/* frv simulator fr400 dependent profiling code. Copyright (C) 2001 Free Software Foundation, Inc. Contributed by Red Hat This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define WANT_CPU #define WANT_CPU_FRVBF #include "sim-main.h" #include "bfd.h" #if WITH_PROFILE_MODEL_P #include "profile.h" #include "profile-fr400.h" /* These functions get and set flags representing the use of registers/resources. */ static void set_use_not_fp_load (SIM_CPU *, INT); static void set_use_not_media_p4 (SIM_CPU *, INT); static void set_use_not_media_p6 (SIM_CPU *, INT); static void set_acc_use_not_media_p2 (SIM_CPU *, INT); static void set_acc_use_not_media_p4 (SIM_CPU *, INT); void fr400_reset_gr_flags (SIM_CPU *cpu, INT fr) { set_use_not_gr_complex (cpu, fr); } void fr400_reset_fr_flags (SIM_CPU *cpu, INT fr) { set_use_not_fp_load (cpu, fr); set_use_not_media_p4 (cpu, fr); set_use_not_media_p6 (cpu, fr); } void fr400_reset_acc_flags (SIM_CPU *cpu, INT acc) { set_acc_use_not_media_p2 (cpu, acc); set_acc_use_not_media_p4 (cpu, acc); } static void set_use_is_fp_load (SIM_CPU *cpu, INT fr, INT fr_double) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) { fr400_reset_fr_flags (cpu, fr); d->cur_fp_load |= (((DI)1) << fr); } if (fr_double != -1) { fr400_reset_fr_flags (cpu, fr_double); d->cur_fp_load |= (((DI)1) << fr_double); if (fr_double < 63) { fr400_reset_fr_flags (cpu, fr_double + 1); d->cur_fp_load |= (((DI)1) << (fr_double + 1)); } } } static void set_use_not_fp_load (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) d->cur_fp_load &= ~(((DI)1) << fr); } static int use_is_fp_load (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) return (d->prev_fp_load >> fr) & 1; return 0; } static void set_acc_use_is_media_p2 (SIM_CPU *cpu, INT acc) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (acc != -1) { fr400_reset_acc_flags (cpu, acc); d->cur_acc_p2 |= (((DI)1) << acc); } } static void set_acc_use_not_media_p2 (SIM_CPU *cpu, INT acc) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (acc != -1) d->cur_acc_p2 &= ~(((DI)1) << acc); } static int acc_use_is_media_p2 (SIM_CPU *cpu, INT acc) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (acc != -1) return d->cur_acc_p2 & (((DI)1) << acc); return 0; } static void set_use_is_media_p4 (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) { fr400_reset_fr_flags (cpu, fr); d->cur_fr_p4 |= (((DI)1) << fr); } } static void set_use_not_media_p4 (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) d->cur_fr_p4 &= ~(((DI)1) << fr); } static int use_is_media_p4 (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) return d->cur_fr_p4 & (((DI)1) << fr); return 0; } static void set_acc_use_is_media_p4 (SIM_CPU *cpu, INT acc) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (acc != -1) { fr400_reset_acc_flags (cpu, acc); d->cur_acc_p4 |= (((DI)1) << acc); } } static void set_acc_use_not_media_p4 (SIM_CPU *cpu, INT acc) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (acc != -1) d->cur_acc_p4 &= ~(((DI)1) << acc); } static int acc_use_is_media_p4 (SIM_CPU *cpu, INT acc) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (acc != -1) return d->cur_acc_p4 & (((DI)1) << acc); return 0; } static void set_use_is_media_p6 (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) { fr400_reset_fr_flags (cpu, fr); d->cur_fr_p6 |= (((DI)1) << fr); } } static void set_use_not_media_p6 (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) d->cur_fr_p6 &= ~(((DI)1) << fr); } static int use_is_media_p6 (SIM_CPU *cpu, INT fr) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); if (fr != -1) return d->cur_fr_p6 & (((DI)1) << fr); return 0; } /* Initialize cycle counting for an insn. FIRST_P is non-zero if this is the first insn in a set of parallel insns. */ void fr400_model_insn_before (SIM_CPU *cpu, int first_p) { if (first_p) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu); ps->cur_gr_complex = ps->prev_gr_complex; d->cur_fp_load = d->prev_fp_load; d->cur_fr_p4 = d->prev_fr_p4; d->cur_fr_p6 = d->prev_fr_p6; d->cur_acc_p2 = d->prev_acc_p2; d->cur_acc_p4 = d->prev_acc_p4; } } /* Record the cycles computed for an insn. LAST_P is non-zero if this is the last insn in a set of parallel insns, and we update the total cycle count. CYCLES is the cycle count of the insn. */ void fr400_model_insn_after (SIM_CPU *cpu, int last_p, int cycles) { if (last_p) { MODEL_FR400_DATA *d = CPU_MODEL_DATA (cpu); FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu); ps->prev_gr_complex = ps->cur_gr_complex; d->prev_fp_load = d->cur_fp_load; d->prev_fr_p4 = d->cur_fr_p4; d->prev_fr_p6 = d->cur_fr_p6; d->prev_acc_p2 = d->cur_acc_p2; d->prev_acc_p4 = d->cur_acc_p4; } } int frvbf_model_fr400_u_exec (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { return idesc->timing->units[unit_num].done; } int frvbf_model_fr400_u_integer (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_integer (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, out_GRk, out_ICCi_1); } int frvbf_model_fr400_u_imul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_imul (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, out_GRk, out_ICCi_1); } int frvbf_model_fr400_u_idiv (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_ICCi_1) { int cycles; FRV_VLIW *vliw; int slot; /* icc0-icc4 are the upper 4 fields of the CCR. */ if (out_ICCi_1 >= 0) out_ICCi_1 += 4; vliw = CPU_VLIW (cpu); slot = vliw->next_slot - 1; slot = (*vliw->current_vliw)[slot] - UNIT_I0; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi != out_GRk && in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != