/* frv memory model.
   Copyright (C) 1999-2015 Free Software Foundation, Inc.
   Contributed by Red Hat

This file is part of the GNU simulators.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#define WANT_CPU frvbf
#define WANT_CPU_FRVBF

#include "sim-main.h"
#include "cgen-mem.h"
#include "bfd.h"

/* Check for alignment and access restrictions.  Return the corrected address.
 */
static SI
fr400_check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  /* Check access restrictions for double word loads only.  */
  if (align_mask == 7)
    {
      if ((USI)address >= 0xfe800000 && (USI)address <= 0xfeffffff)
	frv_queue_data_access_error_interrupt (current_cpu, address);
    }
  return address;
}

static SI
fr500_check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  if (address & align_mask)
    {
      frv_queue_mem_address_not_aligned_interrupt (current_cpu, address);
      address &= ~align_mask;
    }

  if ((USI)address >= 0xfeff0600 && (USI)address <= 0xfeff7fff
      || (USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff)
    frv_queue_data_access_error_interrupt (current_cpu, address);

  return address;
}

static SI
fr550_check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  if ((USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff
      || (align_mask > 0x3
	  && ((USI)address >= 0xfeff0000 && (USI)address <= 0xfeffffff)))
    frv_queue_data_access_error_interrupt (current_cpu, address);

  return address;
}

static SI
check_data_read_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  switch (STATE_ARCHITECTURE (sd)->mach)
    {
    case bfd_mach_fr400:
    case bfd_mach_fr450:
      address = fr400_check_data_read_address (current_cpu, address,
					       align_mask);
      break;
    case bfd_mach_frvtomcat:
    case bfd_mach_fr500:
    case bfd_mach_frv:
      address = fr500_check_data_read_address (current_cpu, address,
					       align_mask);
      break;
    case bfd_mach_fr550:
      address = fr550_check_data_read_address (current_cpu, address,
					       align_mask);
      break;
    default:
      break;
    }

  return address;
}

static SI
fr400_check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  if (address & align_mask)
    {
      /* Make sure that this exception is not masked.  */
      USI isr = GET_ISR ();
      if (! GET_ISR_EMAM (isr))
	{
	  /* Bad alignment causes a data_access_error on fr400.  */
	  frv_queue_data_access_error_interrupt (current_cpu, address);
	}
      address &= ~align_mask;
    }
  /* Nothing to check.  */
  return address;
}

static SI
fr500_check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  if ((USI)address >= 0xfe000000 && (USI)address <= 0xfe003fff
      || (USI)address >= 0xfe004000 && (USI)address <= 0xfe3fffff
      || (USI)address >= 0xfe400000 && (USI)address <= 0xfe403fff
      || (USI)address >= 0xfe404000 && (USI)address <= 0xfe7fffff)
    frv_queue_data_access_exception_interrupt (current_cpu);

  return address;
}

static SI
fr550_check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  /* No alignment restrictions on fr550 */

  if ((USI)address >= 0xfe000000 && (USI)address <= 0xfe3fffff
      || (USI)address >= 0xfe408000 && (USI)address <= 0xfe7fffff)
    frv_queue_data_access_exception_interrupt (current_cpu);
  else
    {
      USI hsr0 = GET_HSR0 ();
      if (! GET_HSR0_RME (hsr0)
	  && (USI)address >= 0xfe400000 && (USI)address <= 0xfe407fff)
	frv_queue_data_access_exception_interrupt (current_cpu);
    }

  return address;
}

static SI
check_readwrite_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  switch (STATE_ARCHITECTURE (sd)->mach)
    {
    case bfd_mach_fr400:
    case bfd_mach_fr450:
      address = fr400_check_readwrite_address (current_cpu, address,
						    align_mask);
      break;
    case bfd_mach_frvtomcat:
    case bfd_mach_fr500:
    case bfd_mach_frv:
      address = fr500_check_readwrite_address (current_cpu, address,
						    align_mask);
      break;
    case bfd_mach_fr550:
      address = fr550_check_readwrite_address (current_cpu, address,
					       align_mask);
      break;
    default:
      break;
    }

