/* Simulator instruction semantics for fr30bf. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc. This file is part of the GNU Simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define WANT_CPU fr30bf #define WANT_CPU_FR30BF #include "sim-main.h" #include "cgen-mem.h" #include "cgen-ops.h" #undef GET_ATTR #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) /* x-invalid: --invalid-- */ SEM_PC SEM_FN_NAME (fr30bf,x_invalid) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE /* Update the recorded pc in the cpu state struct. */ SET_H_PC (pc); #endif sim_engine_invalid_insn (current_cpu, pc); sim_io_error (CPU_STATE (current_cpu), "invalid insn not handled\n"); /* NOTREACHED */ } return vpc; #undef FLD } /* x-after: --after-- */ SEM_PC SEM_FN_NAME (fr30bf,x_after) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FR30BF fr30bf_pbb_after (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-before: --before-- */ SEM_PC SEM_FN_NAME (fr30bf,x_before) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FR30BF fr30bf_pbb_before (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-cti-chain: --cti-chain-- */ SEM_PC SEM_FN_NAME (fr30bf,x_cti_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FR30BF #ifdef DEFINE_SWITCH vpc = fr30bf_pbb_cti_chain (current_cpu, sem_arg, pbb_br_npc_ptr, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = fr30bf_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_NPC_PTR (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } return vpc; #undef FLD } /* x-chain: --chain-- */ SEM_PC SEM_FN_NAME (fr30bf,x_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FR30BF vpc = fr30bf_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } return vpc; #undef FLD } /* x-begin: --begin-- */ SEM_PC SEM_FN_NAME (fr30bf,x_begin) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_FR30BF #ifdef DEFINE_SWITCH /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = fr30bf_pbb_begin (current_cpu, FAST_P); #else vpc = fr30bf_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #endif #endif } return vpc; #undef FLD } /* add: add $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,add) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = ADDOFSI (* FLD (i_Ri), * FLD (i_Rj), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = ADDCFSI (* FLD (i_Ri), * FLD (i_Rj), 0); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = ADDSI (* FLD (i_Ri), * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* addi: add $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,addi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = ADDOFSI (* FLD (i_Ri), FLD (f_u4), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = ADDCFSI (* FLD (i_Ri), FLD (f_u4), 0); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = ADDSI (* FLD (i_Ri), FLD (f_u4)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* add2: add2 $m4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,add2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_add2.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = ADDOFSI (* FLD (i_Ri), FLD (f_m4), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = ADDCFSI (* FLD (i_Ri), FLD (f_m4), 0); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = ADDSI (* FLD (i_Ri), FLD (f_m4)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* addc: addc $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,addc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ADDCSI (* FLD (i_Ri), * FLD (i_Rj), CPU (h_cbit)); { BI opval = ADDOFSI (* FLD (i_Ri), * FLD (i_Rj), CPU (h_cbit)); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = ADDCFSI (* FLD (i_Ri), * FLD (i_Rj), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = tmp_tmp; * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* addn: addn $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,addn) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addn.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (* FLD (i_Ri), * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* addni: addn $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,addni) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addni.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (* FLD (i_Ri), FLD (f_u4)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* addn2: addn2 $m4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,addn2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addn2.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (* FLD (i_Ri), FLD (f_m4)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* sub: sub $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,sub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = SUBOFSI (* FLD (i_Ri), * FLD (i_Rj), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = SUBCFSI (* FLD (i_Ri), * FLD (i_Rj), 0); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SUBSI (* FLD (i_Ri), * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* subc: subc $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,subc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addc.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = SUBCSI (* FLD (i_Ri), * FLD (i_Rj), CPU (h_cbit)); { BI opval = SUBOFSI (* FLD (i_Ri), * FLD (i_Rj), CPU (h_cbit)); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = SUBCFSI (* FLD (i_Ri), * FLD (i_Rj), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = tmp_tmp; * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* subn: subn $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,subn) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addn.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SUBSI (* FLD (i_Ri), * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* cmp: cmp $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,cmp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_cmp.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp1; { BI opval = SUBOFSI (* FLD (i_Ri), * FLD (i_Rj), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = SUBCFSI (* FLD (i_Ri), * FLD (i_Rj), 0); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } tmp_tmp1 = SUBSI (* FLD (i_Ri), * FLD (i_Rj)); { { BI opval = EQSI (tmp_tmp1, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (tmp_tmp1, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* cmpi: cmp $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,cmpi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_cmpi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp1; { BI opval = SUBOFSI (* FLD (i_Ri), FLD (f_u4), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = SUBCFSI (* FLD (i_Ri), FLD (f_u4), 0); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } tmp_tmp1 = SUBSI (* FLD (i_Ri), FLD (f_u4)); { { BI opval = EQSI (tmp_tmp1, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (tmp_tmp1, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* cmp2: cmp2 $m4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,cmp2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_cmp2.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp1; { BI opval = SUBOFSI (* FLD (i_Ri), FLD (f_m4), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { BI opval = SUBCFSI (* FLD (i_Ri), FLD (f_m4), 0); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } tmp_tmp1 = SUBSI (* FLD (i_Ri), FLD (f_m4)); { { BI opval = EQSI (tmp_tmp1, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (tmp_tmp1, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* and: and $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,and) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_and.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ANDSI (* FLD (i_Ri), * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* or: or $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,or) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_and.