/* Simulator instruction semantics for crisv10f. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2005 Free Software Foundation, Inc. This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef DEFINE_LABELS /* The labels have the case they have because the enum of insn types is all uppercase and in the non-stdc case the insn symbol is built into the enum name. */ static struct { int index; void *label; } labels[] = { { CRISV10F_INSN_X_INVALID, && case_sem_INSN_X_INVALID }, { CRISV10F_INSN_X_AFTER, && case_sem_INSN_X_AFTER }, { CRISV10F_INSN_X_BEFORE, && case_sem_INSN_X_BEFORE }, { CRISV10F_INSN_X_CTI_CHAIN, && case_sem_INSN_X_CTI_CHAIN }, { CRISV10F_INSN_X_CHAIN, && case_sem_INSN_X_CHAIN }, { CRISV10F_INSN_X_BEGIN, && case_sem_INSN_X_BEGIN }, { CRISV10F_INSN_NOP, && case_sem_INSN_NOP }, { CRISV10F_INSN_MOVE_B_R, && case_sem_INSN_MOVE_B_R }, { CRISV10F_INSN_MOVE_W_R, && case_sem_INSN_MOVE_W_R }, { CRISV10F_INSN_MOVE_D_R, && case_sem_INSN_MOVE_D_R }, { CRISV10F_INSN_MOVEPCR, && case_sem_INSN_MOVEPCR }, { CRISV10F_INSN_MOVEQ, && case_sem_INSN_MOVEQ }, { CRISV10F_INSN_MOVS_B_R, && case_sem_INSN_MOVS_B_R }, { CRISV10F_INSN_MOVS_W_R, && case_sem_INSN_MOVS_W_R }, { CRISV10F_INSN_MOVU_B_R, && case_sem_INSN_MOVU_B_R }, { CRISV10F_INSN_MOVU_W_R, && case_sem_INSN_MOVU_W_R }, { CRISV10F_INSN_MOVECBR, && case_sem_INSN_MOVECBR }, { CRISV10F_INSN_MOVECWR, && case_sem_INSN_MOVECWR }, { CRISV10F_INSN_MOVECDR, && case_sem_INSN_MOVECDR }, { CRISV10F_INSN_MOVSCBR, && case_sem_INSN_MOVSCBR }, { CRISV10F_INSN_MOVSCWR, && case_sem_INSN_MOVSCWR }, { CRISV10F_INSN_MOVUCBR, && case_sem_INSN_MOVUCBR }, { CRISV10F_INSN_MOVUCWR, && case_sem_INSN_MOVUCWR }, { CRISV10F_INSN_ADDQ, && case_sem_INSN_ADDQ }, { CRISV10F_INSN_SUBQ, && case_sem_INSN_SUBQ }, { CRISV10F_INSN_CMP_R_B_R, && case_sem_INSN_CMP_R_B_R }, { CRISV10F_INSN_CMP_R_W_R, && case_sem_INSN_CMP_R_W_R }, { CRISV10F_INSN_CMP_R_D_R, && case_sem_INSN_CMP_R_D_R }, { CRISV10F_INSN_CMP_M_B_M, && case_sem_INSN_CMP_M_B_M }, { CRISV10F_INSN_CMP_M_W_M, && case_sem_INSN_CMP_M_W_M }, { CRISV10F_INSN_CMP_M_D_M, && case_sem_INSN_CMP_M_D_M }, { CRISV10F_INSN_CMPCBR, && case_sem_INSN_CMPCBR }, { CRISV10F_INSN_CMPCWR, && case_sem_INSN_CMPCWR }, { CRISV10F_INSN_CMPCDR, && case_sem_INSN_CMPCDR }, { CRISV10F_INSN_CMPQ, && case_sem_INSN_CMPQ }, { CRISV10F_INSN_CMPS_M_B_M, && case_sem_INSN_CMPS_M_B_M }, { CRISV10F_INSN_CMPS_M_W_M, && case_sem_INSN_CMPS_M_W_M }, { CRISV10F_INSN_CMPSCBR, && case_sem_INSN_CMPSCBR }, { CRISV10F_INSN_CMPSCWR, && case_sem_INSN_CMPSCWR }, { CRISV10F_INSN_CMPU_M_B_M, && case_sem_INSN_CMPU_M_B_M }, { CRISV10F_INSN_CMPU_M_W_M, && case_sem_INSN_CMPU_M_W_M }, { CRISV10F_INSN_CMPUCBR, && case_sem_INSN_CMPUCBR }, { CRISV10F_INSN_CMPUCWR, && case_sem_INSN_CMPUCWR }, { CRISV10F_INSN_MOVE_M_B_M, && case_sem_INSN_MOVE_M_B_M }, { CRISV10F_INSN_MOVE_M_W_M, && case_sem_INSN_MOVE_M_W_M }, { CRISV10F_INSN_MOVE_M_D_M, && case_sem_INSN_MOVE_M_D_M }, { CRISV10F_INSN_MOVS_M_B_M, && case_sem_INSN_MOVS_M_B_M }, { CRISV10F_INSN_MOVS_M_W_M, && case_sem_INSN_MOVS_M_W_M }, { CRISV10F_INSN_MOVU_M_B_M, && case_sem_INSN_MOVU_M_B_M }, { CRISV10F_INSN_MOVU_M_W_M, && case_sem_INSN_MOVU_M_W_M }, { CRISV10F_INSN_MOVE_R_SPRV10, && case_sem_INSN_MOVE_R_SPRV10 }, { CRISV10F_INSN_MOVE_SPR_RV10, && case_sem_INSN_MOVE_SPR_RV10 }, { CRISV10F_INSN_RET_TYPE, && case_sem_INSN_RET_TYPE }, { CRISV10F_INSN_MOVE_M_SPRV10, && case_sem_INSN_MOVE_M_SPRV10 }, { CRISV10F_INSN_MOVE_C_SPRV10_P0, && case_sem_INSN_MOVE_C_SPRV10_P0 }, { CRISV10F_INSN_MOVE_C_SPRV10_P1, && case_sem_INSN_MOVE_C_SPRV10_P1 }, { CRISV10F_INSN_MOVE_C_SPRV10_P4, && case_sem_INSN_MOVE_C_SPRV10_P4 }, { CRISV10F_INSN_MOVE_C_SPRV10_P5, && case_sem_INSN_MOVE_C_SPRV10_P5 }, { CRISV10F_INSN_MOVE_C_SPRV10_P8, && case_sem_INSN_MOVE_C_SPRV10_P8 }, { CRISV10F_INSN_MOVE_C_SPRV10_P9, && case_sem_INSN_MOVE_C_SPRV10_P9 }, { CRISV10F_INSN_MOVE_C_SPRV10_P10, && case_sem_INSN_MOVE_C_SPRV10_P10 }, { CRISV10F_INSN_MOVE_C_SPRV10_P11, && case_sem_INSN_MOVE_C_SPRV10_P11 }, { CRISV10F_INSN_MOVE_C_SPRV10_P12, && case_sem_INSN_MOVE_C_SPRV10_P12 }, { CRISV10F_INSN_MOVE_C_SPRV10_P13, && case_sem_INSN_MOVE_C_SPRV10_P13 }, { CRISV10F_INSN_MOVE_C_SPRV10_P7, && case_sem_INSN_MOVE_C_SPRV10_P7 }, { CRISV10F_INSN_MOVE_C_SPRV10_P14, && case_sem_INSN_MOVE_C_SPRV10_P14 }, { CRISV10F_INSN_MOVE_C_SPRV10_P15, && case_sem_INSN_MOVE_C_SPRV10_P15 }, { CRISV10F_INSN_MOVE_SPR_MV10, && case_sem_INSN_MOVE_SPR_MV10 }, { CRISV10F_INSN_SBFS, && case_sem_INSN_SBFS }, { CRISV10F_INSN_MOVEM_R_M, && case_sem_INSN_MOVEM_R_M }, { CRISV10F_INSN_MOVEM_M_R, && case_sem_INSN_MOVEM_M_R }, { CRISV10F_INSN_MOVEM_M_PC, && case_sem_INSN_MOVEM_M_PC }, { CRISV10F_INSN_ADD_B_R, && case_sem_INSN_ADD_B_R }, { CRISV10F_INSN_ADD_W_R, && case_sem_INSN_ADD_W_R }, { CRISV10F_INSN_ADD_D_R, && case_sem_INSN_ADD_D_R }, { CRISV10F_INSN_ADD_M_B_M, && case_sem_INSN_ADD_M_B_M }, { CRISV10F_INSN_ADD_M_W_M, && case_sem_INSN_ADD_M_W_M }, { CRISV10F_INSN_ADD_M_D_M, && case_sem_INSN_ADD_M_D_M }, { CRISV10F_INSN_ADDCBR, && case_sem_INSN_ADDCBR }, { CRISV10F_INSN_ADDCWR, && case_sem_INSN_ADDCWR }, { CRISV10F_INSN_ADDCDR, && case_sem_INSN_ADDCDR }, { CRISV10F_INSN_ADDCPC, && case_sem_INSN_ADDCPC }, { CRISV10F_INSN_ADDS_B_R, && case_sem_INSN_ADDS_B_R }, { CRISV10F_INSN_ADDS_W_R, && case_sem_INSN_ADDS_W_R }, { CRISV10F_INSN_ADDS_M_B_M, && case_sem_INSN_ADDS_M_B_M }, { CRISV10F_INSN_ADDS_M_W_M, && case_sem_INSN_ADDS_M_W_M }, { CRISV10F_INSN_ADDSCBR, && case_sem_INSN_ADDSCBR }, { CRISV10F_INSN_ADDSCWR, && case_sem_INSN_ADDSCWR }, { CRISV10F_INSN_ADDSPCPC, && case_sem_INSN_ADDSPCPC }, { CRISV10F_INSN_ADDU_B_R, && case_sem_INSN_ADDU_B_R }, { CRISV10F_INSN_ADDU_W_R, && case_sem_INSN_ADDU_W_R }, { CRISV10F_INSN_ADDU_M_B_M, && case_sem_INSN_ADDU_M_B_M }, { CRISV10F_INSN_ADDU_M_W_M, && case_sem_INSN_ADDU_M_W_M }, { CRISV10F_INSN_ADDUCBR, && case_sem_INSN_ADDUCBR }, { CRISV10F_INSN_ADDUCWR, && case_sem_INSN_ADDUCWR }, { CRISV10F_INSN_SUB_B_R, && case_sem_INSN_SUB_B_R }, { CRISV10F_INSN_SUB_W_R, && case_sem_INSN_SUB_W_R }, { CRISV10F_INSN_SUB_D_R, && case_sem_INSN_SUB_D_R }, { CRISV10F_INSN_SUB_M_B_M, && case_sem_INSN_SUB_M_B_M }, { CRISV10F_INSN_SUB_M_W_M, && case_sem_INSN_SUB_M_W_M }, { CRISV10F_INSN_SUB_M_D_M, && case_sem_INSN_SUB_M_D_M }, { CRISV10F_INSN_SUBCBR, && case_sem_INSN_SUBCBR }, { CRISV10F_INSN_SUBCWR, && case_sem_INSN_SUBCWR }, { CRISV10F_INSN_SUBCDR, && case_sem_INSN_SUBCDR }, { CRISV10F_INSN_SUBS_B_R, && case_sem_INSN_SUBS_B_R }, { CRISV10F_INSN_SUBS_W_R, && case_sem_INSN_SUBS_W_R }, { CRISV10F_INSN_SUBS_M_B_M, && case_sem_INSN_SUBS_M_B_M }, { CRISV10F_INSN_SUBS_M_W_M, && case_sem_INSN_SUBS_M_W_M }, { CRISV10F_INSN_SUBSCBR, && case_sem_INSN_SUBSCBR }, { CRISV10F_INSN_SUBSCWR, && case_sem_INSN_SUBSCWR }, { CRISV10F_INSN_SUBU_B_R, && case_sem_INSN_SUBU_B_R }, { CRISV10F_INSN_SUBU_W_R, && case_sem_INSN_SUBU_W_R }, { CRISV10F_INSN_SUBU_M_B_M, && case_sem_INSN_SUBU_M_B_M }, { CRISV10F_INSN_SUBU_M_W_M, && case_sem_INSN_SUBU_M_W_M }, { CRISV10F_INSN_SUBUCBR, && case_sem_INSN_SUBUCBR }, { CRISV10F_INSN_SUBUCWR, && case_sem_INSN_SUBUCWR }, { CRISV10F_INSN_ADDI_B_R, && case_sem_INSN_ADDI_B_R }, { CRISV10F_INSN_ADDI_W_R, && case_sem_INSN_ADDI_W_R }, { CRISV10F_INSN_ADDI_D_R, && case_sem_INSN_ADDI_D_R }, { CRISV10F_INSN_NEG_B_R, && case_sem_INSN_NEG_B_R }, { CRISV10F_INSN_NEG_W_R, && case_sem_INSN_NEG_W_R }, { CRISV10F_INSN_NEG_D_R, && case_sem_INSN_NEG_D_R }, { CRISV10F_INSN_TEST_M_B_M, && case_sem_INSN_TEST_M_B_M }, { CRISV10F_INSN_TEST_M_W_M, && case_sem_INSN_TEST_M_W_M }, { CRISV10F_INSN_TEST_M_D_M, && case_sem_INSN_TEST_M_D_M }, { CRISV10F_INSN_MOVE_R_M_B_M, && case_sem_INSN_MOVE_R_M_B_M }, { CRISV10F_INSN_MOVE_R_M_W_M, && case_sem_INSN_MOVE_R_M_W_M }, { CRISV10F_INSN_MOVE_R_M_D_M, && case_sem_INSN_MOVE_R_M_D_M }, { CRISV10F_INSN_MULS_B, && case_sem_INSN_MULS_B }, { CRISV10F_INSN_MULS_W, && case_sem_INSN_MULS_W }, { CRISV10F_INSN_MULS_D, && case_sem_INSN_MULS_D }, { CRISV10F_INSN_MULU_B, && case_sem_INSN_MULU_B }, { CRISV10F_INSN_MULU_W, && case_sem_INSN_MULU_W }, { CRISV10F_INSN_MULU_D, && case_sem_INSN_MULU_D }, { CRISV10F_INSN_MSTEP, && case_sem_INSN_MSTEP }, { CRISV10F_INSN_DSTEP, && case_sem_INSN_DSTEP }, { CRISV10F_INSN_ABS, && case_sem_INSN_ABS }, { CRISV10F_INSN_AND_B_R, && case_sem_INSN_AND_B_R }, { CRISV10F_INSN_AND_W_R, && case_sem_INSN_AND_W_R }, { CRISV10F_INSN_AND_D_R, && case_sem_INSN_AND_D_R }, { CRISV10F_INSN_AND_M_B_M, && case_sem_INSN_AND_M_B_M }, { CRISV10F_INSN_AND_M_W_M, && case_sem_INSN_AND_M_W_M }, { CRISV10F_INSN_AND_M_D_M, && case_sem_INSN_AND_M_D_M }, { CRISV10F_INSN_ANDCBR, && case_sem_INSN_ANDCBR }, { CRISV10F_INSN_ANDCWR, && case_sem_INSN_ANDCWR }, { CRISV10F_INSN_ANDCDR, && case_sem_INSN_ANDCDR }, { CRISV10F_INSN_ANDQ, && case_sem_INSN_ANDQ }, { CRISV10F_INSN_ORR_B_R, && case_sem_INSN_ORR_B_R }, { CRISV10F_INSN_ORR_W_R, && case_sem_INSN_ORR_W_R }, { CRISV10F_INSN_ORR_D_R, && case_sem_INSN_ORR_D_R }, { CRISV10F_INSN_OR_M_B_M, && case_sem_INSN_OR_M_B_M }, { CRISV10F_INSN_OR_M_W_M, && case_sem_INSN_OR_M_W_M }, { CRISV10F_INSN_OR_M_D_M, && case_sem_INSN_OR_M_D_M }, { CRISV10F_INSN_ORCBR, && case_sem_INSN_ORCBR }, { CRISV10F_INSN_ORCWR, && case_sem_INSN_ORCWR }, { CRISV10F_INSN_ORCDR, && case_sem_INSN_ORCDR }, { CRISV10F_INSN_ORQ, && case_sem_INSN_ORQ }, { CRISV10F_INSN_XOR, && case_sem_INSN_XOR }, { CRISV10F_INSN_SWAP, && case_sem_INSN_SWAP }, { CRISV10F_INSN_ASRR_B_R, && case_sem_INSN_ASRR_B_R }, { CRISV10F_INSN_ASRR_W_R, && case_sem_INSN_ASRR_W_R }, { CRISV10F_INSN_ASRR_D_R, && case_sem_INSN_ASRR_D_R }, { CRISV10F_INSN_ASRQ, && case_sem_INSN_ASRQ }, { CRISV10F_INSN_LSRR_B_R, && case_sem_INSN_LSRR_B_R }, { CRISV10F_INSN_LSRR_W_R, && case_sem_INSN_LSRR_W_R }, { CRISV10F_INSN_LSRR_D_R, && case_sem_INSN_LSRR_D_R }, { CRISV10F_INSN_LSRQ, && case_sem_INSN_LSRQ }, { CRISV10F_INSN_LSLR_B_R, && case_sem_INSN_LSLR_B_R }, { CRISV10F_INSN_LSLR_W_R, && case_sem_INSN_LSLR_W_R }, { CRISV10F_INSN_LSLR_D_R, && case_sem_INSN_LSLR_D_R }, { CRISV10F_INSN_LSLQ, && case_sem_INSN_LSLQ }, { CRISV10F_INSN_BTST, && case_sem_INSN_BTST }, { CRISV10F_INSN_BTSTQ, && case_sem_INSN_BTSTQ }, { CRISV10F_INSN_SETF, && case_sem_INSN_SETF }, { CRISV10F_INSN_CLEARF, && case_sem_INSN_CLEARF }, { CRISV10F_INSN_BCC_B, && case_sem_INSN_BCC_B }, { CRISV10F_INSN_BA_B, && case_sem_INSN_BA_B }, { CRISV10F_INSN_BCC_W, && case_sem_INSN_BCC_W }, { CRISV10F_INSN_BA_W, && case_sem_INSN_BA_W }, { CRISV10F_INSN_JUMP_R, && case_sem_INSN_JUMP_R }, { CRISV10F_INSN_JUMP_M, && case_sem_INSN_JUMP_M }, { CRISV10F_INSN_JUMP_C, && case_sem_INSN_JUMP_C }, { CRISV10F_INSN_BREAK, && case_sem_INSN_BREAK }, { CRISV10F_INSN_BOUND_R_B_R, && case_sem_INSN_BOUND_R_B_R }, { CRISV10F_INSN_BOUND_R_W_R, && case_sem_INSN_BOUND_R_W_R }, { CRISV10F_INSN_BOUND_R_D_R, && case_sem_INSN_BOUND_R_D_R }, { CRISV10F_INSN_BOUND_M_B_M, && case_sem_INSN_BOUND_M_B_M }, { CRISV10F_INSN_BOUND_M_W_M, && case_sem_INSN_BOUND_M_W_M }, { CRISV10F_INSN_BOUND_M_D_M, && case_sem_INSN_BOUND_M_D_M }, { CRISV10F_INSN_BOUND_CB, && case_sem_INSN_BOUND_CB }, { CRISV10F_INSN_BOUND_CW, && case_sem_INSN_BOUND_CW }, { CRISV10F_INSN_BOUND_CD, && case_sem_INSN_BOUND_CD }, { CRISV10F_INSN_SCC, && case_sem_INSN_SCC }, { CRISV10F_INSN_LZ, && case_sem_INSN_LZ }, { CRISV10F_INSN_ADDOQ, && case_sem_INSN_ADDOQ }, { CRISV10F_INSN_BDAPQPC, && case_sem_INSN_BDAPQPC }, { CRISV10F_INSN_ADDO_M_B_M, && case_sem_INSN_ADDO_M_B_M }, { CRISV10F_INSN_ADDO_M_W_M, && case_sem_INSN_ADDO_M_W_M }, { CRISV10F_INSN_ADDO_M_D_M, && case_sem_INSN_ADDO_M_D_M }, { CRISV10F_INSN_ADDO_CB, && case_sem_INSN_ADDO_CB }, { CRISV10F_INSN_ADDO_CW, && case_sem_INSN_ADDO_CW }, { CRISV10F_INSN_ADDO_CD, && case_sem_INSN_ADDO_CD }, { CRISV10F_INSN_DIP_M, && case_sem_INSN_DIP_M }, { CRISV10F_INSN_DIP_C, && case_sem_INSN_DIP_C }, { CRISV10F_INSN_ADDI_ACR_B_R, && case_sem_INSN_ADDI_ACR_B_R }, { CRISV10F_INSN_ADDI_ACR_W_R, && case_sem_INSN_ADDI_ACR_W_R }, { CRISV10F_INSN_ADDI_ACR_D_R, && case_sem_INSN_ADDI_ACR_D_R }, { CRISV10F_INSN_BIAP_PC_B_R, && case_sem_INSN_BIAP_PC_B_R }, { CRISV10F_INSN_BIAP_PC_W_R, && case_sem_INSN_BIAP_PC_W_R }, { CRISV10F_INSN_BIAP_PC_D_R, && case_sem_INSN_BIAP_PC_D_R }, { 0, 0 } }; int i; for (i = 0; labels[i].label != 0; ++i) { #if FAST_P CPU_IDESC (current_cpu) [labels[i].index].sem_fast_lab = labels[i].label; #else CPU_IDESC (current_cpu) [labels[i].index].sem_full_lab = labels[i].label; #endif } #undef DEFINE_LABELS #endif /* DEFINE_LABELS */ #ifdef DEFINE_SWITCH /* If hyper-fast [well not unnecessarily slow] execution is selected, turn off frills like tracing and profiling. */ /* FIXME: A better way would be to have TRACE_RESULT check for something that can cause it to be optimized out. Another way would be to emit special handlers into the instruction "stream". */ #if FAST_P #undef TRACE_RESULT #define TRACE_RESULT(cpu, abuf, name, type, val) #endif #undef GET_ATTR #if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE) #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) #else #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_/**/attr) #endif { #if WITH_SCACHE_PBB /* Branch to next handler without going around main loop. */ #define NEXT(vpc) goto * SEM_ARGBUF (vpc) -> semantic.sem_case SWITCH (sem, SEM_ARGBUF (vpc) -> semantic.sem_case) #else /* ! WITH_SCACHE_PBB */ #define NEXT(vpc) BREAK (sem) #ifdef __GNUC__ #if FAST_P SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_fast_lab) #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->sem_full_lab) #endif #else SWITCH (sem, SEM_ARGBUF (sc) -> idesc->num) #endif #endif /* ! WITH_SCACHE_PBB */ { CASE (sem, INSN_X_INVALID) : /* --invalid-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { /* Update the recorded pc in the cpu state struct. Only necessary for WITH_SCACHE case, but to avoid the conditional compilation .... */ SET_H_PC (pc); /* Virtual insns have zero size. Overwrite vpc with address of next insn using the default-insn-bitsize spec. When executing insns in parallel we may want to queue the fault and continue execution. */ vpc = SEM_NEXT_VPC (sem_arg, pc, 2); vpc = sim_engine_invalid_insn (current_cpu, pc, vpc); } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_AFTER) : /* --after-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV10F crisv10f_pbb_after (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEFORE) : /* --before-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV10F crisv10f_pbb_before (current_cpu, sem_arg); #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CTI_CHAIN) : /* --cti-chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV10F #ifdef DEFINE_SWITCH vpc = crisv10f_pbb_cti_chain (current_cpu, sem_arg, pbb_br_type, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = crisv10f_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_TYPE (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_CHAIN) : /* --chain-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV10F vpc = crisv10f_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_X_BEGIN) : /* --begin-- */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_CRISV10F #if defined DEFINE_SWITCH || defined FAST_P /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = crisv10f_pbb_begin (current_cpu, FAST_P); #else #if 0 /* cgen engine can't handle dynamic fast/full switching yet. */ vpc = crisv10f_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #else vpc = crisv10f_pbb_begin (current_cpu, 0); #endif #endif #endif } #undef FLD } NEXT (vpc); CASE (sem, INSN_NOP) : /* nop */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_B_R) : /* move.b move.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_W_R) : /* move.w move.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_D_R) : /* move.d move.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEPCR) : /* move.d PC,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_moveq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_pcval; tmp_pcval = ADDSI (pc, 2); { SI opval = tmp_pcval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_pcval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_pcval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEQ) : /* moveq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_moveq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_newval; tmp_newval = FLD (f_s6); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SET_H_NBIT_MOVE (LTSI (tmp_newval, 0)); SET_H_ZBIT_MOVE (ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1)))); SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_B_R) : /* movs.b movs.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI opval = EXTQISI (tmp_newval); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_W_R) : /* movs.w movs.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI opval = EXTHISI (tmp_newval); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_B_R) : /* movu.b movu.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI opval = ZEXTQISI (tmp_newval); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_W_R) : /* movu.w movu.m ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_newval; tmp_newval = GET_H_GR (FLD (f_operand1)); { SI opval = ZEXTHISI (tmp_newval); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVECBR) : /* move.b ${sconst8},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_newval; tmp_newval = FLD (f_indir_pc__byte); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVECWR) : /* move.w ${sconst16},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_newval; tmp_newval = FLD (f_indir_pc__word); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVECDR) : /* move.d ${const32},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_newval; tmp_newval = FLD (f_indir_pc__dword); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVSCBR) : /* movs.b ${sconst8},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVSCWR) : /* movs.w ${sconst16},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVUCBR) : /* movu.b ${uconst8},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVUCWR) : /* movu.w ${uconst16},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_newval; tmp_newval = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDQ) : /* addq $j,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_u6); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBQ) : /* subq $j,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_u6); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_R_B_R) : /* cmp-r.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_R_W_R) : /* cmp-r.