/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator.
Copyright (C) 1994 Advanced RISC Machines Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see . */
#include "armdefs.h"
#include "armemu.h"
#include "ansidecl.h"
#include
/* Definitions for the support routines. */
static ARMword ModeToBank (ARMword);
static void EnvokeList (ARMul_State *, unsigned long, unsigned long);
struct EventNode
{ /* An event list node. */
unsigned (*func) (ARMul_State *); /* The function to call. */
struct EventNode *next;
};
/* This routine returns the value of a register from a mode. */
ARMword
ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg)
{
mode &= MODEBITS;
if (mode != state->Mode)
return (state->RegBank[ModeToBank ((ARMword) mode)][reg]);
else
return (state->Reg[reg]);
}
/* This routine sets the value of a register for a mode. */
void
ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value)
{
mode &= MODEBITS;
if (mode != state->Mode)
state->RegBank[ModeToBank ((ARMword) mode)][reg] = value;
else
state->Reg[reg] = value;
}
/* This routine returns the value of the PC, mode independently. */
ARMword
ARMul_GetPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return state->Reg[15];
else
return R15PC;
}
/* This routine returns the value of the PC, mode independently. */
ARMword
ARMul_GetNextPC (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return state->Reg[15] + isize;
else
return (state->Reg[15] + isize) & R15PCBITS;
}
/* This routine sets the value of the PC. */
void
ARMul_SetPC (ARMul_State * state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
state->Reg[15] = R15CCINTMODE | (value & R15PCBITS);
FLUSHPIPE;
}
/* This routine returns the value of register 15, mode independently. */
ARMword
ARMul_GetR15 (ARMul_State * state)
{
if (state->Mode > SVC26MODE)
return (state->Reg[15]);
else
return (R15PC | ECC | ER15INT | EMODE);
}
/* This routine sets the value of Register 15. */
void
ARMul_SetR15 (ARMul_State * state, ARMword value)
{
if (ARMul_MODE32BIT)
state->Reg[15] = value & PCBITS;
else
{
state->Reg[15] = value;
ARMul_R15Altered (state);
}
FLUSHPIPE;
}
/* This routine returns the value of the CPSR. */
ARMword
ARMul_GetCPSR (ARMul_State * state)
{
return (CPSR | state->Cpsr);
}
/* This routine sets the value of the CPSR. */
void
ARMul_SetCPSR (ARMul_State * state, ARMword value)
{
state->Cpsr = value;
ARMul_CPSRAltered (state);
}
/* This routine does all the nasty bits involved in a write to the CPSR,
including updating the register bank, given a MSR instruction. */
void
ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
state->Cpsr = ARMul_GetCPSR (state);
if (state->Mode != USER26MODE
&& state->Mode != USER32MODE)
{
/* In user mode, only write flags. */
if (BIT (16))
SETPSR_C (state->Cpsr, rhs);
if (BIT (17))
SETPSR_X (state->Cpsr, rhs);
if (BIT (18))
SETPSR_S (state->Cpsr, rhs);
}
if (BIT (19))
SETPSR_F (state->Cpsr, rhs);
ARMul_CPSRAltered (state);
}
/* Get an SPSR from the specified mode. */
ARMword
ARMul_GetSPSR (ARMul_State * state, ARMword mode)
{
ARMword bank = ModeToBank (mode & MODEBITS);
if (! BANK_CAN_ACCESS_SPSR (bank))
return ARMul_GetCPSR (state);
return state->Spsr[bank];
}
/* This routine does a write to an SPSR. */
void
ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value)
{
ARMword bank = ModeToBank (mode & MODEBITS);
if (BANK_CAN_ACCESS_SPSR (bank))
state->Spsr[bank] = value;
}
/* This routine does a write to the current SPSR, given an MSR instruction. */
