/* frv simulator support code Copyright (C) 1998-2021 Free Software Foundation, Inc. Contributed by Red Hat. This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define WANT_CPU #define WANT_CPU_FRVBF #include "sim-main.h" #include "cgen-mem.h" #include "cgen-ops.h" #include "cgen-engine.h" #include "cgen-par.h" #include "bfd.h" #include "gdb/sim-frv.h" #include /* Maintain a flag in order to know when to write the address of the next VLIW instruction into the LR register. Used by JMPL. JMPIL, and CALL insns. */ int frvbf_write_next_vliw_addr_to_LR; /* The contents of BUF are in target byte order. */ int frvbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len) { if (SIM_FRV_GR0_REGNUM <= rn && rn <= SIM_FRV_GR63_REGNUM) { int hi_available, lo_available; int grn = rn - SIM_FRV_GR0_REGNUM; frv_gr_registers_available (current_cpu, &hi_available, &lo_available); if ((grn < 32 && !lo_available) || (grn >= 32 && !hi_available)) return 0; else SETTSI (buf, GET_H_GR (grn)); } else if (SIM_FRV_FR0_REGNUM <= rn && rn <= SIM_FRV_FR63_REGNUM) { int hi_available, lo_available; int frn = rn - SIM_FRV_FR0_REGNUM; frv_fr_registers_available (current_cpu, &hi_available, &lo_available); if ((frn < 32 && !lo_available) || (frn >= 32 && !hi_available)) return 0; else SETTSI (buf, GET_H_FR (frn)); } else if (rn == SIM_FRV_PC_REGNUM) SETTSI (buf, GET_H_PC ()); else if (SIM_FRV_SPR0_REGNUM <= rn && rn <= SIM_FRV_SPR4095_REGNUM) { /* Make sure the register is implemented. */ FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); int spr = rn - SIM_FRV_SPR0_REGNUM; if (! control->spr[spr].implemented) return 0; SETTSI (buf, GET_H_SPR (spr)); } else { SETTSI (buf, 0xdeadbeef); return 0; } return len; } /* The contents of BUF are in target byte order. */ int frvbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len) { if (SIM_FRV_GR0_REGNUM <= rn && rn <= SIM_FRV_GR63_REGNUM) { int hi_available, lo_available; int grn = rn - SIM_FRV_GR0_REGNUM; frv_gr_registers_available (current_cpu, &hi_available, &lo_available); if ((grn < 32 && !lo_available) || (grn >= 32 && !hi_available)) return 0; else SET_H_GR (grn, GETTSI (buf)); } else if (SIM_FRV_FR0_REGNUM <= rn && rn <= SIM_FRV_FR63_REGNUM) { int hi_available, lo_available; int frn = rn - SIM_FRV_FR0_REGNUM; frv_fr_registers_available (current_cpu, &hi_available, &lo_available); if ((frn < 32 && !lo_available) || (frn >= 32 && !hi_available)) return 0; else SET_H_FR (frn, GETTSI (buf)); } else if (rn == SIM_FRV_PC_REGNUM) SET_H_PC (GETTSI (buf)); else if (SIM_FRV_SPR0_REGNUM <= rn && rn <= SIM_FRV_SPR4095_REGNUM) { /* Make sure the register is implemented. */ FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); int spr = rn - SIM_FRV_SPR0_REGNUM; if (! control->spr[spr].implemented) return 0; SET_H_SPR (spr, GETTSI (buf)); } else return 0; return len; } /* Cover fns to access the general registers. */ USI frvbf_h_gr_get_handler (SIM_CPU *current_cpu, UINT gr) { frv_check_gr_access (current_cpu, gr); return CPU (h_gr[gr]); } void frvbf_h_gr_set_handler (SIM_CPU *current_cpu, UINT gr, USI newval) { frv_check_gr_access (current_cpu, gr); if (gr == 0) return; /* Storing into gr0 has no effect. */ CPU (h_gr[gr]) = newval; } /* Cover fns to access the floating point registers. */ SF frvbf_h_fr_get_handler (SIM_CPU *current_cpu, UINT fr) { frv_check_fr_access (current_cpu, fr); return CPU (h_fr[fr]); } void frvbf_h_fr_set_handler (SIM_CPU *current_cpu, UINT fr, SF newval) { frv_check_fr_access (current_cpu, fr); CPU (h_fr[fr]) = newval; } /* Cover fns to access the general registers as double words. */ static UINT check_register_alignment (SIM_CPU *current_cpu, UINT reg, int align_mask) { if (reg & align_mask) { SIM_DESC sd = CPU_STATE (current_cpu); switch (STATE_ARCHITECTURE (sd)->mach) { /* Note: there is a discrepancy between V2.2 of the FR400 instruction manual and the various FR4xx LSI specs. The former claims that unaligned registers cause a register_exception while the latter say it's an illegal_instruction. The LSI specs appear to be correct; in fact, the FR4xx series is not documented as having a register_exception. */ case bfd_mach_fr400: case bfd_mach_fr450: case bfd_mach_fr550: frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); break; case bfd_mach_frvtomcat: case bfd_mach_fr500: case bfd_mach_frv: frv_queue_register_exception_interrupt (current_cpu, FRV_REC_UNALIGNED); break; default: break; } reg &= ~align_mask; } return reg; } static UINT