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_R_D_R) : /* cmp-r.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_M_B_M) : /* cmp-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_M_W_M) : /* cmp-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMP_M_D_M) : /* cmp-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPCBR) : /* cmp.b $sconst8,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = TRUNCSIQI (FLD (f_indir_pc__byte)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPCWR) : /* cmp.w $sconst16,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = TRUNCSIHI (FLD (f_indir_pc__word)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPCDR) : /* cmp.d $const32,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPQ) : /* cmpq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_s6); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPS_M_B_M) : /* cmps-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPS_M_W_M) : /* cmps-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPSCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPSCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPU_M_B_M) : /* cmpu-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPU_M_W_M) : /* cmpu-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPUCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_CMPUCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_B_M) : /* move-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmp, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_W_M) : /* move-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmp, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_D_M) : /* move-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = tmp_tmp; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_M_B_M) : /* movs-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVS_M_W_M) : /* movs-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_M_B_M) : /* movu-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVU_M_W_M) : /* movu-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_tmp; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_tmp, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmp, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_SPRV10) : /* move ${Rs},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; SI tmp_rno; tmp_tmp = GET_H_GR (FLD (f_operand1)); tmp_rno = FLD (f_operand2); if (ORIF (ORIF (EQSI (tmp_rno, 0), EQSI (tmp_rno, 1)), ORIF (EQSI (tmp_rno, 4), EQSI (tmp_rno, 8)))) { cgen_rtx_error (current_cpu, "move-r-spr: trying to set a read-only special register"); } else { { SI opval = tmp_tmp; SET_H_SR (FLD (f_operand2), opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_SPR_RV10) : /* move ${Ps},${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_rv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_grno; SI tmp_prno; SI tmp_newval; tmp_prno = FLD (f_operand2); tmp_newval = GET_H_SR (FLD (f_operand2)); if (EQSI (tmp_prno, 0)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 1)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 4)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 5)) { { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand1)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } else if (EQSI (tmp_prno, 8)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 9)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 10)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 11)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 12)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 13)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 7)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 14)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else if (EQSI (tmp_prno, 15)) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { cgen_rtx_error (current_cpu, "move-spr-r from unimplemented register"); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_RET_TYPE) : /* ret/reti/retb */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_rv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_retaddr; tmp_retaddr = GET_H_SR (FLD (f_operand2)); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { USI opval = tmp_retaddr; SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_M_SPRV10) : /* move [${Rs}${inc}],${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_rno; SI tmp_newval; tmp_rno = FLD (f_operand2); if (EQSI (tmp_rno, 0)) { tmp_newval = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); } else if (EQSI (tmp_rno, 1)) { tmp_newval = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); } else if (EQSI (tmp_rno, 4)) { tmp_newval = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); } else if (EQSI (tmp_rno, 5)) { tmp_newval = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); } else if (EQSI (tmp_rno, 8)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 9)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 10)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 11)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 12)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 13)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 7)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 14)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else if (EQSI (tmp_rno, 15)) { tmp_newval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); } else { cgen_rtx_error (current_cpu, "Trying to set unimplemented special register"); } { SI opval = tmp_newval; SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P0) : /* move ${sconst8},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p0.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = FLD (f_indir_pc__byte); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P1) : /* move ${sconst8},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p0.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = FLD (f_indir_pc__byte); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P4) : /* move ${sconst16},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p4.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = FLD (f_indir_pc__word); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P5) : /* move ${sconst16},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p4.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = FLD (f_indir_pc__word); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P8) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P9) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P10) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P11) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P12) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P13) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P7) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P14) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_C_SPRV10_P15) : /* move ${const32},${Pd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_SPR_MV10) : /* move ${Ps},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_rno; tmp_rno = FLD (f_operand2); if (EQSI (tmp_rno, 0)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 1)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = GET_H_SR (FLD (f_operand2)); SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 4)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { HI opval = GET_H_SR (FLD (f_operand2)); SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { HI opval = GET_H_SR (FLD (f_operand2)); SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 5)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { HI opval = GET_H_SR (FLD (f_operand2)); SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { HI opval = GET_H_SR (FLD (f_operand2)); SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 8)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 9)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 10)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 11)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 12)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 13)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 7)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 14)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else if (EQSI (tmp_rno, 15)) { { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = GET_H_SR (FLD (f_operand2)); SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } } else { cgen_rtx_error (current_cpu, "write from unimplemented special register"); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SBFS) : /* sbfs [${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); cgen_rtx_error (current_cpu, "SBFS isn't implemented"); #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEM_R_M) : /* movem ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movem_r_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); { SI tmp_dummy; tmp_dummy = GET_H_GR (FLD (f_operand2)); } tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); { if (GESI (FLD (f_operand2), 15)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 15)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 14)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 14)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 13)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 