#include "config.h" #include #include #include #include "ansidecl.h" #include "gdb/callback.h" #include "opcode/d10v.h" #include "bfd.h" #define DEBUG_TRACE 0x00000001 #define DEBUG_VALUES 0x00000002 #define DEBUG_LINE_NUMBER 0x00000004 #define DEBUG_MEMSIZE 0x00000008 #define DEBUG_INSTRUCTION 0x00000010 #define DEBUG_TRAP 0x00000020 #define DEBUG_MEMORY 0x00000040 #ifndef DEBUG #define DEBUG (DEBUG_TRACE | DEBUG_VALUES | DEBUG_LINE_NUMBER) #endif extern int d10v_debug; #include "gdb/remote-sim.h" #include "sim-config.h" #include "sim-types.h" typedef unsigned8 uint8; typedef unsigned16 uint16; typedef signed16 int16; typedef unsigned32 uint32; typedef signed32 int32; typedef unsigned64 uint64; typedef signed64 int64; /* FIXME: D10V defines */ typedef uint16 reg_t; struct simops { long opcode; int is_long; long mask; int format; int cycles; int unit; int exec_type; void (*func)(SIM_DESC, SIM_CPU *); int numops; int operands[9]; }; enum _ins_type { INS_UNKNOWN, /* unknown instruction */ INS_COND_TRUE, /* # times EXExxx executed other instruction */ INS_COND_FALSE, /* # times EXExxx did not execute other instruction */ INS_COND_JUMP, /* # times JUMP skipped other instruction */ INS_CYCLES, /* # cycles */ INS_LONG, /* long instruction (both containers, ie FM == 11) */ INS_LEFTRIGHT, /* # times instruction encoded as L -> R (ie, FM == 01) */ INS_RIGHTLEFT, /* # times instruction encoded as L <- R (ie, FM == 10) */ INS_PARALLEL, /* # times instruction encoded as L || R (ie, RM == 00) */ INS_LEFT, /* normal left instructions */ INS_LEFT_PARALLEL, /* left side of || */ INS_LEFT_COND_TEST, /* EXExx test on left side */ INS_LEFT_COND_EXE, /* execution after EXExxx test on right side succeeded */ INS_LEFT_NOPS, /* NOP on left side */ INS_RIGHT, /* normal right instructions */ INS_RIGHT_PARALLEL, /* right side of || */ INS_RIGHT_COND_TEST, /* EXExx test on right side */ INS_RIGHT_COND_EXE, /* execution after EXExxx test on left side succeeded */ INS_RIGHT_NOPS, /* NOP on right side */ INS_MAX }; extern unsigned long ins_type_counters[ (int)INS_MAX ]; enum { SP_IDX = 15, }; /* Write-back slots */ union slot_data { unsigned_1 _1; unsigned_2 _2; unsigned_4 _4; unsigned_8 _8; }; struct slot { void *dest; int size; union slot_data data; union slot_data mask; }; enum { NR_SLOTS = 16, }; #define SLOT (State.slot) #define SLOT_NR (State.slot_nr) #define SLOT_PEND_MASK(DEST, MSK, VAL) \ do \ { \ SLOT[SLOT_NR].dest = &(DEST); \ SLOT[SLOT_NR].size = sizeof (DEST); \ switch (sizeof (DEST)) \ { \ case 1: \ SLOT[SLOT_NR].data._1 = (unsigned_1) (VAL); \ SLOT[SLOT_NR].mask._1 = (unsigned_1) (MSK); \ break; \ case 2: \ SLOT[SLOT_NR].data._2 = (unsigned_2) (VAL); \ SLOT[SLOT_NR].mask._2 = (unsigned_2) (MSK); \ break; \ case 4: \ SLOT[SLOT_NR].data._4 = (unsigned_4) (VAL); \ SLOT[SLOT_NR].mask._4 = (unsigned_4) (MSK); \ break; \ case 8: \ SLOT[SLOT_NR].data._8 = (unsigned_8) (VAL); \ SLOT[SLOT_NR].mask._8 = (unsigned_8) (MSK); \ break; \ } \ SLOT_NR = (SLOT_NR + 1); \ } \ while (0) #define SLOT_PEND(DEST, VAL) SLOT_PEND_MASK(DEST, 0, VAL) #define SLOT_DISCARD() (SLOT_NR = 0) #define SLOT_FLUSH() \ do \ { \ int i; \ for (i = 0; i < SLOT_NR; i++) \ { \ switch (SLOT[i].size) \ { \ case 1: \ *(unsigned_1*) SLOT[i].dest &= SLOT[i].mask._1; \ *(unsigned_1*) SLOT[i].dest |= SLOT[i].data._1; \ break; \ case 2: \ *(unsigned_2*) SLOT[i].dest &= SLOT[i].mask._2; \ *(unsigned_2*) SLOT[i].dest |= SLOT[i].data._2; \ break; \ case 4: \ *(unsigned_4*) SLOT[i].dest &= SLOT[i].mask._4; \ *(unsigned_4*) SLOT[i].dest |= SLOT[i].data._4; \ break; \ case 8: \ *(unsigned_8*) SLOT[i].dest &= SLOT[i].mask._8; \ *(unsigned_8*) SLOT[i].dest |= SLOT[i].data._8; \ break; \ } \ } \ SLOT_NR = 0; \ } \ while (0) #define SLOT_DUMP() \ do \ { \ int i; \ for (i = 0; i < SLOT_NR; i++) \ { \ switch (SLOT[i].size) \ { \ case 1: \ printf ("SLOT %d *0x%08lx & 0x%02x | 0x%02x\n", i, \ (long) SLOT[i].dest, \ (unsigned) SLOT[i].mask._1, \ (unsigned) SLOT[i].data._1); \ break; \ case 2: \ printf ("SLOT %d *0x%08lx & 0x%04x | 0x%04x\n", i, \ (long) SLOT[i].dest, \ (unsigned) SLOT[i].mask._2, \ (unsigned) SLOT[i].data._2); \ break; \ case 4: \ printf ("SLOT %d *0x%08lx & 0x%08x | 0x%08x\n", i, \ (long) SLOT[i].dest, \ (unsigned) SLOT[i].mask._4, \ (unsigned) SLOT[i].data._4); \ break; \ case 8: \ printf ("SLOT %d *0x%08lx & 0x%08x%08x | 0x%08x%08x\n", i, \ (long) SLOT[i].dest, \ (unsigned) (SLOT[i].mask._8 >> 32), \ (unsigned) SLOT[i].mask._8, \ (unsigned) (SLOT[i].data._8 >> 32), \ (unsigned) SLOT[i].data._8); \ break; \ } \ } \ } \ while (0) /* d10v memory: There are three separate d10v memory regions IMEM, UMEM and DMEM. The IMEM and DMEM are further broken down into blocks (very like VM pages). */ enum { IMAP_BLOCK_SIZE = 0x20000, DMAP_BLOCK_SIZE = 0x4000, }; /* Implement the three memory regions using sparse arrays. Allocate memory using ``segments''. A segment must be at least as large as a BLOCK - ensures that an access that doesn't cross a block boundary can't cross a segment boundary */ enum { SEGMENT_SIZE = 0x20000, /* 128KB - MAX(IMAP_BLOCK_SIZE,DMAP_BLOCK_SIZE) */ IMEM_SEGMENTS = 8, /* 1MB */ DMEM_SEGMENTS = 8, /* 1MB */ UMEM_SEGMENTS = 128 /* 16MB */ }; struct d10v_memory { uint8 *insn[IMEM_SEGMENTS]; uint8 *data[DMEM_SEGMENTS]; uint8 *unif[UMEM_SEGMENTS]; }; struct _state { reg_t regs[16]; /* general-purpose registers */ #define GPR(N) (State.regs[(N)] + 0) #define SET_GPR(N,VAL) SLOT_PEND (State.regs[(N)], (VAL)) #define GPR32(N) ((((uint32) State.regs[(N) + 0]) << 16) \ | (uint16) State.regs[(N) + 1]) #define SET_GPR32(N,VAL) do { SET_GPR (OP[0] + 0, (VAL) >> 16); SET_GPR (OP[0] + 1, (VAL)); } while (0) reg_t cregs[16]; /* control registers */ #define CREG(N) (State.cregs[(N)] + 0) #define SET_CREG(N,VAL) move_to_cr (sd, cpu, (N), 0, (VAL), 0) #define SET_HW_CREG(N,VAL) move_to_cr (sd, cpu, (N), 0, (VAL), 1) reg_t sp[2]; /* holding area for SPI(0)/SPU(1) */ #define HELD_SP(N) (State.sp[(N)] + 0) #define SET_HELD_SP(N,VAL) SLOT_PEND (State.sp[(N)], (VAL)) int64 a[2]; /* accumulators */ #define ACC(N) (State.a[(N)] + 0) #define SET_ACC(N,VAL) SLOT_PEND (State.a[(N)], (VAL) & MASK40) /* writeback info */ struct slot slot[NR_SLOTS]; int slot_nr; /* trace data */ struct { uint16 psw; } trace; uint8 