/* Semantics ops support for CGEN-based simulators. Copyright (C) 1996-1999, 2002, 2007-2012 Free Software Foundation, Inc. Contributed by Cygnus Solutions. This file is part of the GNU Simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef CGEN_SEM_OPS_H #define CGEN_SEM_OPS_H #include #if defined (__GNUC__) && ! defined (SEMOPS_DEFINE_INLINE) #define SEMOPS_DEFINE_INLINE #define SEMOPS_INLINE extern inline #else #define SEMOPS_INLINE #endif /* Semantic operations. At one point this file was machine generated. Maybe it will be again. */ /* TODO: Lazy encoding/decoding of fp values. */ /* These don't really have a mode. */ #define ANDIF(x, y) ((x) && (y)) #define ORIF(x, y) ((x) || (y)) #define SUBBI(x, y) ((x) - (y)) #define ANDBI(x, y) ((x) & (y)) #define ORBI(x, y) ((x) | (y)) #define XORBI(x, y) ((x) ^ (y)) #define NEGBI(x) (- (x)) #define NOTBI(x) (! (BI) (x)) #define INVBI(x) (~ (x)) #define EQBI(x, y) ((BI) (x) == (BI) (y)) #define NEBI(x, y) ((BI) (x) != (BI) (y)) #define LTBI(x, y) ((BI) (x) < (BI) (y)) #define LEBI(x, y) ((BI) (x) <= (BI) (y)) #define GTBI(x, y) ((BI) (x) > (BI) (y)) #define GEBI(x, y) ((BI) (x) >= (BI) (y)) #define LTUBI(x, y) ((BI) (x) < (BI) (y)) #define LEUBI(x, y) ((BI) (x) <= (BI) (y)) #define GTUBI(x, y) ((BI) (x) > (BI) (y)) #define GEUBI(x, y) ((BI) (x) >= (BI) (y)) #define ADDQI(x, y) ((QI) ((UQI) (x) + (UQI) (y))) #define SUBQI(x, y) ((QI) ((UQI) (x) - (UQI) (y))) #define MULQI(x, y) ((QI) ((UQI) (x) * (UQI) (y))) #define DIVQI(x, y) ((QI) (x) / (QI) (y)) #define UDIVQI(x, y) ((UQI) (x) / (UQI) (y)) #define MODQI(x, y) ((QI) (x) % (QI) (y)) #define UMODQI(x, y) ((UQI) (x) % (UQI) (y)) #define SRAQI(x, y) ((QI) (x) >> (y)) #define SRLQI(x, y) ((UQI) (x) >> (y)) #define SLLQI(x, y) ((UQI) (x) << (y)) extern QI RORQI (QI, int); extern QI ROLQI (QI, int); #define ANDQI(x, y) ((x) & (y)) #define ORQI(x, y) ((x) | (y)) #define XORQI(x, y) ((x) ^ (y)) #define NEGQI(x) ((QI) (- (UQI) (x))) #define NOTQI(x) (! (QI) (x)) #define INVQI(x) (~ (x)) #define ABSQI(x) ((QI) ((QI) (x) < 0 ? -(UQI) (x) : (UQI) (x))) #define EQQI(x, y) ((QI) (x) == (QI) (y)) #define NEQI(x, y) ((QI) (x) != (QI) (y)) #define LTQI(x, y) ((QI) (x) < (QI) (y)) #define LEQI(x, y) ((QI) (x) <= (QI) (y)) #define GTQI(x, y) ((QI) (x) > (QI) (y)) #define GEQI(x, y) ((QI) (x) >= (QI) (y)) #define LTUQI(x, y) ((UQI) (x) < (UQI) (y)) #define LEUQI(x, y) ((UQI) (x) <= (UQI) (y)) #define GTUQI(x, y) ((UQI) (x) > (UQI) (y)) #define GEUQI(x, y) ((UQI) (x) >= (UQI) (y)) #define