13)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 12)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 12)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 11)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 11)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 10)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 10)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 9)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 9)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 8)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 8)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 7)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 7)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 6)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 6)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 5)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 5)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 4)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 4)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 3)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 3)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 2)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 2)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 1)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 1)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 0)) { { SI tmp_tmp; tmp_tmp = GET_H_GR (((UINT) 0)); { SI opval = tmp_tmp; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 23); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } } if (NEBI (tmp_postinc, 0)) { { SI opval = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (tmp_addr) : (CPU (h_prefixreg_pre_v32))); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEM_M_R) : /* movem [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movem_m_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); { SI tmp_dummy; tmp_dummy = GET_H_GR (FLD (f_operand2)); } { if (GESI (FLD (f_operand2), 14)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 14), opval); written |= (1 << 14); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 13)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 13), opval); written |= (1 << 13); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 12)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 12), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 11)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 11), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 10)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 10), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 9)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 9), opval); written |= (1 << 22); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 8)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 8), opval); written |= (1 << 21); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 7)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 7), opval); written |= (1 << 20); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 6)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 6), opval); written |= (1 << 19); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 5)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 5), opval); written |= (1 << 18); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 4)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 4), opval); written |= (1 << 17); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 3)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 3), opval); written |= (1 << 16); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 2)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 2), opval); written |= (1 << 15); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 1)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (GESI (FLD (f_operand2), 0)) { { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 0), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } } if (NEBI (tmp_postinc, 0)) { { SI opval = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (tmp_addr) : (CPU (h_prefixreg_pre_v32))); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVEM_M_PC) : /* movem [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_movem_m_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); { { USI opval = GETMEMSI (current_cpu, pc, tmp_addr); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 14), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 13), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 12), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 11), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 10), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 9), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 8), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 6), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 5), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 4), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 3), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } { SI tmp_tmp; tmp_tmp = GETMEMSI (current_cpu, pc, tmp_addr); { SI opval = tmp_tmp; SET_H_GR (((UINT) 0), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } tmp_addr = ADDSI (tmp_addr, 4); } } if (NEBI (tmp_postinc, 0)) { { SI opval = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (tmp_addr) : (CPU (h_prefixreg_pre_v32))); SET_H_GR (FLD (f_operand1), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_B_R) : /* add.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), ORIF (ANDIF (LTQI (tmp_tmpopd, 0), GEQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (GEQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_W_R) : /* add.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), ORIF (ANDIF (LTHI (tmp_tmpopd, 0), GEHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (GEHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_D_R) : /* add.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_M_B_M) : /* add-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), ORIF (ANDIF (LTQI (tmp_tmpopd, 0), GEQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (GEQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_M_W_M) : /* add-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), ORIF (ANDIF (LTHI (tmp_tmpopd, 0), GEHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (GEHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADD_M_D_M) : /* add-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDCBR) : /* add.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = FLD (f_indir_pc__byte); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), ORIF (ANDIF (LTQI (tmp_tmpopd, 0), GEQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (GEQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDCWR) : /* add.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = FLD (f_indir_pc__word); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), ORIF (ANDIF (LTHI (tmp_tmpopd, 0), GEHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (GEHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDCDR) : /* add.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDCPC) : /* add.d ${sconst32},PC */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_newpc; SI tmp_oldpc; SI tmp_offs; tmp_offs = FLD (f_indir_pc__dword); tmp_oldpc = ADDSI (pc, 6); tmp_newpc = ADDSI (tmp_oldpc, tmp_offs); { USI opval = tmp_newpc; SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_offs, 0), LTSI (tmp_oldpc, 0)), ORIF (ANDIF (LTSI (tmp_oldpc, 0), GESI (tmp_newpc, 0)), ANDIF (LTSI (tmp_offs, 0), GESI (tmp_newpc, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newpc, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newpc, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_offs, 0), LTSI (tmp_oldpc, 0)), GESI (tmp_newpc, 0)), ANDIF (ANDIF (GESI (tmp_offs, 0), GESI (tmp_oldpc, 0)), LTSI (tmp_newpc, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_B_R) : /* adds.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_W_R) : /* adds.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_M_B_M) : /* adds-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDS_M_W_M) : /* adds-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDSCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDSCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDSPCPC) : /* adds.w [PC],PC */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.fmt_empty.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_newpc; SI tmp_oldpc; HI tmp_offs; if (NOTBI (GET_H_INSN_PREFIXED_P ())) { cgen_rtx_error (current_cpu, "Unexpected adds.w [PC],PC without prefix"); } tmp_offs = GETMEMHI (current_cpu, pc, CPU (h_prefixreg_pre_v32)); tmp_oldpc = ADDSI (pc, 2); tmp_newpc = ADDSI (tmp_oldpc, tmp_offs); { USI opval = tmp_newpc; SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (EXTHISI (tmp_offs), 0), LTSI (tmp_oldpc, 0)), ORIF (ANDIF (LTSI (tmp_oldpc, 0), GESI (tmp_newpc, 0)), ANDIF (LTSI (EXTHISI (tmp_offs), 0), GESI (tmp_newpc, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newpc, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newpc, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (EXTHISI (tmp_offs), 0), LTSI (tmp_oldpc, 0)), GESI (tmp_newpc, 0)), ANDIF (ANDIF (GESI (EXTHISI (tmp_offs), 0), GESI (tmp_oldpc, 0)), LTSI (tmp_newpc, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_B_R) : /* addu.