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ORSI (* FLD (i_Ri), * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* eor: eor $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,eor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_and.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = XORSI (* FLD (i_Ri), * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } } return vpc; #undef FLD } /* andm: and $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,andm) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andm.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ANDSI (GETMEMSI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQSI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* andh: andh $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,andh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmp; tmp_tmp = ANDHI (GETMEMHI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQHI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTHI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { HI opval = tmp_tmp; SETMEMHI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* andb: andb $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,andb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andb.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmp; tmp_tmp = ANDQI (GETMEMQI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQQI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTQI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { QI opval = tmp_tmp; SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* orm: or $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,orm) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andm.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ORSI (GETMEMSI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQSI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* orh: orh $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,orh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmp; tmp_tmp = ORHI (GETMEMHI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQHI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTHI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { HI opval = tmp_tmp; SETMEMHI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* orb: orb $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,orb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andb.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmp; tmp_tmp = ORQI (GETMEMQI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQQI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTQI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { QI opval = tmp_tmp; SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* eorm: eor $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,eorm) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andm.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = XORSI (GETMEMSI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQSI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* eorh: eorh $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,eorh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmp; tmp_tmp = XORHI (GETMEMHI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQHI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTHI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { HI opval = tmp_tmp; SETMEMHI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* eorb: eorb $Rj,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,eorb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andb.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmp; tmp_tmp = XORQI (GETMEMQI (current_cpu, pc, * FLD (i_Ri)), * FLD (i_Rj)); { { BI opval = EQQI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTQI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } { QI opval = tmp_tmp; SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* bandl: bandl $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,bandl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bandl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = ANDQI (ORQI (FLD (f_u4), 240), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* borl: borl $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,borl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bandl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = ORQI (FLD (f_u4), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* beorl: beorl $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,beorl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bandl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = XORQI (FLD (f_u4), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* bandh: bandh $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,bandh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bandl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = ANDQI (ORQI (SLLQI (FLD (f_u4), 4), 15), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* borh: borh $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,borh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bandl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = ORQI (SLLQI (FLD (f_u4), 4), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* beorh: beorh $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,beorh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bandl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = XORQI (SLLQI (FLD (f_u4), 4), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); SETMEMQI (current_cpu, pc, * FLD (i_Ri), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* btstl: btstl $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,btstl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_btstl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmp; tmp_tmp = ANDQI (FLD (f_u4), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); { BI opval = EQQI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = 0; CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } return vpc; #undef FLD } /* btsth: btsth $u4,@$Ri */ SEM_PC SEM_FN_NAME (fr30bf,btsth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_btstl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmp; tmp_tmp = ANDQI (SLLQI (FLD (f_u4), 4), GETMEMQI (current_cpu, pc, * FLD (i_Ri))); { BI opval = EQQI (tmp_tmp, 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = LTQI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } return vpc; #undef FLD } /* mul: mul $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,mul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_mul.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_tmp; tmp_tmp = MULDI (EXTSIDI (* FLD (i_Rj)), EXTSIDI (* FLD (i_Ri))); { SI opval = TRUNCDISI (tmp_tmp); SET_H_DR (((UINT) 5), opval); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmp, 32)); SET_H_DR (((UINT) 4), opval); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } { BI opval = LTSI (GET_H_DR (((UINT) 5)), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQDI (tmp_tmp, MAKEDI (0, 0)); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (GTDI (tmp_tmp, MAKEDI (0, 2147483647)), LTDI (tmp_tmp, NEGDI (MAKEDI (0, 0x80000000)))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } } return vpc; #undef FLD } /* mulu: mulu $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,mulu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_mulu.