/* frv simulator fr550 dependent profiling code.

   Copyright (C) 2003-2014 Free Software Foundation, Inc.
   Contributed by Red Hat

This file is part of the GNU simulators.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.

*/
#define WANT_CPU
#define WANT_CPU_FRVBF

#include "sim-main.h"
#include "bfd.h"

#if WITH_PROFILE_MODEL_P

#include "profile.h"
#include "profile-fr550.h"

/* Initialize cycle counting for an insn.
   FIRST_P is non-zero if this is the first insn in a set of parallel
   insns.  */
void
fr550_model_insn_before (SIM_CPU *cpu, int first_p)
{
  if (first_p)
    {
      MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
      d->cur_fr_load      = d->prev_fr_load;
      d->cur_fr_complex_1 = d->prev_fr_complex_1;
      d->cur_fr_complex_2 = d->prev_fr_complex_2;
      d->cur_ccr_complex  = d->prev_ccr_complex;
      d->cur_acc_mmac     = d->prev_acc_mmac;
    }
}

/* Record the cycles computed for an insn.
   LAST_P is non-zero if this is the last insn in a set of parallel insns,
   and we update the total cycle count.
   CYCLES is the cycle count of the insn.  */
void
fr550_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
{
  if (last_p)
    {
      MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
      d->prev_fr_load      = d->cur_fr_load;
      d->prev_fr_complex_1 = d->cur_fr_complex_1;
      d->prev_fr_complex_2 = d->cur_fr_complex_2;
      d->prev_ccr_complex  = d->cur_ccr_complex;
      d->prev_acc_mmac     = d->cur_acc_mmac;
    }
}

static void fr550_reset_fr_flags (SIM_CPU *cpu, INT fr);
static void fr550_reset_ccr_flags (SIM_CPU *cpu, INT ccr);
static void fr550_reset_acc_flags (SIM_CPU *cpu, INT acc);

static void
set_use_is_fr_load (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  fr550_reset_fr_flags (cpu, (fr));
  d->cur_fr_load |= (((DI)1) << (fr));
}

static void
set_use_not_fr_load (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  d->cur_fr_load &= ~(((DI)1) << (fr));
}

static int
use_is_fr_load (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  return d->prev_fr_load & (((DI)1) << (fr));
}

static void
set_use_is_fr_complex_1 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  fr550_reset_fr_flags (cpu, (fr));
  d->cur_fr_complex_1 |= (((DI)1) << (fr));
}

static void
set_use_not_fr_complex_1 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  d->cur_fr_complex_1 &= ~(((DI)1) << (fr));
}

static int
use_is_fr_complex_1 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  return d->prev_fr_complex_1 & (((DI)1) << (fr));
}

static void
set_use_is_fr_complex_2 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  fr550_reset_fr_flags (cpu, (fr));
  d->cur_fr_complex_2 |= (((DI)1) << (fr));
}

static void
set_use_not_fr_complex_2 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  d->cur_fr_complex_2 &= ~(((DI)1) << (fr));
}

static int
use_is_fr_complex_2 (SIM_CPU *cpu, INT fr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  return d->prev_fr_complex_2 & (((DI)1) << (fr));
}

static void
set_use_is_ccr_complex (SIM_CPU *cpu, INT ccr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  fr550_reset_ccr_flags (cpu, (ccr));
  d->cur_ccr_complex |= (((SI)1) << (ccr));
}

static void
set_use_not_ccr_complex (SIM_CPU *cpu, INT ccr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  d->cur_ccr_complex &= ~(((SI)1) << (ccr));
}

static int
use_is_ccr_complex (SIM_CPU *cpu, INT ccr)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  return d->prev_ccr_complex & (((SI)1) << (ccr));
}

static void
set_use_is_acc_mmac (SIM_CPU *cpu, INT acc)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  fr550_reset_acc_flags (cpu, (acc));
  d->cur_acc_mmac |= (((DI)1) << (acc));
}

static void
set_use_not_acc_mmac (SIM_CPU *cpu, INT acc)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  d->cur_acc_mmac &= ~(((DI)1) << (acc));
}

static int
use_is_acc_mmac (SIM_CPU *cpu, INT acc)
{
  MODEL_FR550_DATA *d = CPU_MODEL_DATA (cpu);
  return d->prev_acc_mmac & (((DI)1) << (acc));
}

static void
fr550_reset_fr_flags (SIM_CPU *cpu, INT fr)
{
  set_use_not_fr_load (cpu, fr);
  set_use_not_fr_complex_1 (cpu, fr);
  set_use_not_fr_complex_2 (cpu, fr);
}

static void
fr550_reset_ccr_flags (SIM_CPU *cpu, INT ccr)
{
  set_use_not_ccr_complex (cpu, ccr);
}

static void
fr550_reset_acc_flags (SIM_CPU *cpu, INT acc)
{
  set_use_not_acc_mmac (cpu, acc);
}

/* Detect overlap between two register ranges. Works if one of the registers
   is -1 with width 1 (i.e. undefined), but not both.  */
#define REG_OVERLAP(r1, w1, r2, w2) ( \
  (r1) + (w1) - 1 >= (r2) && (r2) + (w2) - 1 >= (r1) \
)

/* Latency of floating point registers may be less than recorded when followed
   by another floating point insn.  */
static void
adjust_float_register_busy (SIM_CPU *cpu,
			    INT in_FRi, int iwidth,
			    INT in_FRj, int jwidth,
			    INT out_FRk, int kwidth)
{
  int i;
  /* The latency of FRk may be less than previously recorded.
     See Table 14-15 in the LSI.  */
  if (in_FRi >= 0)
    {
      for (i = 0; i < iwidth; ++i)
	{
	  if (! REG_OVERLAP (in_FRi + i, 1, out_FRk, kwidth))
	    if (use_is_fr_load (cpu, in_FRi + i))
	      decrease_FR_busy (cpu, in_FRi + i, 1);
	    else
	      enforce_full_fr_latency (cpu, in_FRi + i);
	}
    }

  if (in_FRj >= 0)
    {
      for (i = 0; i < jwidth; ++i)
	{
	  if (! REG_OVERLAP (in_FRj + i, 1, in_FRi, iwidth)
	      && ! REG_OVERLAP (in_FRj + i, 1, out_FRk, kwidth))
	    if (use_is_fr_load (cpu, in_FRj + i))
	      decrease_FR_busy (cpu, in_FRj + i, 1);
	    else
	      enforce_full_fr_latency (cpu, in_FRj + i);
	}
    }