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_W_R) : /* addu.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_M_B_M) : /* addu-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDU_M_W_M) : /* addu-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDUCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDUCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = ADDCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), ORIF (ANDIF (LTSI (tmp_tmpopd, 0), GESI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (GESI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_B_R) : /* sub.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_W_R) : /* sub.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_D_R) : /* sub.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_M_B_M) : /* sub-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_M_W_M) : /* sub-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 12); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUB_M_D_M) : /* sub-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBCBR) : /* sub.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = FLD (f_indir_pc__byte); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBCWR) : /* sub.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = FLD (f_indir_pc__word); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBCDR) : /* sub.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_B_R) : /* subs.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_W_R) : /* subs.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_M_B_M) : /* subs-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBS_M_W_M) : /* subs-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBSCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBSCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_B_R) : /* subu.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_W_R) : /* subu.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_M_B_M) : /* subu-m.b [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBU_M_W_M) : /* subu-m.w [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBUCBR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SUBUCWR) : /* [${Rs}${inc}],$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (FLD (f_indir_pc__word))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_B_R) : /* addi.b ${Rs-dfield}.m,${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 1)); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_W_R) : /* addi.w ${Rs-dfield}.m,${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 2)); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_D_R) : /* addi.d ${Rs-dfield}.m,${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 4)); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEG_B_R) : /* neg.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = 0; tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEG_W_R) : /* neg.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = 0; tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_newval, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_NEG_D_R) : /* neg.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = GET_H_GR (FLD (f_operand1)); tmp_tmpopd = 0; tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_TEST_M_B_M) : /* test-m.b [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { QI tmp_tmpopd; QI tmp_tmpops; BI tmp_carry; QI tmp_newval; tmp_tmpops = 0; tmp_tmpopd = tmp_tmpd; tmp_carry = CPU (h_cbit); tmp_newval = SUBCQI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), ORIF (ANDIF (GEQI (tmp_tmpopd, 0), LTQI (tmp_newval, 0)), ANDIF (LTQI (tmp_tmpops, 0), LTQI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTQI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEQI (tmp_tmpops, 0), LTQI (tmp_tmpopd, 0)), GEQI (tmp_newval, 0)), ANDIF (ANDIF (LTQI (tmp_tmpops, 0), GEQI (tmp_tmpopd, 0)), LTQI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_TEST_M_W_M) : /* test-m.w [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { HI tmp_tmpopd; HI tmp_tmpops; BI tmp_carry; HI tmp_newval; tmp_tmpops = 0; tmp_tmpopd = tmp_tmpd; tmp_carry = CPU (h_cbit); tmp_newval = SUBCHI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), ORIF (ANDIF (GEHI (tmp_tmpopd, 0), LTHI (tmp_newval, 0)), ANDIF (LTHI (tmp_tmpops, 0), LTHI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTHI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GEHI (tmp_tmpops, 0), LTHI (tmp_tmpopd, 0)), GEHI (tmp_newval, 0)), ANDIF (ANDIF (LTHI (tmp_tmpops, 0), GEHI (tmp_tmpopd, 0)), LTHI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_TEST_M_D_M) : /* test-m.d [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI tmp_tmpopd; SI tmp_tmpops; BI tmp_carry; SI tmp_newval; tmp_tmpops = 0; tmp_tmpopd = tmp_tmpd; tmp_carry = CPU (h_cbit); tmp_newval = SUBCSI (tmp_tmpopd, tmp_tmpops, ((EQBI (CPU (h_xbit), 0)) ? (0) : (tmp_carry))); ((void) 0); /*nop*/ { { BI opval = ORIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), ORIF (ANDIF (GESI (tmp_tmpopd, 0), LTSI (tmp_newval, 0)), ANDIF (LTSI (tmp_tmpops, 0), LTSI (tmp_newval, 0)))); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = ORIF (ANDIF (ANDIF (GESI (tmp_tmpops, 0), LTSI (tmp_tmpopd, 0)), GESI (tmp_newval, 0)), ANDIF (ANDIF (LTSI (tmp_tmpops, 0), GESI (tmp_tmpopd, 0)), LTSI (tmp_newval, 0))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_M_B_M) : /* move-r-m.b ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = GET_H_GR (FLD (f_operand2)); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { QI opval = tmp_tmpd; SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { QI opval = tmp_tmpd; SETMEMQI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_M_W_M) : /* move-r-m.w ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = GET_H_GR (FLD (f_operand2)); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { HI opval = tmp_tmpd; SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { HI opval = tmp_tmpd; SETMEMHI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MOVE_R_M_D_M) : /* move-r-m.d ${Rs-dfield},[${Rd-sfield}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = GET_H_GR (FLD (f_operand2)); { SI tmp_addr; BI tmp_postinc; tmp_postinc = FLD (f_memmode); tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); if (ANDIF (GET_H_V32_NON_V32 (), NEBI (CPU (h_xbit), 0))) { if (EQBI (CPU (h_pbit), 0)) { { { SI opval = tmp_tmpd; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { BI opval = CPU (h_pbit); CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } } else { { SI opval = tmp_tmpd; SETMEMSI (current_cpu, pc, tmp_addr, opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } } if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_MULS_B) : /* muls.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = EXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = EXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_NON_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, EXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULS_W) : /* muls.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = EXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = EXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_NON_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, EXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULS_D) : /* muls.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = EXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = EXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_NON_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, EXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULU_B) : /* mulu.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = ZEXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = ZEXTQIDI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_NON_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, ZEXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULU_W) : /* mulu.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = ZEXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = ZEXTHIDI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_NON_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, ZEXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MULU_D) : /* mulu.