exe; int pc_changed; /* NOTE: everything below this line is not reset by sim_create_inferior() */ struct d10v_memory mem; enum _ins_type ins_type; } State; extern host_callback *d10v_callback; extern uint16 OP[4]; extern struct simops Simops[]; enum { PSW_CR = 0, BPSW_CR = 1, PC_CR = 2, BPC_CR = 3, DPSW_CR = 4, DPC_CR = 5, RPT_C_CR = 7, RPT_S_CR = 8, RPT_E_CR = 9, MOD_S_CR = 10, MOD_E_CR = 11, IBA_CR = 14, }; enum { PSW_SM_BIT = 0x8000, PSW_EA_BIT = 0x2000, PSW_DB_BIT = 0x1000, PSW_DM_BIT = 0x0800, PSW_IE_BIT = 0x0400, PSW_RP_BIT = 0x0200, PSW_MD_BIT = 0x0100, PSW_FX_BIT = 0x0080, PSW_ST_BIT = 0x0040, PSW_F0_BIT = 0x0008, PSW_F1_BIT = 0x0004, PSW_C_BIT = 0x0001, }; #define PSW CREG (PSW_CR) #define SET_PSW(VAL) SET_CREG (PSW_CR, (VAL)) #define SET_HW_PSW(VAL) SET_HW_CREG (PSW_CR, (VAL)) #define SET_PSW_BIT(MASK,VAL) move_to_cr (sd, cpu, PSW_CR, ~((reg_t) MASK), (VAL) ? (MASK) : 0, 1) #define PSW_SM ((PSW & PSW_SM_BIT) != 0) #define SET_PSW_SM(VAL) SET_PSW_BIT (PSW_SM_BIT, (VAL)) #define PSW_EA ((PSW & PSW_EA_BIT) != 0) #define SET_PSW_EA(VAL) SET_PSW_BIT (PSW_EA_BIT, (VAL)) #define PSW_DB ((PSW & PSW_DB_BIT) != 0) #define SET_PSW_DB(VAL) SET_PSW_BIT (PSW_DB_BIT, (VAL)) #define PSW_DM ((PSW & PSW_DM_BIT) != 0) #define SET_PSW_DM(VAL) SET_PSW_BIT (PSW_DM_BIT, (VAL)) #define PSW_IE ((PSW & PSW_IE_BIT) != 0) #define SET_PSW_IE(VAL) SET_PSW_BIT (PSW_IE_BIT, (VAL)) #define PSW_RP ((PSW & PSW_RP_BIT) != 0) #define SET_PSW_RP(VAL) SET_PSW_BIT (PSW_RP_BIT, (VAL)) #define PSW_MD ((PSW & PSW_MD_BIT) != 0) #define SET_PSW_MD(VAL) SET_PSW_BIT (PSW_MD_BIT, (VAL)) #define PSW_FX ((PSW & PSW_FX_BIT) != 0) #define SET_PSW_FX(VAL) SET_PSW_BIT (PSW_FX_BIT, (VAL)) #define PSW_ST ((PSW & PSW_ST_BIT) != 0) #define SET_PSW_ST(VAL) SET_PSW_BIT (PSW_ST_BIT, (VAL)) #define PSW_F0 ((PSW & PSW_F0_BIT) != 0) #define SET_PSW_F0(VAL) SET_PSW_BIT (PSW_F0_BIT, (VAL)) #define PSW_F1 ((PSW & PSW_F1_BIT) != 0) #define SET_PSW_F1(VAL) SET_PSW_BIT (PSW_F1_BIT, (VAL)) #define PSW_C ((PSW & PSW_C_BIT) != 0) #define SET_PSW_C(VAL) SET_PSW_BIT (PSW_C_BIT, (VAL)) /* See simopsc.:move_to_cr() for registers that can not be read-from or assigned-to directly */ #define PC CREG (PC_CR) #define SET_PC(VAL) SET_CREG (PC_CR, (VAL)) #define BPSW CREG (BPSW_CR) #define SET_BPSW(VAL) SET_CREG (BPSW_CR, (VAL)) #define BPC CREG (BPC_CR) #define SET_BPC(VAL) SET_CREG (BPC_CR, (VAL)) #define DPSW CREG (DPSW_CR) #define SET_DPSW(VAL) SET_CREG (DPSW_CR, (VAL)) #define DPC CREG (DPC_CR) #define SET_DPC(VAL) SET_CREG (DPC_CR, (VAL)) #define RPT_C CREG (RPT_C_CR) #define SET_RPT_C(VAL) SET_CREG (RPT_C_CR, (VAL)) #define RPT_S CREG (RPT_S_CR) #define SET_RPT_S(VAL) SET_CREG (RPT_S_CR, (VAL)) #define RPT_E CREG (RPT_E_CR) #define SET_RPT_E(VAL) SET_CREG (RPT_E_CR, (VAL)) #define MOD_S CREG (MOD_S_CR) #define SET_MOD_S(VAL) SET_CREG (MOD_S_CR, (VAL)) #define MOD_E CREG (MOD_E_CR) #define SET_MOD_E(VAL) SET_CREG (MOD_E_CR, (VAL)) #define IBA CREG (IBA_CR) #define SET_IBA(VAL) SET_CREG (IBA_CR, (VAL)) #define SIG_D10V_STOP -1 #define SIG_D10V_EXIT -2 #define SIG_D10V_BUS -3 /* TODO: Resolve conflicts with common headers. */ #undef