  if (out_FRk >= 0)
    {
      for (i = 0; i < kwidth; ++i)
	{
	  if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
	      && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
	    {
	      if (use_is_fr_complex_1 (cpu, out_FRk + i))
		decrease_FR_busy (cpu, out_FRk + i, 1);
	      else if (use_is_fr_complex_2 (cpu, out_FRk + i))
		decrease_FR_busy (cpu, out_FRk + i, 2);
	      else
		enforce_full_fr_latency (cpu, out_FRk + i);
	    }
	}
    }
}

static void
restore_float_register_busy (SIM_CPU *cpu,
			     INT in_FRi, int iwidth,
			     INT in_FRj, int jwidth,
			     INT out_FRk, int kwidth)
{
  int i;
  /* The latency of FRk may be less than previously recorded.
     See Table 14-15 in the LSI.  */
  if (in_FRi >= 0)
    {
      for (i = 0; i < iwidth; ++i)
	{
	  if (! REG_OVERLAP (in_FRi + i, 1, out_FRk, kwidth))
	    if (use_is_fr_load (cpu, in_FRi + i))
	      increase_FR_busy (cpu, in_FRi + i, 1);
	}
    }

  if (in_FRj >= 0)
    {
      for (i = 0; i < jwidth; ++i)
	{
	  if (! REG_OVERLAP (in_FRj + i, 1, in_FRi, iwidth)
	      && ! REG_OVERLAP (in_FRj + i, 1, out_FRk, kwidth))
	    if (use_is_fr_load (cpu, in_FRj + i))
	      increase_FR_busy (cpu, in_FRj + i, 1);
	}
    }

  if (out_FRk >= 0)
    {
      for (i = 0; i < kwidth; ++i)
	{
	  if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
	      && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
	    {
	      if (use_is_fr_complex_1 (cpu, out_FRk + i))
		increase_FR_busy (cpu, out_FRk + i, 1);
	      else if (use_is_fr_complex_2 (cpu, out_FRk + i))
		increase_FR_busy (cpu, out_FRk + i, 2);
	    }
	}
    }
}

/* Latency of floating point registers may be less than recorded when used in a
   media insns and followed by another media insn.  */
static void
adjust_float_register_busy_for_media (SIM_CPU *cpu,
				      INT in_FRi, int iwidth,
				      INT in_FRj, int jwidth,
				      INT out_FRk, int kwidth)
{
  int i;
  /* The latency of FRk may be less than previously recorded.
     See Table 14-15 in the LSI.  */
  if (out_FRk >= 0)
    {
      for (i = 0; i < kwidth; ++i)
	{
	  if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
	      && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
	    {
	      if (use_is_fr_complex_1 (cpu, out_FRk + i))
		decrease_FR_busy (cpu, out_FRk + i, 1);
	      else
		enforce_full_fr_latency (cpu, out_FRk + i);
	    }
	}
    }
}

static void
restore_float_register_busy_for_media (SIM_CPU *cpu,
				       INT in_FRi, int iwidth,
				       INT in_FRj, int jwidth,
				       INT out_FRk, int kwidth)
{
  int i;
  if (out_FRk >= 0)
    {
      for (i = 0; i < kwidth; ++i)
	{
	  if (! REG_OVERLAP (out_FRk + i, 1, in_FRi, iwidth)
	      && ! REG_OVERLAP (out_FRk + i, 1, in_FRj, jwidth))
	    {
	      if (use_is_fr_complex_1 (cpu, out_FRk + i))
		increase_FR_busy (cpu, out_FRk + i, 1);
	    }
	}
    }
}

/* Latency of accumulator registers may be less than recorded when used in a
   media insns and followed by another media insn.  */
static void
adjust_acc_busy_for_mmac (SIM_CPU *cpu,
			  INT in_ACC, int inwidth,
			  INT out_ACC, int outwidth)
{
  int i;
  /* The latency of an accumulator may be less than previously recorded.
     See Table 14-15 in the LSI.  */
  if (in_ACC >= 0)
    {
      for (i = 0; i < inwidth; ++i)
	{
	  if (use_is_acc_mmac (cpu, in_ACC + i))
	    decrease_ACC_busy (cpu, in_ACC + i, 1);
	  else
	    enforce_full_acc_latency (cpu, in_ACC + i);
	}
    }
  if (out_ACC >= 0)
    {
      for (i = 0; i < outwidth; ++i)
	{
	  if (! REG_OVERLAP (out_ACC + i, 1, in_ACC, inwidth))
	    {
	      if (use_is_acc_mmac (cpu, out_ACC + i))
		decrease_ACC_busy (cpu, out_ACC + i, 1);
	      else
		enforce_full_acc_latency (cpu, out_ACC + i);
	    }
	}
    }
}

static void
restore_acc_busy_for_mmac (SIM_CPU *cpu,
			   INT in_ACC, int inwidth,
			   INT out_ACC, int outwidth)
{
  int i;
  if (in_ACC >= 0)
    {
      for (i = 0; i < inwidth; ++i)
	{
	  if (use_is_acc_mmac (cpu, in_ACC + i))
	    increase_ACC_busy (cpu, in_ACC + i, 1);
	}
    }
  if (out_ACC >= 0)
    {
      for (i = 0; i < outwidth; ++i)
	{
	  if (! REG_OVERLAP (out_ACC + i, 1, in_ACC, inwidth))
	    {
	      if (use_is_acc_mmac (cpu, out_ACC + i))
		increase_ACC_busy (cpu, out_ACC + i, 1);
	    }
	}
    }
}

int
frvbf_model_fr550_u_exec (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced)
{
  return idesc->timing->units[unit_num].done;
}

int
frvbf_model_fr550_u_integer (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_GRi, INT in_GRj, INT out_GRk,
			     INT out_ICCi_1)
{
  int cycles;

  /* icc0-icc4 are the upper 4 fields of the CCR.  */
  if (out_ICCi_1 >= 0)
    out_ICCi_1 += 4;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_GR (cpu, out_GRk);
      vliw_wait_for_CCR (cpu, out_ICCi_1);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_GR (cpu, out_GRk);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  fr550_reset_ccr_flags (cpu, out_ICCi_1);

  /* GRk is available immediately to the next VLIW insn as is ICCi_1.  */
  cycles = idesc->timing->units[unit_num].done;
  return cycles;
}

int
frvbf_model_fr550_u_imul (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
  int cycles;
  /* icc0-icc4 are the upper 4 fields of the CCR.  */
  if (out_ICCi_1 >= 0)
    out_ICCi_1 += 4;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_GRdouble (cpu, out_GRk);
      vliw_wait_for_CCR (cpu, out_ICCi_1);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_GRdouble (cpu, out_GRk);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* GRk has a latency of 1 cycles.  */
  cycles = idesc->timing->units[unit_num].done;
  update_GRdouble_latency (cpu, out_GRk, cycles + 1);

