf,stfu) }, { FRVBF_INSN_STCU, SEM_FN_NAME (frvbf,stcu) }, { FRVBF_INSN_STDU, SEM_FN_NAME (frvbf,stdu) }, { FRVBF_INSN_STDFU, SEM_FN_NAME (frvbf,stdfu) }, { FRVBF_INSN_STDCU, SEM_FN_NAME (frvbf,stdcu) }, { FRVBF_INSN_STQU, SEM_FN_NAME (frvbf,stqu) }, { FRVBF_INSN_STQFU, SEM_FN_NAME (frvbf,stqfu) }, { FRVBF_INSN_STQCU, SEM_FN_NAME (frvbf,stqcu) }, { FRVBF_INSN_CLDSB, SEM_FN_NAME (frvbf,cldsb) }, { FRVBF_INSN_CLDUB, SEM_FN_NAME (frvbf,cldub) }, { FRVBF_INSN_CLDSH, SEM_FN_NAME (frvbf,cldsh) }, { FRVBF_INSN_CLDUH, SEM_FN_NAME (frvbf,clduh) }, { FRVBF_INSN_CLD, SEM_FN_NAME (frvbf,cld) }, { FRVBF_INSN_CLDBF, SEM_FN_NAME (frvbf,cldbf) }, { FRVBF_INSN_CLDHF, SEM_FN_NAME (frvbf,cldhf) }, { FRVBF_INSN_CLDF, SEM_FN_NAME (frvbf,cldf) }, { FRVBF_INSN_CLDD, SEM_FN_NAME (frvbf,cldd) }, { FRVBF_INSN_CLDDF, SEM_FN_NAME (frvbf,clddf) }, { FRVBF_INSN_CLDQ, SEM_FN_NAME (frvbf,cldq) }, { FRVBF_INSN_CLDSBU, SEM_FN_NAME (frvbf,cldsbu) }, { FRVBF_INSN_CLDUBU, SEM_FN_NAME (frvbf,cldubu) }, { FRVBF_INSN_CLDSHU, SEM_FN_NAME (frvbf,cldshu) }, { FRVBF_INSN_CLDUHU, SEM_FN_NAME (frvbf,clduhu) }, { FRVBF_INSN_CLDU, SEM_FN_NAME (frvbf,cldu) }, { FRVBF_INSN_CLDBFU, SEM_FN_NAME (frvbf,cldbfu) }, { FRVBF_INSN_CLDHFU, SEM_FN_NAME (frvbf,cldhfu) }, { FRVBF_INSN_CLDFU, SEM_FN_NAME (frvbf,cldfu) }, { FRVBF_INSN_CLDDU, SEM_FN_NAME (frvbf,clddu) }, { FRVBF_INSN_CLDDFU, SEM_FN_NAME (frvbf,clddfu) }, { FRVBF_INSN_CLDQU, SEM_FN_NAME (frvbf,cldqu) }, { FRVBF_INSN_CSTB, SEM_FN_NAME (frvbf,cstb) }, { FRVBF_INSN_CSTH, SEM_FN_NAME (frvbf,csth) }, { FRVBF_INSN_CST, SEM_FN_NAME (frvbf,cst) }, { FRVBF_INSN_CSTBF, SEM_FN_NAME (frvbf,cstbf) }, { FRVBF_INSN_CSTHF, SEM_FN_NAME (frvbf,csthf) }, { FRVBF_INSN_CSTF, SEM_FN_NAME (frvbf,cstf) }, { FRVBF_INSN_CSTD, SEM_FN_NAME (frvbf,cstd) }, { FRVBF_INSN_CSTDF, SEM_FN_NAME (frvbf,cstdf) }, { FRVBF_INSN_CSTQ, SEM_FN_NAME (frvbf,cstq) }, { FRVBF_INSN_CSTBU, SEM_FN_NAME (frvbf,cstbu) }, { FRVBF_INSN_CSTHU, SEM_FN_NAME (frvbf,csthu) }, { FRVBF_INSN_CSTU, SEM_FN_NAME (frvbf,cstu) }, { FRVBF_INSN_CSTBFU, SEM_FN_NAME (frvbf,cstbfu) }, { FRVBF_INSN_CSTHFU, SEM_FN_NAME (frvbf,csthfu) }, { FRVBF_INSN_CSTFU, SEM_FN_NAME (frvbf,cstfu) }, { FRVBF_INSN_CSTDU, SEM_FN_NAME (frvbf,cstdu) }, { FRVBF_INSN_CSTDFU, SEM_FN_NAME (frvbf,cstdfu) }, { FRVBF_INSN_STBI, SEM_FN_NAME (frvbf,stbi) }, { FRVBF_INSN_STHI, SEM_FN_NAME (frvbf,sthi) }, { FRVBF_INSN_STI, SEM_FN_NAME (frvbf,sti) }, { FRVBF_INSN_STBFI, SEM_FN_NAME (frvbf,stbfi) }, { FRVBF_INSN_STHFI, SEM_FN_NAME (frvbf,sthfi) }, { FRVBF_INSN_STFI, SEM_FN_NAME (frvbf,stfi) }, { FRVBF_INSN_STDI, SEM_FN_NAME (frvbf,stdi) }, { FRVBF_INSN_STDFI, SEM_FN_NAME (frvbf,stdfi) }, { FRVBF_INSN_STQI, SEM_FN_NAME (frvbf,stqi) }, { FRVBF_INSN_STQFI, SEM_FN_NAME (frvbf,stqfi) }, { FRVBF_INSN_SWAP, SEM_FN_NAME (frvbf,swap) }, { FRVBF_INSN_SWAPI, SEM_FN_NAME (frvbf,swapi) }, { FRVBF_INSN_CSWAP, SEM_FN_NAME (frvbf,cswap) }, { FRVBF_INSN_MOVGF, SEM_FN_NAME (frvbf,movgf) }, { FRVBF_INSN_MOVFG, SEM_FN_NAME (frvbf,movfg) }, { FRVBF_INSN_MOVGFD, SEM_FN_NAME (frvbf,movgfd) }, { FRVBF_INSN_MOVFGD, SEM_FN_NAME (frvbf,movfgd) }, { FRVBF_INSN_MOVGFQ, SEM_FN_NAME (frvbf,movgfq) }, { FRVBF_INSN_MOVFGQ, SEM_FN_NAME (frvbf,movfgq) }, { FRVBF_INSN_CMOVGF, SEM_FN_NAME (frvbf,cmovgf) }, { FRVBF_INSN_CMOVFG, SEM_FN_NAME (frvbf,cmovfg) }, { FRVBF_INSN_CMOVGFD, SEM_FN_NAME (frvbf,cmovgfd) }, { FRVBF_INSN_CMOVFGD, SEM_FN_NAME (frvbf,cmovfgd) }, { FRVBF_INSN_MOVGS, SEM_FN_NAME (frvbf,movgs) }, { FRVBF_INSN_MOVSG, SEM_FN_NAME (frvbf,movsg) }, { FRVBF_INSN_BRA, SEM_FN_NAME (frvbf,bra) }, { FRVBF_INSN_BNO, SEM_FN_NAME (frvbf,bno) }, { FRVBF_INSN_BEQ, SEM_FN_NAME (frvbf,beq) }, { FRVBF_INSN_BNE, SEM_FN_NAME (frvbf,bne) }, { FRVBF_INSN_BLE, SEM_FN_NAME (frvbf,ble) }, { FRVBF_INSN_BGT, SEM_FN_NAME (frvbf,bgt) }, { FRVBF_INSN_BLT, SEM_FN_NAME (frvbf,blt) }, { FRVBF_INSN_BGE, SEM_FN_NAME (frvbf,bge) }, { FRVBF_INSN_BLS, SEM_FN_NAME (frvbf,bls) }, { FRVBF_INSN_BHI, SEM_FN_NAME (frvbf,bhi) }, { FRVBF_INSN_BC, SEM_FN_NAME (frvbf,bc) }, { FRVBF_INSN_BNC, SEM_FN_NAME (frvbf,bnc) }, { FRVBF_INSN_BN, SEM_FN_NAME (frvbf,bn) }, { FRVBF_INSN_BP, SEM_FN_NAME (frvbf,bp) }, { FRVBF_INSN_BV, SEM_FN_NAME (frvbf,bv) }, { FRVBF_INSN_BNV, SEM_FN_NAME (frvbf,bnv) }, { FRVBF_INSN_FBRA, SEM_FN_NAME (frvbf,fbra) }, { FRVBF_INSN_FBNO, SEM_FN_NAME (frvbf,fbno) }, { FRVBF_INSN_FBNE, SEM_FN_NAME (frvbf,fbne) }, { FRVBF_INSN_FBEQ, SEM_FN_NAME (frvbf,fbeq) }, { FRVBF_INSN_FBLG, SEM_FN_NAME (frvbf,fblg) }, { FRVBF_INSN_FBUE, SEM_FN_NAME (frvbf,fbue) }, { FRVBF_INSN_FBUL, SEM_FN_NAME (frvbf,fbul) }, { FRVBF_INSN_FBGE, SEM_FN_NAME (frvbf,fbge) }, { FRVBF_INSN_FBLT, SEM_FN_NAME (frvbf,fblt) }, { FRVBF_INSN_FBUGE, SEM_FN_NAME (frvbf,fbuge) }, { FRVBF_INSN_FBUG, SEM_FN_NAME (frvbf,fbug) }, { FRVBF_INSN_FBLE, SEM_FN_NAME (frvbf,fble) }, { FRVBF_INSN_FBGT, SEM_FN_NAME (frvbf,fbgt) }, { FRVBF_INSN_FBULE, SEM_FN_NAME (frvbf,fbule) }, { FRVBF_INSN_FBU, SEM_FN_NAME (frvbf,fbu) }, { FRVBF_INSN_FBO, SEM_FN_NAME (frvbf,fbo) }, { FRVBF_INSN_BCTRLR, SEM_FN_NAME (frvbf,bctrlr) }, { FRVBF_INSN_BRALR, SEM_FN_NAME (frvbf,bralr) }, { FRVBF_INSN_BNOLR, SEM_FN_NAME (frvbf,bnolr) }, { FRVBF_INSN_BEQLR, SEM_FN_NAME (frvbf,beqlr) }, { FRVBF_INSN_BNELR, SEM_FN_NAME (frvbf,bnelr) }, { FRVBF_INSN_BLELR, SEM_FN_NAME (frvbf,blelr) }, { FRVBF_INSN_BGTLR, SEM_FN_NAME (frvbf,bgtlr) }, { FRVBF_INSN_BLTLR, SEM_FN_NAME (frvbf,bltlr) }, { FRVBF_INSN_BGELR, SEM_FN_NAME (frvbf,bgelr) }, { FRVBF_INSN_BLSLR, SEM_FN_NAME (frvbf,blslr) }, { FRVBF_INSN_BHILR, SEM_FN_NAME (frvbf,bhilr) }, { FRVBF_INSN_BCLR, SEM_FN_NAME (frvbf,bclr) }, { FRVBF_INSN_BNCLR, SEM_FN_NAME (frvbf,bnclr) }, { FRVBF_INSN_BNLR, SEM_FN_NAME (frvbf,bnlr) }, { FRVBF_INSN_BPLR, SEM_FN_NAME (frvbf,bplr) }, { FRVBF_INSN_BVLR, SEM_FN_NAME (frvbf,bvlr) }, { FRVBF_INSN_BNVLR, SEM_FN_NAME (frvbf,bnvlr) }, { FRVBF_INSN_FBRALR, SEM_FN_NAME (frvbf,fbralr) }, { FRVBF_INSN_FBNOLR, SEM_FN_NAME (frvbf,fbnolr) }, { FRVBF_INSN_FBEQLR, SEM_FN_NAME (frvbf,fbeqlr) }, { FRVBF_INSN_FBNELR, SEM_FN_NAME (frvbf,fbnelr) }, { FRVBF_INSN_FBLGLR, SEM_FN_NAME (frvbf,fblglr) }, { FRVBF_INSN_FBUELR, SEM_FN_NAME (frvbf,fbuelr) }, { FRVBF_INSN_FBULLR, SEM_FN_NAME (frvbf,fbullr) }, { FRVBF_INSN_FBGELR, SEM_FN_NAME (frvbf,fbgelr) }, { FRVBF_INSN_FBLTLR, SEM_FN_NAME (frvbf,fbltlr) }, { FRVBF_INSN_FBUGELR, SEM_FN_NAME (frvbf,fbugelr) }, { FRVBF_INSN_FBUGLR, SEM_FN_NAME (frvbf,fbuglr) }, { FRVBF_INSN_FBLELR, SEM_FN_NAME (frvbf,fblelr) }, { FRVBF_INSN_FBGTLR, SEM_FN_NAME (frvbf,fbgtlr) }, { FRVBF_INSN_FBULELR, SEM_FN_NAME (frvbf,fbulelr) }, { FRVBF_INSN_FBULR, SEM_FN_NAME (frvbf,fbulr) }, { FRVBF_INSN_FBOLR, SEM_FN_NAME (frvbf,fbolr) }, { FRVBF_INSN_BCRALR, SEM_FN_NAME (frvbf,bcralr) }, { FRVBF_INSN_BCNOLR, SEM_FN_NAME (frvbf,bcnolr) }, { FRVBF_INSN_BCEQLR, SEM_FN_NAME (frvbf,bceqlr) }, { FRVBF_INSN_BCNELR, SEM_FN_NAME (frvbf,bcnelr) }, { FRVBF_INSN_BCLELR, SEM_FN_NAME (frvbf,bclelr) }, { FRVBF_INSN_BCGTLR, SEM_FN_NAME (frvbf,bcgtlr) }, { FRVBF_INSN_BCLTLR, SEM_FN_NAME (frvbf,bcltlr) }, { FRVBF_INSN_BCGELR, SEM_FN_NAME (frvbf,bcgelr) }, { FRVBF_INSN_BCLSLR, SEM_FN_NAME (frvbf,bclslr) }, { FRVBF_INSN_BCHILR, SEM_FN_NAME (frvbf,bchilr) }, { FRVBF_INSN_BCCLR, SEM_FN_NAME (frvbf,bcclr) }, { FRVBF_INSN_BCNCLR, SEM_FN_NAME (frvbf,bcnclr) }, { FRVBF_INSN_BCNLR, SEM_FN_NAME (frvbf,bcnlr) }, { FRVBF_INSN_BCPLR, SEM_FN_NAME (frvbf,bcplr) }, { FRVBF_INSN_BCVLR, SEM_FN_NAME (frvbf,bcvlr) }, { FRVBF_INSN_BCNVLR, SEM_FN_NAME (frvbf,bcnvlr) }, { FRVBF_INSN_FCBRALR, SEM_FN_NAME (frvbf,fcbralr) }, { FRVBF_INSN_FCBNOLR, SEM_FN_NAME (frvbf,fcbnolr) }, { FRVBF_INSN_FCBEQLR, SEM_FN_NAME (frvbf,fcbeqlr) }, { FRVBF_INSN_FCBNELR, SEM_FN_NAME (frvbf,fcbnelr) }, { FRVBF_INSN_FCBLGLR, SEM_FN_NAME (frvbf,fcblglr) }, { FRVBF_INSN_FCBUELR, SEM_FN_NAME (frvbf,fcbuelr) }, { FRVBF_INSN_FCBULLR, SEM_FN_NAME (frvbf,fcbullr) }, { FRVBF_INSN_FCBGELR, SEM_FN_NAME (frvbf,fcbgelr) }, { FRVBF_INSN_FCBLTLR, SEM_FN_NAME (frvbf,fcbltlr) }, { FRVBF_INSN_FCBUGELR, SEM_FN_NAME (frvbf,fcbugelr) }, { FRVBF_INSN_FCBUGLR, SEM_FN_NAME (frvbf,fcbuglr) }, { FRVBF_INSN_FCBLELR, SEM_FN_NAME (frvbf,fcblelr) }, { FRVBF_INSN_FCBGTLR, SEM_FN_NAME (frvbf,fcbgtlr) }, { FRVBF_INSN_FCBULELR, SEM_FN_NAME (frvbf,fcbulelr) }, { FRVBF_INSN_FCBULR, SEM_FN_NAME (frvbf,fcbulr) }, { FRVBF_INSN_FCBOLR, SEM_FN_NAME (frvbf,fcbolr) }, { FRVBF_INSN_JMPL, SEM_FN_NAME (frvbf,jmpl) }, { FRVBF_INSN_CALLL, SEM_FN_NAME (frvbf,calll) }, { FRVBF_INSN_JMPIL, SEM_FN_NAME (frvbf,jmpil) }, { FRVBF_INSN_CALLIL, SEM_FN_NAME (frvbf,callil) }, { FRVBF_INSN_CALL, SEM_FN_NAME (frvbf,call) }, { FRVBF_INSN_RETT, SEM_FN_NAME (frvbf,rett) }, { FRVBF_INSN_REI, SEM_FN_NAME (frvbf,rei) }, { FRVBF_INSN_TRA, SEM_FN_NAME (frvbf,tra) }, { FRVBF_INSN_TNO, SEM_FN_NAME (frvbf,tno) }, { FRVBF_INSN_TEQ, SEM_FN_NAME (frvbf,teq) }, { FRVBF_INSN_TNE, SEM_FN_NAME (frvbf,tne) }, { FRVBF_INSN_TLE, SEM_FN_NAME (frvbf,tle) }, { FRVBF_INSN_TGT, SEM_FN_NAME (frvbf,tgt) }, { FRVBF_INSN_TLT, SEM_FN_NAME (frvbf,tlt) }, { FRVBF_INSN_TGE, SEM_FN_NAME (frvbf,tge) }, { FRVBF_INSN_TLS, SEM_FN_NAME (frvbf,tls) }, { FRVBF_INSN_THI, SEM_FN_NAME (frvbf,thi) }, { FRVBF_INSN_TC, SEM_FN_NAME (frvbf,tc) }, { FRVBF_INSN_TNC, SEM_FN_NAME (frvbf,tnc) }, { FRVBF_INSN_TN, SEM_FN_NAME (frvbf,tn) }, { FRVBF_INSN_TP, SEM_FN_NAME (frvbf,tp) }, { FRVBF_INSN_TV, SEM_FN_NAME (frvbf,tv) }, { FRVBF_INSN_TNV, SEM_FN_NAME (frvbf,tnv) }, { FRVBF_INSN_FTRA, SEM_FN_NAME (frvbf,ftra) }, { FRVBF_INSN_FTNO, SEM_FN_NAME (frvbf,ftno) }, { FRVBF_INSN_FTNE, SEM_FN_NAME (frvbf,ftne) }, { FRVBF_INSN_FTEQ, SEM_FN_NAME (frvbf,fteq) }, { FRVBF_INSN_FTLG, SEM_FN_NAME (frvbf,ftlg) }, { FRVBF_INSN_FTUE, SEM_FN_NAME (frvbf,ftue) }, { FRVBF_INSN_FTUL, SEM_FN_NAME (frvbf,ftul) }, { FRVBF_INSN_FTGE, SEM_FN_NAME (frvbf,ftge) }, { FRVBF_INSN_FTLT, SEM_FN_NAME (frvbf,ftlt) }, { FRVBF_INSN_FTUGE, SEM_FN_NAME (frvbf,ftuge) }, { FRVBF_INSN_FTUG, SEM_FN_NAME (frvbf,ftug) }, { FRVBF_INSN_FTLE, SEM_FN_NAME (frvbf,ftle) }, { FRVBF_INSN_FTGT, SEM_FN_NAME (frvbf,ftgt) }, { FRVBF_INSN_FTULE, SEM_FN_NAME (frvbf,ftule) }, { FRVBF_INSN_FTU, SEM_FN_NAME (frvbf,ftu) }, { FRVBF_INSN_FTO, SEM_FN_NAME (frvbf,fto) }, { FRVBF_INSN_TIRA, SEM_FN_NAME (frvbf,tira) }, { FRVBF_INSN_TINO, SEM_FN_NAME (frvbf,tino) }, { FRVBF_INSN_TIEQ, SEM_FN_NAME (frvbf,tieq) }, { FRVBF_INSN_TINE, SEM_FN_NAME (frvbf,tine) }, { FRVBF_INSN_TILE, SEM_FN_NAME (frvbf,tile) }, { FRVBF_INSN_TIGT, SEM_FN_NAME (frvbf,tigt) }, { FRVBF_INSN_TILT, SEM_FN_NAME (frvbf,tilt) }, { FRVBF_INSN_TIGE, SEM_FN_NAME (frvbf,tige) }, { FRVBF_INSN_TILS, SEM_FN_NAME (frvbf,tils) }, { FRVBF_INSN_TIHI, SEM_FN_NAME (frvbf,tihi) }, { FRVBF_INSN_TIC, SEM_FN_NAME (frvbf,tic) }, { FRVBF_INSN_TINC, SEM_FN_NAME (frvbf,tinc) }, { FRVBF_INSN_TIN, SEM_FN_NAME (frvbf,tin) }, { FRVBF_INSN_TIP, SEM_FN_NAME (frvbf,tip) }, { FRVBF_INSN_TIV, SEM_FN_NAME (frvbf,tiv) }, { FRVBF_INSN_TINV, SEM_FN_NAME (frvbf,tinv) }, { FRVBF_INSN_FTIRA, SEM_FN_NAME (frvbf,ftira) }, { FRVBF_INSN_FTINO, SEM_FN_NAME (frvbf,ftino) }, { FRVBF_INSN_FTINE, SEM_FN_NAME (frvbf,ftine) }, { FRVBF_INSN_FTIEQ, SEM_FN_NAME (frvbf,ftieq) }, { FRVBF_INSN_FTILG, SEM_FN_NAME (frvbf,ftilg) }, { FRVBF_INSN_FTIUE, SEM_FN_NAME (frvbf,ftiue) }, { FRVBF_INSN_FTIUL, SEM_FN_NAME (frvbf,ftiul) }, { FRVBF_INSN_FTIGE, SEM_FN_NAME (frvbf,ftige) }, { FRVBF_INSN_FTILT, SEM_FN_NAME (frvbf,ftilt) }, { FRVBF_INSN_FTIUGE, SEM_FN_NAME (frvbf,ftiuge) }, { FRVBF_INSN_FTIUG, SEM_FN_NAME (frvbf,ftiug) }, { FRVBF_INSN_FTILE, SEM_FN_NAME (frvbf,ftile) }, { FRVBF_INSN_FTIGT, SEM_FN_NAME (frvbf,ftigt) }, { FRVBF_INSN_FTIULE, SEM_FN_NAME (frvbf,ftiule) }, { FRVBF_INSN_FTIU, SEM_FN_NAME (frvbf,ftiu) }, { FRVBF_INSN_FTIO, SEM_FN_NAME (frvbf,ftio) }, { FRVBF_INSN_BREAK, SEM_FN_NAME (frvbf,break) }, { FRVBF_INSN_MTRAP, SEM_FN_NAME (frvbf,mtrap) }, { FRVBF_INSN_ANDCR, SEM_FN_NAME (frvbf,andcr) }, { FRVBF_INSN_ORCR, SEM_FN_NAME (frvbf,orcr) }, { FRVBF_INSN_XORCR, SEM_FN_NAME (frvbf,xorcr) }, { FRVBF_INSN_NANDCR, SEM_FN_NAME (frvbf,nandcr) }, { FRVBF_INSN_NORCR, SEM_FN_NAME (frvbf,norcr) }, { FRVBF_INSN_ANDNCR, SEM_FN_NAME (frvbf,andncr) }, { FRVBF_INSN_ORNCR, SEM_FN_NAME (frvbf,orncr) }, { FRVBF_INSN_NANDNCR, SEM_FN_NAME (frvbf,nandncr) }, { FRVBF_INSN_NORNCR, SEM_FN_NAME (frvbf,norncr) }, { FRVBF_INSN_NOTCR, SEM_FN_NAME (frvbf,notcr) }, { FRVBF_INSN_CKRA, SEM_FN_NAME (frvbf,ckra) }, { FRVBF_INSN_CKNO, SEM_FN_NAME (frvbf,ckno) }, { FRVBF_INSN_CKEQ, SEM_FN_NAME (frvbf,ckeq) }, { FRVBF_INSN_CKNE, SEM_FN_NAME (frvbf,ckne) }, { FRVBF_INSN_CKLE, SEM_FN_NAME (frvbf,ckle) }, { FRVBF_INSN_CKGT, SEM_FN_NAME (frvbf,ckgt) }, { FRVBF_INSN_CKLT, SEM_FN_NAME (frvbf,cklt) }, { FRVBF_INSN_CKGE, SEM_FN_NAME (frvbf,ckge) }, { FRVBF_INSN_CKLS, SEM_FN_NAME (frvbf,ckls) }, { FRVBF_INSN_CKHI, SEM_FN_NAME (frvbf,ckhi) }, { FRVBF_INSN_CKC, SEM_FN_NAME (frvbf,ckc) }, { FRVBF_INSN_CKNC, SEM_FN_NAME (frvbf,cknc) }, { FRVBF_INSN_CKN, SEM_FN_NAME (frvbf,ckn) }, { FRVBF_INSN_CKP, SEM_FN_NAME (frvbf,ckp) }, { FRVBF_INSN_CKV, SEM_FN_NAME (frvbf,ckv) }, { FRVBF_INSN_CKNV, SEM_FN_NAME (frvbf,cknv) }, { FRVBF_INSN_FCKRA, SEM_FN_NAME (frvbf,fckra) }, { FRVBF_INSN_FCKNO, SEM_FN_NAME (frvbf,fckno) }, { FRVBF_INSN_FCKNE, SEM_FN_NAME (frvbf,fckne) }, { FRVBF_INSN_FCKEQ, SEM_FN_NAME (frvbf,fckeq) }, { FRVBF_INSN_FCKLG, SEM_FN_NAME (frvbf,fcklg) }, { FRVBF_INSN_FCKUE, SEM_FN_NAME (frvbf,fckue) }, { FRVBF_INSN_FCKUL, SEM_FN_NAME (frvbf,fckul) }, { FRVBF_INSN_FCKGE, SEM_FN_NAME (frvbf,fckge) }, { FRVBF_INSN_FCKLT, SEM_FN_NAME (frvbf,fcklt) }, { FRVBF_INSN_FCKUGE, SEM_FN_NAME (frvbf,fckuge) }, { FRVBF_INSN_FCKUG, SEM_FN_NAME (frvbf,fckug) }, { FRVBF_INSN_FCKLE, SEM_FN_NAME (frvbf,fckle) }, { FRVBF_INSN_FCKGT, SEM_FN_NAME (frvbf,fckgt) }, { FRVBF_INSN_FCKULE, SEM_FN_NAME (frvbf,fckule) }, { FRVBF_INSN_FCKU, SEM_FN_NAME (frvbf,fcku) }, { FRVBF_INSN_FCKO, SEM_FN_NAME (frvbf,fcko) }, { FRVBF_INSN_CCKRA, SEM_FN_NAME (frvbf,cckra) }, { FRVBF_INSN_CCKNO, SEM_FN_NAME (frvbf,cckno) }, { FRVBF_INSN_CCKEQ, SEM_FN_NAME (frvbf,cckeq) }, { FRVBF_INSN_CCKNE, SEM_FN_NAME (frvbf,cckne) }, { FRVBF_INSN_CCKLE, SEM_FN_NAME (frvbf,cckle) }, { FRVBF_INSN_CCKGT, SEM_FN_NAME (frvbf,cckgt) }, { FRVBF_INSN_CCKLT, SEM_FN_NAME (frvbf,ccklt) }, { FRVBF_INSN_CCKGE, SEM_FN_NAME (frvbf,cckge) }, { FRVBF_INSN_CCKLS, SEM_FN_NAME (frvbf,cckls) }, { FRVBF_INSN_CCKHI, SEM_FN_NAME (frvbf,cckhi) }, { FRVBF_INSN_CCKC, SEM_FN_NAME (frvbf,cckc) }, { FRVBF_INSN_CCKNC, SEM_FN_NAME (frvbf,ccknc) }, { FRVBF_INSN_CCKN, SEM_FN_NAME (frvbf,cckn) }, { FRVBF_INSN_CCKP, SEM_FN_NAME (frvbf,cckp) }, { FRVBF_INSN_CCKV, SEM_FN_NAME (frvbf,cckv) }, { FRVBF_INSN_CCKNV, SEM_FN_NAME (frvbf,ccknv) }, { FRVBF_INSN_CFCKRA, SEM_FN_NAME (frvbf,cfckra) }, { FRVBF_INSN_CFCKNO, SEM_FN_NAME (frvbf,cfckno) }, { FRVBF_INSN_CFCKNE, SEM_FN_NAME (frvbf,cfckne) }, { FRVBF_INSN_CFCKEQ, SEM_FN_NAME (frvbf,cfckeq) }, { FRVBF_INSN_CFCKLG, SEM_FN_NAME (frvbf,cfcklg) }, { FRVBF_INSN_CFCKUE, SEM_FN_NAME (frvbf,cfckue) }, { FRVBF_INSN_CFCKUL, SEM_FN_NAME (frvbf,cfckul) }, { FRVBF_INSN_CFCKGE, SEM_FN_NAME (frvbf,cfckge) }, { FRVBF_INSN_CFCKLT, SEM_FN_NAME (frvbf,cfcklt) }, { FRVBF_INSN_CFCKUGE, SEM_FN_NAME (frvbf,cfckuge) }, { FRVBF_INSN_CFCKUG, SEM_FN_NAME (frvbf,cfckug) }, { FRVBF_INSN_CFCKLE, SEM_FN_NAME (frvbf,cfckle) }, { FRVBF_INSN_CFCKGT, SEM_FN_NAME (frvbf,cfckgt) }, { FRVBF_INSN_CFCKULE, SEM_FN_NAME (frvbf,cfckule) }, { FRVBF_INSN_CFCKU, SEM_FN_NAME (frvbf,cfcku) }, { FRVBF_INSN_CFCKO, SEM_FN_NAME (frvbf,cfcko) }, { FRVBF_INSN_CJMPL, SEM_FN_NAME (frvbf,cjmpl) }, { FRVBF_INSN_CCALLL, SEM_FN_NAME (frvbf,ccalll) }, { FRVBF_INSN_ICI, SEM_FN_NAME (frvbf,ici) }, { FRVBF_INSN_DCI, SEM_FN_NAME (frvbf,dci) }, { FRVBF_INSN_ICEI, SEM_FN_NAME (frvbf,icei) }, { FRVBF_INSN_DCEI, SEM_FN_NAME (frvbf,dcei) }, { FRVBF_INSN_DCF, SEM_FN_NAME (frvbf,dcf) }, { FRVBF_INSN_DCEF, SEM_FN_NAME (frvbf,dcef) }, { FRVBF_INSN_WITLB, SEM_FN_NAME (frvbf,witlb) }, { FRVBF_INSN_WDTLB, SEM_FN_NAME (frvbf,wdtlb) }, { FRVBF_INSN_ITLBI, SEM_FN_NAME (frvbf,itlbi) }, { FRVBF_INSN_DTLBI, SEM_FN_NAME (frvbf,dtlbi) }, { FRVBF_INSN_ICPL, SEM_FN_NAME (frvbf,icpl) }, { FRVBF_INSN_DCPL, SEM_FN_NAME (frvbf,dcpl) }, { FRVBF_INSN_ICUL, SEM_FN_NAME (frvbf,icul) }, { FRVBF_INSN_DCUL, SEM_FN_NAME (frvbf,dcul) }, { FRVBF_INSN_BAR, SEM_FN_NAME (frvbf,bar) }, { FRVBF_INSN_MEMBAR, SEM_FN_NAME (frvbf,membar) }, { FRVBF_INSN_LRAI, SEM_FN_NAME (frvbf,lrai) }, { FRVBF_INSN_LRAD, SEM_FN_NAME (frvbf,lrad) }, { FRVBF_INSN_TLBPR, SEM_FN_NAME (frvbf,tlbpr) }, { FRVBF_INSN_COP1, SEM_FN_NAME (frvbf,cop1) }, { FRVBF_INSN_COP2, SEM_FN_NAME (frvbf,cop2) }, { FRVBF_INSN_CLRGR, SEM_FN_NAME (frvbf,clrgr) }, { FRVBF_INSN_CLRFR, SEM_FN_NAME (frvbf,clrfr) }, { FRVBF_INSN_CLRGA, SEM_FN_NAME (frvbf,clrga) }, { FRVBF_INSN_CLRFA, SEM_FN_NAME (frvbf,clrfa) }, { FRVBF_INSN_COMMITGR, SEM_FN_NAME (frvbf,commitgr) }, { FRVBF_INSN_COMMITFR, SEM_FN_NAME (frvbf,commitfr) }, { FRVBF_INSN_COMMITGA, SEM_FN_NAME (frvbf,commitga) }, { FRVBF_INSN_COMMITFA, SEM_FN_NAME (frvbf,commitfa) }, { FRVBF_INSN_FITOS, SEM_FN_NAME (frvbf,fitos) }, { FRVBF_INSN_FSTOI, SEM_FN_NAME (frvbf,fstoi) }, { FRVBF_INSN_FITOD, SEM_FN_NAME (frvbf,fitod) }, { FRVBF_INSN_FDTOI, SEM_FN_NAME (frvbf,fdtoi) }, { FRVBF_INSN_FDITOS, SEM_FN_NAME (frvbf,fditos) }, { FRVBF_INSN_FDSTOI, SEM_FN_NAME (frvbf,fdstoi) }, { FRVBF_INSN_NFDITOS, SEM_FN_NAME (frvbf,nfditos) }, { FRVBF_INSN_NFDSTOI, SEM_FN_NAME (frvbf,nfdstoi) }, { FRVBF_INSN_CFITOS, SEM_FN_NAME (frvbf,cfitos) }, { FRVBF_INSN_CFSTOI, SEM_FN_NAME (frvbf,cfstoi) }, { FRVBF_INSN_NFITOS, SEM_FN_NAME (frvbf,nfitos) }, { FRVBF_INSN_NFSTOI, SEM_FN_NAME (frvbf,nfstoi) }, { FRVBF_INSN_FMOVS, SEM_FN_NAME (frvbf,fmovs) }, { FRVBF_INSN_FMOVD, SEM_FN_NAME (frvbf,fmovd) }, { FRVBF_INSN_FDMOVS, SEM_FN_NAME (frvbf,fdmovs) }, { FRVBF_INSN_CFMOVS, SEM_FN_NAME (frvbf,cfmovs) }, { FRVBF_INSN_FNEGS, SEM_FN_NAME (frvbf,fnegs) }, { FRVBF_INSN_FNEGD, SEM_FN_NAME (frvbf,fnegd) }, { FRVBF_INSN_FDNEGS, SEM_FN_NAME (frvbf,fdnegs) }, { FRVBF_INSN_CFNEGS, SEM_FN_NAME (frvbf,cfnegs) }, { FRVBF_INSN_FABSS, SEM_FN_NAME (frvbf,fabss) }, { FRVBF_INSN_FABSD, SEM_FN_NAME (frvbf,fabsd) }, { FRVBF_INSN_FDABSS, SEM_FN_NAME (frvbf,fdabss) }, { FRVBF_INSN_CFABSS, SEM_FN_NAME (frvbf,cfabss) }, { FRVBF_INSN_FSQRTS, SEM_FN_NAME (frvbf,fsqrts) }, { FRVBF_INSN_FDSQRTS, SEM_FN_NAME (frvbf,fdsqrts) }, { FRVBF_INSN_NFDSQRTS, SEM_FN_NAME (frvbf,nfdsqrts) }, { FRVBF_INSN_FSQRTD, SEM_FN_NAME (frvbf,fsqrtd) }, { FRVBF_INSN_CFSQRTS, SEM_FN_NAME (frvbf,cfsqrts) }, { FRVBF_INSN_NFSQRTS, SEM_FN_NAME (frvbf,nfsqrts) }, { FRVBF_INSN_FADDS, SEM_FN_NAME (frvbf,fadds) }, { FRVBF_INSN_FSUBS, SEM_FN_NAME (frvbf,fsubs) }, { FRVBF_INSN_FMULS, SEM_FN_NAME (frvbf,fmuls) }, { FRVBF_INSN_FDIVS, SEM_FN_NAME (frvbf,fdivs) }, { FRVBF_INSN_FADDD, SEM_FN_NAME (frvbf,faddd) }, { FRVBF_INSN_FSUBD, SEM_FN_NAME (frvbf,fsubd) }, { FRVBF_INSN_FMULD, SEM_FN_NAME (frvbf,fmuld) }, { FRVBF_INSN_FDIVD, SEM_FN_NAME (frvbf,fdivd) }, { FRVBF_INSN_CFADDS, SEM_FN_NAME (frvbf,cfadds) }, { FRVBF_INSN_CFSUBS, SEM_FN_NAME (frvbf,cfsubs) }, { FRVBF_INSN_CFMULS, SEM_FN_NAME (frvbf,cfmuls) }, { FRVBF_INSN_CFDIVS, SEM_FN_NAME (frvbf,cfdivs) }, { FRVBF_INSN_NFADDS, SEM_FN_NAME (frvbf,nfadds) }, { FRVBF_INSN_NFSUBS, SEM_FN_NAME (frvbf,nfsubs) }, { FRVBF_INSN_NFMULS, SEM_FN_NAME (frvbf,nfmuls) }, { FRVBF_INSN_NFDIVS, SEM_FN_NAME (frvbf,nfdivs) }, { FRVBF_INSN_FCMPS, SEM_FN_NAME (frvbf,fcmps) }, { FRVBF_INSN_FCMPD, SEM_FN_NAME (frvbf,fcmpd) }, { FRVBF_INSN_CFCMPS, SEM_FN_NAME (frvbf,cfcmps) }, { FRVBF_INSN_FDCMPS, SEM_FN_NAME (frvbf,fdcmps) }, { FRVBF_INSN_FMADDS, SEM_FN_NAME (frvbf,fmadds) }, { FRVBF_INSN_FMSUBS, SEM_FN_NAME (frvbf,fmsubs) }, { FRVBF_INSN_FMADDD, SEM_FN_NAME (frvbf,fmaddd) }, { FRVBF_INSN_FMSUBD, SEM_FN_NAME (frvbf,fmsubd) }, { FRVBF_INSN_FDMADDS, SEM_FN_NAME (frvbf,fdmadds) }, { FRVBF_INSN_NFDMADDS, SEM_FN_NAME (frvbf,nfdmadds) }, { FRVBF_INSN_CFMADDS, SEM_FN_NAME (frvbf,cfmadds) }, { FRVBF_INSN_CFMSUBS, SEM_FN_NAME (frvbf,cfmsubs) }, { FRVBF_INSN_NFMADDS, SEM_FN_NAME (frvbf,nfmadds) }, { FRVBF_INSN_NFMSUBS, SEM_FN_NAME (frvbf,nfmsubs) }, { FRVBF_INSN_FMAS, SEM_FN_NAME (frvbf,fmas) }, { FRVBF_INSN_FMSS, SEM_FN_NAME (frvbf,fmss) }, { FRVBF_INSN_FDMAS, SEM_FN_NAME (frvbf,fdmas) }, { FRVBF_INSN_FDMSS, SEM_FN_NAME (frvbf,fdmss) }, { FRVBF_INSN_NFDMAS, SEM_FN_NAME (frvbf,nfdmas) }, { FRVBF_INSN_NFDMSS, SEM_FN_NAME (frvbf,nfdmss) }, { FRVBF_INSN_CFMAS, SEM_FN_NAME (frvbf,cfmas) }, { FRVBF_INSN_CFMSS, SEM_FN_NAME (frvbf,cfmss) }, { FRVBF_INSN_FMAD, SEM_FN_NAME (frvbf,fmad) }, { FRVBF_INSN_FMSD, SEM_FN_NAME (frvbf,fmsd) }, { FRVBF_INSN_NFMAS, SEM_FN_NAME (frvbf,nfmas) }, { FRVBF_INSN_NFMSS, SEM_FN_NAME (frvbf,nfmss) }, { FRVBF_INSN_FDADDS, SEM_FN_NAME (frvbf,fdadds) }, { FRVBF_INSN_FDSUBS, SEM_FN_NAME (frvbf,fdsubs) }, { FRVBF_INSN_FDMULS, SEM_FN_NAME (frvbf,fdmuls) }, { FRVBF_INSN_FDDIVS, SEM_FN_NAME (frvbf,fddivs) }, { FRVBF_INSN_FDSADS, SEM_FN_NAME (frvbf,fdsads) }, { FRVBF_INSN_FDMULCS, SEM_FN_NAME (frvbf,fdmulcs) }, { FRVBF_INSN_NFDMULCS, SEM_FN_NAME (frvbf,nfdmulcs) }, { FRVBF_INSN_NFDADDS, SEM_FN_NAME (frvbf,nfdadds) }, { FRVBF_INSN_NFDSUBS, SEM_FN_NAME (frvbf,nfdsubs) }, { FRVBF_INSN_NFDMULS, SEM_FN_NAME (frvbf,nfdmuls) }, { FRVBF_INSN_NFDDIVS, SEM_FN_NAME (frvbf,nfddivs) }, { FRVBF_INSN_NFDSADS, SEM_FN_NAME (frvbf,nfdsads) }, { FRVBF_INSN_NFDCMPS, SEM_FN_NAME (frvbf,nfdcmps) }, { FRVBF_INSN_MHSETLOS, SEM_FN_NAME (frvbf,mhsetlos) }, { FRVBF_INSN_MHSETHIS, SEM_FN_NAME (frvbf,mhsethis) }, { FRVBF_INSN_MHDSETS, SEM_FN_NAME (frvbf,mhdsets) }, { FRVBF_INSN_MHSETLOH, SEM_FN_NAME (frvbf,mhsetloh) }, { FRVBF_INSN_MHSETHIH, SEM_FN_NAME (frvbf,mhsethih) }, { FRVBF_INSN_MHDSETH, SEM_FN_NAME (frvbf,mhdseth) }, { FRVBF_INSN_MAND, SEM_FN_NAME (frvbf,mand) }, { FRVBF_INSN_MOR, SEM_FN_NAME (frvbf,mor) }, { FRVBF_INSN_MXOR, SEM_FN_NAME (frvbf,mxor) }, { FRVBF_INSN_CMAND, SEM_FN_NAME (frvbf,cmand) }, { FRVBF_INSN_CMOR, SEM_FN_NAME (frvbf,cmor) }, { FRVBF_INSN_CMXOR, SEM_FN_NAME (frvbf,cmxor) }, { FRVBF_INSN_MNOT, SEM_FN_NAME (frvbf,mnot) }, { FRVBF_INSN_CMNOT, SEM_FN_NAME (frvbf,cmnot) }, { FRVBF_INSN_MROTLI, SEM_FN_NAME (frvbf,mrotli) }, { FRVBF_INSN_MROTRI, SEM_FN_NAME (frvbf,mrotri) }, { FRVBF_INSN_MWCUT, SEM_FN_NAME (frvbf,mwcut) }, { FRVBF_INSN_MWCUTI, SEM_FN_NAME (frvbf,mwcuti) }, { FRVBF_INSN_MCUT, SEM_FN_NAME (frvbf,mcut) }, { FRVBF_INSN_MCUTI, SEM_FN_NAME (frvbf,mcuti) }, { FRVBF_INSN_MCUTSS, SEM_FN_NAME (frvbf,mcutss) }, { FRVBF_INSN_MCUTSSI, SEM_FN_NAME (frvbf,mcutssi) }, { FRVBF_INSN_MDCUTSSI, SEM_FN_NAME (frvbf,mdcutssi) }, { FRVBF_INSN_MAVEH, SEM_FN_NAME (frvbf,maveh) }, { FRVBF_INSN_MSLLHI, SEM_FN_NAME (frvbf,msllhi) }, { FRVBF_INSN_MSRLHI, SEM_FN_NAME (frvbf,msrlhi) }, { FRVBF_INSN_MSRAHI, SEM_FN_NAME (frvbf,msrahi) }, { FRVBF_INSN_MDROTLI, SEM_FN_NAME (frvbf,mdrotli) }, { FRVBF_INSN_MCPLHI, SEM_FN_NAME (frvbf,mcplhi) }, { FRVBF_INSN_MCPLI, SEM_FN_NAME (frvbf,mcpli) }, { FRVBF_INSN_MSATHS, SEM_FN_NAME (frvbf,msaths) }, { FRVBF_INSN_MQSATHS, SEM_FN_NAME (frvbf,mqsaths) }, { FRVBF_INSN_MSATHU, SEM_FN_NAME (frvbf,msathu) }, { FRVBF_INSN_MCMPSH, SEM_FN_NAME (frvbf,mcmpsh) }, { FRVBF_INSN_MCMPUH, SEM_FN_NAME (frvbf,mcmpuh) }, { FRVBF_INSN_MABSHS, SEM_FN_NAME (frvbf,mabshs) }, { FRVBF_INSN_MADDHSS, SEM_FN_NAME (frvbf,maddhss) }, { FRVBF_INSN_MADDHUS, SEM_FN_NAME (frvbf,maddhus) }, { FRVBF_INSN_MSUBHSS, SEM_FN_NAME (frvbf,msubhss) }, { FRVBF_INSN_MSUBHUS, SEM_FN_NAME (frvbf,msubhus) }, { FRVBF_INSN_CMADDHSS, SEM_FN_NAME (frvbf,cmaddhss) }, { FRVBF_INSN_CMADDHUS, SEM_FN_NAME (frvbf,cmaddhus) }, { FRVBF_INSN_CMSUBHSS, SEM_FN_NAME (frvbf,cmsubhss) }, { FRVBF_INSN_CMSUBHUS, SEM_FN_NAME (frvbf,cmsubhus) }, { FRVBF_INSN_MQADDHSS, SEM_FN_NAME (frvbf,mqaddhss) }, { FRVBF_INSN_MQADDHUS, SEM_FN_NAME (frvbf,mqaddhus) }, { FRVBF_INSN_MQSUBHSS, SEM_FN_NAME (frvbf,mqsubhss) }, { FRVBF_INSN_MQSUBHUS, SEM_FN_NAME (frvbf,mqsubhus) }, { FRVBF_INSN_CMQADDHSS, SEM_FN_NAME (frvbf,cmqaddhss) }, { FRVBF_INSN_CMQADDHUS, SEM_FN_NAME (frvbf,cmqaddhus) }, { FRVBF_INSN_CMQSUBHSS, SEM_FN_NAME (frvbf,cmqsubhss) }, { FRVBF_INSN_CMQSUBHUS, SEM_FN_NAME (frvbf,cmqsubhus) }, { FRVBF_INSN_MQLCLRHS, SEM_FN_NAME (frvbf,mqlclrhs) }, { FRVBF_INSN_MQLMTHS, SEM_FN_NAME (frvbf,mqlmths) }, { FRVBF_INSN_MQSLLHI, SEM_FN_NAME (frvbf,mqsllhi) }, { FRVBF_INSN_MQSRAHI, SEM_FN_NAME (frvbf,mqsrahi) }, { FRVBF_INSN_MADDACCS, SEM_FN_NAME (frvbf,maddaccs) }, { FRVBF_INSN_MSUBACCS, SEM_FN_NAME (frvbf,msubaccs) }, { FRVBF_INSN_MDADDACCS, SEM_FN_NAME (frvbf,mdaddaccs) }, { FRVBF_INSN_MDSUBACCS, SEM_FN_NAME (frvbf,mdsubaccs) }, { FRVBF_INSN_MASACCS, SEM_FN_NAME (frvbf,masaccs) }, { FRVBF_INSN_MDASACCS, SEM_FN_NAME (frvbf,mdasaccs) }, { FRVBF_INSN_MMULHS, SEM_FN_NAME (frvbf,mmulhs) }, { FRVBF_INSN_MMULHU, SEM_FN_NAME (frvbf,mmulhu) }, { FRVBF_INSN_MMULXHS, SEM_FN_NAME (frvbf,mmulxhs) }, { FRVBF_INSN_MMULXHU, SEM_FN_NAME (frvbf,mmulxhu) }, { FRVBF_INSN_CMMULHS, SEM_FN_NAME (frvbf,cmmulhs) }, { FRVBF_INSN_CMMULHU, SEM_FN_NAME (frvbf,cmmulhu) }, { FRVBF_INSN_MQMULHS, SEM_FN_NAME (frvbf,mqmulhs) }, { FRVBF_INSN_MQMULHU, SEM_FN_NAME (frvbf,mqmulhu) }, { FRVBF_INSN_MQMULXHS, SEM_FN_NAME (frvbf,mqmulxhs) }, { FRVBF_INSN_MQMULXHU, SEM_FN_NAME (frvbf,mqmulxhu) }, { FRVBF_INSN_CMQMULHS, SEM_FN_NAME (frvbf,cmqmulhs) }, { FRVBF_INSN_CMQMULHU, SEM_FN_NAME (frvbf,cmqmulhu) }, { FRVBF_INSN_MMACHS, SEM_FN_NAME (frvbf,mmachs) }, { FRVBF_INSN_MMACHU, SEM_FN_NAME (frvbf,mmachu) }, { FRVBF_INSN_MMRDHS, SEM_FN_NAME (frvbf,mmrdhs) }, { FRVBF_INSN_MMRDHU, SEM_FN_NAME (frvbf,mmrdhu) }, { FRVBF_INSN_CMMACHS, SEM_FN_NAME (frvbf,cmmachs) }, { FRVBF_INSN_CMMACHU, SEM_FN_NAME (frvbf,cmmachu) }, { FRVBF_INSN_MQMACHS, SEM_FN_NAME (frvbf,mqmachs) }, { FRVBF_INSN_MQMACHU, SEM_FN_NAME (frvbf,mqmachu) }, { FRVBF_INSN_CMQMACHS, SEM_FN_NAME (frvbf,cmqmachs) }, { FRVBF_INSN_CMQMACHU, SEM_FN_NAME (frvbf,cmqmachu) }, { FRVBF_INSN_MQXMACHS, SEM_FN_NAME (frvbf,mqxmachs) }, { FRVBF_INSN_MQXMACXHS, SEM_FN_NAME (frvbf,mqxmacxhs) }, { FRVBF_INSN_MQMACXHS, SEM_FN_NAME (frvbf,mqmacxhs) }, { FRVBF_INSN_MCPXRS, SEM_FN_NAME (frvbf,mcpxrs) }, { FRVBF_INSN_MCPXRU, SEM_FN_NAME (frvbf,mcpxru) }, { FRVBF_INSN_MCPXIS, SEM_FN_NAME (frvbf,mcpxis) }, { FRVBF_INSN_MCPXIU, SEM_FN_NAME (frvbf,mcpxiu) }, { FRVBF_INSN_CMCPXRS, SEM_FN_NAME (frvbf,cmcpxrs) }, { FRVBF_INSN_CMCPXRU, SEM_FN_NAME (frvbf,cmcpxru) }, { FRVBF_INSN_CMCPXIS, SEM_FN_NAME (frvbf,cmcpxis) }, { FRVBF_INSN_CMCPXIU, SEM_FN_NAME (frvbf,cmcpxiu) }, { FRVBF_INSN_MQCPXRS, SEM_FN_NAME (frvbf,mqcpxrs) }, { FRVBF_INSN_MQCPXRU, SEM_FN_NAME (frvbf,mqcpxru) }, { FRVBF_INSN_MQCPXIS, SEM_FN_NAME (frvbf,mqcpxis) }, { FRVBF_INSN_MQCPXIU, SEM_FN_NAME (frvbf,mqcpxiu) }, { FRVBF_INSN_MEXPDHW, SEM_FN_NAME (frvbf,mexpdhw) }, { FRVBF_INSN_CMEXPDHW, SEM_FN_NAME (frvbf,cmexpdhw) }, { FRVBF_INSN_MEXPDHD, SEM_FN_NAME (frvbf,mexpdhd) }, { FRVBF_INSN_CMEXPDHD, SEM_FN_NAME (frvbf,cmexpdhd) }, { FRVBF_INSN_MPACKH, SEM_FN_NAME (frvbf,mpackh) }, { FRVBF_INSN_MDPACKH, SEM_FN_NAME (frvbf,mdpackh) }, { FRVBF_INSN_MUNPACKH, SEM_FN_NAME (frvbf,munpackh) }, { FRVBF_INSN_MDUNPACKH, SEM_FN_NAME (frvbf,mdunpackh) }, { FRVBF_INSN_MBTOH, SEM_FN_NAME (frvbf,mbtoh) }, { FRVBF_INSN_CMBTOH, SEM_FN_NAME (frvbf,cmbtoh) }, { FRVBF_INSN_MHTOB, SEM_FN_NAME (frvbf,mhtob) }, { FRVBF_INSN_CMHTOB, SEM_FN_NAME (frvbf,cmhtob) }, { FRVBF_INSN_MBTOHE, SEM_FN_NAME (frvbf,mbtohe) }, { FRVBF_INSN_CMBTOHE, SEM_FN_NAME (frvbf,cmbtohe) }, { FRVBF_INSN_MNOP, SEM_FN_NAME (frvbf,mnop) }, { FRVBF_INSN_MCLRACC_0, SEM_FN_NAME (frvbf,mclracc_0) }, { FRVBF_INSN_MCLRACC_1, SEM_FN_NAME (frvbf,mclracc_1) }, { FRVBF_INSN_MRDACC, SEM_FN_NAME (frvbf,mrdacc) }, { FRVBF_INSN_MRDACCG, SEM_FN_NAME (frvbf,mrdaccg) }, { FRVBF_INSN_MWTACC, SEM_FN_NAME (frvbf,mwtacc) }, { FRVBF_INSN_MWTACCG, SEM_FN_NAME (frvbf,mwtaccg) }, { FRVBF_INSN_MCOP1, SEM_FN_NAME (frvbf,mcop1) }, { FRVBF_INSN_MCOP2, SEM_FN_NAME (frvbf,mcop2) }, { FRVBF_INSN_FNOP, SEM_FN_NAME (frvbf,fnop) }, { 0, 0 } }; /* Add the semantic fns to IDESC_TABLE. */ void SEM_FN_NAME (frvbf,init_idesc_table) (SIM_CPU *current_cpu) { IDESC *idesc_table = CPU_IDESC (current_cpu); const struct sem_fn_desc *sf; int mach_num = MACH_NUM (CPU_MACH (current_cpu)); for (sf = &sem_fns[0]; sf->fn != 0; ++sf) { const CGEN_INSN *insn = idesc_table[sf->index].idata; int valid_p = (CGEN_INSN_VIRTUAL_P (insn) || CGEN_INSN_MACH_HAS_P (insn, mach_num)); #if FAST_P if (valid_p) idesc_table[sf->index].sem_fast = sf->fn; else idesc_table[sf->index].sem_fast = SEM_FN_NAME (frvbf,x_invalid); #else if (valid_p) idesc_table[sf->index].sem_full = sf->fn; else idesc_table[sf->index].sem_full = SEM_FN_NAME (frvbf,x_invalid); #endif } }