  return address;
}

static PCADDR
fr400_check_insn_read_address (SIM_CPU *current_cpu, PCADDR address,
			       int align_mask)
{
  if (address & align_mask)
    {
      frv_queue_instruction_access_error_interrupt (current_cpu);
      address &= ~align_mask;
    }
  else if ((USI)address >= 0xfe800000 && (USI)address <= 0xfeffffff)
    frv_queue_instruction_access_error_interrupt (current_cpu);

  return address;
}

static PCADDR
fr500_check_insn_read_address (SIM_CPU *current_cpu, PCADDR address,
			       int align_mask)
{
  if (address & align_mask)
    {
      frv_queue_mem_address_not_aligned_interrupt (current_cpu, address);
      address &= ~align_mask;
    }

  if ((USI)address >= 0xfeff0600 && (USI)address <= 0xfeff7fff
      || (USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff)
    frv_queue_instruction_access_error_interrupt (current_cpu);
  else if ((USI)address >= 0xfe004000 && (USI)address <= 0xfe3fffff
	   || (USI)address >= 0xfe400000 && (USI)address <= 0xfe403fff
	   || (USI)address >= 0xfe404000 && (USI)address <= 0xfe7fffff)
    frv_queue_instruction_access_exception_interrupt (current_cpu);
  else
    {
      USI hsr0 = GET_HSR0 ();
      if (! GET_HSR0_RME (hsr0)
	  && (USI)address >= 0xfe000000 && (USI)address <= 0xfe003fff)
	frv_queue_instruction_access_exception_interrupt (current_cpu);
    }

  return address;
}

static PCADDR
fr550_check_insn_read_address (SIM_CPU *current_cpu, PCADDR address,
			       int align_mask)
{
  address &= ~align_mask;

  if ((USI)address >= 0xfe800000 && (USI)address <= 0xfeffffff)
    frv_queue_instruction_access_error_interrupt (current_cpu);
  else if ((USI)address >= 0xfe008000 && (USI)address <= 0xfe7fffff)
    frv_queue_instruction_access_exception_interrupt (current_cpu);
  else
    {
      USI hsr0 = GET_HSR0 ();
      if (! GET_HSR0_RME (hsr0)
	  && (USI)address >= 0xfe000000 && (USI)address <= 0xfe007fff)
	frv_queue_instruction_access_exception_interrupt (current_cpu);
    }

  return address;
}

static PCADDR
check_insn_read_address (SIM_CPU *current_cpu, PCADDR address, int align_mask)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  switch (STATE_ARCHITECTURE (sd)->mach)
    {
    case bfd_mach_fr400:
    case bfd_mach_fr450:
      address = fr400_check_insn_read_address (current_cpu, address,
					       align_mask);
      break;
    case bfd_mach_frvtomcat:
    case bfd_mach_fr500:
    case bfd_mach_frv:
      address = fr500_check_insn_read_address (current_cpu, address,
					       align_mask);
      break;
    case bfd_mach_fr550:
      address = fr550_check_insn_read_address (current_cpu, address,
					       align_mask);
      break;
    default:
      break;
    }

  return address;
}

/* Memory reads.  */
QI
frvbf_read_mem_QI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  USI hsr0 = GET_HSR0 ();
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);

  /* Check for access exceptions.  */
  address = check_data_read_address (current_cpu, address, 0);
  address = check_readwrite_address (current_cpu, address, 0);
  