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { DI tmp_src1; DI tmp_src2; DI tmp_tmpr; tmp_src1 = ZEXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand1)))); tmp_src2 = ZEXTSIDI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))); tmp_tmpr = MULDI (tmp_src1, tmp_src2); { SI opval = TRUNCDISI (tmp_tmpr); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { SI opval = TRUNCDISI (SRLDI (tmp_tmpr, 32)); SET_H_SR (((UINT) 7), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { { BI opval = ANDIF (GET_H_V32_NON_V32 (), CPU (h_cbit)); CPU (h_cbit) = opval; TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } { BI opval = LTDI (tmp_tmpr, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQDI (tmp_tmpr, 0), ORIF (CPU (h_zbit), NOTBI (CPU (h_xbit)))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } { BI opval = NEDI (tmp_tmpr, ZEXTSIDI (TRUNCDISI (tmp_tmpr))); CPU (h_vbit) = opval; TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_MSTEP) : /* mstep $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_tmps; tmp_tmps = GET_H_GR (FLD (f_operand1)); tmp_tmpd = ADDSI (SLLSI (GET_H_GR (FLD (f_operand2)), 1), ((CPU (h_nbit)) ? (tmp_tmps) : (0))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DSTEP) : /* dstep $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; SI tmp_tmps; SI tmp_tmpd; tmp_tmps = GET_H_GR (FLD (f_operand1)); tmp_tmp = SLLSI (GET_H_GR (FLD (f_operand2)), 1); tmp_tmpd = ((GEUSI (tmp_tmp, tmp_tmps)) ? (SUBSI (tmp_tmp, tmp_tmps)) : (tmp_tmp)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ABS) : /* abs $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ABSSI (GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_B_R) : /* and.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ANDQI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_W_R) : /* and.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ANDHI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_D_R) : /* and.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_M_B_M) : /* and-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ANDQI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_M_W_M) : /* and-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ANDHI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_AND_M_D_M) : /* and-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI opval = tmp_tmpd; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDCBR) : /* and.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpd; tmp_tmpd = ANDQI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__byte)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDCWR) : /* and.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpd; tmp_tmpd = ANDHI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__word)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDCDR) : /* and.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__dword)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ANDQ) : /* andq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ANDSI (GET_H_GR (FLD (f_operand2)), FLD (f_s6)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORR_B_R) : /* orr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ORQI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORR_W_R) : /* orr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ORHI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORR_D_R) : /* orr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_OR_M_B_M) : /* or-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; tmp_tmpd = ORQI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_OR_M_W_M) : /* or-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; tmp_tmpd = ORHI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 11); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2)))); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_OR_M_D_M) : /* or-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 10); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); { SI opval = tmp_tmpd; SET_H_GR (((ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) ? (FLD (f_operand1)) : (FLD (f_operand2))), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ORCBR) : /* or.b ${sconst8}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcbr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI tmp_tmpd; tmp_tmpd = ORQI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__byte)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORCWR) : /* or.w ${sconst16}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcwr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI tmp_tmpd; tmp_tmpd = ORHI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__word)); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORCDR) : /* or.d ${const32}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addcdr.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__dword)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ORQ) : /* orq $i,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_andq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = ORSI (GET_H_GR (FLD (f_operand2)), FLD (f_s6)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_XOR) : /* xor $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = XORSI (GET_H_GR (FLD (f_operand2)), GET_H_GR (FLD (f_operand1))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SWAP) : /* swap${swapoption} ${Rs} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmps; SI tmp_tmpd; tmp_tmps = GET_H_GR (FLD (f_operand1)); tmp_tmpd = ({ SI tmp_tmpcode; SI tmp_tmpval; SI tmp_tmpres; tmp_tmpcode = FLD (f_operand2); ; tmp_tmpval = tmp_tmps; ; if (EQSI (tmp_tmpcode, 0)) { tmp_tmpres = (cgen_rtx_error (current_cpu, "SWAP without swap modifier isn't implemented"), 0); } else if (EQSI (tmp_tmpcode, 1)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = tmp_tmpval; ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 2)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 3)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 4)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); } else if (EQSI (tmp_tmpcode, 5)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 6)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 7)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = tmp_tmpval; ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 8)) { tmp_tmpres = INVSI (tmp_tmpval); } else if (EQSI (tmp_tmpcode, 9)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = INVSI (tmp_tmpval); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 10)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 11)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 12)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); } else if (EQSI (tmp_tmpcode, 13)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } else if (EQSI (tmp_tmpcode, 14)) { tmp_tmpres = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); } else if (EQSI (tmp_tmpcode, 15)) { tmp_tmpres = ({ SI tmp_tmpr; tmp_tmpr = ({ SI tmp_tmpb; tmp_tmpb = ({ SI tmp_tmpb; tmp_tmpb = INVSI (tmp_tmpval); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 16), 0xffff0000), ANDSI (SRLSI (tmp_tmpb, 16), 65535)); }); ; ORSI (ANDSI (SLLSI (tmp_tmpb, 8), 0xff00ff00), ANDSI (SRLSI (tmp_tmpb, 8), 16711935)); }); ; ORSI (SLLSI (ANDSI (tmp_tmpr, 16843009), 7), ORSI (SLLSI (ANDSI (tmp_tmpr, 33686018), 5), ORSI (SLLSI (ANDSI (tmp_tmpr, 67372036), 3), ORSI (SLLSI (ANDSI (tmp_tmpr, 134744072), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 269488144), 1), ORSI (SRLSI (ANDSI (tmp_tmpr, 538976288), 3), ORSI (SRLSI (ANDSI (tmp_tmpr, 1077952576), 5), SRLSI (ANDSI (tmp_tmpr, 0x80808080), 7)))))))); }); } ; tmp_tmpres; }); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRR_B_R) : /* asrr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmpd; SI tmp_cnt1; SI tmp_cnt2; tmp_cnt1 = GET_H_GR (FLD (f_operand1)); tmp_cnt2 = ((NESI (ANDSI (tmp_cnt1, 32), 0)) ? (31) : (ANDSI (tmp_cnt1, 31))); tmp_tmpd = SRASI (EXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))), tmp_cnt2); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRR_W_R) : /* asrr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmpd; SI tmp_cnt1; SI tmp_cnt2; tmp_cnt1 = GET_H_GR (FLD (f_operand1)); tmp_cnt2 = ((NESI (ANDSI (tmp_cnt1, 32), 0)) ? (31) : (ANDSI (tmp_cnt1, 31))); tmp_tmpd = SRASI (EXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))), tmp_cnt2); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRR_D_R) : /* asrr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt1; SI tmp_cnt2; tmp_cnt1 = GET_H_GR (FLD (f_operand1)); tmp_cnt2 = ((NESI (ANDSI (tmp_cnt1, 32), 0)) ? (31) : (ANDSI (tmp_cnt1, 31))); tmp_tmpd = SRASI (EXTSISI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))), tmp_cnt2); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ASRQ) : /* asrq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SRASI (GET_H_GR (FLD (f_operand2)), FLD (f_u5)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRR_B_R) : /* lsrr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SRLSI (ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRR_W_R) : /* lsrr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SRLSI (ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRR_D_R) : /* lsrr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SRLSI (ZEXTSISI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSRQ) : /* lsrq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SRLSI (GET_H_GR (FLD (f_operand2)), FLD (f_u5)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLR_B_R) : /* lslr.b $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SLLSI (ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 255), ANDSI (tmp_oldregval, 0xffffff00)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTQI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQQI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLR_W_R) : /* lslr.w $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SLLSI (ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI tmp_oldregval; tmp_oldregval = GET_H_RAW_GR_PC (FLD (f_operand2)); { SI opval = ORSI (ANDSI (tmp_tmpd, 65535), ANDSI (tmp_oldregval, 0xffff0000)); SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTHI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQHI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLR_D_R) : /* lslr.d $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_cnt = ANDSI (GET_H_GR (FLD (f_operand1)), 63); tmp_tmpd = ((NESI (ANDSI (tmp_cnt, 32), 0)) ? (0) : (SLLSI (ZEXTSISI (TRUNCSISI (GET_H_GR (FLD (f_operand2)))), ANDSI (tmp_cnt, 31)))); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LSLQ) : /* lslq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SLLSI (GET_H_GR (FLD (f_operand2)), FLD (f_u5)); { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BTST) : /* $Rs,$Rd */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_cnt; tmp_tmpd = SLLSI (GET_H_GR (FLD (f_operand2)), SUBSI (31, ANDSI (GET_H_GR (FLD (f_operand1)), 31))); { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BTSTQ) : /* btstq $c,${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_asrq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; tmp_tmpd = SLLSI (GET_H_GR (FLD (f_operand2)), SUBSI (31, FLD (f_u5))); { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SETF) : /* setf ${list-of-flags} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_setf.