  /* ICCi_1 has a latency of 1 cycle.  */
  update_CCR_latency (cpu, out_ICCi_1, cycles + 1);

  fr550_reset_ccr_flags (cpu, out_ICCi_1);

  return cycles;
}

int
frvbf_model_fr550_u_idiv (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1)
{
  int cycles;
  FRV_VLIW *vliw;
  int slot;

  /* icc0-icc4 are the upper 4 fields of the CCR.  */
  if (out_ICCi_1 >= 0)
    out_ICCi_1 += 4;

  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_I0;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_GR (cpu, out_GRk);
      vliw_wait_for_CCR (cpu, out_ICCi_1);
      vliw_wait_for_idiv_resource (cpu, slot);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_GR (cpu, out_GRk);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* GRk has a latency of 18 cycles!  */
  cycles = idesc->timing->units[unit_num].done;
  update_GR_latency (cpu, out_GRk, cycles + 18);

  /* ICCi_1 has a latency of 18 cycles.  */
  update_CCR_latency (cpu, out_ICCi_1, cycles + 18);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      /* GNER has a latency of 18 cycles.  */
      update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 18);
    }

  /* the idiv resource has a latency of 18 cycles!  */
  update_idiv_resource_latency (cpu, slot, cycles + 18);

  fr550_reset_ccr_flags (cpu, out_ICCi_1);

  return cycles;
}

int
frvbf_model_fr550_u_branch (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced,
			    INT in_GRi, INT in_GRj,
			    INT in_ICCi_2, INT in_FCCi_2)
{
  int cycles;
  FRV_PROFILE_STATE *ps;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* icc0-icc4 are the upper 4 fields of the CCR.  */
      if (in_ICCi_2 >= 0)
	in_ICCi_2 += 4;

      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_CCR (cpu, in_ICCi_2);
      vliw_wait_for_CCR (cpu, in_FCCi_2);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* When counting branches taken or not taken, don't consider branches after
     the first taken branch in a vliw insn.  */
  ps = CPU_PROFILE_STATE (cpu);
  if (! ps->vliw_branch_taken)
    {
      /* (1 << 4): The pc is the 5th element in inputs, outputs.
	 ??? can be cleaned up */
      PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
      int taken = (referenced & (1 << 4)) != 0;
      if (taken)
	{
	  ++PROFILE_MODEL_TAKEN_COUNT (p);
	  ps->vliw_branch_taken = 1;
	}
      else
	++PROFILE_MODEL_UNTAKEN_COUNT (p);
    }

  cycles = idesc->timing->units[unit_num].done;
  return cycles;
}

int
frvbf_model_fr550_u_trap (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj,
			  INT in_ICCi_2, INT in_FCCi_2)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* icc0-icc4 are the upper 4 fields of the CCR.  */
      if (in_ICCi_2 >= 0)
	in_ICCi_2 += 4;

      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_CCR (cpu, in_ICCi_2);
      vliw_wait_for_CCR (cpu, in_FCCi_2);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  return cycles;
}

int
frvbf_model_fr550_u_check (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_ICCi_3, INT in_FCCi_3)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced,
				    in_ICCi_3, in_FCCi_3);
}

int
frvbf_model_fr550_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT out_GRkhi, INT out_GRklo)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a GR
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, out_GRkhi);
      vliw_wait_for_GR (cpu, out_GRklo);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, out_GRkhi);
      load_wait_for_GR (cpu, out_GRklo);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* GRk is available immediately to the next VLIW insn.  */
  cycles = idesc->timing->units[unit_num].done;

  return cycles;
}

int
frvbf_model_fr550_u_gr_load (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_GRi, INT in_GRj,
			     INT out_GRk, INT out_GRdoublek)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_GR (cpu, out_GRk);
      vliw_wait_for_GRdouble (cpu, out_GRdoublek);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_GR (cpu, out_GRk);
      load_wait_for_GRdouble (cpu, out_GRdoublek);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;

  /* The latency of GRk for a load will depend on how long it takes to retrieve
     the the data from the cache or memory.  */
  update_GR_latency_for_load (cpu, out_GRk, cycles);
  update_GRdouble_latency_for_load (cpu, out_GRdoublek, cycles);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      /* GNER has a latency of 2 cycles.  */
      update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 2);
      update_SPR_latency (cpu, GNER_FOR_GR (out_GRdoublek), cycles + 2);
    }

  return cycles;
}

int
frvbf_model_fr550_u_gr_store (SIM_CPU *cpu, const IDESC *idesc,
			      int unit_num, int referenced,
			      INT in_GRi, INT in_GRj,
			      INT in_GRk, INT in_GRdoublek)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_GR (cpu, in_GRk);
      vliw_wait_for_GRdouble (cpu, in_GRdoublek);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_GR (cpu, in_GRk);
      load_wait_for_GRdouble (cpu, in_GRdoublek);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* The target register is available immediately.  */
  cycles = idesc->timing->units[unit_num].done;

  return cycles;
}

int
frvbf_model_fr550_u_fr_load (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_GRi, INT in_GRj,
			     INT out_FRk, INT out_FRdoublek)
{
  int cycles;
  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.
	 The latency of the registers may be less than previously recorded,
	 depending on how they were used previously.
	 See Table 13-8 in the LSI.  */
      adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRk, 1);
      adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRdoublek, 2);
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_FR (cpu, out_FRk);
      vliw_wait_for_FRdouble (cpu, out_FRdoublek);
      if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
	{
	  vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
	  vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
	}
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_FR (cpu, out_FRk);
      load_wait_for_FRdouble (cpu, out_FRdoublek);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;

  /* The latency of FRk for a load will depend on how long it takes to retrieve
     the the data from the cache or memory.  */
  update_FR_latency_for_load (cpu, out_FRk, cycles);
  update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      /* FNER has a latency of 3 cycles.  */
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), cycles + 3);
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), cycles + 3);
    }

  if (out_FRk >= 0)
    set_use_is_fr_load (cpu, out_FRk);
  if (out_FRdoublek >= 0)
    {
      set_use_is_fr_load (cpu, out_FRdoublek);
      set_use_is_fr_load (cpu, out_FRdoublek + 1);
    }

  return cycles;
}

int
frvbf_model_fr550_u_fr_store (SIM_CPU *cpu, const IDESC *idesc,
			      int unit_num, int referenced,
			      INT in_GRi, INT in_GRj,
			      INT in_FRk, INT in_FRdoublek)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      adjust_float_register_busy (cpu, in_FRk, 1, -1, 1, -1, 1);
      adjust_float_register_busy (cpu, in_FRdoublek, 2, -1, 1, -1, 1);
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_FR (cpu, in_FRk);
      vliw_wait_for_FRdouble (cpu, in_FRdoublek);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_FR (cpu, in_FRk);
      load_wait_for_FRdouble (cpu, in_FRdoublek);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* The target register is available immediately.  */
  cycles = idesc->timing->units[unit_num].done;