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_tmp; tmp_tmp = MULDI (ZEXTSIDI (* FLD (i_Rj)), ZEXTSIDI (* FLD (i_Ri))); { SI opval = TRUNCDISI (tmp_tmp); SET_H_DR (((UINT) 5), opval); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmp, 32)); SET_H_DR (((UINT) 4), opval); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } { BI opval = LTSI (GET_H_DR (((UINT) 4)), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (GET_H_DR (((UINT) 5)), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NESI (GET_H_DR (((UINT) 4)), 0); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } } return vpc; #undef FLD } /* mulh: mulh $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,mulh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_mulh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = MULHI (TRUNCSIHI (* FLD (i_Rj)), TRUNCSIHI (* FLD (i_Ri))); SET_H_DR (((UINT) 5), opval); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } { BI opval = LTSI (GET_H_DR (((UINT) 5)), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = GESI (GET_H_DR (((UINT) 5)), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } return vpc; #undef FLD } /* muluh: muluh $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,muluh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_mulh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = MULSI (ANDSI (* FLD (i_Rj), 65535), ANDSI (* FLD (i_Ri), 65535)); SET_H_DR (((UINT) 5), opval); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } { BI opval = LTSI (GET_H_DR (((UINT) 5)), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = GESI (GET_H_DR (((UINT) 5)), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } return vpc; #undef FLD } /* div0s: div0s $Ri */ SEM_PC SEM_FN_NAME (fr30bf,div0s) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_div0s.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = LTSI (GET_H_DR (((UINT) 5)), 0); CPU (h_d0bit) = opval; TRACE_RESULT (current_cpu, abuf, "d0bit", 'x', opval); } { BI opval = XORBI (CPU (h_d0bit), LTSI (* FLD (i_Ri), 0)); CPU (h_d1bit) = opval; TRACE_RESULT (current_cpu, abuf, "d1bit", 'x', opval); } if (NEBI (CPU (h_d0bit), 0)) { { SI opval = 0xffffffff; SET_H_DR (((UINT) 4), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } } else { { SI opval = 0; SET_H_DR (((UINT) 4), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* div0u: div0u $Ri */ SEM_PC SEM_FN_NAME (fr30bf,div0u) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_div0u.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = 0; CPU (h_d0bit) = opval; TRACE_RESULT (current_cpu, abuf, "d0bit", 'x', opval); } { BI opval = 0; CPU (h_d1bit) = opval; TRACE_RESULT (current_cpu, abuf, "d1bit", 'x', opval); } { SI opval = 0; SET_H_DR (((UINT) 4), opval); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } } return vpc; #undef FLD } /* div1: div1 $Ri */ SEM_PC SEM_FN_NAME (fr30bf,div1) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_div1.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; { SI opval = SLLSI (GET_H_DR (((UINT) 4)), 1); SET_H_DR (((UINT) 4), opval); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } if (LTSI (GET_H_DR (((UINT) 5)), 0)) { { SI opval = ADDSI (GET_H_DR (((UINT) 4)), 1); SET_H_DR (((UINT) 4), opval); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } } { SI opval = SLLSI (GET_H_DR (((UINT) 5)), 1); SET_H_DR (((UINT) 5), opval); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } if (EQBI (CPU (h_d1bit), 1)) { { tmp_tmp = ADDSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri)); { BI opval = ADDCFSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri), 0); CPU (h_cbit) = opval; written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { tmp_tmp = SUBSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri)); { BI opval = SUBCFSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri), 0); CPU (h_cbit) = opval; written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } if (NOTBI (XORBI (XORBI (CPU (h_d0bit), CPU (h_d1bit)), CPU (h_cbit)))) { { { SI opval = tmp_tmp; SET_H_DR (((UINT) 4), opval); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } { SI opval = ORSI (GET_H_DR (((UINT) 5)), 1); SET_H_DR (((UINT) 5), opval); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } } } { BI opval = EQSI (GET_H_DR (((UINT) 4)), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* div2: div2 $Ri */ SEM_PC SEM_FN_NAME (fr30bf,div2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_div2.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; if (EQBI (CPU (h_d1bit), 1)) { { tmp_tmp = ADDSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri)); { BI opval = ADDCFSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { tmp_tmp = SUBSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri)); { BI opval = SUBCFSI (GET_H_DR (((UINT) 4)), * FLD (i_Ri), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } if (EQSI (tmp_tmp, 0)) { { { BI opval = 1; CPU (h_zbit) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { SI opval = 0; SET_H_DR (((UINT) 4), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "dr-4", 'x', opval); } } } else { { BI opval = 0; CPU (h_zbit) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* div3: div3 */ SEM_PC SEM_FN_NAME (fr30bf,div3) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_div3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (EQBI (CPU (h_zbit), 1)) { { SI opval = ADDSI (GET_H_DR (((UINT) 5)), 1); SET_H_DR (((UINT) 5), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* div4s: div4s */ SEM_PC SEM_FN_NAME (fr30bf,div4s) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_div4s.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (EQBI (CPU (h_d1bit), 1)) { { SI opval = NEGSI (GET_H_DR (((UINT) 5))); SET_H_DR (((UINT) 5), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "dr-5", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* lsl: lsl $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,lsl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = ANDSI (* FLD (i_Rj), 31); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (32, tmp_shift))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SLLSI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* lsli: lsl $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,lsli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = FLD (f_u4); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (32, tmp_shift))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SLLSI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* lsl2: lsl2 $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,lsl2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = ADDSI (FLD (f_u4), 16); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (32, tmp_shift))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SLLSI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* lsr: lsr $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,lsr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = ANDSI (* FLD (i_Rj), 31); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (tmp_shift, 1))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SRLSI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* lsri: lsr $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,lsri) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = FLD (f_u4); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (tmp_shift, 1))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SRLSI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* lsr2: lsr2 $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,lsr2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = ADDSI (FLD (f_u4), 16); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (tmp_shift, 1))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SRLSI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* asr: asr $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,asr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsl.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = ANDSI (* FLD (i_Rj), 31); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (tmp_shift, 1))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SRASI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* asri: asr $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,asri) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = FLD (f_u4); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (tmp_shift, 1))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SRASI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* asr2: asr2 $u4,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,asr2) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_lsli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_shift; tmp_shift = ADDSI (FLD (f_u4), 16); if (NESI (tmp_shift, 0)) { { { BI opval = NESI (ANDSI (* FLD (i_Ri), SLLSI (1, SUBSI (tmp_shift, 1))), 0); CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { SI opval = SRASI (* FLD (i_Ri), tmp_shift); * FLD (i_Ri) = opval; written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } } } else { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } { BI opval = LTSI (* FLD (i_Ri), 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = EQSI (* FLD (i_Ri), 0); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } abuf->written = written; return vpc; #undef FLD } /* ldi8: ldi:8 $i8,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldi8) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldi8.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = FLD (f_i8); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldi20: ldi:20 $i20,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldi20) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldi20.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = FLD (f_i20); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldi32: ldi:32 $i32,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldi32) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldi32.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI opval = FLD (f_i32); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ld: ld @$Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ld.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* lduh: lduh @$Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,lduh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ld.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMUHI (current_cpu, pc, * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldub: ldub @$Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ld.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMUQI (current_cpu, pc, * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr13: ld @($R13,$Rj),$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr13) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (* FLD (i_Rj), CPU (h_gr[((UINT) 13)]))); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr13uh: lduh @($R13,$Rj),$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr13uh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMUHI (current_cpu, pc, ADDSI (* FLD (i_Rj), CPU (h_gr[((UINT) 13)]))); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr13ub: ldub @($R13,$Rj),$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr13ub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMUQI (current_cpu, pc, ADDSI (* FLD (i_Rj), CPU (h_gr[((UINT) 13)]))); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr14: ld @($R14,$disp10),$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr14) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr14.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (FLD (f_disp10), CPU (h_gr[((UINT) 14)]))); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr14uh: lduh @($R14,$disp9),$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr14uh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr14uh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMUHI (current_cpu, pc, ADDSI (FLD (f_disp9), CPU (h_gr[((UINT) 14)]))); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr14ub: ldub @($R14,$disp8),$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr14ub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr14ub.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMUQI (current_cpu, pc, ADDSI (FLD (f_disp8), CPU (h_gr[((UINT) 14)]))); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr15: ld @($R15,$udisp6),$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr15) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr15.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (FLD (f_udisp6), CPU (h_gr[((UINT) 15)]))); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldr15gr: ld @$R15+,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,ldr15gr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr15gr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } if (NESI (FLD (f_Ri), 15)) { { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* ldr15dr: ld @$R15+,$Rs2 */ SEM_PC SEM_FN_NAME (fr30bf,ldr15dr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr15dr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = tmp_tmp; SET_H_DR (FLD (f_Rs2), opval); TRACE_RESULT (current_cpu, abuf, "Rs2", 'x', opval); } } return vpc; #undef FLD } /* ldr15ps: ld @$R15+,$ps */ SEM_PC SEM_FN_NAME (fr30bf,ldr15ps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldr15ps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { USI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); SET_H_PS (opval); TRACE_RESULT (current_cpu, abuf, "ps", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } return vpc; #undef FLD } /* st: st $Ri,@$Rj */ SEM_PC SEM_FN_NAME (fr30bf,st) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_st.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_Ri); SETMEMSI (current_cpu, pc, * FLD (i_Rj), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* sth: sth $Ri,@$Rj */ SEM_PC SEM_FN_NAME (fr30bf,sth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_st.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = * FLD (i_Ri); SETMEMHI (current_cpu, pc, * FLD (i_Rj), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* stb: stb $Ri,@$Rj */ SEM_PC SEM_FN_NAME (fr30bf,stb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_st.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = * FLD (i_Ri); SETMEMQI (current_cpu, pc, * FLD (i_Rj), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str13: st $Ri,@($R13,$Rj) */ SEM_PC SEM_FN_NAME (fr30bf,str13) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_Ri); SETMEMSI (current_cpu, pc, ADDSI (* FLD (i_Rj), CPU (h_gr[((UINT) 13)])), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str13h: sth $Ri,@($R13,$Rj) */ SEM_PC SEM_FN_NAME (fr30bf,str13h) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = * FLD (i_Ri); SETMEMHI (current_cpu, pc, ADDSI (* FLD (i_Rj), CPU (h_gr[((UINT) 13)])), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str13b: stb $Ri,@($R13,$Rj) */ SEM_PC SEM_FN_NAME (fr30bf,str13b) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = * FLD (i_Ri); SETMEMQI (current_cpu, pc, ADDSI (* FLD (i_Rj), CPU (h_gr[((UINT) 13)])), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str14: st $Ri,@($R14,$disp10) */ SEM_PC SEM_FN_NAME (fr30bf,str14) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str14.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_Ri); SETMEMSI (current_cpu, pc, ADDSI (FLD (f_disp10), CPU (h_gr[((UINT) 14)])), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str14h: sth $Ri,@($R14,$disp9) */ SEM_PC SEM_FN_NAME (fr30bf,str14h) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str14h.