void
ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs)
{
if (BANK_CAN_ACCESS_SPSR (state->Bank))
{
if (BIT (16))
SETPSR_C (state->Spsr[state->Bank], rhs);
if (BIT (17))
SETPSR_X (state->Spsr[state->Bank], rhs);
if (BIT (18))
SETPSR_S (state->Spsr[state->Bank], rhs);
if (BIT (19))
SETPSR_F (state->Spsr[state->Bank], rhs);
}
}
/* This routine updates the state of the emulator after the Cpsr has been
changed. Both the processor flags and register bank are updated. */
void
ARMul_CPSRAltered (ARMul_State * state)
{
ARMword oldmode;
if (state->prog32Sig == LOW)
state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS);
oldmode = state->Mode;
if (state->Mode != (state->Cpsr & MODEBITS))
{
state->Mode =
ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS);
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
state->Cpsr &= ~MODEBITS;
ASSIGNINT (state->Cpsr & INTBITS);
state->Cpsr &= ~INTBITS;
ASSIGNN ((state->Cpsr & NBIT) != 0);
state->Cpsr &= ~NBIT;
ASSIGNZ ((state->Cpsr & ZBIT) != 0);
state->Cpsr &= ~ZBIT;
ASSIGNC ((state->Cpsr & CBIT) != 0);
state->Cpsr &= ~CBIT;
ASSIGNV ((state->Cpsr & VBIT) != 0);
state->Cpsr &= ~VBIT;
ASSIGNS ((state->Cpsr & SBIT) != 0);
state->Cpsr &= ~SBIT;
#ifdef MODET
ASSIGNT ((state->Cpsr & TBIT) != 0);
state->Cpsr &= ~TBIT;
#endif
if (oldmode > SVC26MODE)
{
if (state->Mode <= SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
else
{
if (state->Mode > SVC26MODE)
{
state->Emulate = CHANGEMODE;
state->Reg[15] = R15PC;
}
else
state->Reg[15] = ECC | ER15INT | EMODE | R15PC;
}
}
/* This routine updates the state of the emulator after register 15 has
been changed. Both the processor flags and register bank are updated.
This routine should only be called from a 26 bit mode. */
void
ARMul_R15Altered (ARMul_State * state)
{
if (state->Mode != R15MODE)
{
state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE);
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
}
if (state->Mode > SVC26MODE)
state->Emulate = CHANGEMODE;
ASSIGNR15INT (R15INT);
ASSIGNN ((state->Reg[15] & NBIT) != 0);
ASSIGNZ ((state->Reg[15] & ZBIT) != 0);
ASSIGNC ((state->Reg[15] & CBIT) != 0);
ASSIGNV ((state->Reg[15] & VBIT) != 0);
}
/* This routine controls the saving and restoring of registers across mode
changes. The regbank matrix is largely unused, only rows 13 and 14 are
used across all modes, 8 to 14 are used for FIQ, all others use the USER
column. It's easier this way. old and new parameter are modes numbers.
Notice the side effect of changing the Bank variable. */
ARMword
ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode)
{
unsigned i;
ARMword oldbank;
ARMword newbank;
oldbank = ModeToBank (oldmode);
newbank = state->Bank = ModeToBank (newmode);
/* Do we really need to do it? */
if (oldbank != newbank)
{
/* Save away the old registers. */
switch (oldbank)
{
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
if (newbank == FIQBANK)
for (i = 8; i < 13; i++)
state->RegBank[USERBANK][i] = state->Reg[i];
state->RegBank[oldbank][13] = state->Reg[13];
state->RegBank[oldbank][14] = state->Reg[14];
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->RegBank[FIQBANK][i] = state->Reg[i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->RegBank[DUMMYBANK][i] = 0;
break;
default:
abort ();
}
/* Restore the new registers. */
switch (newbank)
{
case USERBANK:
case IRQBANK:
case SVCBANK:
case ABORTBANK:
case UNDEFBANK:
if (oldbank == FIQBANK)
for (i = 8; i < 13; i++)