  return cycles;
}

int
frvbf_model_fr550_u_ici (SIM_CPU *cpu, const IDESC *idesc,
			 int unit_num, int referenced,
			 INT in_GRi, INT in_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  request_cache_invalidate (cpu, CPU_INSN_CACHE (cpu), cycles);
  return cycles;
}

int
frvbf_model_fr550_u_dci (SIM_CPU *cpu, const IDESC *idesc,
			 int unit_num, int referenced,
			 INT in_GRi, INT in_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles);
  return cycles;
}

int
frvbf_model_fr550_u_dcf (SIM_CPU *cpu, const IDESC *idesc,
			 int unit_num, int referenced,
			 INT in_GRi, INT in_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  request_cache_flush (cpu, CPU_DATA_CACHE (cpu), cycles);
  return cycles;
}

int
frvbf_model_fr550_u_icpl (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  request_cache_preload (cpu, CPU_INSN_CACHE (cpu), cycles);
  return cycles;
}

int
frvbf_model_fr550_u_dcpl (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  request_cache_preload (cpu, CPU_DATA_CACHE (cpu), cycles);
  return cycles;
}

int
frvbf_model_fr550_u_icul (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  request_cache_unlock (cpu, CPU_INSN_CACHE (cpu), cycles);
  return cycles;
}

int
frvbf_model_fr550_u_dcul (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;
  request_cache_unlock (cpu, CPU_DATA_CACHE (cpu), cycles);
  return cycles;
}

int
frvbf_model_fr550_u_float_arith (SIM_CPU *cpu, const IDESC *idesc,
				 int unit_num, int referenced,
				 INT in_FRi, INT in_FRj,
				 INT in_FRdoublei, INT in_FRdoublej,
				 INT out_FRk, INT out_FRdoublek)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
  adjust_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, out_FRdoublek, 2);
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_float (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FRdouble (cpu, in_FRdoublei);
  post_wait_for_FRdouble (cpu, in_FRdoublej);
  post_wait_for_FRdouble (cpu, out_FRdoublek);
  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
    }
  restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
  restore_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, out_FRdoublek, 2);

  /* The latency of FRk will be at least the latency of the other inputs.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
    }

  /* Once initiated, post-processing will take 2 cycles.  */
  update_FR_ptime (cpu, out_FRk, 2);
  update_FRdouble_ptime (cpu, out_FRdoublek, 2);
  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 2);
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 2);
    }

  /* Mark this use of the register as a floating point op.  */
  if (out_FRk >= 0)
    set_use_is_fr_complex_2 (cpu, out_FRk);
  if (out_FRdoublek >= 0)
    {
      set_use_is_fr_complex_2 (cpu, out_FRdoublek);
      if (out_FRdoublek < 63)
	set_use_is_fr_complex_2 (cpu, out_FRdoublek + 1);
    }

  /* the media point unit resource has a latency of 4 cycles  */
  update_media_resource_latency (cpu, slot, cycles + 4);

  return cycles;
}

int
frvbf_model_fr550_u_float_dual_arith (SIM_CPU *cpu, const IDESC *idesc,
				      int unit_num, int referenced,
				      INT in_FRi, INT in_FRj,
				      INT in_FRdoublei, INT in_FRdoublej,
				      INT out_FRk, INT out_FRdoublek)
{
  int cycles;
  INT dual_FRi;
  INT dual_FRj;
  INT dual_FRk;
  INT dual_FRdoublei;
  INT dual_FRdoublej;
  INT dual_FRdoublek;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  dual_FRi = DUAL_REG (in_FRi);
  dual_FRj = DUAL_REG (in_FRj);
  dual_FRk = DUAL_REG (out_FRk);
  dual_FRdoublei = DUAL_DOUBLE (in_FRdoublei);
  dual_FRdoublej = DUAL_DOUBLE (in_FRdoublej);
  dual_FRdoublek = DUAL_DOUBLE (out_FRdoublek);

  adjust_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);
  adjust_float_register_busy (cpu, in_FRdoublei, 4, in_FRdoublej, 4, out_FRdoublek, 4);
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_float (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, dual_FRj);
  post_wait_for_FR (cpu, dual_FRk);
  post_wait_for_FRdouble (cpu, in_FRdoublei);
  post_wait_for_FRdouble (cpu, in_FRdoublej);
  post_wait_for_FRdouble (cpu, out_FRdoublek);
  post_wait_for_FRdouble (cpu, dual_FRdoublei);
  post_wait_for_FRdouble (cpu, dual_FRdoublej);
  post_wait_for_FRdouble (cpu, dual_FRdoublek);
  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
      post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRk));
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
      post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRdoublek));
    }
  restore_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);
  restore_float_register_busy (cpu, in_FRdoublei, 4, in_FRdoublej, 4, out_FRdoublek, 4);

  /* The latency of FRk will be at least the latency of the other inputs.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_latency (cpu, dual_FRk, ps->post_wait);
  update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);
  update_FRdouble_latency (cpu, dual_FRdoublek, ps->post_wait);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
      update_SPR_latency (cpu, FNER_FOR_FR (dual_FRk), ps->post_wait);
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
      update_SPR_latency (cpu, FNER_FOR_FR (dual_FRdoublek), ps->post_wait);
    }

  /* Once initiated, post-processing will take 3 cycles.  */
  update_FR_ptime (cpu, out_FRk, 3);
  update_FR_ptime (cpu, dual_FRk, 3);
  update_FRdouble_ptime (cpu, out_FRdoublek, 3);
  update_FRdouble_ptime (cpu, dual_FRdoublek, 3);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3);
      update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRk), 3);
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3);
      update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRdoublek), 3);
    }

  /* Mark this use of the register as a floating point op.  */
  if (out_FRk >= 0)
    fr550_reset_fr_flags (cpu, out_FRk);
  if (dual_FRk >= 0)
    fr550_reset_fr_flags (cpu, dual_FRk);
  if (out_FRdoublek >= 0)
    {
      fr550_reset_fr_flags (cpu, out_FRdoublek);
      if (out_FRdoublek < 63)
	fr550_reset_fr_flags (cpu, out_FRdoublek + 1);
    }
  if (dual_FRdoublek >= 0)
    {
      fr550_reset_fr_flags (cpu, dual_FRdoublek);
      if (dual_FRdoublek < 63)
	fr550_reset_fr_flags (cpu, dual_FRdoublek + 1);
    }