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = * FLD (i_Ri); SETMEMHI (current_cpu, pc, ADDSI (FLD (f_disp9), CPU (h_gr[((UINT) 14)])), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str14b: stb $Ri,@($R14,$disp8) */ SEM_PC SEM_FN_NAME (fr30bf,str14b) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str14b.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = * FLD (i_Ri); SETMEMQI (current_cpu, pc, ADDSI (FLD (f_disp8), CPU (h_gr[((UINT) 14)])), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str15: st $Ri,@($R15,$udisp6) */ SEM_PC SEM_FN_NAME (fr30bf,str15) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str15.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_Ri); SETMEMSI (current_cpu, pc, ADDSI (CPU (h_gr[((UINT) 15)]), FLD (f_udisp6)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* str15gr: st $Ri,@-$R15 */ SEM_PC SEM_FN_NAME (fr30bf,str15gr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str15gr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = * FLD (i_Ri); { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* str15dr: st $Rs2,@-$R15 */ SEM_PC SEM_FN_NAME (fr30bf,str15dr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str15dr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = GET_H_DR (FLD (f_Rs2)); { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* str15ps: st $ps,@-$R15 */ SEM_PC SEM_FN_NAME (fr30bf,str15ps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_str15ps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = GET_H_PS (); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* mov: mov $Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,mov) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_mov.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_Rj); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* movdr: mov $Rs1,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,movdr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_movdr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_DR (FLD (f_Rs1)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* movps: mov $ps,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,movps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_movps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GET_H_PS (); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* mov2dr: mov $Ri,$Rs1 */ SEM_PC SEM_FN_NAME (fr30bf,mov2dr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_mov2dr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_Ri); SET_H_DR (FLD (f_Rs1), opval); TRACE_RESULT (current_cpu, abuf, "Rs1", 'x', opval); } return vpc; #undef FLD } /* mov2ps: mov $Ri,$ps */ SEM_PC SEM_FN_NAME (fr30bf,mov2ps) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_mov2ps.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = * FLD (i_Ri); SET_H_PS (opval); TRACE_RESULT (current_cpu, abuf, "ps", 'x', opval); } return vpc; #undef FLD } /* jmp: jmp @$Ri */ SEM_PC SEM_FN_NAME (fr30bf,jmp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_jmp.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = * FLD (i_Ri); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* jmpd: jmp:d @$Ri */ SEM_PC SEM_FN_NAME (fr30bf,jmpd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_jmp.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { USI opval = * FLD (i_Ri); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* callr: call @$Ri */ SEM_PC SEM_FN_NAME (fr30bf,callr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_callr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (pc, 2); SET_H_DR (((UINT) 1), opval); TRACE_RESULT (current_cpu, abuf, "dr-1", 'x', opval); } { USI opval = * FLD (i_Ri); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* callrd: call:d @$Ri */ SEM_PC SEM_FN_NAME (fr30bf,callrd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_callr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { SI opval = ADDSI (pc, 4); SET_H_DR (((UINT) 1), opval); TRACE_RESULT (current_cpu, abuf, "dr-1", 'x', opval); } { USI opval = * FLD (i_Ri); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* call: call $label12 */ SEM_PC SEM_FN_NAME (fr30bf,call) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_call.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (pc, 2); SET_H_DR (((UINT) 1), opval); TRACE_RESULT (current_cpu, abuf, "dr-1", 'x', opval); } { USI opval = FLD (i_label12); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* calld: call:d $label12 */ SEM_PC SEM_FN_NAME (fr30bf,calld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_call.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { SI opval = ADDSI (pc, 4); SET_H_DR (((UINT) 1), opval); TRACE_RESULT (current_cpu, abuf, "dr-1", 'x', opval); } { USI opval = FLD (i_label12); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* ret: ret */ SEM_PC SEM_FN_NAME (fr30bf,ret) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_ret.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = GET_H_DR (((UINT) 1)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* ret:d: ret:d */ SEM_PC SEM_FN_NAME (fr30bf,ret_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_ret.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { USI opval = GET_H_DR (((UINT) 1)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* int: int $u8 */ SEM_PC SEM_FN_NAME (fr30bf,int) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_int.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ { SI opval = fr30_int (current_cpu, pc, FLD (f_u8)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* inte: inte */ SEM_PC SEM_FN_NAME (fr30bf,inte) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_inte.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { ; /*clobber*/ ; /*clobber*/ ; /*clobber*/ { SI opval = fr30_inte (current_cpu, pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* reti: reti */ SEM_PC SEM_FN_NAME (fr30bf,reti) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_reti.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (EQBI (GET_H_SBIT (), 0)) { { { SI opval = GETMEMSI (current_cpu, pc, GET_H_DR (((UINT) 2))); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { SI opval = ADDSI (GET_H_DR (((UINT) 2)), 4); SET_H_DR (((UINT) 2), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "dr-2", 'x', opval); } { SI opval = GETMEMSI (current_cpu, pc, GET_H_DR (((UINT) 2))); SET_H_PS (opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "ps", 'x', opval); } { SI opval = ADDSI (GET_H_DR (((UINT) 2)), 4); SET_H_DR (((UINT) 2), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "dr-2", 'x', opval); } } } else { { { SI opval = GETMEMSI (current_cpu, pc, GET_H_DR (((UINT) 3))); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { SI opval = ADDSI (GET_H_DR (((UINT) 3)), 4); SET_H_DR (((UINT) 3), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "dr-3", 'x', opval); } { SI opval = GETMEMSI (current_cpu, pc, GET_H_DR (((UINT) 3))); SET_H_PS (opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "ps", 'x', opval); } { SI opval = ADDSI (GET_H_DR (((UINT) 3)), 4); SET_H_DR (((UINT) 3), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "dr-3", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* brad: bra:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,brad) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_brad.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bra: bra $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bra) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_brad.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnod: bno:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bnod) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bnod.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { do { } while (0); /*nop*/ } return vpc; #undef FLD } /* bno: bno $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bno) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bnod.