/* frv simulator fr500 dependent profiling code. Copyright (C) 1998-2021 Free Software Foundation, Inc. Contributed by Red Hat This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This must come before any other includes. */ #include "defs.h" #define WANT_CPU #define WANT_CPU_FRVBF #include "sim-main.h" #include "bfd.h" #if WITH_PROFILE_MODEL_P #include "profile.h" #include "profile-fr500.h" /* Initialize cycle counting for an insn. FIRST_P is non-zero if this is the first insn in a set of parallel insns. */ void fr500_model_insn_before (SIM_CPU *cpu, int first_p) { if (first_p) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu); ps->cur_gr_complex = ps->prev_gr_complex; d->cur_fpop = d->prev_fpop; d->cur_media = d->prev_media; d->cur_cc_complex = d->prev_cc_complex; } } /* Record the cycles computed for an insn. LAST_P is non-zero if this is the last insn in a set of parallel insns, and we update the total cycle count. CYCLES is the cycle count of the insn. */ void fr500_model_insn_after (SIM_CPU *cpu, int last_p, int cycles) { if (last_p) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu); ps->prev_gr_complex = ps->cur_gr_complex; d->prev_fpop = d->cur_fpop; d->prev_media = d->cur_media; d->prev_cc_complex = d->cur_cc_complex; } } static void set_use_is_fpop (SIM_CPU *cpu, INT fr) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); fr500_reset_fr_flags (cpu, (fr)); d->cur_fpop |= (((DI)1) << (fr)); } static void set_use_not_fpop (SIM_CPU *cpu, INT fr) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); d->cur_fpop &= ~(((DI)1) << (fr)); } static int use_is_fpop (SIM_CPU *cpu, INT fr) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); return d->prev_fpop & (((DI)1) << (fr)); } static void set_use_is_media ( SIM_CPU *cpu, INT fr) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); fr500_reset_fr_flags (cpu, (fr)); d->cur_media |= (((DI)1) << (fr)); } static void set_use_not_media (SIM_CPU *cpu, INT fr) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); d->cur_media &= ~(((DI)1) << (fr)); } static int use_is_media (SIM_CPU *cpu, INT fr) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); return d->prev_media & (((DI)1) << (fr)); } static void set_use_is_cc_complex (SIM_CPU *cpu, INT cc) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); fr500_reset_cc_flags (cpu, cc); d->cur_cc_complex |= (((DI)1) << (cc)); } static void set_use_not_cc_complex (SIM_CPU *cpu, INT cc) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); d->cur_cc_complex &= ~(((DI)1) << (cc)); } static int use_is_cc_complex (SIM_CPU *cpu, INT cc) { MODEL_FR500_DATA *d = CPU_MODEL_DATA (cpu); return d->prev_cc_complex & (((DI)1) << (cc)); } void fr500_reset_fr_flags (SIM_CPU *cpu, INT fr) { set_use_not_fpop (cpu, fr); set_use_not_media (cpu, fr); } void fr500_reset_cc_flags (SIM_CPU *cpu, INT cc) { set_use_not_cc_complex (cpu, cc); } /* Latency of floating point registers may be less than recorded when followed by another floating point insn. */ static void adjust_float_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk, int cycles) { /* If the registers were previously used in a floating point op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ if (in_FRi >= 0) if (use_is_fpop (cpu, in_FRi)) decrease_FR_busy (cpu, in_FRi, cycles); else enforce_full_fr_latency (cpu, in_FRi); if (in_FRj >= 0 && in_FRj != in_FRi) if (use_is_fpop (cpu, in_FRj)) decrease_FR_busy (cpu, in_FRj, cycles); else enforce_full_fr_latency (cpu, in_FRj); if (out_FRk >= 0 && out_FRk != in_FRi && out_FRk != in_FRj) if (use_is_fpop (cpu, out_FRk)) decrease_FR_busy (cpu, out_FRk, cycles); else enforce_full_fr_latency (cpu, out_FRk); } /* Latency of floating point registers may be less than recorded when followed by another floating point insn. */ static void adjust_double_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk, int cycles) { /* If the registers were previously used in a floating point op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles); if (in_FRi >= 0) ++in_FRi; if (in_FRj >= 0) ++in_FRj; if (out_FRk >= 0) ++out_FRk; adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles); } /* Latency of floating point registers is less than recorded when followed by another floating point insn. */ static void restore_float_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk, int cycles) { /* If the registers were previously used in a floating point op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ if (in_FRi >= 0 && use_is_fpop (cpu, in_FRi)) increase_FR_busy (cpu, in_FRi, cycles); if (in_FRj != in_FRi && use_is_fpop (cpu, in_FRj)) increase_FR_busy (cpu, in_FRj, cycles); if (out_FRk != in_FRi && out_FRk != in_FRj && use_is_fpop (cpu, out_FRk)) increase_FR_busy (cpu, out_FRk, cycles); } /* Latency of floating point registers is less than recorded when followed by another floating point insn. */ static void restore_double_register_busy (SIM_CPU *cpu, INT in_FRi, INT in_FRj, INT out_FRk, int cycles) { /* If the registers were previously used in a floating point op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles); if (in_FRi >= 0) ++in_FRi; if (in_FRj >= 0) ++in_FRj; if (out_FRk >= 0) ++out_FRk; restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, cycles); } int frvbf_model_fr500_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { return idesc->timing->units[unit_num].done; } int frvbf_model_fr500_u_integer (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* icc0-icc4 are the upper 4 fields of the CCR. */ if (out_ICCi_1 >= 0) out_ICCi_1 += 4; /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi != out_GRk && in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_GR (cpu, out_GRk); vliw_wait_for_CCR (cpu, out_ICCi_1); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_GR (cpu, out_GRk); trace_vliw_wait_cycles (cpu); return 0; } /* GRk is available immediately to the next VLIW insn as is ICCi_1. */ cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_imul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) { int cycles; /* icc0-icc4 are the upper 4 fields of the CCR. */ if (out_ICCi_1 >= 0) out_ICCi_1 += 4; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi != out_GRk && in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_GRdouble (cpu, out_GRk); vliw_wait_for_CCR (cpu, out_ICCi_1); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_GRdouble (cpu, out_GRk); trace_vliw_wait_cycles (cpu); return 0; } /* GRk has a latency of 2 cycles. */ cycles = idesc->timing->units[unit_num].done; update_GRdouble_latency (cpu, out_GRk, cycles + 2); set_use_is_gr_complex (cpu, out_GRk); set_use_is_gr_complex (cpu, out_GRk + 1); /* ICCi_1 has a latency of 1 cycle. */ update_CCR_latency (cpu, out_ICCi_1, cycles + 1); return cycles; } int frvbf_model_fr500_u_idiv (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) { int cycles; FRV_VLIW *vliw; int slot; /* icc0-icc4 are the upper 4 fields of the CCR. */ if (out_ICCi_1 >= 0) out_ICCi_1 += 4; vliw = CPU_VLIW (cpu); slot = vliw->next_slot - 1; slot = (*vliw->current_vliw)[slot] - UNIT_I0; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi != out_GRk && in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_GR (cpu, out_GRk); vliw_wait_for_CCR (cpu, out_ICCi_1); vliw_wait_for_idiv_resource (cpu, slot); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_GR (cpu, out_GRk); trace_vliw_wait_cycles (cpu); return 0; } /* GRk has a latency of 19 cycles! */ cycles = idesc->timing->units[unit_num].done; update_GR_latency (cpu, out_GRk, cycles + 19); set_use_is_gr_complex (cpu, out_GRk); /* ICCi_1 has a latency of 19 cycles. */ update_CCR_latency (cpu, out_ICCi_1, cycles + 19); set_use_is_cc_complex (cpu, out_ICCi_1); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { /* GNER has a latency of 18 cycles. */ update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 18); } /* the idiv resource has a latency of 18 cycles! */ update_idiv_resource_latency (cpu, slot, cycles + 18); return cycles; } int frvbf_model_fr500_u_branch (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_ICCi_2, INT in_FCCi_2) { int cycles; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* icc0-icc4 are the upper 4 fields of the CCR. */ if (in_ICCi_2 >= 0) in_ICCi_2 += 4; /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_CCR (cpu, in_ICCi_2); vliw_wait_for_CCR (cpu, in_FCCi_2); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } /* When counting branches taken or not taken, don't consider branches after the first taken branch in a vliw insn. */ ps = CPU_PROFILE_STATE (cpu); if (! ps->vliw_branch_taken) { /* (1 << 4): The pc is the 5th element in inputs, outputs. ??? can be cleaned up */ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu); int taken = (referenced & (1 << 4)) != 0; if (taken) { ++PROFILE_MODEL_TAKEN_COUNT (p); ps->vliw_branch_taken = 1; } else ++PROFILE_MODEL_UNTAKEN_COUNT (p); } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_trap (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_ICCi_2, INT in_FCCi_2) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* icc0-icc4 are the upper 4 fields of the CCR. */ if (in_ICCi_2 >= 0) in_ICCi_2 += 4; /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_CCR (cpu, in_ICCi_2); vliw_wait_for_CCR (cpu, in_FCCi_2); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_check (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ICCi_3, INT in_FCCi_3) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* icc0-icc4 are the upper 4 fields of the CCR. */ if (in_ICCi_3 >= 0) in_ICCi_3 += 4; /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. */ vliw_wait_for_CCR (cpu, in_ICCi_3); vliw_wait_for_CCR (cpu, in_FCCi_3); handle_resource_wait (cpu); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_clrgr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRk) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* Wait for both GNER registers or just the one specified. */ if (in_GRk == -1) { vliw_wait_for_SPR (cpu, H_SPR_GNER0); vliw_wait_for_SPR (cpu, H_SPR_GNER1); } else vliw_wait_for_SPR (cpu, GNER_FOR_GR (in_GRk)); handle_resource_wait (cpu); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_clrfr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRk) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* Wait for both GNER registers or just the one specified. */ if (in_FRk == -1) { vliw_wait_for_SPR (cpu, H_SPR_FNER0); vliw_wait_for_SPR (cpu, H_SPR_FNER1); } else vliw_wait_for_SPR (cpu, FNER_FOR_FR (in_FRk)); handle_resource_wait (cpu); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_commit (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRk, INT in_FRk) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* If GR is specified, then FR is not and vice-versa. If neither is then it's a commitga or commitfa. Check the insn attribute to figure out which. */ if (in_GRk != -1) vliw_wait_for_SPR (cpu, GNER_FOR_GR (in_GRk)); else if (in_FRk != -1) vliw_wait_for_SPR (cpu, FNER_FOR_FR (in_FRk)); else if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_FR_ACCESS)) { vliw_wait_for_SPR (cpu, H_SPR_FNER0); vliw_wait_for_SPR (cpu, H_SPR_FNER1); } else { vliw_wait_for_SPR (cpu, H_SPR_GNER0); vliw_wait_for_SPR (cpu, H_SPR_GNER1); } handle_resource_wait (cpu); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT out_GRkhi, INT out_GRklo) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a GR which is not ready yet. */ vliw_wait_for_GR (cpu, out_GRkhi); vliw_wait_for_GR (cpu, out_GRklo); handle_resource_wait (cpu); load_wait_for_GR (cpu, out_GRkhi); load_wait_for_GR (cpu, out_GRklo); trace_vliw_wait_cycles (cpu); return 0; } /* GRk is available immediately to the next VLIW insn. */ cycles = idesc->timing->units[unit_num].done; set_use_not_gr_complex (cpu, out_GRkhi); set_use_not_gr_complex (cpu, out_GRklo); return cycles; } int frvbf_model_fr500_u_gr_load (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_GRdoublek) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi != out_GRk && in_GRi != out_GRdoublek && in_GRi != out_GRdoublek + 1 && in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj != out_GRk && in_GRj != out_GRdoublek && in_GRj != out_GRdoublek + 1 && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_GR (cpu, out_GRk); vliw_wait_for_GRdouble (cpu, out_GRdoublek); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_GR (cpu, out_GRk); load_wait_for_GRdouble (cpu, out_GRdoublek); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; /* The latency of GRk for a load will depend on how long it takes to retrieve the the data from the cache or memory. */ update_GR_latency_for_load (cpu, out_GRk, cycles); update_GRdouble_latency_for_load (cpu, out_GRdoublek, cycles); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { /* GNER has a latency of 2 cycles. */ update_SPR_latency (cpu, GNER_FOR_GR (out_GRk), cycles + 2); update_SPR_latency (cpu, GNER_FOR_GR (out_GRdoublek), cycles + 2); } if (out_GRk >= 0) set_use_is_gr_complex (cpu, out_GRk); if (out_GRdoublek != -1) { set_use_is_gr_complex (cpu, out_GRdoublek); set_use_is_gr_complex (cpu, out_GRdoublek + 1); } return cycles; } int frvbf_model_fr500_u_gr_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_GRk, INT in_GRdoublek) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } if (in_GRk != in_GRi && in_GRk != in_GRj && in_GRk >= 0) { if (use_is_gr_complex (cpu, in_GRk)) decrease_GR_busy (cpu, in_GRk, 1); } if (in_GRdoublek != in_GRi && in_GRdoublek != in_GRj && in_GRdoublek + 1 != in_GRi && in_GRdoublek + 1 != in_GRj && in_GRdoublek >= 0) { if (use_is_gr_complex (cpu, in_GRdoublek)) decrease_GR_busy (cpu, in_GRdoublek, 1); if (use_is_gr_complex (cpu, in_GRdoublek + 1)) decrease_GR_busy (cpu, in_GRdoublek + 1, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_GR (cpu, in_GRk); vliw_wait_for_GRdouble (cpu, in_GRdoublek); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_GR (cpu, in_GRk); load_wait_for_GRdouble (cpu, in_GRdoublek); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_gr_r_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_GRk, INT in_GRdoublek) { int cycles = frvbf_model_fr500_u_gr_store (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, in_GRk, in_GRdoublek); if (model_insn == FRV_INSN_MODEL_PASS_2) { if (CPU_RSTR_INVALIDATE(cpu)) request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles); } return cycles; } int frvbf_model_fr500_u_fr_load (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_FRk, INT out_FRdoublek) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } if (out_FRk >= 0) { if (use_is_media (cpu, out_FRk)) decrease_FR_busy (cpu, out_FRk, 1); else adjust_float_register_busy (cpu, -1, -1, out_FRk, 1); } if (out_FRdoublek >= 0) { if (use_is_media (cpu, out_FRdoublek)) decrease_FR_busy (cpu, out_FRdoublek, 1); else adjust_float_register_busy (cpu, -1, -1, out_FRdoublek, 1); if (use_is_media (cpu, out_FRdoublek + 1)) decrease_FR_busy (cpu, out_FRdoublek + 1, 1); else adjust_float_register_busy (cpu, -1, -1, out_FRdoublek + 1, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_FR (cpu, out_FRk); vliw_wait_for_FRdouble (cpu, out_FRdoublek); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); vliw_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); } handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_FR (cpu, out_FRk); load_wait_for_FRdouble (cpu, out_FRdoublek); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; /* The latency of FRk for a load will depend on how long it takes to retrieve the the data from the cache or memory. */ update_FR_latency_for_load (cpu, out_FRk, cycles); update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { /* FNER has a latency of 3 cycles. */ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), cycles + 3); update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), cycles + 3); } fr500_reset_fr_flags (cpu, out_FRk); return cycles; } int frvbf_model_fr500_u_fr_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_FRk, INT in_FRdoublek) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } if (in_FRk >= 0) { if (use_is_media (cpu, in_FRk)) decrease_FR_busy (cpu, in_FRk, 1); else adjust_float_register_busy (cpu, -1, -1, in_FRk, 1); } if (in_FRdoublek >= 0) { if (use_is_media (cpu, in_FRdoublek)) decrease_FR_busy (cpu, in_FRdoublek, 1); else adjust_float_register_busy (cpu, -1, -1, in_FRdoublek, 1); if (use_is_media (cpu, in_FRdoublek + 1)) decrease_FR_busy (cpu, in_FRdoublek + 1, 1); else adjust_float_register_busy (cpu, -1, -1, in_FRdoublek + 1, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_FR (cpu, in_FRk); vliw_wait_for_FRdouble (cpu, in_FRdoublek); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_FR (cpu, in_FRk); load_wait_for_FRdouble (cpu, in_FRdoublek); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_fr_r_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_FRk, INT in_FRdoublek) { int cycles = frvbf_model_fr500_u_fr_store (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, in_FRk, in_FRdoublek); if (model_insn == FRV_INSN_MODEL_PASS_2) { if (CPU_RSTR_INVALIDATE(cpu)) request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles); } return cycles; } int frvbf_model_fr500_u_swap (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi != out_GRk && in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_GR (cpu, out_GRk); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_GR (cpu, out_GRk); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; /* The latency of GRk will depend on how long it takes to swap the the data from the cache or memory. */ update_GR_latency_for_swap (cpu, out_GRk, cycles); set_use_is_gr_complex (cpu, out_GRk); return cycles; } int frvbf_model_fr500_u_fr2fr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT out_FRk) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. */ if (in_FRj >= 0) { if (use_is_media (cpu, in_FRj)) decrease_FR_busy (cpu, in_FRj, 1); else adjust_float_register_busy (cpu, -1, in_FRj, -1, 1); } if (out_FRk >= 0 && out_FRk != in_FRj) { if (use_is_media (cpu, out_FRk)) decrease_FR_busy (cpu, out_FRk, 1); else adjust_float_register_busy (cpu, -1, -1, out_FRk, 1); } vliw_wait_for_FR (cpu, in_FRj); vliw_wait_for_FR (cpu, out_FRk); handle_resource_wait (cpu); load_wait_for_FR (cpu, in_FRj); load_wait_for_FR (cpu, out_FRk); trace_vliw_wait_cycles (cpu); return 0; } /* The latency of FRj is 3 cycles. */ cycles = idesc->timing->units[unit_num].done; update_FR_latency (cpu, out_FRk, cycles + 3); return cycles; } int frvbf_model_fr500_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRk, INT out_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. */ if (in_FRk >= 0) { if (use_is_media (cpu, in_FRk)) decrease_FR_busy (cpu, in_FRk, 1); else adjust_float_register_busy (cpu, -1, in_FRk, -1, 1); } vliw_wait_for_FR (cpu, in_FRk); vliw_wait_for_GR (cpu, out_GRj); handle_resource_wait (cpu); load_wait_for_FR (cpu, in_FRk); load_wait_for_GR (cpu, out_GRj); trace_vliw_wait_cycles (cpu); return 0; } /* The latency of GRj is 2 cycles. */ cycles = idesc->timing->units[unit_num].done; update_GR_latency (cpu, out_GRj, cycles + 2); set_use_is_gr_complex (cpu, out_GRj); return cycles; } int frvbf_model_fr500_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_spr, INT out_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. */ vliw_wait_for_SPR (cpu, in_spr); vliw_wait_for_GR (cpu, out_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, out_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; #if 0 /* no latency? */ /* The latency of GRj is 2 cycles. */ update_GR_latency (cpu, out_GRj, cycles + 2); #endif return cycles; } int frvbf_model_fr500_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRj, INT out_FRk) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } if (out_FRk >= 0) { if (use_is_media (cpu, out_FRk)) decrease_FR_busy (cpu, out_FRk, 1); else adjust_float_register_busy (cpu, -1, -1, out_FRk, 1); } vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_FR (cpu, out_FRk); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRj); load_wait_for_FR (cpu, out_FRk); trace_vliw_wait_cycles (cpu); return 0; } /* The latency of FRk is 2 cycles. */ cycles = idesc->timing->units[unit_num].done; update_FR_latency (cpu, out_FRk, cycles + 2); /* Mark this use of the register as NOT a floating point op. */ fr500_reset_fr_flags (cpu, out_FRk); return cycles; } int frvbf_model_fr500_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRj, INT out_spr) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_SPR (cpu, out_spr); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; #if 0 /* The latency of spr is ? cycles. */ update_SPR_latency (cpu, out_spr, cycles + ?); #endif return cycles; } int frvbf_model_fr500_u_ici (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; request_cache_invalidate (cpu, CPU_INSN_CACHE (cpu), cycles); return cycles; } int frvbf_model_fr500_u_dci (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; request_cache_invalidate (cpu, CPU_DATA_CACHE (cpu), cycles); return cycles; } int frvbf_model_fr500_u_dcf (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; request_cache_flush (cpu, CPU_DATA_CACHE (cpu), cycles); return cycles; } int frvbf_model_fr500_u_icpl (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; request_cache_preload (cpu, CPU_INSN_CACHE (cpu), cycles); return cycles; } int frvbf_model_fr500_u_dcpl (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; request_cache_preload (cpu, CPU_DATA_CACHE (cpu), cycles); return cycles; } int frvbf_model_fr500_u_icul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; request_cache_unlock (cpu, CPU_INSN_CACHE (cpu), cycles); return cycles; } int frvbf_model_fr500_u_dcul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; request_cache_unlock (cpu, CPU_DATA_CACHE (cpu), cycles); return cycles; } int frvbf_model_fr500_u_float_arith (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT in_FRdoublei, INT in_FRdoublej, INT out_FRk, INT out_FRdoublek) { int cycles; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1); adjust_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek, 1); ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FRdouble (cpu, in_FRdoublei); post_wait_for_FRdouble (cpu, in_FRdoublej); post_wait_for_FRdouble (cpu, out_FRdoublek); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); } restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1); restore_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek, 1); /* The latency of FRk will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait); } /* Once initiated, post-processing will take 3 cycles. */ update_FR_ptime (cpu, out_FRk, 3); update_FRdouble_ptime (cpu, out_FRdoublek, 3); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3); update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3); } /* Mark this use of the register as a floating point op. */ if (out_FRk >= 0) set_use_is_fpop (cpu, out_FRk); if (out_FRdoublek >= 0) { set_use_is_fpop (cpu, out_FRdoublek); if (out_FRdoublek < 63) set_use_is_fpop (cpu, out_FRdoublek + 1); } return cycles; } int frvbf_model_fr500_u_float_dual_arith (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT in_FRdoublei, INT in_FRdoublej, INT out_FRk, INT out_FRdoublek) { int cycles; INT dual_FRi; INT dual_FRj; INT dual_FRk; INT dual_FRdoublei; INT dual_FRdoublej; INT dual_FRdoublek; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ dual_FRi = DUAL_REG (in_FRi); dual_FRj = DUAL_REG (in_FRj); dual_FRk = DUAL_REG (out_FRk); dual_FRdoublei = DUAL_DOUBLE (in_FRdoublei); dual_FRdoublej = DUAL_DOUBLE (in_FRdoublej); dual_FRdoublek = DUAL_DOUBLE (out_FRdoublek); adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1); adjust_float_register_busy (cpu, dual_FRi, dual_FRj, dual_FRk, 1); adjust_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek, 1); adjust_double_register_busy (cpu, dual_FRdoublei, dual_FRdoublej, dual_FRdoublek, 1); ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, dual_FRi); post_wait_for_FR (cpu, dual_FRj); post_wait_for_FR (cpu, dual_FRk); post_wait_for_FRdouble (cpu, in_FRdoublei); post_wait_for_FRdouble (cpu, in_FRdoublej); post_wait_for_FRdouble (cpu, out_FRdoublek); post_wait_for_FRdouble (cpu, dual_FRdoublei); post_wait_for_FRdouble (cpu, dual_FRdoublej); post_wait_for_FRdouble (cpu, dual_FRdoublek); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRk)); post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); post_wait_for_SPR (cpu, FNER_FOR_FR (dual_FRdoublek)); } restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1); restore_float_register_busy (cpu, dual_FRi, dual_FRj, dual_FRk, 1); restore_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, out_FRdoublek, 1); restore_double_register_busy (cpu, dual_FRdoublei, dual_FRdoublej, dual_FRdoublek, 1); /* The latency of FRk will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_latency (cpu, dual_FRk, ps->post_wait); update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); update_FRdouble_latency (cpu, dual_FRdoublek, ps->post_wait); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); update_SPR_latency (cpu, FNER_FOR_FR (dual_FRk), ps->post_wait); update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait); update_SPR_latency (cpu, FNER_FOR_FR (dual_FRdoublek), ps->post_wait); } /* Once initiated, post-processing will take 3 cycles. */ update_FR_ptime (cpu, out_FRk, 3); update_FR_ptime (cpu, dual_FRk, 3); update_FRdouble_ptime (cpu, out_FRdoublek, 3); update_FRdouble_ptime (cpu, dual_FRdoublek, 3); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3); update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRk), 3); update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3); update_SPR_ptime (cpu, FNER_FOR_FR (dual_FRdoublek), 3); } /* Mark this use of the register as a floating point op. */ if (out_FRk >= 0) set_use_is_fpop (cpu, out_FRk); if (dual_FRk >= 0) set_use_is_fpop (cpu, dual_FRk); if (out_FRdoublek >= 0) { set_use_is_fpop (cpu, out_FRdoublek); if (out_FRdoublek < 63) set_use_is_fpop (cpu, out_FRdoublek + 1); } if (dual_FRdoublek >= 0) { set_use_is_fpop (cpu, dual_FRdoublek); if (dual_FRdoublek < 63) set_use_is_fpop (cpu, dual_FRdoublek + 1); } return cycles; } int frvbf_model_fr500_u_float_div (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_FRk) { int cycles; FRV_VLIW *vliw; int slot; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ adjust_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1); ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); vliw = CPU_VLIW (cpu); slot = vliw->next_slot - 1; slot = (*vliw->current_vliw)[slot] - UNIT_FM0; post_wait_for_fdiv (cpu, slot); restore_float_register_busy (cpu, in_FRi, in_FRj, out_FRk, 1); /* The latency of FRk will be at least the latency of the other inputs. */ /* Once initiated, post-processing will take 10 cycles. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 10); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { /* FNER has a latency of 10 cycles. */ update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 10); } /* The latency of the fdiv unit will be at least the latency of the other inputs. Once initiated, post-processing will take 9 cycles. */ update_fdiv_resource_latency (cpu, slot, ps->post_wait + 9); /* Mark this use of the register as a floating point op. */ set_use_is_fpop (cpu, out_FRk); return cycles; } int frvbf_model_fr500_u_float_sqrt (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT in_FRdoublej, INT out_FRk, INT out_FRdoublek) { int cycles; FRV_VLIW *vliw; int slot; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); adjust_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1); ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FRdouble (cpu, in_FRdoublej); post_wait_for_FRdouble (cpu, out_FRdoublek); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); vliw = CPU_VLIW (cpu); slot = vliw->next_slot - 1; slot = (*vliw->current_vliw)[slot] - UNIT_FM0; post_wait_for_fsqrt (cpu, slot); restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); restore_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1); /* The latency of FRk will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); /* Once initiated, post-processing will take 15 cycles. */ update_FR_ptime (cpu, out_FRk, 15); update_FRdouble_ptime (cpu, out_FRdoublek, 15); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 15); /* The latency of the sqrt unit will be the latency of the other inputs plus 14 cycles. */ update_fsqrt_resource_latency (cpu, slot, ps->post_wait + 14); /* Mark this use of the register as a floating point op. */ if (out_FRk >= 