out_GRk && in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_GR (cpu, out_GRk); vliw_wait_for_CCR (cpu, out_ICCi_1); vliw_wait_for_idiv_resource (cpu, slot); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_GR (cpu, out_GRk); trace_vliw_wait_cycles (cpu); return 0; } /* GRk has a latency of 19 cycles! */ cycles = idesc->timing->units[unit_num].done; update_GR_latency (cpu, out_GRk, cycles + 19); set_use_is_gr_complex (cpu, out_GRk); /* ICCi_1 has a latency of 18 cycles. */ update_CCR_latency (cpu, out_ICCi_1, cycles + 18); /* the idiv resource has a latency of 18 cycles! */ update_idiv_resource_latency (cpu, slot, cycles + 18); return cycles; } int frvbf_model_fr400_u_branch (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_ICCi_2, INT in_ICCi_3) { #define BRANCH_PREDICTED(ps) ((ps)->branch_hint & 2) FRV_PROFILE_STATE *ps; int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* Modelling for this unit is the same as for fr500 in pass 1. */ return frvbf_model_fr500_u_branch (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, in_ICCi_2, in_ICCi_3); } cycles = idesc->timing->units[unit_num].done; /* Compute the branch penalty, based on the the prediction and the out come. When counting branches taken or not taken, don't consider branches after the first taken branch in a vliw insn. */ ps = CPU_PROFILE_STATE (cpu); if (! ps->vliw_branch_taken) { int penalty; /* (1 << 4): The pc is the 5th element in inputs, outputs. ??? can be cleaned up */ PROFILE_DATA *p = CPU_PROFILE_DATA (cpu); int taken = (referenced & (1 << 4)) != 0; if (taken) { ++PROFILE_MODEL_TAKEN_COUNT (p); ps->vliw_branch_taken = 1; if (BRANCH_PREDICTED (ps)) penalty = 1; else penalty = 3; } else { ++PROFILE_MODEL_UNTAKEN_COUNT (p); if (BRANCH_PREDICTED (ps)) penalty = 3; else penalty = 0; } if (penalty > 0) { /* Additional 1 cycle penalty if the branch address is not 8 byte aligned. */ if (ps->branch_address & 7) ++penalty; update_branch_penalty (cpu, penalty); PROFILE_MODEL_CTI_STALL_CYCLES (p) += penalty; } } return cycles; } int frvbf_model_fr400_u_trap (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_ICCi_2, INT in_FCCi_2) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_trap (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, in_ICCi_2, in_FCCi_2); } int frvbf_model_fr400_u_check (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ICCi_3, INT in_FCCi_3) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_check (cpu, idesc, unit_num, referenced, in_ICCi_3, in_FCCi_3); } int frvbf_model_fr400_u_set_hilo (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT out_GRkhi, INT out_GRklo) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_set_hilo (cpu, idesc, unit_num, referenced, out_GRkhi, out_GRklo); } int frvbf_model_fr400_u_gr_load (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk, INT out_GRdoublek) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_gr_load (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, out_GRk, out_GRdoublek); } int frvbf_model_fr400_u_gr_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_GRk, INT in_GRdoublek) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_gr_store (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, in_GRk, in_GRdoublek); } int frvbf_model_fr400_u_fr_load (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_FRk, INT out_FRdoublek) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* Pass 1 is the same as for fr500. */ return frvbf_model_fr500_u_fr_load (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, out_FRk, out_FRdoublek); } cycles = idesc->timing->units[unit_num].done; /* The latency of FRk for a load will depend on how long it takes to retrieve the the data from the cache or memory. */ update_FR_latency_for_load (cpu, out_FRk, cycles); update_FRdouble_latency_for_load (cpu, out_FRdoublek, cycles); set_use_is_fp_load (cpu, out_FRk, out_FRdoublek); return cycles; } int frvbf_model_fr400_u_fr_store (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT in_FRk, INT in_FRdoublek) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_GRi >= 0) { if (use_is_gr_complex (cpu, in_GRi)) decrease_GR_busy (cpu, in_GRi, 1); } if (in_GRj != in_GRi && in_GRj >= 0) { if (use_is_gr_complex (cpu, in_GRj)) decrease_GR_busy (cpu, in_GRj, 1); } if (in_FRk >= 0) { if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk)) decrease_FR_busy (cpu, in_FRk, 1); else enforce_full_fr_latency (cpu, in_FRk); } vliw_wait_for_GR (cpu, in_GRi); vliw_wait_for_GR (cpu, in_GRj); vliw_wait_for_FR (cpu, in_FRk); vliw_wait_for_FRdouble (cpu, in_FRdoublek); handle_resource_wait (cpu); load_wait_for_GR (cpu, in_GRi); load_wait_for_GR (cpu, in_GRj); load_wait_for_FR (cpu, in_FRk); load_wait_for_FRdouble (cpu, in_FRdoublek); trace_vliw_wait_cycles (cpu); return 0; } cycles = idesc->timing->units[unit_num].done; return cycles; } int frvbf_model_fr400_u_swap (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj, INT out_GRk) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_swap (cpu, idesc, unit_num, referenced, in_GRi, in_GRj, out_GRk); } int