  /* If we need to count cycles, then the cache operation will be
     initiated from the model profiling functions.
     See frvbf_model_....  */
  if (model_insn)
    {
      CPU_LOAD_ADDRESS (current_cpu) = address;
      CPU_LOAD_LENGTH (current_cpu) = 1;
      CPU_LOAD_SIGNED (current_cpu) = 1;
      return 0xb7; /* any random value */
    }

  if (GET_HSR0_DCE (hsr0))
    {
      int cycles;
      cycles = frv_cache_read (cache, 0, address);
      if (cycles != 0)
	return CACHE_RETURN_DATA (cache, 0, address, QI, 1);
    }

  return GETMEMQI (current_cpu, pc, address);
}

UQI
frvbf_read_mem_UQI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  USI hsr0 = GET_HSR0 ();
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);

  /* Check for access exceptions.  */
  address = check_data_read_address (current_cpu, address, 0);
  address = check_readwrite_address (current_cpu, address, 0);
  
  /* If we need to count cycles, then the cache operation will be
     initiated from the model profiling functions.
     See frvbf_model_....  */
  if (model_insn)
    {
      CPU_LOAD_ADDRESS (current_cpu) = address;
      CPU_LOAD_LENGTH (current_cpu) = 1;
      CPU_LOAD_SIGNED (current_cpu) = 0;
      return 0xb7; /* any random value */
    }

  if (GET_HSR0_DCE (hsr0))
    {
      int cycles;
      cycles = frv_cache_read (cache, 0, address);
      if (cycles != 0)
	return CACHE_RETURN_DATA (cache, 0, address, UQI, 1);
    }

  return GETMEMUQI (current_cpu, pc, address);
}

/* Read a HI which spans two cache lines */
static HI
read_mem_unaligned_HI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  HI value = frvbf_read_mem_QI (current_cpu, pc, address);
  value <<= 8;
  value |= frvbf_read_mem_UQI (current_cpu, pc, address + 1);
  return T2H_2 (value);
}

HI
frvbf_read_mem_HI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  USI hsr0;
  FRV_CACHE *cache;

  /* Check for access exceptions.  */
  address = check_data_read_address (current_cpu, address, 1);
  address = check_readwrite_address (current_cpu, address, 1);
  
  /* If we need to count cycles, then the cache operation will be
     initiated from the model profiling functions.
     See frvbf_model_....  */
  hsr0 = GET_HSR0 ();
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      CPU_LOAD_ADDRESS (current_cpu) = address;
      CPU_LOAD_LENGTH (current_cpu) = 2;
      CPU_LOAD_SIGNED (current_cpu) = 1;
      return 0xb711; /* any random value */
    }

  if (GET_HSR0_DCE (hsr0))
    {
      int cycles;
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 2))
	    return read_mem_unaligned_HI (current_cpu, pc, address); 
	}
      cycles = frv_cache_read (cache, 0, address);
      if (cycles != 0)
	return CACHE_RETURN_DATA (cache, 0, address, HI, 2);
    }

  return GETMEMHI (current_cpu, pc, address);
}

UHI
frvbf_read_mem_UHI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  USI hsr0;
  FRV_CACHE *cache;

  /* Check for access exceptions.  */
  address = check_data_read_address (current_cpu, address, 1);
  address = check_readwrite_address (current_cpu, address, 1);
  
  /* If we need to count cycles, then the cache operation will be
     initiated from the model profiling functions.
     See frvbf_model_....  */
  hsr0 = GET_HSR0 ();
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      CPU_LOAD_ADDRESS (current_cpu) = address;
      CPU_LOAD_LENGTH (current_cpu) = 2;
      CPU_LOAD_SIGNED (current_cpu) = 0;
      return 0xb711; /* any random value */
    }

  if (GET_HSR0_DCE (hsr0))
    {
      int cycles;
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 2))
	    return read_mem_unaligned_HI (current_cpu, pc, address); 
	}
      cycles = frv_cache_read (cache, 0, address);
      if (cycles != 0)
	return CACHE_RETURN_DATA (cache, 0, address, UHI, 2);
    }

  return GETMEMUHI (current_cpu, pc, address);
}

/* Read a SI which spans two cache lines */
static SI
read_mem_unaligned_SI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
  unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
  char valarray[4];
  SI SIvalue;
  HI HIvalue;