state->Reg[i] = state->RegBank[USERBANK][i];
state->Reg[13] = state->RegBank[newbank][13];
state->Reg[14] = state->RegBank[newbank][14];
break;
case FIQBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = state->RegBank[FIQBANK][i];
break;
case DUMMYBANK:
for (i = 8; i < 15; i++)
state->Reg[i] = 0;
break;
default:
abort ();
}
}
return newmode;
}
/* Given a processor mode, this routine returns the
register bank that will be accessed in that mode. */
static ARMword
ModeToBank (ARMword mode)
{
static ARMword bankofmode[] =
{
USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK,
USERBANK, FIQBANK, IRQBANK, SVCBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK,
DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK
};
if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0])))
return DUMMYBANK;
return bankofmode[mode];
}
/* Returns the register number of the nth register in a reg list. */
unsigned
ARMul_NthReg (ARMword instr, unsigned number)
{
unsigned bit, upto;
for (bit = 0, upto = 0; upto <= number; bit ++)
if (BIT (bit))
upto ++;
return (bit - 1);
}
/* Assigns the N and Z flags depending on the value of result. */
void
ARMul_NegZero (ARMul_State * state, ARMword result)
{
if (NEG (result))
{
SETN;
CLEARZ;
}
else if (result == 0)
{
CLEARN;
SETZ;
}
else
{
CLEARN;
CLEARZ;
}
}
/* Compute whether an addition of A and B, giving RESULT, overflowed. */
int
AddOverflow (ARMword a, ARMword b, ARMword result)
{
return ((NEG (a) && NEG (b) && POS (result))
|| (POS (a) && POS (b) && NEG (result)));
}
/* Compute whether a subtraction of A and B, giving RESULT, overflowed. */
int
SubOverflow (ARMword a, ARMword b, ARMword result)
{
return ((NEG (a) && POS (b) && POS (result))
|| (POS (a) && NEG (b) && NEG (result)));
}
/* Assigns the C flag after an addition of a and b to give result. */
void
ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNC ((NEG (a) && NEG (b)) ||
(NEG (a) && POS (result)) || (NEG (b) && POS (result)));
}
/* Assigns the V flag after an addition of a and b to give result. */
void
ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNV (AddOverflow (a, b, result));
}
/* Assigns the C flag after an subtraction of a and b to give result. */
void
ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNC ((NEG (a) && POS (b)) ||
(NEG (a) && POS (result)) || (POS (b) && POS (result)));
}
/* Assigns the V flag after an subtraction of a and b to give result. */
void
ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result)
{
ASSIGNV (SubOverflow (a, b, result));
}
static void
handle_VFP_xfer (ARMul_State * state, ARMword instr)
{
if (TOPBITS (28) == NV)
{
fprintf (stderr, "SIM: UNDEFINED VFP instruction\n");
return;
}
if (BITS (25, 27) != 0x6)
{
fprintf (stderr, "SIM: ISE: VFP handler called incorrectly\n");
return;
}
switch (BITS (20, 24))
{
case 0x04:
case 0x05:
{
/* VMOV double precision to/from two ARM registers. */
int vm = BITS (0, 3);
int rt1 = BITS (12, 15);
int rt2 = BITS (16, 19);
/* FIXME: UNPREDICTABLE if rt1 == 15 or rt2 == 15. */
if (BIT (20))
{
/* Transfer to ARM. */
/* FIXME: UPPREDICTABLE if rt1 == rt2. */
state->Reg[rt1] = VFP_dword (vm) & 0xffffffff;
state->Reg[rt2] = VFP_dword (vm) >> 32;
}
else
{
VFP_dword (vm) = state->Reg[rt2];
VFP_dword (vm) <<= 32;
VFP_dword (vm) |= (state->Reg[rt1] & 0xffffffff);
}
return;
}
case 0x08:
case 0x0A:
case 0x0C:
case 0x0E:
{
/* VSTM with PUW=011 or PUW=010. */
int n = BITS (16, 19);
int imm8 = BITS (0, 7);
ARMword address = state->Reg[n];