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = FLD (f_dstsrc); if (NESI (ANDSI (tmp_tmp, SLLSI (1, 0)), 0)) { { BI opval = 1; CPU (h_cbit) = opval; written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 1)), 0)) { { BI opval = 1; CPU (h_vbit) = opval; written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 2)), 0)) { { BI opval = 1; CPU (h_zbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 3)), 0)) { { BI opval = 1; CPU (h_nbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 4)), 0)) { { BI opval = 1; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 5)), 0)) { { BI opval = 1; SET_H_IBIT (opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "ibit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 6)), 0)) { { BI opval = 1; SET_H_UBIT (opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "ubit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 7)), 0)) { { BI opval = 1; CPU (h_pbit) = opval; written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pbit", 'x', opval); } } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } if (EQSI (ANDSI (tmp_tmp, SLLSI (1, 4)), 0)) { { BI opval = 0; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_CLEARF) : /* clearf ${list-of-flags} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_setf.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmp; tmp_tmp = FLD (f_dstsrc); if (NESI (ANDSI (tmp_tmp, SLLSI (1, 0)), 0)) { { BI opval = 0; CPU (h_cbit) = opval; written |= (1 << 1); TRACE_RESULT (current_cpu, abuf, "cbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 1)), 0)) { { BI opval = 0; CPU (h_vbit) = opval; written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "vbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 2)), 0)) { { BI opval = 0; CPU (h_zbit) = opval; written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 3)), 0)) { { BI opval = 0; CPU (h_nbit) = opval; written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 4)), 0)) { { BI opval = 0; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 5)), 0)) { { BI opval = 0; SET_H_IBIT (opval); written |= (1 << 2); TRACE_RESULT (current_cpu, abuf, "ibit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 6)), 0)) { { BI opval = 0; SET_H_UBIT (opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "ubit", 'x', opval); } } if (NESI (ANDSI (tmp_tmp, SLLSI (1, 7)), 0)) { { BI opval = 0; CPU (h_pbit) = opval; written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "pbit", 'x', opval); } } { { BI opval = 0; CPU (h_xbit) = opval; written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_BCC_B) : /* b${cc} ${o-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_truthval; tmp_truthval = ({ SI tmp_tmpcond; BI tmp_condres; tmp_tmpcond = FLD (f_operand2); ; if (EQSI (tmp_tmpcond, 0)) { tmp_condres = NOTBI (CPU (h_cbit)); } else if (EQSI (tmp_tmpcond, 1)) { tmp_condres = CPU (h_cbit); } else if (EQSI (tmp_tmpcond, 2)) { tmp_condres = NOTBI (CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 3)) { tmp_condres = CPU (h_zbit); } else if (EQSI (tmp_tmpcond, 4)) { tmp_condres = NOTBI (CPU (h_vbit)); } else if (EQSI (tmp_tmpcond, 5)) { tmp_condres = CPU (h_vbit); } else if (EQSI (tmp_tmpcond, 6)) { tmp_condres = NOTBI (CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 7)) { tmp_condres = CPU (h_nbit); } else if (EQSI (tmp_tmpcond, 8)) { tmp_condres = ORBI (CPU (h_cbit), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 9)) { tmp_condres = NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 10)) { tmp_condres = NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit))); } else if (EQSI (tmp_tmpcond, 11)) { tmp_condres = XORBI (CPU (h_vbit), CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 12)) { tmp_condres = NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 13)) { tmp_condres = ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 14)) { tmp_condres = 1; } else if (EQSI (tmp_tmpcond, 15)) { tmp_condres = CPU (h_pbit); } ; tmp_condres; }); crisv10f_branch_taken (current_cpu, pc, FLD (i_o_pcrel), tmp_truthval); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } if (tmp_truthval) { { { USI opval = FLD (i_o_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BA_B) : /* ba ${o-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { USI opval = FLD (i_o_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BCC_W) : /* b${cc} ${o-word-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_w.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { BI tmp_truthval; tmp_truthval = ({ SI tmp_tmpcond; BI tmp_condres; tmp_tmpcond = FLD (f_operand2); ; if (EQSI (tmp_tmpcond, 0)) { tmp_condres = NOTBI (CPU (h_cbit)); } else if (EQSI (tmp_tmpcond, 1)) { tmp_condres = CPU (h_cbit); } else if (EQSI (tmp_tmpcond, 2)) { tmp_condres = NOTBI (CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 3)) { tmp_condres = CPU (h_zbit); } else if (EQSI (tmp_tmpcond, 4)) { tmp_condres = NOTBI (CPU (h_vbit)); } else if (EQSI (tmp_tmpcond, 5)) { tmp_condres = CPU (h_vbit); } else if (EQSI (tmp_tmpcond, 6)) { tmp_condres = NOTBI (CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 7)) { tmp_condres = CPU (h_nbit); } else if (EQSI (tmp_tmpcond, 8)) { tmp_condres = ORBI (CPU (h_cbit), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 9)) { tmp_condres = NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 10)) { tmp_condres = NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit))); } else if (EQSI (tmp_tmpcond, 11)) { tmp_condres = XORBI (CPU (h_vbit), CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 12)) { tmp_condres = NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 13)) { tmp_condres = ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 14)) { tmp_condres = 1; } else if (EQSI (tmp_tmpcond, 15)) { tmp_condres = CPU (h_pbit); } ; tmp_condres; }); crisv10f_branch_taken (current_cpu, pc, FLD (i_o_word_pcrel), tmp_truthval); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } if (tmp_truthval) { { { USI opval = FLD (i_o_word_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BA_W) : /* ba ${o-word-pcrel} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bcc_w.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { { USI opval = FLD (i_o_word_pcrel); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JUMP_R) : /* jump/jsr/jir ${Rs} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (pc, 2); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = GET_H_GR (FLD (f_operand1)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JUMP_M) : /* jump/jsr/jir [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_m_sprv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (pc, 2); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 7); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } abuf->written = written; SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_JUMP_C) : /* jump/jsr/jir ${const32} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = ADDSI (pc, 6); SET_H_SR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "sr", 'x', opval); } { USI opval = FLD (f_indir_pc__dword); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BREAK) : /* break $n */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_break.