  switch (hi_len)
    {
    case 1:
      valarray[0] = frvbf_read_mem_QI (current_cpu, pc, address);
      SIvalue = frvbf_read_mem_SI (current_cpu, pc, address + 1);
      SIvalue = H2T_4 (SIvalue);
      memcpy (valarray + 1, (char*)&SIvalue, 3);
      break;
    case 2:
      HIvalue = frvbf_read_mem_HI (current_cpu, pc, address);
      HIvalue = H2T_2 (HIvalue);
      memcpy (valarray, (char*)&HIvalue, 2);
      HIvalue = frvbf_read_mem_HI (current_cpu, pc, address + 2);
      HIvalue = H2T_2 (HIvalue);
      memcpy (valarray + 2, (char*)&HIvalue, 2);
      break;
    case 3:
      SIvalue = frvbf_read_mem_SI (current_cpu, pc, address - 1);
      SIvalue = H2T_4 (SIvalue);
      memcpy (valarray, (char*)&SIvalue, 3);
      valarray[3] = frvbf_read_mem_QI (current_cpu, pc, address + 3);
      break;
    default:
      abort (); /* can't happen */
    }
  return T2H_4 (*(SI*)valarray);
}

SI
frvbf_read_mem_SI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  FRV_CACHE *cache;
  USI hsr0;

  /* Check for access exceptions.  */
  address = check_data_read_address (current_cpu, address, 3);
  address = check_readwrite_address (current_cpu, address, 3);
  
  hsr0 = GET_HSR0 ();
  cache = CPU_DATA_CACHE (current_cpu);
  /* If we need to count cycles, then the cache operation will be
     initiated from the model profiling functions.
     See frvbf_model_....  */
  if (model_insn)
    {
      CPU_LOAD_ADDRESS (current_cpu) = address;
      CPU_LOAD_LENGTH (current_cpu) = 4;
      return 0x37111319; /* any random value */
    }

  if (GET_HSR0_DCE (hsr0))
    {
      int cycles;
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 4))
	    return read_mem_unaligned_SI (current_cpu, pc, address); 
	}
      cycles = frv_cache_read (cache, 0, address);
      if (cycles != 0)
	return CACHE_RETURN_DATA (cache, 0, address, SI, 4);
    }

  return GETMEMSI (current_cpu, pc, address);
}

SI
frvbf_read_mem_WI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  return frvbf_read_mem_SI (current_cpu, pc, address);
}

/* Read a SI which spans two cache lines */
static DI
read_mem_unaligned_DI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
  unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
  DI value, value1;

  switch (hi_len)
    {
    case 1:
      value = frvbf_read_mem_QI (current_cpu, pc, address);
      value <<= 56;
      value1 = frvbf_read_mem_DI (current_cpu, pc, address + 1);
      value1 = H2T_8 (value1);
      value |= value1 & ((DI)0x00ffffff << 32);
      value |= value1 & 0xffffffffu;
      break;
    case 2:
      value = frvbf_read_mem_HI (current_cpu, pc, address);
      value = H2T_2 (value);
      value <<= 48;
      value1 = frvbf_read_mem_DI (current_cpu, pc, address + 2);
      value1 = H2T_8 (value1);
      value |= value1 & ((DI)0x0000ffff << 32);
      value |= value1 & 0xffffffffu;
      break;
    case 3:
      value = frvbf_read_mem_SI (current_cpu, pc, address - 1);
      value = H2T_4 (value);
      value <<= 40;
      value1 = frvbf_read_mem_DI (current_cpu, pc, address + 3);
      value1 = H2T_8 (value1);
      value |= value1 & ((DI)0x000000ff << 32);
      value |= value1 & 0xffffffffu;
      break;
    case 4:
      value = frvbf_read_mem_SI (current_cpu, pc, address);
      value = H2T_4 (value);
      value <<= 32;
      value1 = frvbf_read_mem_SI (current_cpu, pc, address + 4);
      value1 = H2T_4 (value1);
      value |= value1 & 0xffffffffu;
      break;
    case 5:
      value = frvbf_read_mem_DI (current_cpu, pc, address - 3);
      value = H2T_8 (value);
      value <<= 24;
      value1 = frvbf_read_mem_SI (current_cpu, pc, address + 5);
      value1 = H2T_4 (value1);
      value |= value1 & 0x00ffffff;
      break;
    case 6:
      value = frvbf_read_mem_DI (current_cpu, pc, address - 2);
      value = H2T_8 (value);
      value <<= 16;
      value1 = frvbf_read_mem_HI (current_cpu, pc, address + 6);
      value1 = H2T_2 (value1);
      value |= value1 & 0x0000ffff;
      break;
    case 7:
      value = frvbf_read_mem_DI (current_cpu, pc, address - 1);
      value = H2T_8 (value);
      value <<= 8;
      value1 = frvbf_read_mem_QI (current_cpu, pc, address + 7);
      value |= value1 & 0x000000ff;
      break;
    default:
      abort (); /* can't happen */
    }
  return T2H_8 (value);
}