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); do { } while (0); /*nop*/ return vpc; #undef FLD } /* beqd: beq:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,beqd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_beqd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (CPU (h_zbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* beq: beq $label9 */ SEM_PC SEM_FN_NAME (fr30bf,beq) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_beqd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (CPU (h_zbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bned: bne:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bned) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_beqd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (NOTBI (CPU (h_zbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bne: bne $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_beqd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (CPU (h_zbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bcd: bc:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bcd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bcd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (CPU (h_cbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bc: bc $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bcd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (CPU (h_cbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bncd: bnc:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bncd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bcd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (NOTBI (CPU (h_cbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnc: bnc $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bnc) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bcd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (CPU (h_cbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnd: bn:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bnd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bnd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (CPU (h_nbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bn: bn $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bn) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bnd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (CPU (h_nbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bpd: bp:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bpd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bnd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (NOTBI (CPU (h_nbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bp: bp $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bnd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (CPU (h_nbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bvd: bv:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bvd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bvd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (CPU (h_vbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bv: bv $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bvd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (CPU (h_vbit)) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnvd: bnv:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bnvd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bvd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (NOTBI (CPU (h_vbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bnv: bnv $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bnv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bvd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (CPU (h_vbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bltd: blt:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bltd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bltd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (XORBI (CPU (h_vbit), CPU (h_nbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* blt: blt $label9 */ SEM_PC SEM_FN_NAME (fr30bf,blt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bltd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (XORBI (CPU (h_vbit), CPU (h_nbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bged: bge:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bged) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bltd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit)))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bge: bge $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bltd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit)))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bled: ble:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bled) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bled.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* ble: ble $label9 */ SEM_PC SEM_FN_NAME (fr30bf,ble) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bled.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bgtd: bgt:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bgtd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bled.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bgt: bgt $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bgt) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_bled.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* blsd: bls:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,blsd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_blsd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (ORBI (CPU (h_cbit), CPU (h_zbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bls: bls $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bls) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_blsd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (ORBI (CPU (h_cbit), CPU (h_zbit))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bhid: bhi:d $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bhid) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_blsd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit)))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bhi: bhi $label9 */ SEM_PC SEM_FN_NAME (fr30bf,bhi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.cti.fields.fmt_blsd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); if (NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit)))) { { USI opval = FLD (i_label9); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc, SEM_BRANCH_ADDR_CACHE (sem_arg)); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* dmovr13: dmov $R13,@$dir10 */ SEM_PC SEM_FN_NAME (fr30bf,dmovr13) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmovr13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = CPU (h_gr[((UINT) 13)]); SETMEMSI (current_cpu, pc, FLD (f_dir10), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* dmovr13h: dmovh $R13,@$dir9 */ SEM_PC SEM_FN_NAME (fr30bf,dmovr13h) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmovr13h.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = CPU (h_gr[((UINT) 13)]); SETMEMHI (current_cpu, pc, FLD (f_dir9), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* dmovr13b: dmovb $R13,@$dir8 */ SEM_PC SEM_FN_NAME (fr30bf,dmovr13b) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmovr13b.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = CPU (h_gr[((UINT) 13)]); SETMEMQI (current_cpu, pc, FLD (f_dir8), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* dmovr13pi: dmov @$R13+,@$dir10 */ SEM_PC SEM_FN_NAME (fr30bf,dmovr13pi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmovr13pi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 13)])); SETMEMSI (current_cpu, pc, FLD (f_dir10), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 13)]), 4); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } } return vpc; #undef FLD } /* dmovr13pih: dmovh @$R13+,@$dir9 */ SEM_PC SEM_FN_NAME (fr30bf,dmovr13pih) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmovr13pih.