  /* the media point unit resource has a latency of 5 cycles  */
  update_media_resource_latency (cpu, slot, cycles + 5);

  return cycles;
}

int
frvbf_model_fr550_u_float_div (SIM_CPU *cpu, const IDESC *idesc,
			       int unit_num, int referenced,
			       INT in_FRi, INT in_FRj, INT out_FRk)
{
  int cycles;
  FRV_VLIW *vliw;
  int slot;
  FRV_PROFILE_STATE *ps;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_float (cpu, slot);
  post_wait_for_fdiv (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);
  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
  restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);

  /* The latency of FRk will be at least the latency of the other inputs.  */
  /* Once initiated, post-processing will take 9 cycles.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 9);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      /* FNER has a latency of 9 cycles.  */
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 9);
    }

  /* The latency of the fdiv unit will be at least the latency of the other
     inputs.  Once initiated, post-processing will take 9 cycles.  */
  update_fdiv_resource_latency (cpu, slot, ps->post_wait + 9);

  /* the media point unit resource has a latency of 11 cycles  */
  update_media_resource_latency (cpu, slot, cycles + 11);

  fr550_reset_fr_flags (cpu, out_FRk);

  return cycles;
}

int
frvbf_model_fr550_u_float_sqrt (SIM_CPU *cpu, const IDESC *idesc,
				int unit_num, int referenced,
				INT in_FRj, INT in_FRdoublej,
				INT out_FRk, INT out_FRdoublek)
{
  int cycles;
  FRV_VLIW *vliw;
  int slot;
  FRV_PROFILE_STATE *ps;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
  adjust_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_float (cpu, slot);
  post_wait_for_fsqrt (cpu, slot);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FRdouble (cpu, in_FRdoublej);
  post_wait_for_FRdouble (cpu, out_FRdoublek);
  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
    }
  restore_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
  restore_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);

  /* The latency of FRk will be at least the latency of the other inputs.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      /* FNER has a latency of 14 cycles.  */
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
    }

  /* Once initiated, post-processing will take 14 cycles.  */
  update_FR_ptime (cpu, out_FRk, 14);
  update_FRdouble_ptime (cpu, out_FRdoublek, 14);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      /* FNER has a latency of 14 cycles.  */
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 14);
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 14);
    }

  /* The latency of the sqrt unit will be the latency of the other
     inputs plus 14 cycles.  */
  update_fsqrt_resource_latency (cpu, slot, ps->post_wait + 14);

  fr550_reset_fr_flags (cpu, out_FRk);
  if (out_FRdoublek != -1)
    {
      fr550_reset_fr_flags (cpu, out_FRdoublek);
      fr550_reset_fr_flags (cpu, out_FRdoublek + 1);
    }

  /* the media point unit resource has a latency of 16 cycles  */
  update_media_resource_latency (cpu, slot, cycles + 16);

  return cycles;
}

int
frvbf_model_fr550_u_float_compare (SIM_CPU *cpu, const IDESC *idesc,
				   int unit_num, int referenced,
				   INT in_FRi, INT in_FRj,
				   INT in_FRdoublei, INT in_FRdoublej,
				   INT out_FCCi_2)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  adjust_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, -1, 1);
  adjust_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, -1, 1);
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_float (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FRdouble (cpu, in_FRdoublei);
  post_wait_for_FRdouble (cpu, in_FRdoublej);
  post_wait_for_CCR (cpu, out_FCCi_2);
  restore_float_register_busy (cpu, in_FRi, 1, in_FRj, 1, -1, 1);
  restore_float_register_busy (cpu, in_FRdoublei, 2, in_FRdoublej, 2, -1, 1);

  /* The latency of FCCi_2 will be the latency of the other inputs plus 2
     cycles.  */
  update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 2);

  /* the media point unit resource has a latency of 4 cycles  */
  update_media_resource_latency (cpu, slot, cycles + 4);

  set_use_is_ccr_complex (cpu, out_FCCi_2);

  return cycles;
}

int
frvbf_model_fr550_u_float_dual_compare (SIM_CPU *cpu, const IDESC *idesc,
					int unit_num, int referenced,
					INT in_FRi, INT in_FRj,
					INT out_FCCi_2)
{
  int cycles;
  INT dual_FRi;
  INT dual_FRj;
  INT dual_FCCi_2;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  dual_FRi = DUAL_REG (in_FRi);
  dual_FRj = DUAL_REG (in_FRj);
  dual_FCCi_2 = out_FCCi_2 + 1;
  adjust_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, -1, 1);
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_float (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, dual_FRj);
  post_wait_for_CCR (cpu, out_FCCi_2);
  post_wait_for_CCR (cpu, dual_FCCi_2);
  restore_float_register_busy (cpu, in_FRi, 2, in_FRj, 2, -1, 1);

  /* The latency of FCCi_2 will be the latency of the other inputs plus 3
     cycles.  */
  update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 3);
  update_CCR_latency (cpu, dual_FCCi_2, ps->post_wait + 3);

  set_use_is_ccr_complex (cpu, out_FCCi_2);
  if (dual_FCCi_2 >= 0)
    set_use_is_ccr_complex (cpu, dual_FCCi_2);

  /* the media point unit resource has a latency of 5 cycles  */
  update_media_resource_latency (cpu, slot, cycles + 5);

  return cycles;
}

int
frvbf_model_fr550_u_float_convert (SIM_CPU *cpu, const IDESC *idesc,
				   int unit_num, int referenced,
				   INT in_FRj, INT in_FRintj, INT in_FRdoublej,
				   INT out_FRk, INT out_FRintk,
				   INT out_FRdoublek)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
  adjust_float_register_busy (cpu, -1, 1, in_FRintj, 1, out_FRintk, 1);
  adjust_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_float (cpu, slot);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, in_FRintj);
  post_wait_for_FRdouble (cpu, in_FRdoublej);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, out_FRintk);
  post_wait_for_FRdouble (cpu, out_FRdoublek);
  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk));
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRintk));
      post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek));
    }
  restore_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
  restore_float_register_busy (cpu, -1, 1, in_FRintj, 1, out_FRintk, 1);
  restore_float_register_busy (cpu, -1, 1, in_FRdoublej, 2, out_FRdoublek, 2);

  /* The latency of FRk will be at least the latency of the other inputs.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_latency (cpu, out_FRintk, ps->post_wait);
  update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait);
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRintk), ps->post_wait);
      update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait);
    }