if (BIT (21))
state->Reg[n] = address + (imm8 << 2);
if (BIT (8))
{
int src = (BIT (22) << 4) | BITS (12, 15);
imm8 >>= 1;
while (imm8--)
{
if (state->bigendSig)
{
ARMul_StoreWordN (state, address, VFP_dword (src) >> 32);
ARMul_StoreWordN (state, address + 4, VFP_dword (src));
}
else
{
ARMul_StoreWordN (state, address, VFP_dword (src));
ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32);
}
address += 8;
src += 1;
}
}
else
{
int src = (BITS (12, 15) << 1) | BIT (22);
while (imm8--)
{
ARMul_StoreWordN (state, address, VFP_uword (src));
address += 4;
src += 1;
}
}
}
return;
case 0x10:
case 0x14:
case 0x18:
case 0x1C:
{
/* VSTR */
ARMword imm32 = BITS (0, 7) << 2;
int base = state->Reg[LHSReg];
ARMword address;
int dest;
if (LHSReg == 15)
base = (base + 3) & ~3;
address = base + (BIT (23) ? imm32 : - imm32);
if (CPNum == 10)
{
dest = (DESTReg << 1) + BIT (22);
ARMul_StoreWordN (state, address, VFP_uword (dest));
}
else
{
dest = (BIT (22) << 4) + DESTReg;
if (state->bigendSig)
{
ARMul_StoreWordN (state, address, VFP_dword (dest) >> 32);
ARMul_StoreWordN (state, address + 4, VFP_dword (dest));
}
else
{
ARMul_StoreWordN (state, address, VFP_dword (dest));
ARMul_StoreWordN (state, address + 4, VFP_dword (dest) >> 32);
}
}
}
return;
case 0x12:
case 0x16:
if (BITS (16, 19) == 13)
{
/* VPUSH */
ARMword address = state->Reg[13] - (BITS (0, 7) << 2);
state->Reg[13] = address;
if (BIT (8))
{
int dreg = (BIT (22) << 4) | BITS (12, 15);
int num = BITS (0, 7) >> 1;
while (num--)
{
if (state->bigendSig)
{
ARMul_StoreWordN (state, address, VFP_dword (dreg) >> 32);
ARMul_StoreWordN (state, address + 4, VFP_dword (dreg));
}
else
{
ARMul_StoreWordN (state, address, VFP_dword (dreg));
ARMul_StoreWordN (state, address + 4, VFP_dword (dreg) >> 32);
}
address += 8;
dreg += 1;
}
}
else
{
int sreg = (BITS (12, 15) << 1) | BIT (22);
int num = BITS (0, 7);
while (num--)
{
ARMul_StoreWordN (state, address, VFP_uword (sreg));
address += 4;
sreg += 1;
}
}
}
else if (BITS (9, 11) != 0x5)
break;
else
{
/* VSTM PUW=101 */
int n = BITS (16, 19);
int imm8 = BITS (0, 7);
ARMword address = state->Reg[n] - (imm8 << 2);
state->Reg[n] = address;
if (BIT (8))
{
int src = (BIT (22) << 4) | BITS (12, 15);
imm8 >>= 1;
while (imm8--)
{
if (state->bigendSig)
{
ARMul_StoreWordN (state, address, VFP_dword (src) >> 32);
ARMul_StoreWordN (state, address + 4, VFP_dword (src));
}
else
{
ARMul_StoreWordN (state, address, VFP_dword (src));
ARMul_StoreWordN (state, address + 4, VFP_dword (src) >> 32);
}
address += 8;
src += 1;
}
}
else
{
int src = (BITS (12, 15) << 1) | BIT (22);
while (imm8--)
{
ARMul_StoreWordN (state, address, VFP_uword (src));
address += 4;
src += 1;
}
}
}
return;
case 0x13:
case 0x17:
/* VLDM PUW=101 */
case 0x09:
case 0x0D:
/* VLDM PUW=010 */
{
int n = BITS (16, 19);
int imm8 = BITS (0, 7);
ARMword address = state->Reg[n];
if (BIT (23) == 0)
address -= imm8 << 2;
if (BIT (21))
state->Reg[n] = BIT (23) ? address + (imm8 << 2) : address;
if (BIT (8))
{
int dest = (BIT (22) << 4) | BITS (12, 15);
imm8 >>= 1;
while (imm8--)
{
if (state->bigendSig)
{
VFP_dword (dest) = ARMul_LoadWordN (state, address);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
}
else
{
VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address);
}
if (trace)
fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest));
address += 8;
dest += 1;
}
}
else
{
int dest = (BITS (12, 15) << 1) | BIT (22);
while (imm8--)
{
VFP_uword (dest) = ARMul_LoadWordN (state, address);