frvbf_model_fr400_u_fr2gr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRk, INT out_GRj) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* The entire VLIW insn must wait if there is a dependency on a register which is not ready yet. The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_FRk >= 0) { if (use_is_media_p4 (cpu, in_FRk) || use_is_media_p6 (cpu, in_FRk)) decrease_FR_busy (cpu, in_FRk, 1); else enforce_full_fr_latency (cpu, in_FRk); } vliw_wait_for_FR (cpu, in_FRk); vliw_wait_for_GR (cpu, out_GRj); handle_resource_wait (cpu); load_wait_for_FR (cpu, in_FRk); load_wait_for_GR (cpu, out_GRj); trace_vliw_wait_cycles (cpu); return 0; } /* The latency of GRj is 2 cycles. */ cycles = idesc->timing->units[unit_num].done; update_GR_latency (cpu, out_GRj, cycles + 2); set_use_is_gr_complex (cpu, out_GRj); return cycles; } int frvbf_model_fr400_u_spr2gr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_spr, INT out_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_spr2gr (cpu, idesc, unit_num, referenced, in_spr, out_GRj); } int frvbf_model_fr400_u_gr2fr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRj, INT out_FRk) { int cycles; if (model_insn == FRV_INSN_MODEL_PASS_1) { /* Pass 1 is the same as for fr500. */ frvbf_model_fr500_u_gr2fr (cpu, idesc, unit_num, referenced, in_GRj, out_FRk); } /* The latency of FRk is 1 cycles. */ cycles = idesc->timing->units[unit_num].done; update_FR_latency (cpu, out_FRk, cycles + 1); return cycles; } int frvbf_model_fr400_u_gr2spr (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRj, INT out_spr) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_gr2spr (cpu, idesc, unit_num, referenced, in_GRj, out_spr); } /* Top up the post-processing time of the given FR by the given number of cycles. */ static void update_FR_ptime (SIM_CPU *cpu, INT out_FR, int cycles) { if (out_FR >= 0) { FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu); /* If a load is pending on this register, then add the cycles to the post processing time for this register. Otherwise apply it directly to the latency of the register. */ if (! load_pending_for_register (cpu, out_FR, 1, REGTYPE_FR)) { int *fr = ps->fr_latency; fr[out_FR] += cycles; } else ps->fr_ptime[out_FR] += cycles; } } static void update_FRdouble_ptime (SIM_CPU *cpu, INT out_FR, int cycles) { if (out_FR >= 0) { FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (cpu); /* If a load is pending on this register, then add the cycles to the post processing time for this register. Otherwise apply it directly to the latency of the register. */ if (! load_pending_for_register (cpu, out_FR, 2, REGTYPE_FR)) { int *fr = ps->fr_latency; fr[out_FR] += cycles; if (out_FR < 63) fr[out_FR + 1] += cycles; } else { /* On the fr400, loads are available to media insns one cycle early, so knock one cycle off the post processing time to account for this. */ ps->fr_ptime[out_FR] += cycles - 1; if (out_FR < 63) ps->fr_ptime[out_FR + 1] += cycles - 1; } } } int frvbf_model_fr400_u_media_1 (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_FRk) { int cycles; FRV_PROFILE_STATE *ps; const CGEN_INSN *insn; int busy_adjustment[] = {0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); insn = idesc->idata; /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_FRi >= 0) { if (use_is_fp_load (cpu, in_FRi)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); } if (in_FRj >= 0 && in_FRj != in_FRi) { if (use_is_fp_load (cpu, in_FRj)) { busy_adjustment[1] = 1; decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, in_FRj); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; if (in_FRi >= 0) fr[in_FRi] += busy_adjustment[0]; if (in_FRj >= 0) fr[in_FRj] += busy_adjustment[1]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing has no latency. */ if (out_FRk >= 0) { update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 0); } return cycles; } int frvbf_model_fr400_u_media_1_quad (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_FRk) { int cycles; INT dual_FRi; INT dual_FRj; INT dual_FRk; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); dual_FRi = DUAL_REG (in_FRi); dual_FRj = DUAL_REG (in_FRj); dual_FRk = DUAL_REG (out_FRk); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (use_is_fp_load (cpu, in_FRi)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi)) { busy_adjustment[1] = 1; decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, dual_FRi); if (in_FRj != in_FRi) { if (use_is_fp_load (cpu, in_FRj)) { busy_adjustment[2] = 1; decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, in_FRj); if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj)) { busy_adjustment[3] = 1; decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]); } else enforce_full_fr_latency (cpu, dual_FRj); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, dual_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, dual_FRj); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, dual_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRi] += busy_adjustment[0]; if (dual_FRi >= 0) fr[dual_FRi] += busy_adjustment[1]; fr[in_FRj] += busy_adjustment[2]; if (dual_FRj >= 0) fr[dual_FRj] += busy_adjustment[3]; /* The latency of the output register will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); /* Once initiated, post-processing has no