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { HI opval = GETMEMHI (current_cpu, pc, CPU (h_gr[((UINT) 13)])); SETMEMHI (current_cpu, pc, FLD (f_dir9), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 13)]), 2); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } } return vpc; #undef FLD } /* dmovr13pib: dmovb @$R13+,@$dir8 */ SEM_PC SEM_FN_NAME (fr30bf,dmovr13pib) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmovr13pib.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { QI opval = GETMEMQI (current_cpu, pc, CPU (h_gr[((UINT) 13)])); SETMEMQI (current_cpu, pc, FLD (f_dir8), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 13)]), 1); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } } return vpc; #undef FLD } /* dmovr15pi: dmov @$R15+,@$dir10 */ SEM_PC SEM_FN_NAME (fr30bf,dmovr15pi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmovr15pi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); SETMEMSI (current_cpu, pc, FLD (f_dir10), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } return vpc; #undef FLD } /* dmov2r13: dmov @$dir10,$R13 */ SEM_PC SEM_FN_NAME (fr30bf,dmov2r13) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmov2r13.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMSI (current_cpu, pc, FLD (f_dir10)); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } return vpc; #undef FLD } /* dmov2r13h: dmovh @$dir9,$R13 */ SEM_PC SEM_FN_NAME (fr30bf,dmov2r13h) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmov2r13h.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMHI (current_cpu, pc, FLD (f_dir9)); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } return vpc; #undef FLD } /* dmov2r13b: dmovb @$dir8,$R13 */ SEM_PC SEM_FN_NAME (fr30bf,dmov2r13b) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmov2r13b.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = GETMEMQI (current_cpu, pc, FLD (f_dir8)); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } return vpc; #undef FLD } /* dmov2r13pi: dmov @$dir10,@$R13+ */ SEM_PC SEM_FN_NAME (fr30bf,dmov2r13pi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmov2r13pi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = GETMEMSI (current_cpu, pc, FLD (f_dir10)); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 13)]), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 13)]), 4); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } } return vpc; #undef FLD } /* dmov2r13pih: dmovh @$dir9,@$R13+ */ SEM_PC SEM_FN_NAME (fr30bf,dmov2r13pih) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmov2r13pih.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { HI opval = GETMEMHI (current_cpu, pc, FLD (f_dir9)); SETMEMHI (current_cpu, pc, CPU (h_gr[((UINT) 13)]), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 13)]), 2); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } } return vpc; #undef FLD } /* dmov2r13pib: dmovb @$dir8,@$R13+ */ SEM_PC SEM_FN_NAME (fr30bf,dmov2r13pib) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmov2r13pib.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { QI opval = GETMEMQI (current_cpu, pc, FLD (f_dir8)); SETMEMQI (current_cpu, pc, CPU (h_gr[((UINT) 13)]), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 13)]), 1); CPU (h_gr[((UINT) 13)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } } return vpc; #undef FLD } /* dmov2r15pd: dmov @$dir10,@-$R15 */ SEM_PC SEM_FN_NAME (fr30bf,dmov2r15pd) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_dmov2r15pd.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = GETMEMSI (current_cpu, pc, FLD (f_dir10)); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD } /* ldres: ldres @$Ri+,$u4 */ SEM_PC SEM_FN_NAME (fr30bf,ldres) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldres.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (* FLD (i_Ri), 4); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* stres: stres $u4,@$Ri+ */ SEM_PC SEM_FN_NAME (fr30bf,stres) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldres.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (* FLD (i_Ri), 4); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* copop: copop $u4c,$ccc,$CRj,$CRi */ SEM_PC SEM_FN_NAME (fr30bf,copop) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_copop.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); do { } while (0); /*nop*/ return vpc; #undef FLD } /* copld: copld $u4c,$ccc,$Rjc,$CRi */ SEM_PC SEM_FN_NAME (fr30bf,copld) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_copop.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); do { } while (0); /*nop*/ return vpc; #undef FLD } /* copst: copst $u4c,$ccc,$CRj,$Ric */ SEM_PC SEM_FN_NAME (fr30bf,copst) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_copop.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); do { } while (0); /*nop*/ return vpc; #undef FLD } /* copsv: copsv $u4c,$ccc,$CRj,$Ric */ SEM_PC SEM_FN_NAME (fr30bf,copsv) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_copop.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); do { } while (0); /*nop*/ return vpc; #undef FLD } /* nop: nop */ SEM_PC SEM_FN_NAME (fr30bf,nop) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_bnod.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); do { } while (0); /*nop*/ return vpc; #undef FLD } /* andccr: andccr $u8 */ SEM_PC SEM_FN_NAME (fr30bf,andccr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andccr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { UQI opval = ANDQI (GET_H_CCR (), FLD (f_u8)); SET_H_CCR (opval); TRACE_RESULT (current_cpu, abuf, "ccr", 'x', opval); } return vpc; #undef FLD } /* orccr: orccr $u8 */ SEM_PC SEM_FN_NAME (fr30bf,orccr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_andccr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { UQI opval = ORQI (GET_H_CCR (), FLD (f_u8)); SET_H_CCR (opval); TRACE_RESULT (current_cpu, abuf, "ccr", 'x', opval); } return vpc; #undef FLD } /* stilm: stilm $u8 */ SEM_PC SEM_FN_NAME (fr30bf,stilm) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_stilm.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { UQI opval = ANDSI (FLD (f_u8), 31); SET_H_ILM (opval); TRACE_RESULT (current_cpu, abuf, "ilm", 'x', opval); } return vpc; #undef FLD } /* addsp: addsp $s10 */ SEM_PC SEM_FN_NAME (fr30bf,addsp) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_addsp.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), FLD (f_s10)); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } return vpc; #undef FLD } /* extsb: extsb $Ri */ SEM_PC SEM_FN_NAME (fr30bf,extsb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_extsb.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTQISI (ANDQI (* FLD (i_Ri), 255)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* extub: extub $Ri */ SEM_PC SEM_FN_NAME (fr30bf,extub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_extub.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ZEXTQISI (ANDQI (* FLD (i_Ri), 255)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* extsh: extsh $Ri */ SEM_PC SEM_FN_NAME (fr30bf,extsh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_extsh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = EXTHISI (ANDHI (* FLD (i_Ri), 65535)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* extuh: extuh $Ri */ SEM_PC SEM_FN_NAME (fr30bf,extuh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_extuh.