  /* Once initiated, post-processing will take 2 cycles.  */
  update_FR_ptime (cpu, out_FRk, 2);
  update_FR_ptime (cpu, out_FRintk, 2);
  update_FRdouble_ptime (cpu, out_FRdoublek, 2);

  if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING))
    {
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 2);
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRintk), 2);
      update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 2);
    }

  /* Mark this use of the register as a floating point op.  */
  if (out_FRk >= 0)
    set_use_is_fr_complex_2 (cpu, out_FRk);
  if (out_FRintk >= 0)
    set_use_is_fr_complex_2 (cpu, out_FRintk);
  if (out_FRdoublek >= 0)
    {
      set_use_is_fr_complex_2 (cpu, out_FRdoublek);
      set_use_is_fr_complex_2 (cpu, out_FRdoublek + 1);
    }

  /* the media point unit resource has a latency of 4 cycles  */
  update_media_resource_latency (cpu, slot, cycles + 4);

  return cycles;
}

int
frvbf_model_fr550_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced,
			    INT in_spr, INT out_GRj)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced,
				     in_spr, out_GRj);
}

int
frvbf_model_fr550_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced,
			    INT in_GRj, INT out_spr)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_SPR (cpu, out_spr);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;

#if 0
  /* The latency of spr is ? cycles.  */
  update_SPR_latency (cpu, out_spr, cycles + ?);
#endif

  return cycles;
}

int
frvbf_model_fr550_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_GRj, INT out_FRk)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.
	 The latency of the registers may be less than previously recorded,
	 depending on how they were used previously.
	 See Table 14-15 in the LSI.  */
      adjust_float_register_busy (cpu, -1, 1, -1, 1, out_FRk, 1);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_FR (cpu, out_FRk);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_FR (cpu, out_FRk);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* The latency of FRk is 1 cycles.  */
  cycles = idesc->timing->units[unit_num].done;
  update_FR_latency (cpu, out_FRk, cycles + 1);

  set_use_is_fr_complex_1 (cpu, out_FRk);

  return cycles;
}

int
frvbf_model_fr550_u_swap (SIM_CPU *cpu, const IDESC *idesc,
			  int unit_num, int referenced,
			  INT in_GRi, INT in_GRj, INT out_GRk)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.  */
      vliw_wait_for_GR (cpu, in_GRi);
      vliw_wait_for_GR (cpu, in_GRj);
      vliw_wait_for_GR (cpu, out_GRk);
      handle_resource_wait (cpu);
      load_wait_for_GR (cpu, in_GRi);
      load_wait_for_GR (cpu, in_GRj);
      load_wait_for_GR (cpu, out_GRk);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  cycles = idesc->timing->units[unit_num].done;

  /* The latency of GRk will depend on how long it takes to swap
     the the data from the cache or memory.  */
  update_GR_latency_for_swap (cpu, out_GRk, cycles);

  return cycles;
}

int
frvbf_model_fr550_u_fr2fr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_FRj, INT out_FRk)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.
	 The latency of the registers may be less than previously recorded,
	 depending on how they were used previously.
	 See Table 14-15 in the LSI.  */
      adjust_float_register_busy (cpu, -1, 1, in_FRj, 1, out_FRk, 1);
      vliw_wait_for_FR (cpu, in_FRj);
      vliw_wait_for_FR (cpu, out_FRk);
      handle_resource_wait (cpu);
      load_wait_for_FR (cpu, in_FRj);
      load_wait_for_FR (cpu, out_FRk);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* The latency of FRj is 2 cycles.  */
  cycles = idesc->timing->units[unit_num].done;
  update_FR_latency (cpu, out_FRk, cycles + 2);

  set_use_is_fr_complex_2 (cpu, out_FRk);

  return cycles;
}

int
frvbf_model_fr550_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_FRk, INT out_GRj)
{
  int cycles;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    {
      /* The entire VLIW insn must wait if there is a dependency on a register
	 which is not ready yet.
	 The latency of the registers may be less than previously recorded,
	 depending on how they were used previously.
	 See Table 14-15 in the LSI.  */
      adjust_float_register_busy (cpu, in_FRk, 1, -1, 1, -1, 1);
      vliw_wait_for_FR (cpu, in_FRk);
      vliw_wait_for_GR (cpu, out_GRj);
      handle_resource_wait (cpu);
      load_wait_for_FR (cpu, in_FRk);
      load_wait_for_GR (cpu, out_GRj);
      trace_vliw_wait_cycles (cpu);
      return 0;
    }

  /* The latency of GRj is 1 cycle.  */
  cycles = idesc->timing->units[unit_num].done;
  update_GR_latency (cpu, out_GRj, cycles + 1);

  return cycles;
}

int
frvbf_model_fr550_u_clrgr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_GRk)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_clrgr (cpu, idesc, unit_num, referenced, in_GRk);
}

int
frvbf_model_fr550_u_clrfr (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_FRk)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_clrfr (cpu, idesc, unit_num, referenced, in_FRk);
}

int
frvbf_model_fr550_u_commit (SIM_CPU *cpu, const IDESC *idesc,
			    int unit_num, int referenced,
			    INT in_GRk, INT in_FRk)
{
  /* Modelling for this unit is the same as for fr500.  */
  return frvbf_model_fr500_u_commit (cpu, idesc, unit_num, referenced,
				     in_GRk, in_FRk);
}

int
frvbf_model_fr550_u_media (SIM_CPU *cpu, const IDESC *idesc,
			   int unit_num, int referenced,
			   INT in_FRi, INT in_FRj, INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* If the previous use of the registers was a media op,
     then their latency may be less than previously recorded.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, in_FRi, 1, in_FRj, 1, out_FRk, 1);

  /* The latency of tht output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  if (out_FRk >= 0)
    {
      update_FR_latency (cpu, out_FRk, ps->post_wait);
      update_FR_ptime (cpu, out_FRk, 1);
      /* Mark this use of the register as a media op.  */
      set_use_is_fr_complex_1 (cpu, out_FRk);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_quad (SIM_CPU *cpu, const IDESC *idesc,
				int unit_num, int referenced,
				INT in_FRi, INT in_FRj,
				INT out_FRk)
{
  int cycles;
  INT dual_FRi;
  INT dual_FRj;
  INT dual_FRk;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  dual_FRi = DUAL_REG (in_FRi);
  dual_FRj = DUAL_REG (in_FRj);
  dual_FRk = DUAL_REG (out_FRk);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, dual_FRj);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, dual_FRk);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, out_FRk, 2);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing take 1 cycle.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 1);
  set_use_is_fr_complex_1 (cpu, out_FRk);