latency. */ update_FR_ptime (cpu, out_FRk, 0); if (dual_FRk >= 0) { update_FR_latency (cpu, dual_FRk, ps->post_wait); update_FR_ptime (cpu, dual_FRk, 0); } return cycles; } int frvbf_model_fr400_u_media_hilo (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT out_FRkhi, INT out_FRklo) { int cycles; FRV_PROFILE_STATE *ps; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, out_FRkhi); post_wait_for_FR (cpu, out_FRklo); /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing has no latency. */ if (out_FRkhi >= 0) { update_FR_latency (cpu, out_FRkhi, ps->post_wait); update_FR_ptime (cpu, out_FRkhi, 0); } if (out_FRklo >= 0) { update_FR_latency (cpu, out_FRklo, ps->post_wait); update_FR_ptime (cpu, out_FRklo, 0); } return cycles; } int frvbf_model_fr400_u_media_2 (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_ACC40Sk, INT out_ACC40Uk) { int cycles; INT dual_ACC40Sk; INT dual_ACC40Uk; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0}; int *fr; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); dual_ACC40Sk = DUAL_REG (out_ACC40Sk); dual_ACC40Uk = DUAL_REG (out_ACC40Uk); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_FRi >= 0) { if (use_is_fp_load (cpu, in_FRi)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); } if (in_FRj >= 0 && in_FRj != in_FRi) { if (use_is_fp_load (cpu, in_FRj)) { busy_adjustment[1] = 1; decrease_FR_busy (cpu, in_FRj, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, in_FRj); } if (out_ACC40Sk >= 0) { if (acc_use_is_media_p2 (cpu, out_ACC40Sk)) { busy_adjustment[2] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]); } } if (dual_ACC40Sk >= 0) { if (acc_use_is_media_p2 (cpu, dual_ACC40Sk)) { busy_adjustment[3] = 1; decrease_ACC_busy (cpu, dual_ACC40Sk, busy_adjustment[3]); } } if (out_ACC40Uk >= 0) { if (acc_use_is_media_p2 (cpu, out_ACC40Uk)) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]); } } if (dual_ACC40Uk >= 0) { if (acc_use_is_media_p2 (cpu, dual_ACC40Uk)) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, dual_ACC40Uk, busy_adjustment[5]); } } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, dual_ACC40Sk); post_wait_for_ACC (cpu, out_ACC40Uk); post_wait_for_ACC (cpu, dual_ACC40Uk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; acc = ps->acc_busy; fr[in_FRi] += busy_adjustment[0]; fr[in_FRj] += busy_adjustment[1]; if (out_ACC40Sk >= 0) acc[out_ACC40Sk] += busy_adjustment[2]; if (dual_ACC40Sk >= 0) acc[dual_ACC40Sk] += busy_adjustment[3]; if (out_ACC40Uk >= 0) acc[out_ACC40Uk] += busy_adjustment[4]; if (dual_ACC40Uk >= 0) acc[dual_ACC40Uk] += busy_adjustment[5]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycles. */ if (out_ACC40Sk >= 0) { update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Sk); } if (dual_ACC40Sk >= 0) { update_ACC_latency (cpu, dual_ACC40Sk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, dual_ACC40Sk); } if (out_ACC40Uk >= 0) { update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Uk); } if (dual_ACC40Uk >= 0) { update_ACC_latency (cpu, dual_ACC40Uk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, dual_ACC40Uk); } return cycles; } int frvbf_model_fr400_u_media_2_quad (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_ACC40Sk, INT out_ACC40Uk) { int cycles; INT dual_FRi; INT dual_FRj; INT ACC40Sk_1; INT ACC40Sk_2; INT ACC40Sk_3; INT ACC40Uk_1; INT ACC40Uk_2; INT ACC40Uk_3; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0 ,0}; int *fr; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; dual_FRi = DUAL_REG (in_FRi); dual_FRj = DUAL_REG (in_FRj); ACC40Sk_1 = DUAL_REG (out_ACC40Sk); ACC40Sk_2 = DUAL_REG (ACC40Sk_1); ACC40Sk_3 = DUAL_REG (ACC40Sk_2); ACC40Uk_1 = DUAL_REG (out_ACC40Uk); ACC40Uk_2 = DUAL_REG (ACC40Uk_1); ACC40Uk_3 = DUAL_REG (ACC40Uk_2); ps = CPU_PROFILE_STATE (cpu); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (use_is_fp_load (cpu, in_FRi)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi)) { busy_adjustment[1] = 1; decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, dual_FRi); if (in_FRj != in_FRi) { if (use_is_fp_load (cpu, in_FRj)) { busy_adjustment[2] = 1; decrease_FR_busy (cpu, in_FRj, busy_adjustment[2]); } else enforce_full_fr_latency (cpu, in_FRj); if (dual_FRj >= 0 && use_is_fp_load (cpu, dual_FRj)) { busy_adjustment[3] = 1; decrease_FR_busy (cpu, dual_FRj, busy_adjustment[3]); } else enforce_full_fr_latency (cpu, dual_FRj); } if (out_ACC40Sk >= 0) { if (acc_use_is_media_p2 (cpu, out_ACC40Sk)) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]); } if (ACC40Sk_1 >= 0) { if (acc_use_is_media_p2 (cpu, ACC40Sk_1)) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]); } } if (ACC40Sk_2 >= 0) { if (acc_use_is_media_p2 (cpu, ACC40Sk_2)) { busy_adjustment[6] = 1; decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]); } } if (ACC40Sk_3 >= 0) { if (acc_use_is_media_p2 (cpu, ACC40Sk_3)) { busy_adjustment[7] = 1; decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]); } } } else if (out_ACC40Uk >= 0) { if (acc_use_is_media_p2 (cpu, out_ACC40Uk)) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Uk, busy_adjustment[4]); } if (ACC40Uk_1 >= 0) { if (acc_use_is_media_p2 (cpu, ACC40Uk_1)) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, ACC40Uk_1, busy_adjustment[5]); } } if (ACC40Uk_2 >= 0) { if (acc_use_is_media_p2 (cpu, ACC40Uk_2)) { busy_adjustment[6] = 