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = ZEXTHISI (ANDHI (* FLD (i_Ri), 65535)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } return vpc; #undef FLD } /* ldm0: ldm0 ($reglist_low_ld) */ SEM_PC SEM_FN_NAME (fr30bf,ldm0) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldm0.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (ANDSI (FLD (f_reglist_low_ld), 1)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 0)]) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "gr-0", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_ld), 2)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 1)]) = opval; written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr-1", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_ld), 4)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 2)]) = opval; written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr-2", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_ld), 8)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 3)]) = opval; written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr-3", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_ld), 16)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 4)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-4", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_ld), 32)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 5)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-5", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_ld), 64)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 6)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-6", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_ld), 128)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 7)]) = opval; written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr-7", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* ldm1: ldm1 ($reglist_hi_ld) */ SEM_PC SEM_FN_NAME (fr30bf,ldm1) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_ldm1.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (ANDSI (FLD (f_reglist_hi_ld), 1)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 8)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-8", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_ld), 2)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 9)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-9", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_ld), 4)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 10)]) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "gr-10", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_ld), 8)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 11)]) = opval; written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr-11", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_ld), 16)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 12)]) = opval; written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr-12", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_ld), 32)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 13)]) = opval; written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr-13", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_ld), 64)) { { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 14)]) = opval; written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr-14", 'x', opval); } { SI opval = ADDSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_ld), 128)) { { SI opval = GETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)])); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } } abuf->written = written; return vpc; #undef FLD } /* stm0: stm0 ($reglist_low_st) */ SEM_PC SEM_FN_NAME (fr30bf,stm0) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_stm0.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (ANDSI (FLD (f_reglist_low_st), 1)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 7)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_st), 2)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 6)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_st), 4)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 5)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_st), 8)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 4)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_st), 16)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 3)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_st), 32)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 2)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_st), 64)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 1)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_low_st), 128)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 0)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* stm1: stm1 ($reglist_hi_st) */ SEM_PC SEM_FN_NAME (fr30bf,stm1) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_stm1.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { if (ANDSI (FLD (f_reglist_hi_st), 1)) { { SI tmp_save_r15; tmp_save_r15 = CPU (h_gr[((UINT) 15)]); { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = tmp_save_r15; SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_st), 2)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 14)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_st), 4)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 13)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_st), 8)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 12)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_st), 16)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 11)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_st), 32)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 10)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_st), 64)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 9)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } if (ANDSI (FLD (f_reglist_hi_st), 128)) { { { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), 4); CPU (h_gr[((UINT) 15)]) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = CPU (h_gr[((UINT) 8)]); SETMEMSI (current_cpu, pc, CPU (h_gr[((UINT) 15)]), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } } } abuf->written = written; return vpc; #undef FLD } /* enter: enter $u10 */ SEM_PC SEM_FN_NAME (fr30bf,enter) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_enter.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = SUBSI (CPU (h_gr[((UINT) 15)]), 4); { SI opval = CPU (h_gr[((UINT) 14)]); SETMEMSI (current_cpu, pc, tmp_tmp, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_tmp; CPU (h_gr[((UINT) 14)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-14", 'x', opval); } { SI opval = SUBSI (CPU (h_gr[((UINT) 15)]), FLD (f_u10)); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } } return vpc; #undef FLD } /* leave: leave */ SEM_PC SEM_FN_NAME (fr30bf,leave) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_leave.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (CPU (h_gr[((UINT) 14)]), 4); CPU (h_gr[((UINT) 15)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-15", 'x', opval); } { SI opval = GETMEMSI (current_cpu, pc, SUBSI (CPU (h_gr[((UINT) 15)]), 4)); CPU (h_gr[((UINT) 14)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr-14", 'x', opval); } } return vpc; #undef FLD } /* xchb: xchb @$Rj,$Ri */ SEM_PC SEM_FN_NAME (fr30bf,xchb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.fmt_xchb.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = * FLD (i_Ri); { SI opval = GETMEMUQI (current_cpu, pc, * FLD (i_Rj)); * FLD (i_Ri) = opval; TRACE_RESULT (current_cpu, abuf, "Ri", 'x', opval); } { UQI opval = tmp_tmp; SETMEMUQI (current_cpu, pc, * FLD (i_Rj), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } return vpc; #undef FLD }