0) set_use_is_fpop (cpu, out_FRk); if (out_FRdoublek >= 0) { set_use_is_fpop (cpu, out_FRdoublek); if (out_FRdoublek < 63) set_use_is_fpop (cpu, out_FRdoublek + 1); } return cycles; } int frvbf_model_fr500_u_float_dual_sqrt (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT out_FRk) { int cycles; FRV_VLIW *vliw; int slot; INT dual_FRj; INT dual_FRk; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ dual_FRj = DUAL_REG (in_FRj); dual_FRk = DUAL_REG (out_FRk); adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); adjust_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1); ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, dual_FRj); post_wait_for_FR (cpu, dual_FRk); vliw = CPU_VLIW (cpu); slot = vliw->next_slot - 1; slot = (*vliw->current_vliw)[slot] - UNIT_FM0; post_wait_for_fsqrt (cpu, slot); restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); restore_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1); /* The latency of FRk will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_latency (cpu, dual_FRk, ps->post_wait); /* Once initiated, post-processing will take 15 cycles. */ update_FR_ptime (cpu, out_FRk, 15); update_FR_ptime (cpu, dual_FRk, 15); /* The latency of the sqrt unit will be at least the latency of the other inputs. */ update_fsqrt_resource_latency (cpu, slot, ps->post_wait + 14); /* Mark this use of the register as a floating point op. */ if (out_FRk >= 0) set_use_is_fpop (cpu, out_FRk); if (dual_FRk >= 0) set_use_is_fpop (cpu, dual_FRk); return cycles; } int frvbf_model_fr500_u_float_compare (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT in_FRdoublei, INT in_FRdoublej, INT out_FCCi_2) { int cycles; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ adjust_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, -1, 1); ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FRdouble (cpu, in_FRdoublei); post_wait_for_FRdouble (cpu, in_FRdoublej); post_wait_for_CCR (cpu, out_FCCi_2); restore_double_register_busy (cpu, in_FRdoublei, in_FRdoublej, -1, 1); /* The latency of FCCi_2 will be the latency of the other inputs plus 3 cycles. */ update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 3); return cycles; } int frvbf_model_fr500_u_float_dual_compare (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_FCCi_2) { int cycles; INT dual_FRi; INT dual_FRj; INT dual_FCCi_2; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; dual_FRi = DUAL_REG (in_FRi); dual_FRj = DUAL_REG (in_FRj); dual_FCCi_2 = out_FCCi_2 + 1; adjust_float_register_busy (cpu, in_FRi, in_FRj, -1, 1); adjust_float_register_busy (cpu, dual_FRi, dual_FRj, -1, 1); post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, dual_FRi); post_wait_for_FR (cpu, dual_FRj); post_wait_for_CCR (cpu, out_FCCi_2); post_wait_for_CCR (cpu, dual_FCCi_2); restore_float_register_busy (cpu, in_FRi, in_FRj, -1, 1); restore_float_register_busy (cpu, dual_FRi, dual_FRj, -1, 1); /* The latency of FCCi_2 will be the latency of the other inputs plus 3 cycles. */ update_CCR_latency (cpu, out_FCCi_2, ps->post_wait + 3); update_CCR_latency (cpu, dual_FCCi_2, ps->post_wait + 3); return cycles; } int frvbf_model_fr500_u_float_convert (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT in_FRintj, INT in_FRdoublej, INT out_FRk, INT out_FRintk, INT out_FRdoublek) { int cycles; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); adjust_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1); adjust_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, in_FRintj); post_wait_for_FRdouble (cpu, in_FRdoublej); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, out_FRintk); post_wait_for_FRdouble (cpu, out_FRdoublek); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRk)); post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRintk)); post_wait_for_SPR (cpu, FNER_FOR_FR (out_FRdoublek)); } restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); restore_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1); restore_double_register_busy (cpu, -1, in_FRdoublej, out_FRdoublek, 1); /* The latency of FRk will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_latency (cpu, out_FRintk, ps->post_wait); update_FRdouble_latency (cpu, out_FRdoublek, ps->post_wait); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { update_SPR_latency (cpu, FNER_FOR_FR (out_FRk), ps->post_wait); update_SPR_latency (cpu, FNER_FOR_FR (out_FRintk), ps->post_wait); update_SPR_latency (cpu, FNER_FOR_FR (out_FRdoublek), ps->post_wait); } /* Once initiated, post-processing will take 3 cycles. */ update_FR_ptime (cpu, out_FRk, 3); update_FR_ptime (cpu, out_FRintk, 3); update_FRdouble_ptime (cpu, out_FRdoublek, 3); if (CGEN_ATTR_VALUE(idesc, idesc->attrs, CGEN_INSN_NON_EXCEPTING)) { update_SPR_ptime (cpu, FNER_FOR_FR (out_FRk), 3); update_SPR_ptime (cpu, FNER_FOR_FR (out_FRintk), 3); update_SPR_ptime (cpu, FNER_FOR_FR (out_FRdoublek), 3); } /* Mark this use of the register as a floating point op. */ if (out_FRk >= 0) set_use_is_fpop (cpu, out_FRk); if (out_FRintk >= 0) set_use_is_fpop (cpu, out_FRintk); if (out_FRdoublek >= 0) { set_use_is_fpop (cpu, out_FRdoublek); set_use_is_fpop (cpu, out_FRdoublek + 1); } return cycles; } int frvbf_model_fr500_u_float_dual_convert (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT in_FRintj, INT out_FRk, INT out_FRintk) { int cycles; INT dual_FRj; INT dual_FRintj; INT dual_FRk; INT dual_FRintk; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps = CPU_PROFILE_STATE (cpu); ps->post_wait = cycles; dual_FRj = DUAL_REG (in_FRj); dual_FRintj = DUAL_REG (in_FRintj); dual_FRk = DUAL_REG (out_FRk); dual_FRintk = DUAL_REG (out_FRintk); adjust_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); adjust_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1); adjust_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1); adjust_float_register_busy (cpu, -1, dual_FRintj, dual_FRintk, 1); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, in_FRintj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, out_FRintk); post_wait_for_FR (cpu, dual_FRj); post_wait_for_FR (cpu, dual_FRintj); post_wait_for_FR (cpu, dual_FRk); post_wait_for_FR (cpu, dual_FRintk); restore_float_register_busy (cpu, -1, in_FRj, out_FRk, 1); restore_float_register_busy (cpu, -1, dual_FRj, dual_FRk, 1); restore_float_register_busy (cpu, -1, in_FRintj, out_FRintk, 1); restore_float_register_busy (cpu, -1, dual_FRintj, dual_FRintk, 1); /* The latency of FRk will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_latency (cpu, out_FRintk, ps->post_wait); update_FR_latency (cpu, dual_FRk, ps->post_wait); update_FR_latency (cpu, dual_FRintk, ps->post_wait); /* Once initiated, post-processing will take 3 cycles. */ update_FR_ptime (cpu, out_FRk, 3); update_FR_ptime (cpu, out_FRintk, 3); update_FR_ptime (cpu, dual_FRk, 3); update_FR_ptime (cpu, dual_FRintk, 3); /* Mark this use of the register as a floating point op. */ if (out_FRk >= 0) set_use_is_fpop (cpu, out_FRk); if (out_FRintk >= 0) set_use_is_fpop (cpu, out_FRintk); return cycles; } int frvbf_model_fr500_u_media (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT in_ACC40Si, INT