DI
frvbf_read_mem_DI (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  USI hsr0;
  FRV_CACHE *cache;

  /* Check for access exceptions.  */
  address = check_data_read_address (current_cpu, address, 7);
  address = check_readwrite_address (current_cpu, address, 7);
  
  /* If we need to count cycles, then the cache operation will be
     initiated from the model profiling functions.
     See frvbf_model_....  */
  hsr0 = GET_HSR0 ();
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      CPU_LOAD_ADDRESS (current_cpu) = address;
      CPU_LOAD_LENGTH (current_cpu) = 8;
      return 0x37111319; /* any random value */
    }

  if (GET_HSR0_DCE (hsr0))
    {
      int cycles;
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
	    return read_mem_unaligned_DI (current_cpu, pc, address); 
	}
      cycles = frv_cache_read (cache, 0, address);
      if (cycles != 0)
	return CACHE_RETURN_DATA (cache, 0, address, DI, 8);
    }

  return GETMEMDI (current_cpu, pc, address);
}

DF
frvbf_read_mem_DF (SIM_CPU *current_cpu, IADDR pc, SI address)
{
  USI hsr0;
  FRV_CACHE *cache;

  /* Check for access exceptions.  */
  address = check_data_read_address (current_cpu, address, 7);
  address = check_readwrite_address (current_cpu, address, 7);
  
  /* If we need to count cycles, then the cache operation will be
     initiated from the model profiling functions.
     See frvbf_model_....  */
  hsr0 = GET_HSR0 ();
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      CPU_LOAD_ADDRESS (current_cpu) = address;
      CPU_LOAD_LENGTH (current_cpu) = 8;
      return 0x37111319; /* any random value */
    }

  if (GET_HSR0_DCE (hsr0))
    {
      int cycles;
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
	    return read_mem_unaligned_DI (current_cpu, pc, address); 
	}
      cycles = frv_cache_read (cache, 0, address);
      if (cycles != 0)
	return CACHE_RETURN_DATA (cache, 0, address, DF, 8);
    }

  return GETMEMDF (current_cpu, pc, address);
}

USI
frvbf_read_imem_USI (SIM_CPU *current_cpu, PCADDR vpc)
{
  USI hsr0;
  vpc = check_insn_read_address (current_cpu, vpc, 3);

  hsr0 = GET_HSR0 ();
  if (GET_HSR0_ICE (hsr0))
    {
      FRV_CACHE *cache;
      USI value;

