/* Blackfin Universal Asynchronous Receiver/Transmitter (UART) model. For "old style" UARTs on BF53x/etc... parts. Copyright (C) 2010-2011 Free Software Foundation, Inc. Contributed by Analog Devices, Inc. This file is part of simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "config.h" #include "sim-main.h" #include "dv-sockser.h" #include "devices.h" #include "dv-bfin_uart.h" /* XXX: Should we bother emulating the TX/RX FIFOs ? */ /* Internal state needs to be the same as bfin_uart2. */ struct bfin_uart { /* This top portion matches common dv_bfin struct. */ bu32 base; struct hw *dma_master; bool acked; struct hw_event *handler; char saved_byte; int saved_count; /* This is aliased to DLH. */ bu16 ier; /* These are aliased to DLL. */ bu16 thr, rbr; /* Order after here is important -- matches hardware MMR layout. */ bu16 BFIN_MMR_16(dll); bu16 BFIN_MMR_16(dlh); bu16 BFIN_MMR_16(iir); bu16 BFIN_MMR_16(lcr); bu16 BFIN_MMR_16(mcr); bu16 BFIN_MMR_16(lsr); bu16 BFIN_MMR_16(msr); bu16 BFIN_MMR_16(scr); bu16 _pad0[2]; bu16 BFIN_MMR_16(gctl); }; #define mmr_base() offsetof(struct bfin_uart, dll) #define mmr_offset(mmr) (offsetof(struct bfin_uart, mmr) - mmr_base()) static const char * const mmr_names[] = { "UART_RBR/UART_THR", "UART_IER", "UART_IIR", "UART_LCR", "UART_MCR", "UART_LSR", "UART_MSR", "UART_SCR", "", "UART_GCTL", }; static const char *mmr_name (struct bfin_uart *uart, bu32 idx) { if (uart->lcr & DLAB) if (idx < 2) return idx == 0 ? "UART_DLL" : "UART_DLH"; return mmr_names[idx]; } #define mmr_name(off) mmr_name (uart, (off) / 4) #ifndef HAVE_DV_SOCKSER # define dv_sockser_status(sd) -1 # define dv_sockser_write(sd, byte) do { ; } while (0) # define dv_sockser_read(sd) 0xff #endif static void bfin_uart_poll (struct hw *me, void *data) { struct bfin_uart *uart = data; bu16 lsr; uart->handler = NULL; lsr = bfin_uart_get_status (me); if (lsr & DR) hw_port_event (me, DV_PORT_RX, 1); bfin_uart_reschedule (me); } void bfin_uart_reschedule (struct hw *me) { struct bfin_uart *uart = hw_data (me); if (uart->ier & ERBFI) { if (!uart->handler) uart->handler = hw_event_queue_schedule (me, 10000, bfin_uart_poll, uart); } else { if (uart->handler) { hw_event_queue_deschedule (me, uart->handler); uart->handler = NULL; } } } bu16 bfin_uart_write_byte (struct hw *me, bu16 thr) { unsigned char ch = thr; bfin_uart_write_buffer (me, &ch, 1); return thr; } static unsigned bfin_uart_io_write_buffer (struct hw *me, const void *source, int space, address_word addr, unsigned nr_bytes) { struct bfin_uart *uart = hw_data (me); bu32 mmr_off; bu32 value; bu16 *valuep; value = dv_load_2 (source); mmr_off = addr - uart->base; valuep = (void *)((unsigned long)uart + mmr_base() + mmr_off); HW_TRACE_WRITE (); dv_bfin_mmr_require_16 (me, addr, nr_bytes, true); /* XXX: All MMRs are "8bit" ... what happens to high 8bits ? */ switch (mmr_off) { case mmr_offset(dll): if (uart->lcr & DLAB) uart->dll = value; else { uart->thr = bfin_uart_write_byte (me, value); if (uart->ier & ETBEI) hw_port_event (me, DV_PORT_TX, 1); } break; case mmr_offset(dlh): if (uart->lcr & DLAB) uart->dlh = value; else { uart->ier = value; bfin_uart_reschedule (me); } break; case mmr_offset(iir): case mmr_offset(lsr): /* XXX: Writes are ignored ? */ break; case mmr_offset(lcr): case mmr_offset(mcr): case mmr_offset(scr): case mmr_offset(gctl): *valuep = value; break; default: dv_bfin_mmr_invalid (me, addr, nr_bytes, true); break; } return nr_bytes; } /* Switch between socket and stdin on the fly. */ bu16 bfin_uart_get_next_byte (struct hw *me, bu16 rbr, bool *fresh) { SIM_DESC sd = hw_system (me); struct bfin_uart *uart = hw_data (me); int status = dv_sockser_status (sd); bool _fresh; /* NB: The "uart" here may only use interal state. */ if (!fresh) fresh = &_fresh; *fresh = false; if (status & DV_SOCKSER_DISCONNECTED) { if (uart->saved_count > 0) { *fresh = true; rbr = uart->saved_byte; --uart->saved_count; } else { char byte; int ret = sim_io_poll_read (sd, 0/*STDIN*/, &byte, 1); if (ret > 0) { *fresh = true; rbr = byte; } } } else rbr = dv_sockser_read (sd); return rbr; } bu16 bfin_uart_get_status (struct hw *me) { SIM_DESC sd = hw_system (me); struct bfin_uart *uart = hw_data (me); int status = dv_sockser_status (sd); bu16 lsr = 0; if (status & DV_SOCKSER_DISCONNECTED) { if (uart->saved_count <= 0) uart->saved_count = sim_io_poll_read (sd, 0/*STDIN*/, &uart->saved_byte, 1); lsr |= TEMT | THRE | (uart->saved_count > 0 ? DR : 0); } else lsr |= (status & DV_SOCKSER_INPUT_EMPTY ? 