in_ACCGi, INT out_FRk, INT out_ACC40Sk, INT out_ACC40Uk, INT out_ACCGk) { int cycles; FRV_PROFILE_STATE *ps; const CGEN_INSN *insn; int is_media_s1; int is_media_s2; int busy_adjustment[] = {0, 0, 0}; int *fr; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); insn = idesc->idata; /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ if (in_FRi >= 0) { if (use_is_media (cpu, in_FRi)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); } if (in_FRj >= 0 && in_FRj != in_FRi) { if (use_is_media (cpu, in_FRj)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, in_FRj); } if (out_FRk >= 0 && out_FRk != in_FRi && out_FRk != in_FRj) { if (use_is_media (cpu, out_FRk)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, out_FRk, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, out_FRk); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_ACC (cpu, in_ACC40Si); post_wait_for_ACC (cpu, in_ACCGi); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, out_ACC40Uk); post_wait_for_ACC (cpu, out_ACCGk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; if (in_FRi >= 0) fr[in_FRi] += busy_adjustment[0]; if (in_FRj >= 0) fr[in_FRj] += busy_adjustment[1]; if (out_FRk >= 0) fr[out_FRk] += busy_adjustment[2]; /* The latency of tht output register will be at least the latency of the other inputs. Once initiated, post-processing will take 3 cycles. */ if (out_FRk >= 0) { update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, out_FRk); } /* The latency of tht output accumulator will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_ACC40Sk >= 0) update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); if (out_ACC40Uk >= 0) update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1); if (out_ACCGk >= 0) update_ACC_latency (cpu, out_ACCGk, ps->post_wait + 1); return cycles; } int frvbf_model_fr500_u_media_quad_arith (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_FRk) { int cycles; INT dual_FRi; INT dual_FRj; INT dual_FRk; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); dual_FRi = DUAL_REG (in_FRi); dual_FRj = DUAL_REG (in_FRj); dual_FRk = DUAL_REG (out_FRk); /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ if (use_is_media (cpu, in_FRi)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (dual_FRi >= 0 && use_is_media (cpu, dual_FRi)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, dual_FRi); if (in_FRj != in_FRi) { if (use_is_media (cpu, in_FRj)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, in_FRj); if (dual_FRj >= 0 && use_is_media (cpu, dual_FRj)) { busy_adjustment[3] = 2; decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]); } else enforce_full_fr_latency (cpu, dual_FRj + 1); } if (out_FRk != in_FRi && out_FRk != in_FRj) { if (use_is_media (cpu, out_FRk)) { busy_adjustment[4] = 2; decrease_FR_busy (cpu, out_FRk, busy_adjustment[4]); } else enforce_full_fr_latency (cpu, out_FRk); if (dual_FRk >= 0 && use_is_media (cpu, dual_FRk)) { busy_adjustment[5] = 2; decrease_FR_busy (cpu, dual_FRk, busy_adjustment[5]); } else enforce_full_fr_latency (cpu, dual_FRk); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, dual_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, dual_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, dual_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRi] += busy_adjustment[0]; if (dual_FRi >= 0) fr[dual_FRi] += busy_adjustment[1]; fr[in_FRj] += busy_adjustment[2]; if (dual_FRj >= 0) fr[dual_FRj] += busy_adjustment[3]; fr[out_FRk] += busy_adjustment[4]; if (dual_FRk >= 0) fr[dual_FRk] += busy_adjustment[5]; /* The latency of tht output register will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); /* Once initiated, post-processing will take 3 cycles. */ update_FR_ptime (cpu, out_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, out_FRk); if (dual_FRk >= 0) { update_FR_latency (cpu, dual_FRk, ps->post_wait); update_FR_ptime (cpu, dual_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, dual_FRk); } return cycles; } int frvbf_model_fr500_u_media_dual_mul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_ACC40Sk, INT out_ACC40Uk) { int cycles; INT dual_ACC40Sk; INT dual_ACC40Uk; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0}; int *fr; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); dual_ACC40Sk = DUAL_REG (out_ACC40Sk); dual_ACC40Uk = DUAL_REG (out_ACC40Uk); /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ if (use_is_media (cpu, in_FRi)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (in_FRj != in_FRi) { if (use_is_media (cpu, in_FRj)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, in_FRj); } if (out_ACC40Sk >= 0) { busy_adjustment[2] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]); } if (dual_ACC40Sk >= 0) { busy_adjustment[3] = 1; decrease_ACC_busy (cpu, dual_ACC40Sk, busy_adjustment[3]); } if (out_ACC40Uk >= 0) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]); } if (dual_ACC40Uk >= 0) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, dual_ACC40Uk, busy_adjustment[5]); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, dual_ACC40Sk); post_wait_for_ACC (cpu, out_ACC40Uk); post_wait_for_ACC (cpu, dual_ACC40Uk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; acc = ps->acc_busy; fr[in_FRi] += busy_adjustment[0]; fr[in_FRj] += busy_adjustment[1]; if (out_ACC40Sk >= 0) acc[out_ACC40Sk] += busy_adjustment[2]; if (dual_ACC40Sk >= 0) acc[dual_ACC40Sk] += busy_adjustment[3]; if (out_ACC40Uk >= 0) acc[out_ACC40Uk] += busy_adjustment[4]; if (dual_ACC40Uk >= 0) acc[dual_ACC40Uk] += busy_adjustment[5]; /* The latency of tht output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_ACC40Sk >= 0) update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); if (dual_ACC40Sk >= 0) update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1); if (out_ACC40Uk >= 0) update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1); if (dual_ACC40Uk >= 0) update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1); return cycles; } int frvbf_model_fr500_u_media_quad_mul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_ACC40Sk, INT out_ACC40Uk) { int cycles; INT FRi_1; INT FRj_1; INT ACC40Sk_1; INT ACC40Sk_2; INT ACC40Sk_3; INT ACC40Uk_1; INT ACC40Uk_2; INT ACC40Uk_3; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0 ,0}; int *fr; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; FRi_1 = DUAL_REG (in_FRi); FRj_1 = DUAL_REG (in_FRj); ACC40Sk_1 = DUAL_REG (out_ACC40Sk); ACC40Sk_2 = DUAL_REG (ACC40Sk_1); ACC40Sk_3 = DUAL_REG (ACC40Sk_2); ACC40Uk_1 = DUAL_REG (out_ACC40Uk); ACC40Uk_2 = DUAL_REG (ACC40Uk_1); ACC40Uk_3 = DUAL_REG (ACC40Uk_2); /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ ps = CPU_PROFILE_STATE (cpu); if (use_is_media (cpu, in_FRi)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (FRi_1 >= 0) { if (use_is_media (cpu, FRi_1)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, FRi_1, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, FRi_1); } if (in_FRj != in_FRi) { if (use_is_media (cpu, in_FRj)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, in_FRj); if (FRj_1 >= 0) { if (use_is_media (cpu, FRj_1)) { busy_adjustment[3] = 2; decrease_FR_busy (cpu, FRj_1, busy_adjustment[3]); } else enforce_full_fr_latency (cpu, FRj_1); } } if (out_ACC40Sk >= 0) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]); if (ACC40Sk_1 >= 0) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]); } if (ACC40Sk_2 >= 0) { busy_adjustment[6] = 1; decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]); } if (ACC40Sk_3 >= 0) { busy_adjustment[7] = 1; decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]); } } else if (out_ACC40Uk >= 0) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]); if (ACC40Uk_1 >= 0) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, ACC40Uk_1, busy_adjustment[5]); } if (ACC40Uk_2 >= 0) { busy_adjustment[6] = 1; decrease_ACC_busy (cpu, ACC40Uk_2, busy_adjustment[6]); } if (ACC40Uk_3 >= 0) { busy_adjustment[7] = 1; decrease_ACC_busy (cpu, ACC40Uk_3, busy_adjustment[7]); } } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, FRi_1); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, FRj_1); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, ACC40Sk_1); post_wait_for_ACC (cpu, ACC40Sk_2); post_wait_for_ACC (cpu, ACC40Sk_3); post_wait_for_ACC (cpu, out_ACC40Uk); post_wait_for_ACC (cpu, ACC40Uk_1); post_wait_for_ACC (cpu, ACC40Uk_2); post_wait_for_ACC (cpu, ACC40Uk_3); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; acc = ps->acc_busy; fr[in_FRi] += busy_adjustment[0]; if (FRi_1 >= 0) fr[FRi_1] += busy_adjustment[1]; fr[in_FRj] += busy_adjustment[2]; if (FRj_1 > 0) fr[FRj_1] += busy_adjustment[3]; if (out_ACC40Sk >= 0) { acc[out_ACC40Sk] += busy_adjustment[4]; if (ACC40Sk_1 >= 0) acc[ACC40Sk_1] += busy_adjustment[5]; if (ACC40Sk_2 >= 0) acc[ACC40Sk_2] += busy_adjustment[6]; if (ACC40Sk_3 >= 0) acc[ACC40Sk_3] += busy_adjustment[7]; } else if (out_ACC40Uk >= 0) { acc[out_ACC40Uk] += busy_adjustment[4]; if (ACC40Uk_1 >= 0) acc[ACC40Uk_1] += busy_adjustment[5]; if (ACC40Uk_2 >= 0) acc[ACC40Uk_2] += busy_adjustment[6]; if (ACC40Uk_3 >= 0) acc[ACC40Uk_3] += busy_adjustment[7]; } /* The latency of tht output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_ACC40Sk >= 0) { update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); if (ACC40Sk_1 >= 0) update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); if (ACC40Sk_2 >= 0) update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1); if (ACC40Sk_3 >= 0) update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1); } else if (out_ACC40Uk >= 0) { update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1); if (ACC40Uk_1 >= 0) update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1); if (ACC40Uk_2 >= 0) update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1); if (ACC40Uk_3 >= 0) update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1); } return cycles; } int frvbf_model_fr500_u_media_quad_complex (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_ACC40Sk) { int cycles; INT FRi_1; INT FRj_1; INT ACC40Sk_1; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0}; int *fr; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; FRi_1 = DUAL_REG (in_FRi); FRj_1 = DUAL_REG (in_FRj); ACC40Sk_1 = DUAL_REG (out_ACC40Sk); /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ ps = CPU_PROFILE_STATE (cpu); if (use_is_media (cpu, in_FRi)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (FRi_1 >= 0) { if (use_is_media (cpu, FRi_1)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, FRi_1, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, FRi_1); } if (in_FRj != in_FRi) { if (use_is_media (cpu, in_FRj)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, in_FRj); if (FRj_1 >= 0) { if (use_is_media (cpu, FRj_1)) { busy_adjustment[3] = 2; decrease_FR_busy (cpu, FRj_1, busy_adjustment[3]); } else enforce_full_fr_latency (cpu, FRj_1); } } if (out_ACC40Sk >= 0) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]); if (ACC40Sk_1 >= 0) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]); } } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, FRi_1); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, FRj_1); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, ACC40Sk_1); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; acc = ps->acc_busy; fr[in_FRi] += busy_adjustment[0]; if (FRi_1 >= 0) fr[FRi_1] += busy_adjustment[1]; fr[in_FRj] += busy_adjustment[2]; if (FRj_1 > 0) fr[FRj_1] += busy_adjustment[3]; if (out_ACC40Sk >= 0) { acc[out_ACC40Sk] += busy_adjustment[4]; if (ACC40Sk_1 >= 0) acc[ACC40Sk_1] += busy_adjustment[5]; } /* The latency of tht output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_ACC40Sk >= 0) { update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); if (ACC40Sk_1 >= 0) update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); } return cycles; } int frvbf_model_fr500_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT out_FRk) { int cycles; INT dual_FRk; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ dual_FRk = DUAL_REG (out_FRk); ps = CPU_PROFILE_STATE (cpu); if (use_is_media (cpu, in_FRi)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (out_FRk != in_FRi) { if (use_is_media (cpu, out_FRk)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, out_FRk, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, out_FRk); } if (dual_FRk >= 0 && dual_FRk != in_FRi) { if (use_is_media (cpu, dual_FRk)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, dual_FRk, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, dual_FRk); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, dual_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRi] += busy_adjustment[0]; fr[out_FRk] += busy_adjustment[1]; if (dual_FRk >= 0) fr[dual_FRk] += busy_adjustment[2]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 3 cycles. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, out_FRk); if (dual_FRk >= 0) { update_FR_latency (cpu, dual_FRk, ps->post_wait); update_FR_ptime (cpu, dual_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, dual_FRk); } return cycles; } int frvbf_model_fr500_u_media_dual_unpack (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT out_FRk) { int cycles; INT FRi_1; INT FRk_1; INT FRk_2; INT FRk_3; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; FRi_1 = DUAL_REG (in_FRi); FRk_1 = DUAL_REG (out_FRk); FRk_2 = DUAL_REG (FRk_1); FRk_3 = DUAL_REG (FRk_2); /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ ps = CPU_PROFILE_STATE (cpu); if (use_is_media (cpu, in_FRi)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (FRi_1 >= 0 && use_is_media (cpu, FRi_1)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, FRi_1, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, FRi_1); if (out_FRk != in_FRi) { if (use_is_media (cpu, out_FRk)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, out_FRk, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, out_FRk); if (FRk_1 >= 0 && FRk_1 != in_FRi) { if (use_is_media (cpu, FRk_1)) { busy_adjustment[3] = 2; decrease_FR_busy (cpu, FRk_1, busy_adjustment[3]); } else enforce_full_fr_latency (cpu, FRk_1); } if (FRk_2 >= 0 && FRk_2 != in_FRi) { if (use_is_media (cpu, FRk_2)) { busy_adjustment[4] = 2; decrease_FR_busy (cpu, FRk_2, busy_adjustment[4]); } else enforce_full_fr_latency (cpu, FRk_2); } if (FRk_3 >= 0 && FRk_3 != in_FRi) { if (use_is_media (cpu, FRk_3)) { busy_adjustment[5] = 2; decrease_FR_busy (cpu, FRk_3, busy_adjustment[5]); } else enforce_full_fr_latency (cpu, FRk_3); } } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, FRi_1); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, FRk_1); post_wait_for_FR (cpu, FRk_2); post_wait_for_FR (cpu, FRk_3); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRi] += busy_adjustment[0]; if (FRi_1 >= 0) fr[FRi_1] += busy_adjustment[1]; fr[out_FRk] += busy_adjustment[2]; if (FRk_1 >= 0) fr[FRk_1] += busy_adjustment[3]; if (FRk_2 >= 0) fr[FRk_2] += busy_adjustment[4]; if (FRk_3 >= 0) fr[FRk_3] += busy_adjustment[5]; /* The latency of tht output register will be at least the latency of the other inputs. Once initiated, post-processing will take 3 cycles. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, out_FRk); if (FRk_1 >= 0) { update_FR_latency (cpu, FRk_1, ps->post_wait); update_FR_ptime (cpu, FRk_1, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, FRk_1); } if (FRk_2 >= 0) { update_FR_latency (cpu, FRk_2, ps->post_wait); update_FR_ptime (cpu, FRk_2, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, FRk_2); } if (FRk_3 >= 0) { update_FR_latency (cpu, FRk_3, ps->post_wait); update_FR_ptime (cpu, FRk_3, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, FRk_3); } return cycles; } int frvbf_model_fr500_u_media_dual_btoh (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT out_FRk) { return frvbf_model_fr500_u_media_dual_expand (cpu, idesc, unit_num, referenced, in_FRj, out_FRk); } int frvbf_model_fr500_u_media_dual_htob (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT out_FRk) { int cycles; INT dual_FRj; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ dual_FRj = DUAL_REG (in_FRj); ps = CPU_PROFILE_STATE (cpu); if (use_is_media (cpu, in_FRj)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRj); if (dual_FRj >= 0) { if (use_is_media (cpu, dual_FRj)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, dual_FRj, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, dual_FRj); } if (out_FRk != in_FRj) { if (use_is_media (cpu, out_FRk)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, out_FRk, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, out_FRk); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, dual_FRj); post_wait_for_FR (cpu, out_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRj] += busy_adjustment[0]; if (dual_FRj >= 0) fr[dual_FRj] += busy_adjustment[1]; fr[out_FRk] += busy_adjustment[2]; /* The latency of tht output register will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); /* Once initiated, post-processing will take 3 cycles. */ update_FR_ptime (cpu, out_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, out_FRk); return cycles; } int frvbf_model_fr500_u_media_dual_btohe (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT out_FRk) { int cycles; INT FRk_1; INT FRk_2; INT FRk_3; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; FRk_1 = DUAL_REG (out_FRk); FRk_2 = DUAL_REG (FRk_1); FRk_3 = DUAL_REG (FRk_2); /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ ps = CPU_PROFILE_STATE (cpu); if (use_is_media (cpu, in_FRj)) { busy_adjustment[0] = 2; decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRj); if (out_FRk != in_FRj) { if (use_is_media (cpu, out_FRk)) { busy_adjustment[1] = 2; decrease_FR_busy (cpu, out_FRk, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, out_FRk); if (FRk_1 >= 0 && FRk_1 != in_FRj) { if (use_is_media (cpu, FRk_1)) { busy_adjustment[2] = 2; decrease_FR_busy (cpu, FRk_1, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, FRk_1); } if (FRk_2 >= 0 && FRk_2 != in_FRj) { if (use_is_media (cpu, FRk_2)) { busy_adjustment[3] = 2; decrease_FR_busy (cpu, FRk_2, busy_adjustment[3]); } else enforce_full_fr_latency (cpu, FRk_2); } if (FRk_3 >= 0 && FRk_3 != in_FRj) { if (use_is_media (cpu, FRk_3)) { busy_adjustment[4] = 2; decrease_FR_busy (cpu, FRk_3, busy_adjustment[4]); } else enforce_full_fr_latency (cpu, FRk_3); } } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, FRk_1); post_wait_for_FR (cpu, FRk_2); post_wait_for_FR (cpu, FRk_3); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRj] += busy_adjustment[0]; fr[out_FRk] += busy_adjustment[1]; if (FRk_1 >= 0) fr[FRk_1] += busy_adjustment[2]; if (FRk_2 >= 0) fr[FRk_2] += busy_adjustment[3]; if (FRk_3 >= 0) fr[FRk_3] += busy_adjustment[4]; /* The latency of tht output register will be at least the latency of the other inputs. Once initiated, post-processing will take 3 cycles. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, out_FRk); if (FRk_1 >= 0) { update_FR_latency (cpu, FRk_1, ps->post_wait); update_FR_ptime (cpu, FRk_1, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, FRk_1); } if (FRk_2 >= 0) { update_FR_latency (cpu, FRk_2, ps->post_wait); update_FR_ptime (cpu, FRk_2, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, FRk_2); } if (FRk_3 >= 0) { update_FR_latency (cpu, FRk_3, ps->post_wait); update_FR_ptime (cpu, FRk_3, 3); /* Mark this use of the register as a media op. */ set_use_is_media (cpu, FRk_3); } return cycles; } int frvbf_model_fr500_u_barrier (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { int i; /* Wait for ALL resources. */ for (i = 0; i < 64; ++i) { enforce_full_fr_latency (cpu, i); vliw_wait_for_GR (cpu, i); vliw_wait_for_FR (cpu, i); vliw_wait_for_ACC (cpu, i); } for (i = 0; i < 8; ++i) vliw_wait_for_CCR (cpu, i); for (i = 0; i < 2; ++i) { vliw_wait_for_idiv_resource (cpu, i); vliw_wait_for_fdiv_resource (cpu, i); vliw_wait_for_fsqrt_resource (cpu, i); } handle_resource_wait (cpu); for (i = 0; i < 64; ++i) { load_wait_for_GR (cpu, i); load_wait_for_FR (cpu, i); } trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr500_u_membar (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { int i; /* Wait for ALL resources, except GR and ICC. */ for (i = 0; i < 64; ++i) { enforce_full_fr_latency (cpu, i); vliw_wait_for_FR (cpu, i); vliw_wait_for_ACC (cpu, i); } for (i = 0; i < 4; ++i) vliw_wait_for_CCR (cpu, i); for (i = 0; i < 2; ++i) { vliw_wait_for_idiv_resource (cpu, i); vliw_wait_for_fdiv_resource (cpu, i); vliw_wait_for_fsqrt_resource (cpu, i); } handle_resource_wait (cpu); for (i = 0; i < 64; ++i) { load_wait_for_FR (cpu, i); } trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } /* The frv machine is a fictional implementation of the fr500 which implements all frv architectural features. */ int frvbf_model_frv_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { return idesc->timing->units[unit_num].done; } /* The simple machine is a fictional implementation of the fr500 which implements limited frv architectural features. */ int frvbf_model_simple_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { return idesc->timing->units[unit_num].done; } /* The tomcat machine is models a prototype fr500 machine which had a few bugs and restrictions to work around. */ int frvbf_model_tomcat_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { return idesc->timing->units[unit_num].done; } #endif /* WITH_PROFILE_MODEL_P */