#include #include "sysdep.h" #include "bfd.h" #include "remote-sim.h" #include "d10v_sim.h" #define IMEM_SIZE 18 /* D10V instruction memory size is 18 bits */ #define DMEM_SIZE 16 /* Data memory */ enum _leftright { LEFT_FIRST, RIGHT_FIRST }; int d10v_debug; host_callback *d10v_callback; long ins_type_counters[ (int)INS_MAX ]; long left_nops, right_nops; uint16 OP[4]; static struct hash_entry *lookup_hash PARAMS ((uint32 ins, int size)); #define MAX_HASH 63 struct hash_entry { struct hash_entry *next; long opcode; long mask; struct simops *ops; }; struct hash_entry hash_table[MAX_HASH+1]; static long hash(insn, format) long insn; int format; { if (format & LONG_OPCODE) return ((insn & 0x3F000000) >> 24); else return((insn & 0x7E00) >> 9); } static struct hash_entry * lookup_hash (ins, size) uint32 ins; int size; { struct hash_entry *h; if (size) h = &hash_table[(ins & 0x3F000000) >> 24]; else h = &hash_table[(ins & 0x7E00) >> 9]; while ( (ins & h->mask) != h->opcode) { if (h->next == NULL) { (*d10v_callback->printf_filtered) (d10v_callback, "ERROR looking up hash for %x at PC %x\n",ins, PC); exit(1); } h = h->next; } return (h); } uint32 get_longword (x) uint8 *x; { uint8 *a = x; return (a[0]<<24) + (a[1]<<16) + (a[2]<<8) + (a[3]); } int64 get_longlong (x) uint8 *x; { uint8 *a = x; return ((int64)a[0]<<56) + ((int64)a[1]<<48) + ((int64)a[2]<<40) + ((int64)a[3]<<32) + ((int64)a[4]<< 24) + ((int64)a[5]<<16) + ((int64)a[6]<<8) + (int64)a[7]; } uint16 get_word (x) uint8 *x; { uint8 *a = x; return ((uint16)a[0]<<8) + a[1]; } void write_word (addr, data) uint8 *addr; uint16 data; { uint8 *a = addr; a[0] = data >> 8; a[1] = data & 0xff; } void write_longword (addr, data) uint8 *addr; uint32 data; { addr[0] = (data >> 24) & 0xff; addr[1] = (data >> 16) & 0xff; addr[2] = (data >> 8) & 0xff; addr[3] = data & 0xff; } void write_longlong (addr, data) uint8 *addr; int64 data; { uint8 *a = addr; a[0] = data >> 56; a[1] = (data >> 48) & 0xff; a[2] = (data >> 40) & 0xff; a[3] = (data >> 32) & 0xff; a[4] = (data >> 24) & 0xff; a[5] = (data >> 16) & 0xff; a[6] = (data >> 8) & 0xff; a[7] = data & 0xff; } static void get_operands (struct simops *s, uint32 ins) { int i, shift, bits, flags; uint32 mask; for (i=0; i < s->numops; i++) { shift = s->operands[3*i]; bits = s->operands[3*i+1]; flags = s->operands[3*i+2]; mask = 0x7FFFFFFF >> (31 - bits); OP[i] = (ins >> shift) & mask; } } static void do_long (ins) uint32 ins; { struct hash_entry *h; #ifdef DEBUG if ((d10v_debug & DEBUG_INSTRUCTION) != 0) (*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins); #endif h = lookup_hash (ins, 1); get_operands (h->ops, ins); State.ins_type = INS_LONG; ins_type_counters[ (int)State.ins_type ]++; (h->ops->func)(); } static void do_2_short (ins1, ins2, leftright) uint16 ins1, ins2; enum _leftright leftright; { struct hash_entry *h; reg_t orig_pc = PC; #ifdef DEBUG if ((d10v_debug & DEBUG_INSTRUCTION) != 0) (*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n", ins1, (leftright) ? "left" : "right", ins2); #endif /* printf ("do_2_short %x -> %x\n",ins1,ins2); */ h = lookup_hash (ins1, 0); get_operands (h->ops, ins1); State.ins_type = (leftright == LEFT_FIRST) ? INS_LEFT : INS_RIGHT; ins_type_counters[ (int)State.ins_type ]++; (h->ops->func)(); /* If the PC has changed (ie, a jump), don't do the second instruction */ if (orig_pc == PC) { h = lookup_hash (ins2, 0); get_operands (h->ops, ins2); State.ins_type = (leftright == LEFT_FIRST) ? INS_RIGHT : INS_LEFT; ins_type_counters[ (int)State.ins_type ]++; (h->ops->func)(); } } static void do_parallel (ins1, ins2) uint16 ins1, ins2; { struct hash_entry *h1, *h2; #ifdef DEBUG if ((d10v_debug & DEBUG_INSTRUCTION) != 0) (*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2); #endif h1 = lookup_hash (ins1, 0); h2 = lookup_hash (ins2, 0); if (h1->ops->exec_type == PARONLY) { get_operands (h1->ops, ins1); State.ins_type = INS_LEFT; ins_type_counters[ (int)State.ins_type ]++; (h1->ops->func)(); if (State.exe) { get_operands (h2->ops, ins2); State.ins_type = INS_RIGHT; (h2->ops->func)(); } } else if (h2->ops->exec_type == PARONLY) { get_operands (h2->ops, ins2); State.ins_type = INS_RIGHT; ins_type_counters[ (int)State.ins_type ]++; (h2->ops->func)(); if (State.exe) { get_operands (h1->ops, ins1); State.ins_type = INS_LEFT; (h1->ops->func)(); } } else { get_operands (h1->ops, ins1); State.ins_type = INS_LEFT_PARALLEL; ins_type_counters[ (int)State.ins_type ]++; (h1->ops->func)(); get_operands (h2->ops, ins2); State.ins_type = INS_RIGHT_PARALLEL; ins_type_counters[ (int)State.ins_type ]++; (h2->ops->func)(); } } void sim_size (power) int power; { if (State.imem) { free (State.imem); free (State.dmem); } State.imem = (uint8 *)calloc(1,1<printf_filtered) (d10v_callback, "Memory allocation failed.\n"); exit(1); } #ifdef DEBUG if ((d10v_debug & DEBUG_MEMSIZE) != 0) { (*d10v_callback->printf_filtered) (d10v_callback, "Allocated %d bytes instruction memory and\n",1<printf_filtered) (d10v_callback, " %d bytes data memory.\n", 1<printf_filtered) (d10v_callback, "sim_write %d bytes to 0x%x\n",size,addr); */ for (i = 0; i < size; i++) { State.imem[i+addr] = buffer[i]; } return size; } void sim_open (args) char *args; { struct simops *s; struct hash_entry *h, *prev; static int init_p = 0; if (args != NULL) { #ifdef DEBUG if (strcmp (args, "-t") == 0) d10v_debug = DEBUG; else #endif (*d10v_callback->printf_filtered) (d10v_callback, "ERROR: unsupported option(s): %s\n",args); } /* put all the opcodes in the hash table */ if (!init_p++) { for (s = Simops; s->func; s++) { h = &hash_table[hash(s->opcode,s->format)]; /* go to the last entry in the chain */ while (h->next) h = h->next; if (h->ops) { h->next = calloc(1,sizeof(struct hash_entry)); h = h->next; } h->ops = s; h->mask = s->mask; h->opcode = s->opcode; } } } void sim_close (quitting) int quitting; { /* nothing to do */ } void sim_set_profile (n) int n; { (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile %d\n",n); } void sim_set_profile_size (n) int n; { (*d10v_callback->printf_filtered) (d10v_callback, "sim_set_profile_size %d\n",n); } void sim_resume (step, siggnal) int step, siggnal; { uint32 inst; int i; reg_t oldpc; /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */ if (step) State.exception = SIGTRAP; else State.exception = 0; do { inst = RLW (PC << 2); oldpc = PC; switch (inst & 0xC0000000) { case 0xC0000000: /* long instruction */ do_long (inst & 0x3FFFFFFF); break; case 0x80000000: /* R -> L */ do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, 0); break; case 0x40000000: /* L -> R */ do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, 1); break; case 0: do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF); break; } if (State.RP && PC == RPT_E) { RPT_C -= 1; if (RPT_C == 0) State.RP = 0; else PC = RPT_S; } /* FIXME */ if (PC == oldpc) PC++; } while (!State.exception); } int sim_trace () { #ifdef DEBUG d10v_debug = DEBUG; #endif sim_resume (0, 0); return 1; } void sim_info (verbose) int verbose; { char buf[40]; int size; long total = (ins_type_counters[ (int)INS_LONG ] + ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_PARALLEL ] + ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_PARALLEL ]); sprintf (buf, "%ld", total); size = strlen (buf); (*d10v_callback->printf_filtered) (d10v_callback, "executed %*ld instructions in the left container, %*ld parallel, %*ld nops\n", size, ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_PARALLEL ], size, ins_type_counters[ (int)INS_LEFT_PARALLEL ], size, left_nops); (*d10v_callback->printf_filtered) (d10v_callback, "executed %*ld instructions in the right container, %*ld parallel, %*ld nops\n", size, ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_PARALLEL ], size, ins_type_counters[ (int)INS_RIGHT_PARALLEL ], size, right_nops); (*d10v_callback->printf_filtered) (d10v_callback, "executed %*ld long instructions\n", size, ins_type_counters[ (int)INS_LONG ]); (*d10v_callback->printf_filtered) (d10v_callback, "executed %*ld total instructions\n", size, total); } void sim_create_inferior (start_address, argv, env) SIM_ADDR start_address; char **argv; char **env; { #ifdef DEBUG if (d10v_debug) (*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior: PC=0x%x\n", start_address); #endif PC = start_address >> 2; } void sim_kill () { /* nothing to do */ } void sim_set_callbacks(p) host_callback *p; { /* printf ("sim_set_callbacks\n"); */ d10v_callback = p; } void sim_stop_reason (reason, sigrc) enum sim_stop *reason; int *sigrc; { /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */ switch (State.exception) { case SIG_D10V_STOP: /* stop instruction */ *reason = sim_exited; *sigrc = 0; break; case SIG_D10V_EXIT: /* exit trap */ *reason = sim_exited; *sigrc = State.regs[2]; break; default: /* some signal */ *reason = sim_stopped; *sigrc = State.exception; break; } } void sim_fetch_register (rn, memory) int rn; unsigned char *memory; { if (rn > 31) { WRITE_64 (memory, State.a[rn-32]); /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_fetch_register %d 0x%llx\n",rn,State.a[rn-32]); */ } else { WRITE_16 (memory, State.regs[rn]); /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_fetch_register %d 0x%x\n",rn,State.regs[rn]); */ } } void sim_store_register (rn, memory) int rn; unsigned char *memory; { if (rn > 31) { State.a[rn-32] = READ_64 (memory) & MASK40; /* (*d10v_callback->printf_filtered) (d10v_callback, "store: a%d=0x%llx\n",rn-32,State.a[rn-32]); */ } else { State.regs[rn]= READ_16 (memory); /* (*d10v_callback->printf_filtered) (d10v_callback, "store: r%d=0x%x\n",rn,State.regs[rn]); */ } } sim_read (addr, buffer, size) SIM_ADDR addr; unsigned char *buffer; int size; { int i; for (i = 0; i < size; i++) { buffer[i] = State.imem[addr + i]; } return size; } void sim_do_command (cmd) char *cmd; { (*d10v_callback->printf_filtered) (d10v_callback, "sim_do_command: %s\n",cmd); } int sim_load (prog, from_tty) char *prog; int from_tty; { /* Return nonzero so GDB will handle it. */ return 1; }