address += 4;
dest += 1;
}
}
}
return;
case 0x0B:
case 0x0F:
if (BITS (16, 19) == 13)
{
/* VPOP */
ARMword address = state->Reg[13];
state->Reg[13] = address + (BITS (0, 7) << 2);
if (BIT (8))
{
int dest = (BIT (22) << 4) | BITS (12, 15);
int num = BITS (0, 7) >> 1;
while (num--)
{
if (state->bigendSig)
{
VFP_dword (dest) = ARMul_LoadWordN (state, address);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
}
else
{
VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address);
}
if (trace)
fprintf (stderr, " VFP: VPOP: D%d = %g\n", dest, VFP_dval (dest));
address += 8;
dest += 1;
}
}
else
{
int sreg = (BITS (12, 15) << 1) | BIT (22);
int num = BITS (0, 7);
while (num--)
{
VFP_uword (sreg) = ARMul_LoadWordN (state, address);
address += 4;
sreg += 1;
}
}
}
else if (BITS (9, 11) != 0x5)
break;
else
{
/* VLDM PUW=011 */
int n = BITS (16, 19);
int imm8 = BITS (0, 7);
ARMword address = state->Reg[n];
state->Reg[n] += imm8 << 2;
if (BIT (8))
{
int dest = (BIT (22) << 4) | BITS (12, 15);
imm8 >>= 1;
while (imm8--)
{
if (state->bigendSig)
{
VFP_dword (dest) = ARMul_LoadWordN (state, address);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
}
else
{
VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address);
}
if (trace)
fprintf (stderr, " VFP: VLDM: D%d = %g\n", dest, VFP_dval (dest));
address += 8;
dest += 1;
}
}
else
{
int dest = (BITS (12, 15) << 1) | BIT (22);
while (imm8--)
{
VFP_uword (dest) = ARMul_LoadWordN (state, address);
address += 4;
dest += 1;
}
}
}
return;
case 0x11:
case 0x15:
case 0x19:
case 0x1D:
{
/* VLDR */
ARMword imm32 = BITS (0, 7) << 2;
int base = state->Reg[LHSReg];
ARMword address;
int dest;
if (LHSReg == 15)
base = (base + 3) & ~3;
address = base + (BIT (23) ? imm32 : - imm32);
if (CPNum == 10)
{
dest = (DESTReg << 1) + BIT (22);
VFP_uword (dest) = ARMul_LoadWordN (state, address);
}
else
{
dest = (BIT (22) << 4) + DESTReg;
if (state->bigendSig)
{
VFP_dword (dest) = ARMul_LoadWordN (state, address);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address + 4);
}
else
{
VFP_dword (dest) = ARMul_LoadWordN (state, address + 4);
VFP_dword (dest) <<= 32;
VFP_dword (dest) |= ARMul_LoadWordN (state, address);
}
if (trace)
fprintf (stderr, " VFP: VLDR: D%d = %g\n", dest, VFP_dval (dest));
}
}
return;
}
fprintf (stderr, "SIM: VFP: Unimplemented: %0x\n", BITS (20, 24));
}
/* This function does the work of generating the addresses used in an
LDC instruction. The code here is always post-indexed, it's up to the
caller to get the input address correct and to handle base register
modification. It also handles the Busy-Waiting. */
void
ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
if (CPNum == 10 || CPNum == 11)
{
handle_VFP_xfer (state, instr);
return;
}
UNDEF_LSCPCBaseWb;
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return;
}
if (ADDREXCEPT (address))
INTERNALABORT (address);
cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0);
}
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0);
data = ARMul_LoadWordN (state, address);
BUSUSEDINCPCN;
if (BIT (21))
LSBase = state->Base;
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
while (cpab == ARMul_INC)
{
address += 4;
data = ARMul_LoadWordN (state, address);
cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data);
}
if (state->abortSig || state->Aborted)
TAKEABORT;
}
/* This function does the work of generating the addresses used in an
STC instruction. The code here is always post-indexed, it's up to the