1; decrease_ACC_busy (cpu, ACC40Uk_2, busy_adjustment[6]); } } if (ACC40Uk_3 >= 0) { if (acc_use_is_media_p2 (cpu, ACC40Uk_3)) { busy_adjustment[7] = 1; decrease_ACC_busy (cpu, ACC40Uk_3, busy_adjustment[7]); } } } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, dual_FRi); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, dual_FRj); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, ACC40Sk_1); post_wait_for_ACC (cpu, ACC40Sk_2); post_wait_for_ACC (cpu, ACC40Sk_3); post_wait_for_ACC (cpu, out_ACC40Uk); post_wait_for_ACC (cpu, ACC40Uk_1); post_wait_for_ACC (cpu, ACC40Uk_2); post_wait_for_ACC (cpu, ACC40Uk_3); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; acc = ps->acc_busy; fr[in_FRi] += busy_adjustment[0]; if (dual_FRi >= 0) fr[dual_FRi] += busy_adjustment[1]; fr[in_FRj] += busy_adjustment[2]; if (dual_FRj > 0) fr[dual_FRj] += busy_adjustment[3]; if (out_ACC40Sk >= 0) { acc[out_ACC40Sk] += busy_adjustment[4]; if (ACC40Sk_1 >= 0) acc[ACC40Sk_1] += busy_adjustment[5]; if (ACC40Sk_2 >= 0) acc[ACC40Sk_2] += busy_adjustment[6]; if (ACC40Sk_3 >= 0) acc[ACC40Sk_3] += busy_adjustment[7]; } else if (out_ACC40Uk >= 0) { acc[out_ACC40Uk] += busy_adjustment[4]; if (ACC40Uk_1 >= 0) acc[ACC40Uk_1] += busy_adjustment[5]; if (ACC40Uk_2 >= 0) acc[ACC40Uk_2] += busy_adjustment[6]; if (ACC40Uk_3 >= 0) acc[ACC40Uk_3] += busy_adjustment[7]; } /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_ACC40Sk >= 0) { update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Sk); if (ACC40Sk_1 >= 0) { update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_1); } if (ACC40Sk_2 >= 0) { update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_2); } if (ACC40Sk_3 >= 0) { update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_3); } } else if (out_ACC40Uk >= 0) { update_ACC_latency (cpu, out_ACC40Uk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Uk); if (ACC40Uk_1 >= 0) { update_ACC_latency (cpu, ACC40Uk_1, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Uk_1); } if (ACC40Uk_2 >= 0) { update_ACC_latency (cpu, ACC40Uk_2, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Uk_2); } if (ACC40Uk_3 >= 0) { update_ACC_latency (cpu, ACC40Uk_3, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Uk_3); } } return cycles; } int frvbf_model_fr400_u_media_2_acc (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ACC40Si, INT out_ACC40Sk) { int cycles; INT ACC40Si_1; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0}; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ACC40Si_1 = DUAL_REG (in_ACC40Si); ps = CPU_PROFILE_STATE (cpu); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (acc_use_is_media_p2 (cpu, in_ACC40Si)) { busy_adjustment[0] = 1; decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]); } if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1)) { busy_adjustment[1] = 1; decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]); } if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1 && acc_use_is_media_p2 (cpu, out_ACC40Sk)) { busy_adjustment[2] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]); } /* The post processing must wait if there is a dependency on a register which is not ready yet. */ ps->post_wait = cycles; post_wait_for_ACC (cpu, in_ACC40Si); post_wait_for_ACC (cpu, ACC40Si_1); post_wait_for_ACC (cpu, out_ACC40Sk); /* Restore the busy cycles of the registers we used. */ acc = ps->acc_busy; acc[in_ACC40Si] += busy_adjustment[0]; if (ACC40Si_1 >= 0) acc[ACC40Si_1] += busy_adjustment[1]; acc[out_ACC40Sk] += busy_adjustment[2]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Sk); return cycles; } int frvbf_model_fr400_u_media_2_acc_dual (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ACC40Si, INT out_ACC40Sk) { int cycles; INT ACC40Si_1; INT ACC40Si_2; INT ACC40Si_3; INT ACC40Sk_1; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0}; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ACC40Si_1 = DUAL_REG (in_ACC40Si); ACC40Si_2 = DUAL_REG (ACC40Si_1); ACC40Si_3 = DUAL_REG (ACC40Si_2); ACC40Sk_1 = DUAL_REG (out_ACC40Sk); ps = CPU_PROFILE_STATE (cpu); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (acc_use_is_media_p2 (cpu, in_ACC40Si)) { busy_adjustment[0] = 1; decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]); } if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1)) { busy_adjustment[1] = 1; decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]); } if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2)) { busy_adjustment[2] = 1; decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]); } if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3)) { busy_adjustment[3] = 1; decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]); } if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1 && out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3) { if (acc_use_is_media_p2 (cpu, out_ACC40Sk)) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]); } } if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1 && ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3) { if (acc_use_is_media_p2 (cpu, ACC40Sk_1)) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]); } } /* The post processing must wait if there is a dependency on a register which is not ready yet. */ ps->post_wait = cycles; post_wait_for_ACC (cpu, in_ACC40Si); post_wait_for_ACC (cpu, ACC40Si_1); post_wait_for_ACC (cpu, ACC40Si_2); post_wait_for_ACC (cpu, ACC40Si_3); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, ACC40Sk_1); /* Restore the busy cycles of the registers we used. */ acc = ps->acc_busy; acc[in_ACC40Si] += busy_adjustment[0]; if (ACC40Si_1 >= 0) acc[ACC40Si_1] += busy_adjustment[1]; if (ACC40Si_2 >= 0) acc[ACC40Si_2] += busy_adjustment[2]; if (ACC40Si_3 >= 0) acc[ACC40Si_3] += busy_adjustment[3]; acc[out_ACC40Sk] += busy_adjustment[4]; if (ACC40Sk_1 >= 0) acc[ACC40Sk_1] += busy_adjustment[5]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Sk); if (ACC40Sk_1 >= 0) { update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_1); } return cycles; } int frvbf_model_fr400_u_media_2_add_sub (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ACC40Si, INT out_ACC40Sk) { int cycles; INT ACC40Si_1; INT ACC40Sk_1; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0}; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ACC40Si_1 = DUAL_REG (in_ACC40Si); ACC40Sk_1 = DUAL_REG (out_ACC40Sk); ps = CPU_PROFILE_STATE (cpu); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (acc_use_is_media_p2 (cpu, in_ACC40Si)) { busy_adjustment[0] = 1; decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]); } if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1)) { busy_adjustment[1] = 1; decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]); } if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1) { if (acc_use_is_media_p2 (cpu, out_ACC40Sk)) { busy_adjustment[2] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[2]); } } if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1) { if (acc_use_is_media_p2 (cpu, ACC40Sk_1)) { busy_adjustment[3] = 1; decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[3]); } } /* The post processing must wait if there is a dependency on a register which is not ready yet. */ ps->post_wait = cycles; post_wait_for_ACC (cpu, in_ACC40Si); post_wait_for_ACC (cpu, ACC40Si_1); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, ACC40Sk_1); /* Restore the busy cycles of the registers we used. */ acc = ps->acc_busy; acc[in_ACC40Si] += busy_adjustment[0]; if (ACC40Si_1 >= 0) acc[ACC40Si_1] += busy_adjustment[1]; acc[out_ACC40Sk] += busy_adjustment[2]; if (ACC40Sk_1 >= 0) acc[ACC40Sk_1] += busy_adjustment[3]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Sk); if (ACC40Sk_1 >= 0) { update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_1); } return cycles; } int frvbf_model_fr400_u_media_2_add_sub_dual (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ACC40Si, INT out_ACC40Sk) { int cycles; INT ACC40Si_1; INT ACC40Si_2; INT ACC40Si_3; INT ACC40Sk_1; INT ACC40Sk_2; INT ACC40Sk_3; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0, 0, 0, 0, 0, 0, 0}; int *acc; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ACC40Si_1 = DUAL_REG (in_ACC40Si); ACC40Si_2 = DUAL_REG (ACC40Si_1); ACC40Si_3 = DUAL_REG (ACC40Si_2); ACC40Sk_1 = DUAL_REG (out_ACC40Sk); ACC40Sk_2 = DUAL_REG (ACC40Sk_1); ACC40Sk_3 = DUAL_REG (ACC40Sk_2); ps = CPU_PROFILE_STATE (cpu); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (acc_use_is_media_p2 (cpu, in_ACC40Si)) { busy_adjustment[0] = 1; decrease_ACC_busy (cpu, in_ACC40Si, busy_adjustment[0]); } if (ACC40Si_1 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_1)) { busy_adjustment[1] = 1; decrease_ACC_busy (cpu, ACC40Si_1, busy_adjustment[1]); } if (ACC40Si_2 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_2)) { busy_adjustment[2] = 1; decrease_ACC_busy (cpu, ACC40Si_2, busy_adjustment[2]); } if (ACC40Si_3 >= 0 && acc_use_is_media_p2 (cpu, ACC40Si_3)) { busy_adjustment[3] = 1; decrease_ACC_busy (cpu, ACC40Si_3, busy_adjustment[3]); } if (out_ACC40Sk != in_ACC40Si && out_ACC40Sk != ACC40Si_1 && out_ACC40Sk != ACC40Si_2 && out_ACC40Sk != ACC40Si_3) { if (acc_use_is_media_p2 (cpu, out_ACC40Sk)) { busy_adjustment[4] = 1; decrease_ACC_busy (cpu, out_ACC40Sk, busy_adjustment[4]); } } if (ACC40Sk_1 != in_ACC40Si && ACC40Sk_1 != ACC40Si_1 && ACC40Sk_1 != ACC40Si_2 && ACC40Sk_1 != ACC40Si_3) { if (acc_use_is_media_p2 (cpu, ACC40Sk_1)) { busy_adjustment[5] = 1; decrease_ACC_busy (cpu, ACC40Sk_1, busy_adjustment[5]); } } if (ACC40Sk_2 != in_ACC40Si && ACC40Sk_2 != ACC40Si_1 && ACC40Sk_2 != ACC40Si_2 && ACC40Sk_2 != ACC40Si_3) { if (acc_use_is_media_p2 (cpu, ACC40Sk_2)) { busy_adjustment[6] = 1; decrease_ACC_busy (cpu, ACC40Sk_2, busy_adjustment[6]); } } if (ACC40Sk_3 != in_ACC40Si && ACC40Sk_3 != ACC40Si_1 && ACC40Sk_3 != ACC40Si_2 && ACC40Sk_3 != ACC40Si_3) { if (acc_use_is_media_p2 (cpu, ACC40Sk_3)) { busy_adjustment[7] = 1; decrease_ACC_busy (cpu, ACC40Sk_3, busy_adjustment[7]); } } /* The post processing must wait if there is a dependency on a register which is not ready yet. */ ps->post_wait = cycles; post_wait_for_ACC (cpu, in_ACC40Si); post_wait_for_ACC (cpu, ACC40Si_1); post_wait_for_ACC (cpu, ACC40Si_2); post_wait_for_ACC (cpu, ACC40Si_3); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_ACC (cpu, ACC40Sk_1); post_wait_for_ACC (cpu, ACC40Sk_2); post_wait_for_ACC (cpu, ACC40Sk_3); /* Restore the busy cycles of the registers we used. */ acc = ps->acc_busy; acc[in_ACC40Si] += busy_adjustment[0]; if (ACC40Si_1 >= 0) acc[ACC40Si_1] += busy_adjustment[1]; if (ACC40Si_2 >= 0) acc[ACC40Si_2] += busy_adjustment[2]; if (ACC40Si_3 >= 