check_fr_register_alignment (SIM_CPU *current_cpu, UINT reg, int align_mask) { if (reg & align_mask) { SIM_DESC sd = CPU_STATE (current_cpu); switch (STATE_ARCHITECTURE (sd)->mach) { /* See comment in check_register_alignment(). */ case bfd_mach_fr400: case bfd_mach_fr450: case bfd_mach_fr550: frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); break; case bfd_mach_frvtomcat: case bfd_mach_fr500: case bfd_mach_frv: { struct frv_fp_exception_info fp_info = { FSR_NO_EXCEPTION, FTT_INVALID_FR }; frv_queue_fp_exception_interrupt (current_cpu, & fp_info); } break; default: break; } reg &= ~align_mask; } return reg; } static UINT check_memory_alignment (SIM_CPU *current_cpu, SI address, int align_mask) { if (address & align_mask) { SIM_DESC sd = CPU_STATE (current_cpu); switch (STATE_ARCHITECTURE (sd)->mach) { /* See comment in check_register_alignment(). */ case bfd_mach_fr400: case bfd_mach_fr450: frv_queue_data_access_error_interrupt (current_cpu, address); break; case bfd_mach_frvtomcat: case bfd_mach_fr500: case bfd_mach_frv: frv_queue_mem_address_not_aligned_interrupt (current_cpu, address); break; default: break; } address &= ~align_mask; } return address; } DI frvbf_h_gr_double_get_handler (SIM_CPU *current_cpu, UINT gr) { DI value; if (gr == 0) return 0; /* gr0 is always 0. */ /* Check the register alignment. */ gr = check_register_alignment (current_cpu, gr, 1); value = GET_H_GR (gr); value <<= 32; value |= (USI) GET_H_GR (gr + 1); return value; } void frvbf_h_gr_double_set_handler (SIM_CPU *current_cpu, UINT gr, DI newval) { if (gr == 0) return; /* Storing into gr0 has no effect. */ /* Check the register alignment. */ gr = check_register_alignment (current_cpu, gr, 1); SET_H_GR (gr , (newval >> 32) & 0xffffffff); SET_H_GR (gr + 1, (newval ) & 0xffffffff); } /* Cover fns to access the floating point register as double words. */ DF frvbf_h_fr_double_get_handler (SIM_CPU *current_cpu, UINT fr) { union { SF as_sf[2]; DF as_df; } value; /* Check the register alignment. */ fr = check_fr_register_alignment (current_cpu, fr, 1); if (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE) { value.as_sf[1] = GET_H_FR (fr); value.as_sf[0] = GET_H_FR (fr + 1); } else { value.as_sf[0] = GET_H_FR (fr); value.as_sf[1] = GET_H_FR (fr + 1); } return value.as_df; } void frvbf_h_fr_double_set_handler (SIM_CPU *current_cpu, UINT fr, DF newval) { union { SF as_sf[2]; DF as_df; } value; /* Check the register alignment. */ fr = check_fr_register_alignment (current_cpu, fr, 1); value.as_df = newval; if (HOST_BYTE_ORDER == BFD_ENDIAN_LITTLE) { SET_H_FR (fr , value.as_sf[1]); SET_H_FR (fr + 1, value.as_sf[0]); } else { SET_H_FR (fr , value.as_sf[0]); SET_H_FR (fr + 1, value.as_sf[1]); } } /* Cover fns to access the floating point register as integer words. */ USI frvbf_h_fr_int_get_handler (SIM_CPU *current_cpu, UINT fr) { union { SF as_sf; USI as_usi; } value; value.as_sf = GET_H_FR (fr); return value.as_usi; } void frvbf_h_fr_int_set_handler (SIM_CPU *current_cpu, UINT fr, USI newval) { union { SF as_sf; USI as_usi; } value; value.as_usi = newval; SET_H_FR (fr, value.as_sf); } /* Cover fns to access the coprocessor registers as double words. */ DI frvbf_h_cpr_double_get_handler (SIM_CPU *current_cpu, UINT cpr) { DI value; /* Check the register alignment. */ cpr = check_register_alignment (current_cpu, cpr, 1); value = GET_H_CPR (cpr); value <<= 32; value |= (USI) GET_H_CPR (cpr + 1); return value; } void frvbf_h_cpr_double_set_handler (SIM_CPU *current_cpu, UINT cpr, DI newval) { /* Check the register alignment. */ cpr = check_register_alignment (current_cpu, cpr, 1); SET_H_CPR (cpr , (newval >> 32) & 0xffffffff); SET_H_CPR (cpr + 1, (newval ) & 0xffffffff); } /* Cover fns to write registers as quad words. */ void frvbf_h_gr_quad_set_handler (SIM_CPU *current_cpu, UINT gr, SI *newval) { if (gr == 0) return; /* Storing into gr0 has no effect. */ /* Check the register alignment. */ gr = check_register_alignment (current_cpu, gr, 3); SET_H_GR (gr , newval[0]); SET_H_GR (gr + 1, newval[1]); SET_H_GR (gr + 2, newval[2]); SET_H_GR (gr + 3, newval[3]); } void frvbf_h_fr_quad_set_handler (SIM_CPU *current_cpu, UINT fr, SI *newval) { /* Check the register alignment. */ fr = check_fr_register_alignment (current_cpu, fr, 3); SET_H_FR (fr , newval[0]); SET_H_FR (fr + 1, newval[1]); SET_H_FR (fr + 2, newval[2]); SET_H_FR (fr + 3, newval[3]); } void frvbf_h_cpr_quad_set_handler (SIM_CPU *current_cpu, UINT cpr, SI *newval) { /* Check the