0 : DR) | (status & DV_SOCKSER_OUTPUT_EMPTY ? TEMT | THRE : 0); return lsr; } static unsigned bfin_uart_io_read_buffer (struct hw *me, void *dest, int space, address_word addr, unsigned nr_bytes) { struct bfin_uart *uart = hw_data (me); bu32 mmr_off; bu16 *valuep; mmr_off = addr - uart->base; valuep = (void *)((unsigned long)uart + mmr_base() + mmr_off); HW_TRACE_READ (); dv_bfin_mmr_require_16 (me, addr, nr_bytes, false); switch (mmr_off) { case mmr_offset(dll): if (uart->lcr & DLAB) dv_store_2 (dest, uart->dll); else { uart->rbr = bfin_uart_get_next_byte (me, uart->rbr, NULL); dv_store_2 (dest, uart->rbr); } break; case mmr_offset(dlh): if (uart->lcr & DLAB) dv_store_2 (dest, uart->dlh); else dv_store_2 (dest, uart->ier); break; case mmr_offset(lsr): /* XXX: Reads are destructive on most parts, but not all ... */ uart->lsr |= bfin_uart_get_status (me); dv_store_2 (dest, *valuep); uart->lsr = 0; break; case mmr_offset(iir): /* XXX: Reads are destructive ... */ case mmr_offset(lcr): case mmr_offset(mcr): case mmr_offset(scr): case mmr_offset(gctl): dv_store_2 (dest, *valuep); break; default: dv_bfin_mmr_invalid (me, addr, nr_bytes, false); break; } return nr_bytes; } unsigned bfin_uart_read_buffer (struct hw *me, unsigned char *buffer, unsigned nr_bytes) { SIM_DESC sd = hw_system (me); struct bfin_uart *uart = hw_data (me); int status = dv_sockser_status (sd); unsigned i = 0; if (status & DV_SOCKSER_DISCONNECTED) { int ret; while (uart->saved_count > 0 && i < nr_bytes) { buffer[i++] = uart->saved_byte; --uart->saved_count; } ret = sim_io_poll_read (sd, 0/*STDIN*/, (char *) buffer, nr_bytes - i); if (ret > 0) i += ret; } else buffer[i++] = dv_sockser_read (sd); return i; } static unsigned bfin_uart_dma_read_buffer (struct hw *me, void *dest, int space, unsigned_word addr, unsigned nr_bytes) { HW_TRACE_DMA_READ (); return bfin_uart_read_buffer (me, dest, nr_bytes); } unsigned bfin_uart_write_buffer (struct hw *me, const unsigned char *buffer, unsigned nr_bytes) { SIM_DESC sd = hw_system (me); int status = dv_sockser_status (sd); if (status & DV_SOCKSER_DISCONNECTED) { sim_io_write_stdout (sd, (const char *) buffer, nr_bytes); sim_io_flush_stdout (sd); } else { /* Normalize errors to a value of 0. */ int ret = dv_sockser_write_buffer (sd, buffer, nr_bytes); nr_bytes = CLAMP (ret, 0, nr_bytes); } return nr_bytes; } static unsigned bfin_uart_dma_write_buffer (struct hw *me, const void *source, int space, unsigned_word addr, unsigned nr_bytes, int violate_read_only_section) { struct bfin_uart *uart = hw_data (me); unsigned ret; HW_TRACE_DMA_WRITE (); ret = bfin_uart_write_buffer (me, source, nr_bytes); if (ret == nr_bytes && (uart->ier & ETBEI)) hw_port_event (me, DV_PORT_TX, 1); return ret; } static const struct hw_port_descriptor bfin_uart_ports[] = { { "tx", DV_PORT_TX, 0, output_port, }, { "rx", DV_PORT_RX, 0, output_port, }, { "stat", DV_PORT_STAT, 0, output_port, }, { NULL, 0, 0, 0, }, }; static void attach_bfin_uart_regs (struct hw *me, struct bfin_uart *uart) { address_word attach_address; int attach_space; unsigned attach_size; reg_property_spec reg; if (hw_find_property (me, "reg") == NULL) hw_abort (me, "Missing \"reg\" property"); if (!hw_find_reg_array_property (me, "reg", 0, ®)) hw_abort (me, "\"reg\" property must contain three addr/size entries"); hw_unit_address_to_attach_address (hw_parent (me), ®.address, &attach_space, &attach_address, me); hw_unit_size_to_attach_size (hw_parent (me), ®.size, &attach_size, me); if (attach_size != BFIN_MMR_UART_SIZE) hw_abort (me, "\"reg\" size must be %#x", BFIN_MMR_UART_SIZE); hw_attach_address (hw_parent (me), 0, attach_space, attach_address, attach_size, me); uart->base = attach_address; } static void bfin_uart_finish (struct hw *me) { struct bfin_uart *uart; uart = HW_ZALLOC (me, struct bfin_uart); set_hw_data (me, uart); set_hw_io_read_buffer (me, bfin_uart_io_read_buffer); set_hw_io_write_buffer (me, bfin_uart_io_write_buffer); set_hw_dma_read_buffer (me, bfin_uart_dma_read_buffer); set_hw_dma_write_buffer (me, bfin_uart_dma_write_buffer); set_hw_ports (me, bfin_uart_ports); attach_bfin_uart_regs (me, uart); /* Initialize the UART. */ uart->dll = 0x0001; uart->iir = 0x0001; uart->lsr = 0x0060; } const struct hw_descriptor dv_bfin_uart_descriptor[] = { {"bfin_uart", bfin_uart_finish,}, {NULL, NULL}, };