ADDHI(x, y) ((HI) ((UHI) (x) + (UHI) (y))) #define SUBHI(x, y) ((HI) ((UHI) (x) - (UHI) (y))) #define MULHI(x, y) ((HI) ((UHI) (x) * (UHI) (y))) #define DIVHI(x, y) ((HI) (x) / (HI) (y)) #define UDIVHI(x, y) ((UHI) (x) / (UHI) (y)) #define MODHI(x, y) ((HI) (x) % (HI) (y)) #define UMODHI(x, y) ((UHI) (x) % (UHI) (y)) #define SRAHI(x, y) ((HI) (x) >> (y)) #define SRLHI(x, y) ((UHI) (x) >> (y)) #define SLLHI(x, y) ((UHI) (x) << (y)) extern HI RORHI (HI, int); extern HI ROLHI (HI, int); #define ANDHI(x, y) ((x) & (y)) #define ORHI(x, y) ((x) | (y)) #define XORHI(x, y) ((x) ^ (y)) #define NEGHI(x) ((HI) (- (UHI) (x))) #define NOTHI(x) (! (HI) (x)) #define INVHI(x) (~ (x)) #define ABSHI(x) ((HI) ((HI) (x) < 0 ? -(UHI) (x) : (UHI) (x))) #define EQHI(x, y) ((HI) (x) == (HI) (y)) #define NEHI(x, y) ((HI) (x) != (HI) (y)) #define LTHI(x, y) ((HI) (x) < (HI) (y)) #define LEHI(x, y) ((HI) (x) <= (HI) (y)) #define GTHI(x, y) ((HI) (x) > (HI) (y)) #define GEHI(x, y) ((HI) (x) >= (HI) (y)) #define LTUHI(x, y) ((UHI) (x) < (UHI) (y)) #define LEUHI(x, y) ((UHI) (x) <= (UHI) (y)) #define GTUHI(x, y) ((UHI) (x) > (UHI) (y)) #define GEUHI(x, y) ((UHI) (x) >= (UHI) (y)) #define ADDSI(x, y) ((SI) ((USI) (x) + (USI) (y))) #define SUBSI(x, y) ((SI) ((USI) (x) - (USI) (y))) #define MULSI(x, y) ((SI) ((USI) (x) * (USI) (y))) #define DIVSI(x, y) ((SI) (x) / (SI) (y)) #define UDIVSI(x, y) ((USI) (x) / (USI) (y)) #define MODSI(x, y) ((SI) (x) % (SI) (y)) #define UMODSI(x, y) ((USI) (x) % (USI) (y)) #define SRASI(x, y) ((SI) (x) >> (y)) #define SRLSI(x, y) ((USI) (x) >> (y)) #define SLLSI(x, y) ((USI) (x) << (y)) extern SI RORSI (SI, int); extern SI ROLSI (SI, int); #define ANDSI(x, y) ((x) & (y)) #define ORSI(x, y) ((x) | (y)) #define XORSI(x, y) ((x) ^ (y)) #define NEGSI(x) ((SI) (- (USI) (x))) #define NOTSI(x) (! (SI) (x)) #define INVSI(x) (~ (x)) #define ABSSI(x) ((SI) ((SI) (x) < 0 ? -(USI) (x) : (USI) (x))) #define EQSI(x, y) ((SI) (x) == (SI) (y)) #define NESI(x, y) ((SI) (x) != (SI) (y)) #define LTSI(x, y) ((SI) (x) < (SI) (y)) #define LESI(x, y) ((SI) (x) <= (SI) (y)) #define GTSI(x, y) ((SI) (x) > (SI) (y)) #define GESI(x, y) ((SI) (x) >= (SI) (y)) #define LTUSI(x, y) ((USI) (x) < (USI) (y)) #define LEUSI(x, y) ((USI) (x) <= (USI) (y)) #define GTUSI(x, y) ((USI) (x) > (USI) (y)) #define GEUSI(x, y) ((USI) (x) >= (USI) (y)) #ifdef DI_FN_SUPPORT extern DI ADDDI (DI, DI); extern DI SUBDI (DI, DI); extern DI MULDI (DI, DI); extern DI DIVDI (DI, DI); extern DI UDIVDI (DI, DI); extern DI MODDI (DI, DI); extern DI UMODDI (DI, DI); extern DI SRADI (DI, int); extern UDI SRLDI (UDI, int); extern UDI SLLDI (UDI, int); extern DI RORDI (DI, int); extern DI ROLDI (DI, int); extern DI ANDDI (DI, DI); extern DI ORDI (DI, DI); extern DI XORDI (DI, DI); extern DI NEGDI (DI); extern int NOTDI (DI); extern DI INVDI (DI); extern int EQDI (DI, DI); extern int NEDI (DI, DI); extern int LTDI (DI, DI); extern int LEDI (DI, DI); extern int GTDI (DI, DI); extern int GEDI (DI, DI); extern int LTUDI (UDI, UDI); extern int LEUDI (UDI, UDI); extern int GTUDI (UDI, UDI); extern int GEUDI (UDI, UDI); #else /* ! DI_FN_SUPPORT */ #define ADDDI(x, y) ((DI) ((UDI) (x) + (UDI) (y))) #define SUBDI(x, y) ((DI) ((UDI) (x) - (UDI) (y))) #define MULDI(x, y) ((DI) ((UDI) (x) * (UDI) (y))) #define DIVDI(x, y) ((DI) (x) / (DI) (y)) #define UDIVDI(x, y) ((UDI) (x) / (UDI) (y)) #define MODDI(x, y) ((DI) (x) % (DI) (y)) #define UMODDI(x, y) ((UDI) (x) % (UDI) (y)) #define SRADI(x, y) ((DI) (x) >> (y)) #define SRLDI(x, y) ((UDI) (x) >> (y)) #define SLLDI(x, y) ((UDI) (x) << (y)) extern DI RORDI (DI, int); extern DI ROLDI (DI, int); #define ANDDI(x, y) ((x) & (y)) #define ORDI(x, y) ((x) | (y)) #define XORDI(x, y) ((x) ^ (y)) #define NEGDI(x) ((DI) (- (UDI) (x))) #define NOTDI(x) (! (DI) (x)) #define INVDI(x) (~ (x)) #define ABSDI(x) ((DI) ((DI) (x) < 0 ? -(UDI) (x) : (UDI) (x))) #define EQDI(x, y) ((DI) (x) == (DI) (y)) #define NEDI(x, y) ((DI) (x) != (DI) (y)) #define LTDI(x, y) ((DI) (x) < (DI) (y)) #define LEDI(x, y) ((DI) (x) <= (DI) (y)) #define GTDI(x, y) ((DI) (x) > (DI) (y)) #define GEDI(x, y) ((DI) (x) >= (DI) (y)) #define LTUDI(x, y) ((UDI) (x) < (UDI) (y)) #define LEUDI(x, y) ((UDI) (x) <= (UDI) (y)) #define GTUDI(x, y) ((UDI) (x) > (UDI) (y)) #define GEUDI(x, y) ((UDI) (x) >= (UDI) (y)) #endif /* DI_FN_SUPPORT */ #define EXTBIQI(x) ((QI) (BI) (x)) #define EXTBIHI(x) ((HI) (BI) (x)) #define EXTBISI(x) ((SI) (BI) (x)) #if defined (DI_FN_SUPPORT) extern DI EXTBIDI (BI); #else #define EXTBIDI(x) ((DI) (BI) (x)) #endif #define EXTQIHI(x) ((HI) (QI) (x)) #define EXTQISI(x) ((SI) (QI) (x)) #if defined (DI_FN_SUPPORT) extern DI EXTQIDI (QI); #else #define EXTQIDI(x) ((DI) (QI) (x)) #endif #define EXTHIHI(x) ((HI) (HI) (x)) #define EXTHISI(x) ((SI) (HI) (x)) #define EXTSISI(x) ((SI) (SI) (x)) #if defined (DI_FN_SUPPORT) extern DI EXTHIDI (HI); #else #define EXTHIDI(x) ((DI) (HI) (x)) #endif #if defined (DI_FN_SUPPORT) extern DI EXTSIDI (SI); #else #define EXTSIDI(x) ((DI) (SI) (x)) #endif #define