register alignment. */ cpr = check_register_alignment (current_cpu, cpr, 3); SET_H_CPR (cpr , newval[0]); SET_H_CPR (cpr + 1, newval[1]); SET_H_CPR (cpr + 2, newval[2]); SET_H_CPR (cpr + 3, newval[3]); } /* Cover fns to access the special purpose registers. */ USI frvbf_h_spr_get_handler (SIM_CPU *current_cpu, UINT spr) { /* Check access restrictions. */ frv_check_spr_read_access (current_cpu, spr); switch (spr) { case H_SPR_PSR: return spr_psr_get_handler (current_cpu); case H_SPR_TBR: return spr_tbr_get_handler (current_cpu); case H_SPR_BPSR: return spr_bpsr_get_handler (current_cpu); case H_SPR_CCR: return spr_ccr_get_handler (current_cpu); case H_SPR_CCCR: return spr_cccr_get_handler (current_cpu); case H_SPR_SR0: case H_SPR_SR1: case H_SPR_SR2: case H_SPR_SR3: return spr_sr_get_handler (current_cpu, spr); break; default: return CPU (h_spr[spr]); } return 0; } void frvbf_h_spr_set_handler (SIM_CPU *current_cpu, UINT spr, USI newval) { FRV_REGISTER_CONTROL *control; USI mask; USI oldval; /* Check access restrictions. */ frv_check_spr_write_access (current_cpu, spr); /* Only set those fields which are writeable. */ control = CPU_REGISTER_CONTROL (current_cpu); mask = control->spr[spr].read_only_mask; oldval = GET_H_SPR (spr); newval = (newval & ~mask) | (oldval & mask); /* Some registers are represented by individual components which are referenced more often than the register itself. */ switch (spr) { case H_SPR_PSR: spr_psr_set_handler (current_cpu, newval); break; case H_SPR_TBR: spr_tbr_set_handler (current_cpu, newval); break; case H_SPR_BPSR: spr_bpsr_set_handler (current_cpu, newval); break; case H_SPR_CCR: spr_ccr_set_handler (current_cpu, newval); break; case H_SPR_CCCR: spr_cccr_set_handler (current_cpu, newval); break; case H_SPR_SR0: case H_SPR_SR1: case H_SPR_SR2: case H_SPR_SR3: spr_sr_set_handler (current_cpu, spr, newval); break; case H_SPR_IHSR8: frv_cache_reconfigure (current_cpu, CPU_INSN_CACHE (current_cpu)); break; default: CPU (h_spr[spr]) = newval; break; } } /* Cover fns to access the gr_hi and gr_lo registers. */ UHI frvbf_h_gr_hi_get_handler (SIM_CPU *current_cpu, UINT gr) { return (GET_H_GR(gr) >> 16) & 0xffff; } void frvbf_h_gr_hi_set_handler (SIM_CPU *current_cpu, UINT gr, UHI newval) { USI value = (GET_H_GR (gr) & 0xffff) | (newval << 16); SET_H_GR (gr, value); } UHI frvbf_h_gr_lo_get_handler (SIM_CPU *current_cpu, UINT gr) { return GET_H_GR(gr) & 0xffff; } void frvbf_h_gr_lo_set_handler (SIM_CPU *current_cpu, UINT gr, UHI newval) { USI value = (GET_H_GR (gr) & 0xffff0000) | (newval & 0xffff); SET_H_GR (gr, value); } /* Cover fns to access the tbr bits. */ USI spr_tbr_get_handler (SIM_CPU *current_cpu) { int tbr = ((GET_H_TBR_TBA () & 0xfffff) << 12) | ((GET_H_TBR_TT () & 0xff) << 4); return tbr; } void spr_tbr_set_handler (SIM_CPU *current_cpu, USI newval) { int tbr = newval; SET_H_TBR_TBA ((tbr >> 12) & 0xfffff) ; SET_H_TBR_TT ((tbr >> 4) & 0xff) ; } /* Cover fns to access the bpsr bits. */ USI spr_bpsr_get_handler (SIM_CPU *current_cpu) { int bpsr = ((GET_H_BPSR_BS () & 0x1) << 12) | ((GET_H_BPSR_BET () & 0x1) ); return bpsr; } void spr_bpsr_set_handler (SIM_CPU *current_cpu, USI newval) { int bpsr = newval; SET_H_BPSR_BS ((bpsr >> 12) & 1); SET_H_BPSR_BET ((bpsr ) & 1); } /* Cover fns to access the psr bits. */ USI spr_psr_get_handler (SIM_CPU *current_cpu) { int psr = ((GET_H_PSR_IMPLE () & 0xf) << 28) | ((GET_H_PSR_VER () & 0xf) << 24) | ((GET_H_PSR_ICE () & 0x1) << 16) | ((GET_H_PSR_NEM () & 0x1) << 14) | ((GET_H_PSR_CM () & 0x1) << 13) | ((GET_H_PSR_BE () & 0x1) << 12) | ((GET_H_PSR_ESR () & 0x1) << 11) | ((GET_H_PSR_EF () & 0x1) << 8) | ((GET_H_PSR_EM () & 0x1) << 7) | ((GET_H_PSR_PIL () & 0xf) << 3) | ((GET_H_PSR_S () & 0x1) << 2) | ((GET_H_PSR_PS () & 0x1) << 1) | ((GET_H_PSR_ET () & 0x1) ); return psr; } void spr_psr_set_handler (SIM_CPU *current_cpu, USI newval) { /* The handler for PSR.S references the value of PSR.ESR, so set PSR.S first. */ SET_H_PSR_S ((newval >> 2) & 1); SET_H_PSR_IMPLE ((newval >> 28) & 0xf); SET_H_PSR_VER ((newval >> 24) & 0xf); SET_H_PSR_ICE ((newval >> 16) & 1); SET_H_PSR_NEM ((newval >> 14) & 1); SET_H_PSR_CM ((newval >> 13) & 1); SET_H_PSR_BE ((newval >> 12) & 1); SET_H_PSR_ESR ((newval >> 11) & 1); SET_H_PSR_EF ((newval >> 8) & 1); SET_H_PSR_EM ((newval >> 7) & 1); SET_H_PSR_PIL ((newval >> 3) & 0xf); SET_H_PSR_PS ((newval >> 1) & 1); SET_H_PSR_ET ((newval ) & 1); } void frvbf_h_psr_s_set_handler (SIM_CPU *current_cpu, BI newval) { /* If