      /* We don't want this to show up in the cache statistics.  That read
	 is done in frvbf_simulate_insn_prefetch.  So read the cache or memory
	 passively here.  */
      cache = CPU_INSN_CACHE (current_cpu);
      if (frv_cache_read_passive_SI (cache, vpc, &value))
	return value;
    }
  return sim_core_read_unaligned_4 (current_cpu, vpc, read_map, vpc);
}

static SI
fr400_check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  if (align_mask == 7
      && address >= 0xfe800000 && address <= 0xfeffffff)
    frv_queue_program_interrupt (current_cpu, FRV_DATA_STORE_ERROR);

  return address;
}

static SI
fr500_check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  if (address & align_mask)
    {
      struct frv_interrupt_queue_element *item =
	frv_queue_mem_address_not_aligned_interrupt (current_cpu, address);
      /* Record the correct vliw slot with the interrupt.  */
      if (item != NULL)
	item->slot = frv_interrupt_state.slot;
      address &= ~align_mask;
    }
  if (address >= 0xfeff0600 && address <= 0xfeff7fff
      || address >= 0xfe800000 && address <= 0xfefeffff)
    frv_queue_program_interrupt (current_cpu, FRV_DATA_STORE_ERROR);

  return address;
}

static SI
fr550_check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  if ((USI)address >= 0xfe800000 && (USI)address <= 0xfefeffff
      || (align_mask > 0x3
	  && ((USI)address >= 0xfeff0000 && (USI)address <= 0xfeffffff)))
    frv_queue_program_interrupt (current_cpu, FRV_DATA_STORE_ERROR);

  return address;
}

static SI
check_write_address (SIM_CPU *current_cpu, SI address, int align_mask)
{
  SIM_DESC sd = CPU_STATE (current_cpu);
  switch (STATE_ARCHITECTURE (sd)->mach)
    {
    case bfd_mach_fr400:
    case bfd_mach_fr450:
      address = fr400_check_write_address (current_cpu, address, align_mask);
      break;
    case bfd_mach_frvtomcat:
    case bfd_mach_fr500:
    case bfd_mach_frv:
      address = fr500_check_write_address (current_cpu, address, align_mask);
      break;
    case bfd_mach_fr550:
      address = fr550_check_write_address (current_cpu, address, align_mask);
      break;
    default:
      break;
    }
  return address;
}

void
frvbf_write_mem_QI (SIM_CPU *current_cpu, IADDR pc, SI address, QI value)
{
  USI hsr0;
  hsr0 = GET_HSR0 ();
  if (GET_HSR0_DCE (hsr0))
    sim_queue_fn_mem_qi_write (current_cpu, frvbf_mem_set_QI, address, value);
  else
    sim_queue_mem_qi_write (current_cpu, address, value);
  frv_set_write_queue_slot (current_cpu);
}

void
frvbf_write_mem_UQI (SIM_CPU *current_cpu, IADDR pc, SI address, UQI value)
{
  frvbf_write_mem_QI (current_cpu, pc, address, value);
}

void
frvbf_write_mem_HI (SIM_CPU *current_cpu, IADDR pc, SI address, HI value)
{
  USI hsr0;
  hsr0 = GET_HSR0 ();
  if (GET_HSR0_DCE (hsr0))
    sim_queue_fn_mem_hi_write (current_cpu, frvbf_mem_set_HI, address, value);
  else
    sim_queue_mem_hi_write (current_cpu, address, value);
  frv_set_write_queue_slot (current_cpu);
}

void
frvbf_write_mem_UHI (SIM_CPU *current_cpu, IADDR pc, SI address, UHI value)
{
  frvbf_write_mem_HI (current_cpu, pc, address, value);
}

void
frvbf_write_mem_SI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
{
  USI hsr0;
  hsr0 = GET_HSR0 ();
  if (GET_HSR0_DCE (hsr0))
    sim_queue_fn_mem_si_write (current_cpu, frvbf_mem_set_SI, address, value);
  else
    sim_queue_mem_si_write (current_cpu, address, value);
  frv_set_write_queue_slot (current_cpu);
}