0) acc[ACC40Si_3] += busy_adjustment[3]; acc[out_ACC40Sk] += busy_adjustment[4]; if (ACC40Sk_1 >= 0) acc[ACC40Sk_1] += busy_adjustment[5]; if (ACC40Sk_2 >= 0) acc[ACC40Sk_2] += busy_adjustment[6]; if (ACC40Sk_3 >= 0) acc[ACC40Sk_3] += busy_adjustment[7]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, out_ACC40Sk); if (ACC40Sk_1 >= 0) { update_ACC_latency (cpu, ACC40Sk_1, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_1); } if (ACC40Sk_2 >= 0) { update_ACC_latency (cpu, ACC40Sk_2, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_2); } if (ACC40Sk_3 >= 0) { update_ACC_latency (cpu, ACC40Sk_3, ps->post_wait + 1); set_acc_use_is_media_p2 (cpu, ACC40Sk_3); } return cycles; } int frvbf_model_fr400_u_media_3 (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_FRk) { /* Modelling is the same as media unit 1. */ return frvbf_model_fr400_u_media_1 (cpu, idesc, unit_num, referenced, in_FRi, in_FRj, out_FRk); } int frvbf_model_fr400_u_media_3_dual (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT out_FRk) { int cycles; INT dual_FRi; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); dual_FRi = DUAL_REG (in_FRi); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (use_is_fp_load (cpu, in_FRi)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); if (dual_FRi >= 0 && use_is_fp_load (cpu, dual_FRi)) { busy_adjustment[1] = 1; decrease_FR_busy (cpu, dual_FRi, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, dual_FRi); /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, dual_FRi); post_wait_for_FR (cpu, out_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRi] += busy_adjustment[0]; if (dual_FRi >= 0) fr[dual_FRi] += busy_adjustment[1]; /* The latency of the output register will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); /* Once initiated, post-processing has no latency. */ update_FR_ptime (cpu, out_FRk, 0); return cycles; } int frvbf_model_fr400_u_media_3_quad (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT in_FRj, INT out_FRk) { /* Modelling is the same as media unit 1. */ return frvbf_model_fr400_u_media_1_quad (cpu, idesc, unit_num, referenced, in_FRi, in_FRj, out_FRk); } int frvbf_model_fr400_u_media_4 (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ACC40Si, INT in_FRj, INT out_ACC40Sk, INT out_FRk) { int cycles; FRV_PROFILE_STATE *ps; const CGEN_INSN *insn; int busy_adjustment[] = {0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); insn = idesc->idata; /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_FRj >= 0) { if (use_is_fp_load (cpu, in_FRj)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRj); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_ACC (cpu, in_ACC40Si); post_wait_for_ACC (cpu, out_ACC40Sk); post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, out_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_FRk >= 0) { update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 1); /* Mark this use of the register as media unit 4. */ set_use_is_media_p4 (cpu, out_FRk); } else if (out_ACC40Sk >= 0) { update_ACC_latency (cpu, out_ACC40Sk, ps->post_wait); update_ACC_ptime (cpu, out_ACC40Sk, 1); /* Mark this use of the register as media unit 4. */ set_acc_use_is_media_p4 (cpu, out_ACC40Sk); } return cycles; } int frvbf_model_fr400_u_media_4_accg (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ACCGi, INT in_FRinti, INT out_ACCGk, INT out_FRintk) { /* Modelling is the same as media-4 unit except use accumulator guards as input instead of accumulators. */ return frvbf_model_fr400_u_media_4 (cpu, idesc, unit_num, referenced, in_ACCGi, in_FRinti, out_ACCGk, out_FRintk); } int frvbf_model_fr400_u_media_4_acc_dual (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_ACC40Si, INT out_FRk) { int cycles; FRV_PROFILE_STATE *ps; const CGEN_INSN *insn; INT ACC40Si_1; INT FRk_1; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); ACC40Si_1 = DUAL_REG (in_ACC40Si); FRk_1 = DUAL_REG (out_FRk); insn = idesc->idata; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_ACC (cpu, in_ACC40Si); post_wait_for_ACC (cpu, ACC40Si_1); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, FRk_1); /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_FRk >= 0) { update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 1); /* Mark this use of the register as media unit 4. */ set_use_is_media_p4 (cpu, out_FRk); } if (FRk_1 >= 0) { update_FR_latency (cpu, FRk_1, ps->post_wait); update_FR_ptime (cpu, FRk_1, 1); /* Mark this use of the register as media unit 4. */ set_use_is_media_p4 (cpu, FRk_1); } return cycles; } int frvbf_model_fr400_u_media_6 (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT out_FRk) { int cycles; FRV_PROFILE_STATE *ps; const CGEN_INSN *insn; int busy_adjustment[] = {0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; ps = CPU_PROFILE_STATE (cpu); insn = idesc->idata; /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_FRi >= 0) { if (use_is_fp_load (cpu, in_FRi)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, out_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; if (in_FRi >= 0) fr[in_FRi] += busy_adjustment[0]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing will take 1 cycle. */ if (out_FRk >= 0) { update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 1); /* Mark this use of the register as media unit 1. */ set_use_is_media_p6 (cpu, out_FRk); } return cycles; } int frvbf_model_fr400_u_media_7 (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRinti, INT in_FRintj, INT out_FCCk) { int cycles; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps = CPU_PROFILE_STATE (cpu); /* The latency of the registers may be less than previously recorded, depending on how they were used previously. See Table 13-8 in the LSI. */ if (in_FRinti >= 0) { if (use_is_fp_load (cpu, in_FRinti)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRinti, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRinti); } if (in_FRintj >= 0 && in_FRintj != in_FRinti) { if (use_is_fp_load (cpu, in_FRintj)) { busy_adjustment[1] = 1; decrease_FR_busy (cpu, in_FRintj, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, in_FRintj); } ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRinti); post_wait_for_FR (cpu, in_FRintj); post_wait_for_CCR (cpu, out_FCCk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; if (in_FRinti >= 0) fr[in_FRinti] += busy_adjustment[0]; if (in_FRintj >= 0) fr[in_FRintj] += busy_adjustment[1]; /* The latency of FCCi_2 will be the latency of the other inputs plus 1 cycle. */ update_CCR_latency (cpu, out_FCCk, ps->post_wait + 1); return cycles; } int frvbf_model_fr400_u_media_dual_expand (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRi, INT out_FRk) { /* Insns using this unit are media-3 class insns, with a dual FRk output. */ int cycles; INT dual_FRk; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ dual_FRk = DUAL_REG (out_FRk); ps = CPU_PROFILE_STATE (cpu); if (use_is_fp_load (cpu, in_FRi)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRi, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRi); /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRi); post_wait_for_FR (cpu, out_FRk); post_wait_for_FR (cpu, dual_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRi] += busy_adjustment[0]; /* The latency of the output register will be at least the latency of the other inputs. Once initiated, post-processing has no latency. */ update_FR_latency (cpu, out_FRk, ps->post_wait); update_FR_ptime (cpu, out_FRk, 0); if (dual_FRk >= 0) { update_FR_latency (cpu, dual_FRk, ps->post_wait); update_FR_ptime (cpu, dual_FRk, 0); } return cycles; } int frvbf_model_fr400_u_media_dual_htob (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_FRj, INT out_FRk) { /* Insns using this unit are media-3 class insns, with a dual FRj input. */ int cycles; INT dual_FRj; FRV_PROFILE_STATE *ps; int busy_adjustment[] = {0, 0}; int *fr; if (model_insn == FRV_INSN_MODEL_PASS_1) return 0; /* The preprocessing can execute right away. */ cycles = idesc->timing->units[unit_num].done; /* If the previous use of the registers was a media op, then their latency will be less than previously recorded. See Table 13-13 in the LSI. */ dual_FRj = DUAL_REG (in_FRj); ps = CPU_PROFILE_STATE (cpu); if (use_is_fp_load (cpu, in_FRj)) { busy_adjustment[0] = 1; decrease_FR_busy (cpu, in_FRj, busy_adjustment[0]); } else enforce_full_fr_latency (cpu, in_FRj); if (dual_FRj >= 0) { if (use_is_fp_load (cpu, dual_FRj)) { busy_adjustment[1] = 1; decrease_FR_busy (cpu, dual_FRj, busy_adjustment[1]); } else enforce_full_fr_latency (cpu, dual_FRj); } /* The post processing must wait if there is a dependency on a FR which is not ready yet. */ ps->post_wait = cycles; post_wait_for_FR (cpu, in_FRj); post_wait_for_FR (cpu, dual_FRj); post_wait_for_FR (cpu, out_FRk); /* Restore the busy cycles of the registers we used. */ fr = ps->fr_busy; fr[in_FRj] += busy_adjustment[0]; if (dual_FRj >= 0) fr[dual_FRj] += busy_adjustment[1]; /* The latency of the output register will be at least the latency of the other inputs. */ update_FR_latency (cpu, out_FRk, ps->post_wait); /* Once initiated, post-processing has no latency. */ update_FR_ptime (cpu, out_FRk, 0); return cycles; } int frvbf_model_fr400_u_ici (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_ici (cpu, idesc, unit_num, referenced, in_GRi, in_GRj); } int frvbf_model_fr400_u_dci (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_dci (cpu, idesc, unit_num, referenced, in_GRi, in_GRj); } int frvbf_model_fr400_u_dcf (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_dcf (cpu, idesc, unit_num, referenced, in_GRi, in_GRj); } int frvbf_model_fr400_u_icpl (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_icpl (cpu, idesc, unit_num, referenced, in_GRi, in_GRj); } int frvbf_model_fr400_u_dcpl (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_dcpl (cpu, idesc, unit_num, referenced, in_GRi, in_GRj); } int frvbf_model_fr400_u_icul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_icul (cpu, idesc, unit_num, referenced, in_GRi, in_GRj); } int frvbf_model_fr400_u_dcul (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced, INT in_GRi, INT in_GRj) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_dcul (cpu, idesc, unit_num, referenced, in_GRi, in_GRj); } int frvbf_model_fr400_u_barrier (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_barrier (cpu, idesc, unit_num, referenced); } int frvbf_model_fr400_u_membar (SIM_CPU *cpu, const IDESC *idesc, int unit_num, int referenced) { /* Modelling for this unit is the same as for fr500. */ return frvbf_model_fr500_u_membar (cpu, idesc, unit_num, referenced); } #endif /* WITH_PROFILE_MODEL_P */