switching from user to supervisor mode, or vice-versa, then switch the supervisor/user context. */ int psr_s = GET_H_PSR_S (); if (psr_s != (newval & 1)) { frvbf_switch_supervisor_user_context (current_cpu); CPU (h_psr_s) = newval & 1; } } /* Cover fns to access the ccr bits. */ USI spr_ccr_get_handler (SIM_CPU *current_cpu) { int ccr = ((GET_H_ICCR (H_ICCR_ICC3) & 0xf) << 28) | ((GET_H_ICCR (H_ICCR_ICC2) & 0xf) << 24) | ((GET_H_ICCR (H_ICCR_ICC1) & 0xf) << 20) | ((GET_H_ICCR (H_ICCR_ICC0) & 0xf) << 16) | ((GET_H_FCCR (H_FCCR_FCC3) & 0xf) << 12) | ((GET_H_FCCR (H_FCCR_FCC2) & 0xf) << 8) | ((GET_H_FCCR (H_FCCR_FCC1) & 0xf) << 4) | ((GET_H_FCCR (H_FCCR_FCC0) & 0xf) ); return ccr; } void spr_ccr_set_handler (SIM_CPU *current_cpu, USI newval) { int ccr = newval; SET_H_ICCR (H_ICCR_ICC3, (newval >> 28) & 0xf); SET_H_ICCR (H_ICCR_ICC2, (newval >> 24) & 0xf); SET_H_ICCR (H_ICCR_ICC1, (newval >> 20) & 0xf); SET_H_ICCR (H_ICCR_ICC0, (newval >> 16) & 0xf); SET_H_FCCR (H_FCCR_FCC3, (newval >> 12) & 0xf); SET_H_FCCR (H_FCCR_FCC2, (newval >> 8) & 0xf); SET_H_FCCR (H_FCCR_FCC1, (newval >> 4) & 0xf); SET_H_FCCR (H_FCCR_FCC0, (newval ) & 0xf); } QI frvbf_set_icc_for_shift_right ( SIM_CPU *current_cpu, SI value, SI shift, QI icc ) { /* Set the C flag of the given icc to the logical OR of the bits shifted out. */ int mask = (1 << shift) - 1; if ((value & mask) != 0) return icc | 0x1; return icc & 0xe; } QI frvbf_set_icc_for_shift_left ( SIM_CPU *current_cpu, SI value, SI shift, QI icc ) { /* Set the V flag of the given icc to the logical OR of the bits shifted out. */ int mask = ((1 << shift) - 1) << (32 - shift); if ((value & mask) != 0) return icc | 0x2; return icc & 0xd; } /* Cover fns to access the cccr bits. */ USI spr_cccr_get_handler (SIM_CPU *current_cpu) { int cccr = ((GET_H_CCCR (H_CCCR_CC7) & 0x3) << 14) | ((GET_H_CCCR (H_CCCR_CC6) & 0x3) << 12) | ((GET_H_CCCR (H_CCCR_CC5) & 0x3) << 10) | ((GET_H_CCCR (H_CCCR_CC4) & 0x3) << 8) | ((GET_H_CCCR (H_CCCR_CC3) & 0x3) << 6) | ((GET_H_CCCR (H_CCCR_CC2) & 0x3) << 4) | ((GET_H_CCCR (H_CCCR_CC1) & 0x3) << 2) | ((GET_H_CCCR (H_CCCR_CC0) & 0x3) ); return cccr; } void spr_cccr_set_handler (SIM_CPU *current_cpu, USI newval) { int cccr = newval; SET_H_CCCR (H_CCCR_CC7, (newval >> 14) & 0x3); SET_H_CCCR (H_CCCR_CC6, (newval >> 12) & 0x3); SET_H_CCCR (H_CCCR_CC5, (newval >> 10) & 0x3); SET_H_CCCR (H_CCCR_CC4, (newval >> 8) & 0x3); SET_H_CCCR (H_CCCR_CC3, (newval >> 6) & 0x3); SET_H_CCCR (H_CCCR_CC2, (newval >> 4) & 0x3); SET_H_CCCR (H_CCCR_CC1, (newval >> 2) & 0x3); SET_H_CCCR (H_CCCR_CC0, (newval ) & 0x3); } /* Cover fns to access the sr bits. */ USI spr_sr_get_handler (SIM_CPU *current_cpu, UINT spr) { /* If PSR.ESR is not set, then SR0-3 map onto SGR4-7 which will be GR4-7, otherwise the correct mapping of USG4-7 or SGR4-7 will be in SR0-3. */ int psr_esr = GET_H_PSR_ESR (); if (! psr_esr) return GET_H_GR (4 + (spr - H_SPR_SR0)); return CPU (h_spr[spr]); } void spr_sr_set_handler (SIM_CPU *current_cpu, UINT spr, USI newval) { /* If PSR.ESR is not set, then SR0-3 map onto SGR4-7 which will be GR4-7, otherwise the correct mapping of USG4-7 or SGR4-7 will be in SR0-3. */ int psr_esr = GET_H_PSR_ESR (); if (! psr_esr) SET_H_GR (4 + (spr - H_SPR_SR0), newval); else CPU (h_spr[spr]) = newval; } /* Switch SR0-SR4 with GR4-GR7 if PSR.ESR is set. */ void frvbf_switch_supervisor_user_context (SIM_CPU *current_cpu) { if (GET_H_PSR_ESR ()) { /* We need to be in supervisor mode to swap the registers. Access the PSR.S directly in order to avoid recursive context switches. */ int i; int save_psr_s = CPU (h_psr_s); CPU (h_psr_s) = 1; for (i = 0; i < 4; ++i) { int gr = i + 4; int spr = i + H_SPR_SR0; SI tmp = GET_H_SPR (spr); SET_H_SPR (spr, GET_H_GR (gr)); SET_H_GR (gr, tmp); } CPU (h_psr_s) = save_psr_s; } } /* Handle load/store of quad registers. */ void frvbf_load_quad_GR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix) { int i; SI value[4]; /* Check memory alignment */ address = check_memory_alignment (current_cpu, address, 0xf); /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { CPU_LOAD_ADDRESS (current_cpu) = address; CPU_LOAD_LENGTH (current_cpu) = 16; } else { for (i = 0; i < 4; ++i) { value[i] = frvbf_read_mem_SI (current_cpu, pc, address); address += 4; } sim_queue_fn_xi_write (current_cpu, frvbf_h_gr_quad_set_handler, targ_ix, value); } } void frvbf_store_quad_GR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix) { int i; SI value[4]; USI hsr0; /* Check