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } { USI opval = crisv10f_break_handler (current_cpu, FLD (f_u4), pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_R_B_R) : /* bound-r.b ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_R_W_R) : /* bound-r.w ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTHISI (TRUNCSIHI (GET_H_GR (FLD (f_operand1)))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_R_D_R) : /* bound-r.d ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = TRUNCSISI (GET_H_GR (FLD (f_operand1))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_M_B_M) : /* bound-m.b [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTQISI (({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_M_W_M) : /* bound-m.w [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTHISI (({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; })); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_M_D_M) : /* bound-m.d [${Rs}${inc}],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); if (ANDIF (GET_H_INSN_PREFIXED_P (), NOTSI (FLD (f_memmode)))) { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 9); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } else { { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); written |= (1 << 8); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_CB) : /* bound.b [PC+],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte))); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_CW) : /* bound.w [PC+],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = ZEXTSISI (FLD (f_indir_pc__word)); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BOUND_CD) : /* bound.d [PC+],${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { SI tmp_tmpopd; SI tmp_tmpops; SI tmp_newval; tmp_tmpops = FLD (f_indir_pc__dword); tmp_tmpopd = GET_H_GR (FLD (f_operand2)); tmp_newval = ((LTUSI (tmp_tmpops, tmp_tmpopd)) ? (tmp_tmpops) : (tmp_tmpopd)); { SI opval = tmp_newval; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_newval, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_newval, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_SCC) : /* s${cc} ${Rd-sfield} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { BI tmp_truthval; tmp_truthval = ({ SI tmp_tmpcond; BI tmp_condres; tmp_tmpcond = FLD (f_operand2); ; if (EQSI (tmp_tmpcond, 0)) { tmp_condres = NOTBI (CPU (h_cbit)); } else if (EQSI (tmp_tmpcond, 1)) { tmp_condres = CPU (h_cbit); } else if (EQSI (tmp_tmpcond, 2)) { tmp_condres = NOTBI (CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 3)) { tmp_condres = CPU (h_zbit); } else if (EQSI (tmp_tmpcond, 4)) { tmp_condres = NOTBI (CPU (h_vbit)); } else if (EQSI (tmp_tmpcond, 5)) { tmp_condres = CPU (h_vbit); } else if (EQSI (tmp_tmpcond, 6)) { tmp_condres = NOTBI (CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 7)) { tmp_condres = CPU (h_nbit); } else if (EQSI (tmp_tmpcond, 8)) { tmp_condres = ORBI (CPU (h_cbit), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 9)) { tmp_condres = NOTBI (ORBI (CPU (h_cbit), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 10)) { tmp_condres = NOTBI (XORBI (CPU (h_vbit), CPU (h_nbit))); } else if (EQSI (tmp_tmpcond, 11)) { tmp_condres = XORBI (CPU (h_vbit), CPU (h_nbit)); } else if (EQSI (tmp_tmpcond, 12)) { tmp_condres = NOTBI (ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit))); } else if (EQSI (tmp_tmpcond, 13)) { tmp_condres = ORBI (XORBI (CPU (h_vbit), CPU (h_nbit)), CPU (h_zbit)); } else if (EQSI (tmp_tmpcond, 14)) { tmp_condres = 1; } else if (EQSI (tmp_tmpcond, 15)) { tmp_condres = CPU (h_pbit); } ; tmp_condres; }); { SI opval = ZEXTBISI (tmp_truthval); SET_H_GR (FLD (f_operand1), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_LZ) : /* lz ${Rs},${Rd} */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_muls_b.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmpd; SI tmp_tmp; tmp_tmp = GET_H_GR (FLD (f_operand1)); tmp_tmpd = 0; { if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } if (GESI (tmp_tmp, 0)) { { tmp_tmp = SLLSI (tmp_tmp, 1); tmp_tmpd = ADDSI (tmp_tmpd, 1); } } } { SI opval = tmp_tmpd; SET_H_GR (FLD (f_operand2), opval); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { { BI opval = LTSI (tmp_tmpd, 0); CPU (h_nbit) = opval; TRACE_RESULT (current_cpu, abuf, "nbit", 'x', opval); } { BI opval = ANDIF (EQSI (tmp_tmpd, 0), ((CPU (h_xbit)) ? (CPU (h_zbit)) : (1))); CPU (h_zbit) = opval; TRACE_RESULT (current_cpu, abuf, "zbit", 'x', opval); } SET_H_CBIT_MOVE (0); SET_H_VBIT_MOVE (0); { { BI opval = 0; CPU (h_xbit) = opval; TRACE_RESULT (current_cpu, abuf, "xbit", 'x', opval); } { BI opval = 0; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDOQ) : /* addoq $o,$Rs,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addoq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), FLD (f_s8)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BDAPQPC) : /* bdapq $o,PC */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addoq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (ADDSI (pc, 2), FLD (f_s8)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } cris_flush_simulator_decode_cache (current_cpu, pc); } SEM_BRANCH_FINI (vpc); #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_M_B_M) : /* addo-m.b [${Rs}${inc}],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI tmp_tmps; tmp_tmps = ({ SI tmp_addr; QI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMQI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 1); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTQISI (tmp_tmps)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_M_W_M) : /* addo-m.w [${Rs}${inc}],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI tmp_tmps; tmp_tmps = ({ SI tmp_addr; HI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMHI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 2); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTHISI (tmp_tmps)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_M_D_M) : /* addo-m.d [${Rs}${inc}],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_m_b_m.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmps; tmp_tmps = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 6); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), tmp_tmps); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_CB) : /* addo.b [PC+],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cb.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTQISI (TRUNCSIQI (FLD (f_indir_pc__byte)))); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_CW) : /* addo.w [PC+],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cw.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), EXTHISI (TRUNCSIHI (FLD (f_indir_pc__word)))); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDO_CD) : /* addo.d [PC+],$Rd,ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_bound_cd.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand2)), FLD (f_indir_pc__dword)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_DIP_M) : /* dip [${Rs}${inc}] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_spr_mv10.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI tmp_tmps; tmp_tmps = ({ SI tmp_addr; SI tmp_tmp_mem; BI tmp_postinc; tmp_postinc = FLD (f_memmode); ; tmp_addr = ((EQBI (GET_H_INSN_PREFIXED_P (), 0)) ? (GET_H_GR (FLD (f_operand1))) : (CPU (h_prefixreg_pre_v32))); ; tmp_tmp_mem = GETMEMSI (current_cpu, pc, tmp_addr); ; if (NEBI (tmp_postinc, 0)) { { if (EQBI (GET_H_INSN_PREFIXED_P (), 0)) { tmp_addr = ADDSI (tmp_addr, 4); } { SI opval = tmp_addr; SET_H_GR (FLD (f_operand1), opval); written |= (1 << 5); TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } } } ; tmp_tmp_mem; }); { SI opval = tmp_tmps; CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } abuf->written = written; #undef FLD } NEXT (vpc); CASE (sem, INSN_DIP_C) : /* dip [PC+] */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_move_c_sprv10_p8.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 6); { { SI opval = FLD (f_indir_pc__dword); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_ACR_B_R) : /* addi-acr.b ${Rs-dfield}.m,${Rd-sfield},ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 1)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_ACR_W_R) : /* addi-acr.w ${Rs-dfield}.m,${Rd-sfield},ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 2)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_ADDI_ACR_D_R) : /* addi-acr.d ${Rs-dfield}.m,${Rd-sfield},ACR */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_add_b_r.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (GET_H_GR (FLD (f_operand1)), MULSI (GET_H_GR (FLD (f_operand2)), 4)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BIAP_PC_B_R) : /* biap-pc.b ${Rs-dfield}.m,PC */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addoq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (ADDSI (pc, 4), MULSI (GET_H_GR (FLD (f_operand2)), 1)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BIAP_PC_W_R) : /* biap-pc.w ${Rs-dfield}.m,PC */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addoq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (ADDSI (pc, 4), MULSI (GET_H_GR (FLD (f_operand2)), 2)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); CASE (sem, INSN_BIAP_PC_D_R) : /* biap-pc.d ${Rs-dfield}.m,PC */ { SEM_ARG sem_arg = SEM_SEM_ARG (vpc, sc); ARGBUF *abuf = SEM_ARGBUF (sem_arg); #define FLD(f) abuf->fields.sfmt_addoq.f int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { { SI opval = ADDSI (ADDSI (pc, 4), MULSI (GET_H_GR (FLD (f_operand2)), 4)); CPU (h_prefixreg_pre_v32) = opval; TRACE_RESULT (current_cpu, abuf, "prefixreg", 'x', opval); } { BI opval = 1; SET_H_INSN_PREFIXED_P (opval); TRACE_RESULT (current_cpu, abuf, "insn-prefixed-p", 'x', opval); } } #undef FLD } NEXT (vpc); } ENDSWITCH (sem) /* End of semantic switch. */ /* At this point `vpc' contains the next insn to execute. */ } #undef DEFINE_SWITCH #endif /* DEFINE_SWITCH */