SEXT8 #undef SEXT16 #undef SEXT32 #undef MASK32 #define SEXT3(x) ((((x)&0x7)^(~3))+4) /* sign-extend a 4-bit number */ #define SEXT4(x) ((((x)&0xf)^(~7))+8) /* sign-extend an 8-bit number */ #define SEXT8(x) ((((x)&0xff)^(~0x7f))+0x80) /* sign-extend a 16-bit number */ #define SEXT16(x) ((((x)&0xffff)^(~0x7fff))+0x8000) /* sign-extend a 32-bit number */ #define SEXT32(x) ((((x)&SIGNED64(0xffffffff))^(~SIGNED64(0x7fffffff)))+SIGNED64(0x80000000)) /* sign extend a 40 bit number */ #define SEXT40(x) ((((x)&SIGNED64(0xffffffffff))^(~SIGNED64(0x7fffffffff)))+SIGNED64(0x8000000000)) /* sign extend a 44 bit number */ #define SEXT44(x) ((((x)&SIGNED64(0xfffffffffff))^(~SIGNED64(0x7ffffffffff)))+SIGNED64(0x80000000000)) /* sign extend a 56 bit number */ #define SEXT56(x) ((((x)&SIGNED64(0xffffffffffffff))^(~SIGNED64(0x7fffffffffffff)))+SIGNED64(0x80000000000000)) /* sign extend a 60 bit number */ #define SEXT60(x) ((((x)&SIGNED64(0xfffffffffffffff))^(~SIGNED64(0x7ffffffffffffff)))+SIGNED64(0x800000000000000)) #define MAX32 SIGNED64(0x7fffffff) #define MIN32 SIGNED64(0xff80000000) #define MASK32 SIGNED64(0xffffffff) #define MASK40 SIGNED64(0xffffffffff) /* The alignment of MOD_E in the following macro depends upon "i" always being a power of 2. */ #define INC_ADDR(x,i) \ do \ { \ int test_i = i < 0 ? i : ~((i) - 1); \ if (PSW_MD && GPR (x) == (MOD_E & test_i)) \ SET_GPR (x, MOD_S & test_i); \ else \ SET_GPR (x, GPR (x) + (i)); \ } \ while (0) extern uint8 *dmem_addr (SIM_DESC, SIM_CPU *, uint16 offset); extern uint8 *imem_addr (SIM_DESC, SIM_CPU *, uint32); extern bfd_vma decode_pc (void); #define RB(x) (*(dmem_addr (sd, cpu, x))) #define SB(addr,data) ( RB(addr) = (data & 0xff)) #if defined(__GNUC__) && defined(__OPTIMIZE__) && !defined(NO_ENDIAN_INLINE) #define ENDIAN_INLINE static __inline__ #include "endian.c" #undef ENDIAN_INLINE #else extern uint32 get_longword (uint8 *); extern uint16 get_word (uint8 *); extern int64 get_longlong (uint8 *); extern void write_word (uint8 *addr, uint16 data); extern void write_longword (uint8 *addr, uint32 data); extern void write_longlong (uint8 *addr, int64 data); #endif #define SW(addr,data) write_word (dmem_addr (sd, cpu, addr), data) #define RW(x) get_word (dmem_addr (sd, cpu, x)) #define SLW(addr,data) write_longword (dmem_addr (sd, cpu, addr), data) #define RLW(x) get_longword (dmem_addr (sd, cpu, x)) #define READ_16(x) get_word(x) #define WRITE_16(addr,data) write_word(addr,data) #define READ_64(x) get_longlong(x) #define WRITE_64(addr,data) write_longlong(addr,data) #define JMP(x) do { SET_PC (x); State.pc_changed = 1; } while (0) #define RIE_VECTOR_START 0xffc2 #define AE_VECTOR_START 0xffc3 #define TRAP_VECTOR_START 0xffc4 /* vector for trap 0 */ #define DBT_VECTOR_START 0xffd4 #define SDBT_VECTOR_START 0xffd5 /* Scedule a store of VAL into cr[CR]. MASK indicates the bits in cr[CR] that should not be modified (i.e. cr[CR] = (cr[CR] & MASK) | (VAL & ~MASK)). In addition, unless PSW_HW_P, a VAL intended for PSW is masked for zero bits. */ extern reg_t move_to_cr (SIM_DESC, SIM_CPU *, int cr, reg_t mask, reg_t val, int psw_hw_p);