  if (dual_FRk >= 0)
    {
      update_FR_latency (cpu, dual_FRk, ps->post_wait);
      update_FR_ptime (cpu, dual_FRk, 1);
      set_use_is_fr_complex_1 (cpu, dual_FRk);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc,
				       int unit_num, int referenced,
				       INT in_FRi, INT out_FRk)
{
  int cycles;
  INT dual_FRk;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* If the previous use of the registers was a media op,
     then their latency will be less than previously recorded.
     See Table 14-15 in the LSI.  */
  dual_FRk = DUAL_REG (out_FRk);
  adjust_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, out_FRk, 2);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, dual_FRk);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, out_FRk, 2);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 1);
  set_use_is_fr_complex_1 (cpu, out_FRk);

  if (dual_FRk >= 0)
    {
      update_FR_latency (cpu, dual_FRk, ps->post_wait);
      update_FR_ptime (cpu, dual_FRk, 1);
      set_use_is_fr_complex_1 (cpu, dual_FRk);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc,
				  int unit_num, int referenced,
				  INT in_FRi, INT out_FRk)
{
  int cycles;
  INT dual_FRi;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  dual_FRi = DUAL_REG (in_FRi);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, in_FRi, 2, -1, 1, out_FRk, 1);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, in_FRi, 2, -1, 1, out_FRk, 1);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing takes 1 cycle.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 1);

  set_use_is_fr_complex_1 (cpu, out_FRk);

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_3_acc (SIM_CPU *cpu, const IDESC *idesc,
				 int unit_num, int referenced,
				 INT in_FRj, INT in_ACC40Si,
				 INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* If the previous use of the registers was a media op,
     then their latency will be less than previously recorded.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, -1, 1, in_FRj, 1, out_FRk, 1);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_ACC (cpu, in_ACC40Si);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, -1, 1, in_FRj, 1, out_FRk, 1);

  /* The latency of tht output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 1);

  set_use_is_fr_complex_1 (cpu, out_FRk);

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_3_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
				      int unit_num, int referenced,
				      INT in_ACC40Si, INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  INT ACC40Si_1;
  INT dual_FRk;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  dual_FRk = DUAL_REG (out_FRk);

  /* If the previous use of the registers was a media op,
     then their latency will be less than previously recorded.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 2);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_FR (cpu, out_FRk);
  post_wait_for_FR (cpu, dual_FRk);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 2);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 1);
  set_use_is_fr_complex_1 (cpu, out_FRk);
  if (dual_FRk >= 0)
    {
      update_FR_latency (cpu, dual_FRk, ps->post_wait);
      update_FR_ptime (cpu, dual_FRk, 1);
      set_use_is_fr_complex_1 (cpu, dual_FRk);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_3_wtacc (SIM_CPU *cpu, const IDESC *idesc,
				   int unit_num, int referenced,
				   INT in_FRi, INT out_ACC40Sk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, -1, 1);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_ACC (cpu, out_ACC40Sk);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, in_FRi, 1, -1, 1, -1, 1);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait);
  update_ACC_ptime (cpu, out_ACC40Sk, 1);
  set_use_is_acc_mmac (cpu, out_ACC40Sk);

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_3_mclracc (SIM_CPU *cpu, const IDESC *idesc,
				     int unit_num, int referenced)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;
  int i;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);

  /* If A was 1 and the accumulator was ACC0, then we must check all
     accumulators. Otherwise just wait for the specified accumulator.  */
  if (ps->mclracc_A && ps->mclracc_acc == 0)
    {
      for (i = 0; i < 8; ++i)
	post_wait_for_ACC (cpu, i);
    }
  else
    post_wait_for_ACC (cpu, ps->mclracc_acc);

  /* The latency of the output registers will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  if (ps->mclracc_A && ps->mclracc_acc == 0)
    {
      for (i = 0; i < 8; ++i)
	{
	  update_ACC_latency (cpu, i, ps->post_wait);
	  update_ACC_ptime (cpu, i, 1);
	  set_use_is_acc_mmac (cpu, i);
	}
    }
  else
    {
      update_ACC_latency (cpu, ps->mclracc_acc, ps->post_wait);
      update_ACC_ptime (cpu, ps->mclracc_acc, 1);
      set_use_is_acc_mmac (cpu, ps->mclracc_acc);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_set (SIM_CPU *cpu, const IDESC *idesc,
			       int unit_num, int referenced,
			       INT out_FRk)
{
  int cycles;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  /* If the previous use of the registers was a media op,
     then their latency will be less than previously recorded.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 1);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps = CPU_PROFILE_STATE (cpu);
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, out_FRk);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, -1, 1, -1, 1, out_FRk, 1);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing takes 1 cycle.  */
  update_FR_latency (cpu, out_FRk, ps->post_wait);
  update_FR_ptime (cpu, out_FRk, 1);
  fr550_reset_acc_flags (cpu, out_FRk);

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_4 (SIM_CPU *cpu, const IDESC *idesc,
			     int unit_num, int referenced,
			     INT in_FRi, INT in_FRj,
			     INT out_ACC40Sk, INT out_ACC40Uk)
{
  int cycles;
  INT dual_ACC40Sk;
  INT dual_ACC40Uk;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ps = CPU_PROFILE_STATE (cpu);
  dual_ACC40Sk = DUAL_REG (out_ACC40Sk);
  dual_ACC40Uk = DUAL_REG (out_ACC40Uk);

  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 2);
  adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 2);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, dual_ACC40Sk);
  post_wait_for_ACC (cpu, out_ACC40Uk);
  post_wait_for_ACC (cpu, dual_ACC40Uk);

  /* Restore the busy cycles of the registers we used.  */
  restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 2);
  restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 2);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycles.  */
  if (out_ACC40Sk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, out_ACC40Sk);
    }
  if (dual_ACC40Sk >= 0)
    {
      update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, dual_ACC40Sk);
    }
  if (out_ACC40Uk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, out_ACC40Uk);
    }
  if (dual_ACC40Uk >= 0)
    {
      update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, dual_ACC40Uk);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_4_acc (SIM_CPU *cpu, const IDESC *idesc,
				 int unit_num, int referenced,
				 INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 1);

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, out_ACC40Sk);

  /* Restore the busy cycles of the registers we used.  */
  restore_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 1);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_use_is_acc_mmac (cpu, out_ACC40Sk);

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc,
				      int unit_num, int referenced,
				      INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  INT ACC40Si_2;
  INT ACC40Si_3;
  INT ACC40Sk_1;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  ACC40Si_2 = DUAL_REG (ACC40Si_1);
  ACC40Si_3 = DUAL_REG (ACC40Si_2);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 2);

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, ACC40Si_2);
  post_wait_for_ACC (cpu, ACC40Si_3);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);