void
frvbf_write_mem_WI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
{
  frvbf_write_mem_SI (current_cpu, pc, address, value);
}

void
frvbf_write_mem_DI (SIM_CPU *current_cpu, IADDR pc, SI address, DI value)
{
  USI hsr0;
  hsr0 = GET_HSR0 ();
  if (GET_HSR0_DCE (hsr0))
    sim_queue_fn_mem_di_write (current_cpu, frvbf_mem_set_DI, address, value);
  else
    sim_queue_mem_di_write (current_cpu, address, value);
  frv_set_write_queue_slot (current_cpu);
}

void
frvbf_write_mem_DF (SIM_CPU *current_cpu, IADDR pc, SI address, DF value)
{
  USI hsr0;
  hsr0 = GET_HSR0 ();
  if (GET_HSR0_DCE (hsr0))
    sim_queue_fn_mem_df_write (current_cpu, frvbf_mem_set_DF, address, value);
  else
    sim_queue_mem_df_write (current_cpu, address, value);
  frv_set_write_queue_slot (current_cpu);
}

/* Memory writes.  These do the actual writing through the cache.  */
void
frvbf_mem_set_QI (SIM_CPU *current_cpu, IADDR pc, SI address, QI value)
{
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);

  /* Check for access errors.  */
  address = check_write_address (current_cpu, address, 0);
  address = check_readwrite_address (current_cpu, address, 0);

  /* If we need to count cycles, then submit the write request to the cache
     and let it prioritize the request.  Otherwise perform the write now.  */
  if (model_insn)
    {
      int slot = UNIT_I0;
      frv_cache_request_store (cache, address, slot, (char *)&value,
			       sizeof (value));
    }
  else
    frv_cache_write (cache, address, (char *)&value, sizeof (value));
}

/* Write a HI which spans two cache lines */
static void
mem_set_unaligned_HI (SIM_CPU *current_cpu, IADDR pc, SI address, HI value)
{
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
  /* value is already in target byte order */
  frv_cache_write (cache, address, (char *)&value, 1);
  frv_cache_write (cache, address + 1, ((char *)&value + 1), 1);
}

void
frvbf_mem_set_HI (SIM_CPU *current_cpu, IADDR pc, SI address, HI value)
{
  FRV_CACHE *cache;

  /* Check for access errors.  */
  address = check_write_address (current_cpu, address, 1);
  address = check_readwrite_address (current_cpu, address, 1);

  /* If we need to count cycles, then submit the write request to the cache
     and let it prioritize the request.  Otherwise perform the write now.  */
  value = H2T_2 (value);
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      int slot = UNIT_I0;
      frv_cache_request_store (cache, address, slot,
			       (char *)&value, sizeof (value));
    }
  else
    {
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 2))
	    {
	      mem_set_unaligned_HI (current_cpu, pc, address, value); 
	      return;
	    }
	}
      frv_cache_write (cache, address, (char *)&value, sizeof (value));
    }
}

/* Write a SI which spans two cache lines */
static void
mem_set_unaligned_SI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
{
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
  unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
  /* value is already in target byte order */
  frv_cache_write (cache, address, (char *)&value, hi_len);
  frv_cache_write (cache, address + hi_len, (char *)&value + hi_len, 4 - hi_len);
}

void
frvbf_mem_set_SI (SIM_CPU *current_cpu, IADDR pc, SI address, SI value)
{
  FRV_CACHE *cache;

  /* Check for access errors.  */
  address = check_write_address (current_cpu, address, 3);
  address = check_readwrite_address (current_cpu, address, 3);

  /* If we need to count cycles, then submit the write request to the cache
     and let it prioritize the request.  Otherwise perform the write now.  */
  cache = CPU_DATA_CACHE (current_cpu);
  value = H2T_4 (value);
  if (model_insn)
    {
      int slot = UNIT_I0;
      frv_cache_request_store (cache, address, slot,
			       (char *)&value, sizeof (value));
    }
  else
    {
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 4))
	    {
	      mem_set_unaligned_SI (current_cpu, pc, address, value); 
	      return;
	    }
	}
      frv_cache_write (cache, address, (char *)&value, sizeof (value));
    }
}