ZEXTBIQI(x) ((QI) (BI) (x)) #define ZEXTBIHI(x) ((HI) (BI) (x)) #define ZEXTBISI(x) ((SI) (BI) (x)) #if defined (DI_FN_SUPPORT) extern DI ZEXTBIDI (BI); #else #define ZEXTBIDI(x) ((DI) (BI) (x)) #endif #define ZEXTQIHI(x) ((HI) (UQI) (x)) #define ZEXTQISI(x) ((SI) (UQI) (x)) #if defined (DI_FN_SUPPORT) extern DI ZEXTQIDI (QI); #else #define ZEXTQIDI(x) ((DI) (UQI) (x)) #endif #define ZEXTHISI(x) ((SI) (UHI) (x)) #define ZEXTHIHI(x) ((HI) (UHI) (x)) #define ZEXTSISI(x) ((SI) (USI) (x)) #if defined (DI_FN_SUPPORT) extern DI ZEXTHIDI (HI); #else #define ZEXTHIDI(x) ((DI) (UHI) (x)) #endif #if defined (DI_FN_SUPPORT) extern DI ZEXTSIDI (SI); #else #define ZEXTSIDI(x) ((DI) (USI) (x)) #endif #define TRUNCQIBI(x) ((BI) (QI) (x)) #define TRUNCHIBI(x) ((BI) (HI) (x)) #define TRUNCHIQI(x) ((QI) (HI) (x)) #define TRUNCSIBI(x) ((BI) (SI) (x)) #define TRUNCSIQI(x) ((QI) (SI) (x)) #define TRUNCSIHI(x) ((HI) (SI) (x)) #define TRUNCSISI(x) ((SI) (SI) (x)) #if defined (DI_FN_SUPPORT) extern BI TRUNCDIBI (DI); #else #define TRUNCDIBI(x) ((BI) (DI) (x)) #endif #if defined (DI_FN_SUPPORT) extern QI TRUNCDIQI (DI); #else #define TRUNCDIQI(x) ((QI) (DI) (x)) #endif #if defined (DI_FN_SUPPORT) extern HI TRUNCDIHI (DI); #else #define TRUNCDIHI(x) ((HI) (DI) (x)) #endif #if defined (DI_FN_SUPPORT) extern SI TRUNCDISI (DI); #else #define TRUNCDISI(x) ((SI) (DI) (x)) #endif /* Composing/decomposing the various types. Word ordering is endian-independent. Words are specified most to least significant and word number 0 is the most significant word. ??? May also wish an endian-dependent version. Later. */ #ifdef SEMOPS_DEFINE_INLINE SEMOPS_INLINE SF SUBWORDSISF (SI in) { union { SI in; SF out; } x; x.in = in; return x.out; } SEMOPS_INLINE DF SUBWORDDIDF (DI in) { union { DI in; DF out; } x; x.in = in; return x.out; } SEMOPS_INLINE QI SUBWORDSIQI (SI in, int byte) { assert (byte >= 0 && byte <= 3); return (UQI) (in >> (8 * (3 - byte))) & 0xFF; } SEMOPS_INLINE UQI SUBWORDSIUQI (SI in, int byte) { assert (byte >= 0 && byte <= 3); return (UQI) (in >> (8 * (3 - byte))) & 0xFF; } SEMOPS_INLINE QI SUBWORDDIQI (DI in, int byte) { assert (byte >= 0 && byte <= 7); return (UQI) (in >> (8 * (7 - byte))) & 0xFF; } SEMOPS_INLINE HI SUBWORDDIHI (DI in, int word) { assert (word >= 0 && word <= 3); return (UHI) (in >> (16 * (3 - word))) & 0xFFFF; } SEMOPS_INLINE HI SUBWORDSIHI (SI in, int word) { if (word == 0) return (USI) in >> 16; else return in; } SEMOPS_INLINE SI SUBWORDSFSI (SF in) { union { SF in; SI out; } x; x.in = in; return x.out; } SEMOPS_INLINE DI SUBWORDDFDI (DF in) { union { DF in; DI out; } x; x.in = in; return x.out; } SEMOPS_INLINE UQI SUBWORDDIUQI (DI in, int byte) { assert (byte >= 0 && byte <= 7); return (UQI) (in >> (8 * (7 - byte))); } SEMOPS_INLINE SI SUBWORDDISI (DI in, int word) { if (word == 0) return (UDI) in >> 32; else return in; } SEMOPS_INLINE SI SUBWORDDFSI (DF in, int word) { /* Note: typedef UDI DF; */ if (word == 0) return (UDI) in >> 32; else return in; } SEMOPS_INLINE SI SUBWORDXFSI (XF in, int word) { /* Note: typedef struct { SI parts[3]; } XF; */ union { XF in; SI out[3]; } x; x.in = in; if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) return x.out[word]; else return x.out[2 - word]; } SEMOPS_INLINE SI SUBWORDTFSI (TF in, int word) { /* Note: typedef struct { SI parts[4]; } TF; */ union { TF in; SI out[4]; } x; x.in = in; if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) return x.out[word]; else return x.out[3 - word]; } SEMOPS_INLINE DI JOINSIDI (SI x0, SI x1) { return MAKEDI (x0, x1); } SEMOPS_INLINE DF JOINSIDF (SI x0, SI x1) { union { SI in[2]; DF out; } x; if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) x.in[0] = x0, x.in[1] = x1; else x.in[1] = x0, x.in[0] = x1; return x.out; } SEMOPS_INLINE XF JOINSIXF (SI x0, SI x1, SI x2) { union { SI in[3]; XF out; } x; if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) x.in[0] = x0, x.in[1] = x1, x.in[2] = x2; else x.in[2] = x0, x.in[1] = x1, x.in[0] = x2; return x.out; } SEMOPS_INLINE TF JOINSITF (SI x0, SI x1, SI x2, SI x3) { union { SI in[4]; TF out; } x; if (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN) x.in[0] = x0, x.in[1] = x1, x.in[2] = x2, x.in[3] = x3; else x.in[3] = x0, x.in[2] = x1, x.in[1] = x2, x.in[0] = x3; return x.out; } #else QI SUBWORDSIQI (SI); HI SUBWORDSIHI (HI); SI SUBWORDSFSI (SF); SF SUBWORDSISF (SI); DI SUBWORDDFDI (DF); DF SUBWORDDIDF (DI); QI SUBWORDDIQI (DI, int); HI SUBWORDDIHI (DI, int); SI SUBWORDDISI (DI, int); SI SUBWORDDFSI (DF, int); SI SUBWORDXFSI (XF, int); SI SUBWORDTFSI (TF, int); UQI SUBWORDSIUQI (SI); UQI SUBWORDDIUQI (DI); DI JOINSIDI (SI, SI); DF JOINSIDF (SI, SI); XF JOINSIXF (SI, SI, SI); TF JOINSITF (SI, SI, SI, SI); #endif /* SUBWORD,JOIN */ /* Semantic support utilities. */ #ifdef SEMOPS_DEFINE_INLINE SEMOPS_INLINE SI ADDCSI (SI a, SI b, BI c) { SI res = ADDSI (a, ADDSI (b, c)); return res; } SEMOPS_INLINE BI ADDCFSI (SI a, SI b, BI c) { SI tmp = ADDSI (a, ADDSI (b, c)); BI res = ((USI) tmp < (USI) a) || (c && tmp == a); return res; } SEMOPS_INLINE BI ADDOFSI (SI a, SI b, BI c) { SI tmp = ADDSI (a, ADDSI (b, c)); BI res = (((a < 0) == (b < 0)) && ((a < 0) != (tmp < 0))); return res; } SEMOPS_INLINE SI SUBCSI (SI a, SI b, BI c) { SI res = SUBSI (a, ADDSI (b, c)); return res; } SEMOPS_INLINE BI SUBCFSI (SI a, SI b, BI c) { BI res = ((USI) a < (USI) b) || (c && a == b); return res; } SEMOPS_INLINE BI SUBOFSI (SI a, SI b, BI c) { SI tmp = SUBSI (a, ADDSI (b, c)); BI res = (((a < 0) != (b < 0)) && ((a < 0) != (tmp < 0))); return res; } SEMOPS_INLINE HI ADDCHI (HI a, HI b, BI c) { HI res = ADDHI (a, ADDHI (b, c)); return res; } SEMOPS_INLINE BI ADDCFHI (HI a, HI b, BI c) { HI tmp = ADDHI (a, ADDHI (b, c)); BI res = ((UHI) tmp < (UHI) a) || (c && tmp == a); return res; } SEMOPS_INLINE BI ADDOFHI (HI a, HI b, BI c) { HI tmp = ADDHI (a, ADDHI (b, c)); BI res = (((a < 0) == (b < 0)) && ((a < 0) != (tmp < 0))); return res; } SEMOPS_INLINE HI SUBCHI (HI a, HI b, BI c) { HI res = SUBHI (a, ADDHI (b, c)); return res; } SEMOPS_INLINE BI SUBCFHI (HI a, HI b, BI c) { BI res = ((UHI) a < (UHI) b) || (c && a == b); return res; } SEMOPS_INLINE BI SUBOFHI (HI a, HI b, BI c) { HI tmp = SUBHI (a, ADDHI (b, c)); BI res = (((a < 0) != (b < 0)) && ((a < 0) != (tmp < 0))); return res; } SEMOPS_INLINE QI ADDCQI (QI a, QI b, BI c) { QI res = ADDQI (a, ADDQI (b, c)); return res; } SEMOPS_INLINE BI ADDCFQI (QI a, QI b, BI c) { QI tmp = ADDQI (a, ADDQI (b, c)); BI res = ((UQI) tmp < (UQI) a) || (c && tmp == a); return res; } SEMOPS_INLINE BI ADDOFQI (QI a, QI b, BI c) { QI tmp = ADDQI (a, ADDQI (b, c)); BI res = (((a < 0) == (b < 0)) && ((a < 0) != (tmp < 0))); return res; } SEMOPS_INLINE QI SUBCQI (QI a, QI b, BI c) { QI res = SUBQI (a, ADDQI (b, c)); return res; } SEMOPS_INLINE BI SUBCFQI (QI a, QI b, BI c) { BI res = ((UQI) a < (UQI) b) || (c && a == b); return res; } SEMOPS_INLINE BI SUBOFQI (QI a, QI b, BI c) { QI tmp = SUBQI (a, ADDQI (b, c)); BI res = (((a < 0) != (b < 0)) && ((a < 0) != (tmp < 0))); return res; } #else SI ADDCSI (SI, SI, BI); UBI ADDCFSI (SI, SI, BI); UBI ADDOFSI (SI, SI, BI); SI SUBCSI (SI, SI, BI); UBI SUBCFSI (SI, SI, BI); UBI SUBOFSI (SI, SI, BI); HI ADDCHI (HI, HI, BI); UBI ADDCFHI (HI, HI, BI); UBI ADDOFHI (HI, HI, BI); HI SUBCHI (HI, HI, BI); UBI SUBCFHI (HI, HI, BI); UBI SUBOFHI (HI, HI, BI); QI ADDCQI (QI, QI, BI); UBI ADDCFQI (QI, QI, BI); UBI ADDOFQI (QI, QI, BI); QI SUBCQI (QI, QI, BI); UBI SUBCFQI (QI, QI, BI); UBI SUBOFQI (QI, QI, BI); #endif #endif /* CGEN_SEM_OPS_H */