register and memory alignment. */ src_ix = check_register_alignment (current_cpu, src_ix, 3); address = check_memory_alignment (current_cpu, address, 0xf); for (i = 0; i < 4; ++i) { /* GR0 is always 0. */ if (src_ix == 0) value[i] = 0; else value[i] = GET_H_GR (src_ix + i); } hsr0 = GET_HSR0 (); if (GET_HSR0_DCE (hsr0)) sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value); else sim_queue_mem_xi_write (current_cpu, address, value); } void frvbf_load_quad_FRint (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix) { int i; SI value[4]; /* Check memory alignment */ address = check_memory_alignment (current_cpu, address, 0xf); /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { CPU_LOAD_ADDRESS (current_cpu) = address; CPU_LOAD_LENGTH (current_cpu) = 16; } else { for (i = 0; i < 4; ++i) { value[i] = frvbf_read_mem_SI (current_cpu, pc, address); address += 4; } sim_queue_fn_xi_write (current_cpu, frvbf_h_fr_quad_set_handler, targ_ix, value); } } void frvbf_store_quad_FRint (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix) { int i; SI value[4]; USI hsr0; /* Check register and memory alignment. */ src_ix = check_fr_register_alignment (current_cpu, src_ix, 3); address = check_memory_alignment (current_cpu, address, 0xf); for (i = 0; i < 4; ++i) value[i] = GET_H_FR (src_ix + i); hsr0 = GET_HSR0 (); if (GET_HSR0_DCE (hsr0)) sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value); else sim_queue_mem_xi_write (current_cpu, address, value); } void frvbf_load_quad_CPR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix) { int i; SI value[4]; /* Check memory alignment */ address = check_memory_alignment (current_cpu, address, 0xf); /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { CPU_LOAD_ADDRESS (current_cpu) = address; CPU_LOAD_LENGTH (current_cpu) = 16; } else { for (i = 0; i < 4; ++i) { value[i] = frvbf_read_mem_SI (current_cpu, pc, address); address += 4; } sim_queue_fn_xi_write (current_cpu, frvbf_h_cpr_quad_set_handler, targ_ix, value); } } void frvbf_store_quad_CPR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix) { int i; SI value[4]; USI hsr0; /* Check register and memory alignment. */ src_ix = check_register_alignment (current_cpu, src_ix, 3); address = check_memory_alignment (current_cpu, address, 0xf); for (i = 0; i < 4; ++i) value[i] = GET_H_CPR (src_ix + i); hsr0 = GET_HSR0 (); if (GET_HSR0_DCE (hsr0)) sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value); else sim_queue_mem_xi_write (current_cpu, address, value); } void frvbf_signed_integer_divide ( SIM_CPU *current_cpu, SI arg1, SI arg2, int target_index, int non_excepting ) { enum frv_dtt dtt = FRV_DTT_NO_EXCEPTION; if (arg1 == 0x80000000 && arg2 == -1) { /* 0x80000000/(-1) must result in 0x7fffffff when ISR.EDE is set otherwise it may result in 0x7fffffff (sparc compatibility) or 0x80000000 (C language compatibility). */ USI isr; dtt = FRV_DTT_OVERFLOW; isr = GET_ISR (); if (GET_ISR_EDE (isr)) sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, 0x7fffffff); else sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, 0x80000000); frvbf_force_update (current_cpu); /* Force update of target register. */ } else if (arg2 == 0) dtt = FRV_DTT_DIVISION_BY_ZERO; else sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, arg1 / arg2); /* Check for exceptions. */ if (dtt != FRV_DTT_NO_EXCEPTION) dtt = frvbf_division_exception (current_cpu, dtt, target_index, non_excepting); if (non_excepting && dtt == FRV_DTT_NO_EXCEPTION) { /* Non excepting instruction. Clear the NE flag for the target register. */ SI NE_flags[2]; GET_NE_FLAGS (NE_flags, H_SPR_GNER0); CLEAR_NE_FLAG (NE_flags, target_index); SET_NE_FLAGS (H_SPR_GNER0, NE_flags); } } void frvbf_unsigned_integer_divide ( SIM_CPU *current_cpu, USI arg1, USI arg2, int target_index, int non_excepting ) { if (arg2 == 0) frvbf_division_exception (current_cpu, FRV_DTT_DIVISION_BY_ZERO, target_index, non_excepting); else { sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index, arg1 / arg2); if (non_excepting) { /* Non excepting instruction. Clear the NE flag for the target register. */ SI NE_flags[2]; GET_NE_FLAGS (NE_flags, H_SPR_GNER0); CLEAR_NE_FLAG (NE_flags, target_index); SET_NE_FLAGS (H_SPR_GNER0, NE_flags); } } } /* Clear accumulators. */ void frvbf_clear_accumulators (SIM_CPU *current_cpu, SI acc_ix, int A) { SIM_DESC sd = CPU_STATE (current_cpu); int acc_mask = (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr500) ? 