caller to get the input address correct and to handle base register
modification. It also handles the Busy-Waiting. */
void
ARMul_STC (ARMul_State * state, ARMword instr, ARMword address)
{
unsigned cpab;
ARMword data;
if (CPNum == 10 || CPNum == 11)
{
handle_VFP_xfer (state, instr);
return;
}
UNDEF_LSCPCBaseWb;
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return;
}
if (ADDREXCEPT (address) || VECTORACCESS (address))
INTERNALABORT (address);
cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data);
}
if (cpab == ARMul_CANT)
{
CPTAKEABORT;
return;
}
#ifndef MODE32
if (ADDREXCEPT (address) || VECTORACCESS (address))
INTERNALABORT (address);
#endif
BUSUSEDINCPCN;
if (BIT (21))
LSBase = state->Base;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
while (cpab == ARMul_INC)
{
address += 4;
cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data);
ARMul_StoreWordN (state, address, data);
}
if (state->abortSig || state->Aborted)
TAKEABORT;
}
/* This function does the Busy-Waiting for an MCR instruction. */
void
ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source)
{
unsigned cpab;
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return;
}
cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return;
}
else
cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source);
}
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
}
}
/* This function does the Busy-Waiting for an MRC instruction. */
ARMword
ARMul_MRC (ARMul_State * state, ARMword instr)
{
unsigned cpab;
ARMword result = 0;
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return result;
}
cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0);
return (0);
}
else
cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result);
}
if (cpab == ARMul_CANT)
{
ARMul_Abort (state, ARMul_UndefinedInstrV);
/* Parent will destroy the flags otherwise. */
result = ECC;
}
else
{
BUSUSEDINCPCN;
ARMul_Ccycles (state, 1, 0);
ARMul_Icycles (state, 1, 0);
}
return result;
}
static void
handle_VFP_op (ARMul_State * state, ARMword instr)
{
int dest;
int srcN;
int srcM;
if (BITS (9, 11) != 0x5 || BIT (4) != 0)
{
fprintf (stderr, "SIM: VFP: Unimplemented: Float op: %08x\n", BITS (0,31));
return;
}
if (BIT (8))
{
dest = BITS(12,15) + (BIT (22) << 4);
srcN = LHSReg + (BIT (7) << 4);
srcM = BITS (0,3) + (BIT (5) << 4);
}
else
{
dest = (BITS(12,15) << 1) + BIT (22);
srcN = (LHSReg << 1) + BIT (7);
srcM = (BITS (0,3) << 1) + BIT (5);
}
switch (BITS (20, 27))
{
case 0xE0:
case 0xE4:
/* VMLA VMLS */
if (BIT (8))
{
ARMdval val = VFP_dval (srcN) * VFP_dval (srcM);
if (BIT (6))
{
if (trace)
fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n",
VFP_dval (dest) - val,
VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
VFP_dval (dest) -= val;
}
else
{
if (trace)
fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n",
VFP_dval (dest) + val,
VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
VFP_dval (dest) += val;
}
}
else
{
ARMfval val = VFP_fval (srcN) * VFP_fval (srcM);
if (BIT (6))
{
if (trace)
fprintf (stderr, " VFP: VMLS: %g = %g - %g * %g\n",
VFP_fval (dest) - val,
VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM));
VFP_fval (dest) -= val;
}
else
{
if (trace)
fprintf (stderr, " VFP: VMLA: %g = %g + %g * %g\n",
VFP_fval (dest) + val,
VFP_fval (dest), VFP_fval (srcN), VFP_fval (srcM));
VFP_fval (dest) += val;
}
}
return;
case 0xE1:
case 0xE5:
if (BIT (8))
{
ARMdval product = VFP_dval (srcN) * VFP_dval (srcM);