  /* Restore the busy cycles of the registers we used.  */
  restore_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 2);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_use_is_acc_mmac (cpu, out_ACC40Sk);
  if (ACC40Sk_1 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, ACC40Sk_1);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_4_add_sub (SIM_CPU *cpu, const IDESC *idesc,
				     int unit_num, int referenced,
				     INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  INT ACC40Sk_1;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 2);

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);

  /* Restore the busy cycles of the registers we used.  */
  restore_acc_busy_for_mmac (cpu, in_ACC40Si, 2, out_ACC40Sk, 2);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_use_is_acc_mmac (cpu, out_ACC40Sk);
  if (ACC40Sk_1 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, ACC40Sk_1);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_4_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc,
					  int unit_num, int referenced,
					  INT in_ACC40Si, INT out_ACC40Sk)
{
  int cycles;
  INT ACC40Si_1;
  INT ACC40Si_2;
  INT ACC40Si_3;
  INT ACC40Sk_1;
  INT ACC40Sk_2;
  INT ACC40Sk_3;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  ACC40Si_1 = DUAL_REG (in_ACC40Si);
  ACC40Si_2 = DUAL_REG (ACC40Si_1);
  ACC40Si_3 = DUAL_REG (ACC40Si_2);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
  ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
  ACC40Sk_3 = DUAL_REG (ACC40Sk_2);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 4);

  /* The post processing must wait if there is a dependency on a register
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_ACC (cpu, in_ACC40Si);
  post_wait_for_ACC (cpu, ACC40Si_1);
  post_wait_for_ACC (cpu, ACC40Si_2);
  post_wait_for_ACC (cpu, ACC40Si_3);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);
  post_wait_for_ACC (cpu, ACC40Sk_2);
  post_wait_for_ACC (cpu, ACC40Sk_3);

  /* Restore the busy cycles of the registers we used.  */
  restore_acc_busy_for_mmac (cpu, in_ACC40Si, 4, out_ACC40Sk, 4);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);
  set_use_is_acc_mmac (cpu, out_ACC40Sk);
  if (ACC40Sk_1 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, ACC40Sk_1);
    }
  if (ACC40Sk_2 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, ACC40Sk_2);
    }
  if (ACC40Sk_3 >= 0)
    {
      update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);
      set_use_is_acc_mmac (cpu, ACC40Sk_3);
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

int
frvbf_model_fr550_u_media_4_quad (SIM_CPU *cpu, const IDESC *idesc,
				  int unit_num, int referenced,
				  INT in_FRi, INT in_FRj,
				  INT out_ACC40Sk, INT out_ACC40Uk)
{
  int cycles;
  INT dual_FRi;
  INT dual_FRj;
  INT ACC40Sk_1;
  INT ACC40Sk_2;
  INT ACC40Sk_3;
  INT ACC40Uk_1;
  INT ACC40Uk_2;
  INT ACC40Uk_3;
  FRV_PROFILE_STATE *ps;
  FRV_VLIW *vliw;
  int slot;

  if (model_insn == FRV_INSN_MODEL_PASS_1)
    return 0;

  /* The preprocessing can execute right away.  */
  cycles = idesc->timing->units[unit_num].done;

  dual_FRi = DUAL_REG (in_FRi);
  dual_FRj = DUAL_REG (in_FRj);
  ACC40Sk_1 = DUAL_REG (out_ACC40Sk);
  ACC40Sk_2 = DUAL_REG (ACC40Sk_1);
  ACC40Sk_3 = DUAL_REG (ACC40Sk_2);
  ACC40Uk_1 = DUAL_REG (out_ACC40Uk);
  ACC40Uk_2 = DUAL_REG (ACC40Uk_1);
  ACC40Uk_3 = DUAL_REG (ACC40Uk_2);

  ps = CPU_PROFILE_STATE (cpu);
  /* The latency of the registers may be less than previously recorded,
     depending on how they were used previously.
     See Table 14-15 in the LSI.  */
  adjust_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, -1, 1);
  adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 4);
  adjust_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 4);

  /* The post processing must wait if there is a dependency on a FR
     which is not ready yet.  */
  ps->post_wait = cycles;
  vliw = CPU_VLIW (cpu);
  slot = vliw->next_slot - 1;
  slot = (*vliw->current_vliw)[slot] - UNIT_FM0;
  post_wait_for_media (cpu, slot);
  post_wait_for_FR (cpu, in_FRi);
  post_wait_for_FR (cpu, dual_FRi);
  post_wait_for_FR (cpu, in_FRj);
  post_wait_for_FR (cpu, dual_FRj);
  post_wait_for_ACC (cpu, out_ACC40Sk);
  post_wait_for_ACC (cpu, ACC40Sk_1);
  post_wait_for_ACC (cpu, ACC40Sk_2);
  post_wait_for_ACC (cpu, ACC40Sk_3);
  post_wait_for_ACC (cpu, out_ACC40Uk);
  post_wait_for_ACC (cpu, ACC40Uk_1);
  post_wait_for_ACC (cpu, ACC40Uk_2);
  post_wait_for_ACC (cpu, ACC40Uk_3);

  /* Restore the busy cycles of the registers we used.  */
  restore_float_register_busy_for_media (cpu, in_FRi, 2, in_FRj, 2, -1, 1);
  restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Sk, 4);
  restore_acc_busy_for_mmac (cpu, -1, 1, out_ACC40Uk, 4);

  /* The latency of the output register will be at least the latency of the
     other inputs.  Once initiated, post-processing will take 1 cycle.  */
  if (out_ACC40Sk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1);

      set_use_is_acc_mmac (cpu, out_ACC40Sk);
      if (ACC40Sk_1 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1);

	  set_use_is_acc_mmac (cpu, ACC40Sk_1);
	}
      if (ACC40Sk_2 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1);

	  set_use_is_acc_mmac (cpu, ACC40Sk_2);
	}
      if (ACC40Sk_3 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1);

	  set_use_is_acc_mmac (cpu, ACC40Sk_3);
	}
    }
  else if (out_ACC40Uk >= 0)
    {
      update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1);

      set_use_is_acc_mmac (cpu, out_ACC40Uk);
      if (ACC40Uk_1 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1);

	  set_use_is_acc_mmac (cpu, ACC40Uk_1);
	}
      if (ACC40Uk_2 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1);

	  set_use_is_acc_mmac (cpu, ACC40Uk_2);
	}
      if (ACC40Uk_3 >= 0)
	{
	  update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1);

	  set_use_is_acc_mmac (cpu, ACC40Uk_3);
	}
    }

  /* the floating point unit resource has a latency of 3 cycles  */
  update_float_resource_latency (cpu, slot, cycles + 3);

  return cycles;
}

#endif /* WITH_PROFILE_MODEL_P */