7 : (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) ? 7 : (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450) ? 11 : (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) ? 3 : 63; FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); ps->mclracc_acc = acc_ix; ps->mclracc_A = A; if (A == 0 || acc_ix != 0) /* Clear 1 accumuator? */ { /* This instruction is a nop if the referenced accumulator is not implemented. */ if ((acc_ix & acc_mask) == acc_ix) sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, acc_ix, 0); } else { /* Clear all implemented accumulators. */ int i; for (i = 0; i <= acc_mask; ++i) if ((i & acc_mask) == i) sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, i, 0); } } /* Functions to aid insn semantics. */ /* Compute the result of the SCAN and SCANI insns after the shift and xor. */ SI frvbf_scan_result (SIM_CPU *current_cpu, SI value) { SI i; SI mask; if (value == 0) return 63; /* Find the position of the first non-zero bit. The loop will terminate since there is guaranteed to be at least one non-zero bit. */ mask = 1 << (sizeof (mask) * 8 - 1); for (i = 0; (value & mask) == 0; ++i) value <<= 1; return i; } /* Compute the result of the cut insns. */ SI frvbf_cut (SIM_CPU *current_cpu, SI reg1, SI reg2, SI cut_point) { SI result; cut_point &= 0x3f; if (cut_point < 32) { result = reg1 << cut_point; result |= (reg2 >> (32 - cut_point)) & ((1 << cut_point) - 1); } else result = reg2 << (cut_point - 32); return result; } /* Compute the result of the cut insns. */ SI frvbf_media_cut (SIM_CPU *current_cpu, DI acc, SI cut_point) { /* The cut point is the lower 6 bits (signed) of what we are passed. */ cut_point = cut_point << 26 >> 26; /* The cut_point is relative to bit 40 of 64 bits. */ if (cut_point >= 0) return (acc << (cut_point + 24)) >> 32; /* Extend the sign bit (bit 40) for negative cuts. */ if (cut_point == -32) return (acc << 24) >> 63; /* Special case for full shiftout. */ return (acc << 24) >> (32 + -cut_point); } /* Compute the result of the cut insns. */ SI frvbf_media_cut_ss (SIM_CPU *current_cpu, DI acc, SI cut_point) { /* The cut point is the lower 6 bits (signed) of what we are passed. */ cut_point = cut_point << 26 >> 26; if (cut_point >= 0) { /* The cut_point is relative to bit 40 of 64 bits. */ DI shifted = acc << (cut_point + 24); DI unshifted = shifted >> (cut_point + 24); /* The result will be saturated if significant bits are shifted out. */ if (unshifted != acc) { if (acc < 0) return 0x80000000; return 0x7fffffff; } } /* The result will not be saturated, so use the code for the normal cut. */ return frvbf_media_cut (current_cpu, acc, cut_point); } /* Compute the result of int accumulator cut (SCUTSS). */ SI frvbf_iacc_cut (SIM_CPU *current_cpu, DI acc, SI cut_point) { DI lower, upper; /* The cut point is the lower 7 bits (signed) of what we are passed. */ cut_point = cut_point << 25 >> 25; /* Conceptually, the operation is on a 128-bit sign-extension of ACC. The top bit of the return value corresponds to bit (63 - CUT_POINT) of this 128-bit value. Since we can't deal with 128-bit values very easily, convert the operation into an equivalent 64-bit one. */ if (cut_point < 0) { /* Avoid an undefined shift operation. */ if (cut_point == -64) acc >>= 63; else acc >>= -cut_point; cut_point = 0; } /* Get the shifted but unsaturated result. Set LOWER to the lowest 32 bits of the result and UPPER to the result >> 31. */ if (cut_point < 32) { /* The cut loses the (32 - CUT_POINT) least significant bits. Round the result up if the most significant of these lost bits is 1. */ lower = acc >> (32 - cut_point); if (lower < 0x7fffffff) if (acc & LSBIT64 (32 - cut_point - 1)) lower++; upper = lower >> 31; } else { lower = acc << (cut_point - 32); upper = acc >> (63 - cut_point); } /* Saturate the result. */ if (upper < -1) return ~0x7fffffff; else if (upper > 0) return 0x7fffffff; else return lower; } /* Compute the result of shift-left-arithmetic-with-saturation (SLASS). */ SI frvbf_shift_left_arith_saturate (SIM_CPU *current_cpu, SI arg1, SI arg2) { int neg_arg1; /* FIXME: what to do with negative shift amt? */ if (arg2 <= 0) return arg1; if (arg1 == 0) return 0; /* Signed shift by 31 or greater saturates by definition. */ if (arg2 >= 31) if (arg1 > 0) return (SI) 0x7fffffff; else return (SI) 0x80000000; /* OK, arg2 is between 1 and 31. */ neg_arg1 = (arg1 < 0); do { arg1 <<= 1; /* Check for sign bit change (saturation). */ if (neg_arg1 && (arg1 >= 0)) return (SI) 0x80000000; else