if (BIT (6))
{
/* VNMLA */
if (trace)
fprintf (stderr, " VFP: VNMLA: %g = -(%g + (%g * %g))\n",
-(VFP_dval (dest) + product),
VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
VFP_dval (dest) = -(product + VFP_dval (dest));
}
else
{
/* VNMLS */
if (trace)
fprintf (stderr, " VFP: VNMLS: %g = -(%g + (%g * %g))\n",
-(VFP_dval (dest) + product),
VFP_dval (dest), VFP_dval (srcN), VFP_dval (srcM));
VFP_dval (dest) = product - VFP_dval (dest);
}
}
else
{
ARMfval product = VFP_fval (srcN) * VFP_fval (srcM);
if (BIT (6))
/* VNMLA */
VFP_fval (dest) = -(product + VFP_fval (dest));
else
/* VNMLS */
VFP_fval (dest) = product - VFP_fval (dest);
}
return;
case 0xE2:
case 0xE6:
if (BIT (8))
{
ARMdval product = VFP_dval (srcN) * VFP_dval (srcM);
if (BIT (6))
{
if (trace)
fprintf (stderr, " VFP: VMUL: %g = %g * %g\n",
- product, VFP_dval (srcN), VFP_dval (srcM));
/* VNMUL */
VFP_dval (dest) = - product;
}
else
{
if (trace)
fprintf (stderr, " VFP: VMUL: %g = %g * %g\n",
product, VFP_dval (srcN), VFP_dval (srcM));
/* VMUL */
VFP_dval (dest) = product;
}
}
else
{
ARMfval product = VFP_fval (srcN) * VFP_fval (srcM);
if (BIT (6))
{
if (trace)
fprintf (stderr, " VFP: VNMUL: %g = %g * %g\n",
- product, VFP_fval (srcN), VFP_fval (srcM));
VFP_fval (dest) = - product;
}
else
{
if (trace)
fprintf (stderr, " VFP: VMUL: %g = %g * %g\n",
product, VFP_fval (srcN), VFP_fval (srcM));
VFP_fval (dest) = product;
}
}
return;
case 0xE3:
case 0xE7:
if (BIT (6) == 0)
{
/* VADD */
if (BIT(8))
{
if (trace)
fprintf (stderr, " VFP: VADD %g = %g + %g\n",
VFP_dval (srcN) + VFP_dval (srcM),
VFP_dval (srcN),
VFP_dval (srcM));
VFP_dval (dest) = VFP_dval (srcN) + VFP_dval (srcM);
}
else
VFP_fval (dest) = VFP_fval (srcN) + VFP_fval (srcM);
}
else
{
/* VSUB */
if (BIT(8))
{
if (trace)
fprintf (stderr, " VFP: VSUB %g = %g - %g\n",
VFP_dval (srcN) - VFP_dval (srcM),
VFP_dval (srcN),
VFP_dval (srcM));
VFP_dval (dest) = VFP_dval (srcN) - VFP_dval (srcM);
}
else
VFP_fval (dest) = VFP_fval (srcN) - VFP_fval (srcM);
}
return;
case 0xE8:
case 0xEC:
if (BIT (6) == 1)
break;
/* VDIV */
if (BIT (8))
{
ARMdval res = VFP_dval (srcN) / VFP_dval (srcM);
if (trace)
fprintf (stderr, " VFP: VDIV (64bit): %g = %g / %g\n",
res, VFP_dval (srcN), VFP_dval (srcM));
VFP_dval (dest) = res;
}
else
{
if (trace)
fprintf (stderr, " VFP: VDIV: %g = %g / %g\n",
VFP_fval (srcN) / VFP_fval (srcM),
VFP_fval (srcN), VFP_fval (srcM));
VFP_fval (dest) = VFP_fval (srcN) / VFP_fval (srcM);
}
return;
case 0xEB:
case 0xEF:
if (BIT (6) != 1)
break;
switch (BITS (16, 19))
{
case 0x0:
if (BIT (7) == 0)
{
if (BIT (8))
{
/* VMOV.F64 , . */
VFP_dval (dest) = VFP_dval (srcM);
if (trace)
fprintf (stderr, " VFP: VMOV d%d, d%d: %g\n", dest, srcM, VFP_dval (srcM));
}
else
{
/* VMOV.F32 , . */
VFP_fval (dest) = VFP_fval (srcM);
if (trace)
fprintf (stderr, " VFP: VMOV s%d, s%d: %g\n", dest, srcM, VFP_fval (srcM));
}
}
else
{
/* VABS */
if (BIT (8))
{
ARMdval src = VFP_dval (srcM);
VFP_dval (dest) = fabs (src);
if (trace)
fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_dval (dest));
}
else
{
ARMfval src = VFP_fval (srcM);
VFP_fval (dest) = fabsf (src);
if (trace)
fprintf (stderr, " VFP: VABS (%g) = %g\n", src, VFP_fval (dest));
}
}
return;
case 0x1:
if (BIT (7) == 0)
{
/* VNEG */
if (BIT (8))
VFP_dval (dest) = - VFP_dval (srcM);
else
VFP_fval (dest) = - VFP_fval (srcM);
}
else
{
/* VSQRT */
if (BIT (8))
{
if (trace)
fprintf (stderr, " VFP: %g = root(%g)\n",
sqrt (VFP_dval (srcM)), VFP_dval (srcM));