/* Write a DI which spans two cache lines */
static void
mem_set_unaligned_DI (SIM_CPU *current_cpu, IADDR pc, SI address, DI value)
{
  FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
  unsigned hi_len = cache->line_size - (address & (cache->line_size - 1));
  /* value is already in target byte order */
  frv_cache_write (cache, address, (char *)&value, hi_len);
  frv_cache_write (cache, address + hi_len, (char *)&value + hi_len, 8 - hi_len);
}

void
frvbf_mem_set_DI (SIM_CPU *current_cpu, IADDR pc, SI address, DI value)
{
  FRV_CACHE *cache;

  /* Check for access errors.  */
  address = check_write_address (current_cpu, address, 7);
  address = check_readwrite_address (current_cpu, address, 7);

  /* If we need to count cycles, then submit the write request to the cache
     and let it prioritize the request.  Otherwise perform the write now.  */
  value = H2T_8 (value);
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      int slot = UNIT_I0;
      frv_cache_request_store (cache, address, slot,
			       (char *)&value, sizeof (value));
    }
  else
    {
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
	    {
	      mem_set_unaligned_DI (current_cpu, pc, address, value); 
	      return;
	    }
	}
      frv_cache_write (cache, address, (char *)&value, sizeof (value));
    }
}

void
frvbf_mem_set_DF (SIM_CPU *current_cpu, IADDR pc, SI address, DF value)
{
  FRV_CACHE *cache;

  /* Check for access errors.  */
  address = check_write_address (current_cpu, address, 7);
  address = check_readwrite_address (current_cpu, address, 7);

  /* If we need to count cycles, then submit the write request to the cache
     and let it prioritize the request.  Otherwise perform the write now.  */
  value = H2T_8 (value);
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      int slot = UNIT_I0;
      frv_cache_request_store (cache, address, slot,
			       (char *)&value, sizeof (value));
    }
  else
    {
      /* Handle access which crosses cache line boundary */
      SIM_DESC sd = CPU_STATE (current_cpu);
      if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
	{
	  if (DATA_CROSSES_CACHE_LINE (cache, address, 8))
	    {
	      mem_set_unaligned_DI (current_cpu, pc, address, value); 
	      return;
	    }
	}
      frv_cache_write (cache, address, (char *)&value, sizeof (value));
    }
}

void
frvbf_mem_set_XI (SIM_CPU *current_cpu, IADDR pc, SI address, SI *value)
{
  int i;
  FRV_CACHE *cache;

  /* Check for access errors.  */
  address = check_write_address (current_cpu, address, 0xf);
  address = check_readwrite_address (current_cpu, address, 0xf);

  /* TODO -- reverse word order as well?  */
  for (i = 0; i < 4; ++i)
    value[i] = H2T_4 (value[i]);

  /* If we need to count cycles, then submit the write request to the cache
     and let it prioritize the request.  Otherwise perform the write now.  */
  cache = CPU_DATA_CACHE (current_cpu);
  if (model_insn)
    {
      int slot = UNIT_I0;
      frv_cache_request_store (cache, address, slot, (char*)value, 16);
    }
  else
    frv_cache_write (cache, address, (char*)value, 16);
}

/* Record the current VLIW slot on the element at the top of the write queue.
*/
void
frv_set_write_queue_slot (SIM_CPU *current_cpu)
{
  FRV_VLIW *vliw = CPU_VLIW (current_cpu);
  int slot = vliw->next_slot - 1;
  CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
  int ix = CGEN_WRITE_QUEUE_INDEX (q) - 1;
  CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, ix);
  CGEN_WRITE_QUEUE_ELEMENT_PIPE (item) = (*vliw->current_vliw)[slot];
}