if (!neg_arg1 && (arg1 < 0)) return (SI) 0x7fffffff; } while (--arg2 > 0); return arg1; } /* Simulate the media custom insns. */ void frvbf_media_cop (SIM_CPU *current_cpu, int cop_num) { /* The semantics of the insn are a nop, since it is implementation defined. We do need to check whether it's implemented and set up for MTRAP if it's not. */ USI msr0 = GET_MSR (0); if (GET_MSR_EMCI (msr0) == 0) { /* no interrupt queued at this time. */ frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP, 0); } } /* Simulate the media average (MAVEH) insn. */ static HI do_media_average (SIM_CPU *current_cpu, HI arg1, HI arg2) { SIM_DESC sd = CPU_STATE (current_cpu); SI sum = (arg1 + arg2); HI result = sum >> 1; int rounding_value; /* On fr4xx and fr550, check the rounding mode. On other machines rounding is always toward negative infinity and the result is already correctly rounded. */ switch (STATE_ARCHITECTURE (sd)->mach) { /* Need to check rounding mode. */ case bfd_mach_fr400: case bfd_mach_fr450: case bfd_mach_fr550: /* Check whether rounding will be required. Rounding will be required if the sum is an odd number. */ rounding_value = sum & 1; if (rounding_value) { USI msr0 = GET_MSR (0); /* Check MSR0.SRDAV to determine which bits control the rounding. */ if (GET_MSR_SRDAV (msr0)) { /* MSR0.RD controls rounding. */ switch (GET_MSR_RD (msr0)) { case 0: /* Round to nearest. */ if (result >= 0) ++result; break; case 1: /* Round toward 0. */ if (result < 0) ++result; break; case 2: /* Round toward positive infinity. */ ++result; break; case 3: /* Round toward negative infinity. The result is already correctly rounded. */ break; default: abort (); break; } } else { /* MSR0.RDAV controls rounding. If set, round toward positive infinity. Otherwise the result is already rounded correctly toward negative infinity. */ if (GET_MSR_RDAV (msr0)) ++result; } } break; default: break; } return result; } SI frvbf_media_average (SIM_CPU *current_cpu, SI reg1, SI reg2) { SI result; result = do_media_average (current_cpu, reg1 & 0xffff, reg2 & 0xffff); result &= 0xffff; result |= do_media_average (current_cpu, (reg1 >> 16) & 0xffff, (reg2 >> 16) & 0xffff) << 16; return result; } /* Maintain a flag in order to know when to write the address of the next VLIW instruction into the LR register. Used by JMPL. JMPIL, and CALL. */ void frvbf_set_write_next_vliw_addr_to_LR (SIM_CPU *current_cpu, int value) { frvbf_write_next_vliw_addr_to_LR = value; } void frvbf_set_ne_index (SIM_CPU *current_cpu, int index) { USI NE_flags[2]; /* Save the target register so interrupt processing can set its NE flag in the event of an exception. */ frv_interrupt_state.ne_index = index; /* Clear the NE flag of the target register. It will be reset if necessary in the event of an exception. */ GET_NE_FLAGS (NE_flags, H_SPR_FNER0); CLEAR_NE_FLAG (NE_flags, index); SET_NE_FLAGS (H_SPR_FNER0, NE_flags); } void frvbf_force_update (SIM_CPU *current_cpu) { CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu); int ix = CGEN_WRITE_QUEUE_INDEX (q); if (ix > 0) { CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, ix - 1); item->flags |= FRV_WRITE_QUEUE_FORCE_WRITE; } } /* Condition code logic. */ enum cr_ops { andcr, orcr, xorcr, nandcr, norcr, andncr, orncr, nandncr, norncr, num_cr_ops }; enum cr_result {cr_undefined, cr_undefined1, cr_false, cr_true}; static enum cr_result cr_logic[num_cr_ops][4][4] = { /* andcr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* false */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* true */ {cr_undefined, cr_undefined, cr_false, cr_true } }, /* orcr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, /* false */ {cr_false, cr_false, cr_false, cr_true }, /* true */ {cr_true, cr_true, cr_true, cr_true } }, /* xorcr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* false */ {cr_undefined, cr_undefined, cr_false, cr_true }, /* true */ {cr_true, cr_true, cr_true, cr_false } }, /* nandcr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* false */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* true */ {cr_undefined, cr_undefined, cr_true, cr_false } }, /* norcr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, /* false */ {cr_true, cr_true, cr_true, cr_false }, /* true */ {cr_false, cr_false, cr_false, cr_false } }, /* andncr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* false */ {cr_undefined, cr_undefined, cr_false, cr_true }, /* true */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined} }, /* orncr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true }, /* false */ {cr_true, cr_true, cr_true, cr_true }, /* true */ {cr_false, cr_false, cr_false, cr_true } }, /* nandncr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}, /* false */ {cr_undefined, cr_undefined, cr_true, cr_false }, /* true */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined} }, /* norncr */ { /* undefined undefined false true */ /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false }, /* false */ {cr_false, cr_false, cr_false, cr_false }, /* true */ {cr_true, cr_true, cr_true, cr_false } } }; UQI frvbf_cr_logic (SIM_CPU *current_cpu, SI operation, UQI arg1, UQI arg2) { return cr_logic[operation][arg1][arg2]; } /* Cache Manipulation. */ void frvbf_insn_cache_preload (SIM_CPU *current_cpu, SI address, USI length, int lock) { /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ int hsr0 = GET_HSR0 (); if (GET_HSR0_ICE (hsr0)) { if (model_insn) { CPU_LOAD_ADDRESS (current_cpu) = address; CPU_LOAD_LENGTH (current_cpu) = length; CPU_LOAD_LOCK (current_cpu) = lock; } else { FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu); frv_cache_preload (cache, address, length, lock); } } } void frvbf_data_cache_preload (SIM_CPU *current_cpu, SI address, USI length, int lock) { /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ int hsr0 = GET_HSR0 (); if (GET_HSR0_DCE (hsr0)) { if (model_insn) { CPU_LOAD_ADDRESS (current_cpu) = address; CPU_LOAD_LENGTH (current_cpu) = length; CPU_LOAD_LOCK (current_cpu) = lock; } else { FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); frv_cache_preload (cache, address, length, lock); } } } void frvbf_insn_cache_unlock (SIM_CPU *current_cpu, SI address) { /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ int hsr0 = GET_HSR0 (); if (GET_HSR0_ICE (hsr0)) { if (model_insn) CPU_LOAD_ADDRESS (current_cpu) = address; else { FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu); frv_cache_unlock (cache, address); } } } void frvbf_data_cache_unlock (SIM_CPU *current_cpu, SI address) { /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ int hsr0 = GET_HSR0 (); if (GET_HSR0_DCE (hsr0)) { if (model_insn) CPU_LOAD_ADDRESS (current_cpu) = address; else { FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); frv_cache_unlock (cache, address); } } } void frvbf_insn_cache_invalidate (SIM_CPU *current_cpu, SI address, int all) { /* Make sure the insn was specified properly. -1 will be passed for ALL for a icei with A=0. */ if (all == -1) { frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); return; } /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { /* Record the all-entries flag for use in profiling. */ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); ps->all_cache_entries = all; CPU_LOAD_ADDRESS (current_cpu) = address; } else { FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu); if (all) frv_cache_invalidate_all (cache, 0/* flush? */); else frv_cache_invalidate (cache, address, 0/* flush? */); } } void frvbf_data_cache_invalidate (SIM_CPU *current_cpu, SI address, int all) { /* Make sure the insn was specified properly. -1 will be passed for ALL for a dcei with A=0. */ if (all == -1) { frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); return; } /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { /* Record the all-entries flag for use in profiling. */ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); ps->all_cache_entries = all; CPU_LOAD_ADDRESS (current_cpu) = address; } else { FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); if (all) frv_cache_invalidate_all (cache, 0/* flush? */); else frv_cache_invalidate (cache, address, 0/* flush? */); } } void frvbf_data_cache_flush (SIM_CPU *current_cpu, SI address, int all) { /* Make sure the insn was specified properly. -1 will be passed for ALL for a dcef with A=0. */ if (all == -1) { frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); return; } /* If we need to count cycles, then the cache operation will be initiated from the model profiling functions. See frvbf_model_.... */ if (model_insn) { /* Record the all-entries flag for use in profiling. */ FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu); ps->all_cache_entries = all; CPU_LOAD_ADDRESS (current_cpu) = address; } else { FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); if (all) frv_cache_invalidate_all (cache, 1/* flush? */); else frv_cache_invalidate (cache, address, 1/* flush? */); } }