VFP_dval (dest) = sqrt (VFP_dval (srcM));
}
else
{
if (trace)
fprintf (stderr, " VFP: %g = root(%g)\n",
sqrtf (VFP_fval (srcM)), VFP_fval (srcM));
VFP_fval (dest) = sqrtf (VFP_fval (srcM));
}
}
return;
case 0x4:
case 0x5:
/* VCMP, VCMPE */
if (BIT(8))
{
ARMdval res = VFP_dval (dest);
if (BIT (16) == 0)
{
ARMdval src = VFP_dval (srcM);
if (isinf (res) && isinf (src))
{
if (res > 0.0 && src > 0.0)
res = 0.0;
else if (res < 0.0 && src < 0.0)
res = 0.0;
/* else leave res alone. */
}
else
res -= src;
}
/* FIXME: Add handling of signalling NaNs and the E bit. */
state->FPSCR &= 0x0FFFFFFF;
if (res < 0.0)
state->FPSCR |= NBIT;
else
state->FPSCR |= CBIT;
if (res == 0.0)
state->FPSCR |= ZBIT;
if (isnan (res))
state->FPSCR |= VBIT;
if (trace)
fprintf (stderr, " VFP: VCMP (64bit) %g vs %g res %g, flags: %c%c%c%c\n",
VFP_dval (dest), BIT (16) ? 0.0 : VFP_dval (srcM), res,
state->FPSCR & NBIT ? 'N' : '-',
state->FPSCR & ZBIT ? 'Z' : '-',
state->FPSCR & CBIT ? 'C' : '-',
state->FPSCR & VBIT ? 'V' : '-');
}
else
{
ARMfval res = VFP_fval (dest);
if (BIT (16) == 0)
{
ARMfval src = VFP_fval (srcM);
if (isinf (res) && isinf (src))
{
if (res > 0.0 && src > 0.0)
res = 0.0;
else if (res < 0.0 && src < 0.0)
res = 0.0;
/* else leave res alone. */
}
else
res -= src;
}
/* FIXME: Add handling of signalling NaNs and the E bit. */
state->FPSCR &= 0x0FFFFFFF;
if (res < 0.0)
state->FPSCR |= NBIT;
else
state->FPSCR |= CBIT;
if (res == 0.0)
state->FPSCR |= ZBIT;
if (isnan (res))
state->FPSCR |= VBIT;
if (trace)
fprintf (stderr, " VFP: VCMP (32bit) %g vs %g res %g, flags: %c%c%c%c\n",
VFP_fval (dest), BIT (16) ? 0.0 : VFP_fval (srcM), res,
state->FPSCR & NBIT ? 'N' : '-',
state->FPSCR & ZBIT ? 'Z' : '-',
state->FPSCR & CBIT ? 'C' : '-',
state->FPSCR & VBIT ? 'V' : '-');
}
return;
case 0x7:
if (BIT (8))
{
dest = (DESTReg << 1) + BIT (22);
VFP_fval (dest) = VFP_dval (srcM);
}
else
{
dest = DESTReg + (BIT (22) << 4);
VFP_dval (dest) = VFP_fval (srcM);
}
return;
case 0x8:
case 0xC:
case 0xD:
/* VCVT integer <-> FP */
if (BIT (18))
{
/* To integer. */
if (BIT (8))
{
dest = (BITS(12,15) << 1) + BIT (22);
if (BIT (16))
VFP_sword (dest) = VFP_dval (srcM);
else
VFP_uword (dest) = VFP_dval (srcM);
}
else
{
if (BIT (16))
VFP_sword (dest) = VFP_fval (srcM);
else
VFP_uword (dest) = VFP_fval (srcM);
}
}
else
{
/* From integer. */
if (BIT (8))
{
srcM = (BITS (0,3) << 1) + BIT (5);
if (BIT (7))
VFP_dval (dest) = VFP_sword (srcM);
else
VFP_dval (dest) = VFP_uword (srcM);
}
else
{
if (BIT (7))
VFP_fval (dest) = VFP_sword (srcM);
else
VFP_fval (dest) = VFP_uword (srcM);
}
}
return;
}
fprintf (stderr, "SIM: VFP: Unimplemented: Float op3: %03x\n", BITS (16,27));
return;
}
fprintf (stderr, "SIM: VFP: Unimplemented: Float op2: %02x\n", BITS (20, 27));
return;
}
/* This function does the Busy-Waiting for an CDP instruction. */
void
ARMul_CDP (ARMul_State * state, ARMword instr)
{
unsigned cpab;
if (CPNum == 10 || CPNum == 11)
{
handle_VFP_op (state, instr);
return;
}
if (! CP_ACCESS_ALLOWED (state, CPNum))
{
ARMul_UndefInstr (state, instr);
return;
}
cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr);
while (cpab == ARMul_BUSY)
{
ARMul_Icycles (state, 1, 0);
if (IntPending (state))
{
cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr);
return;
}
else
cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr);
}
if (cpab == ARMul_CANT)
ARMul_Abort (state, ARMul_UndefinedInstrV);
else
BUSUSEDN;
}
/* This function handles Undefined instructions, as CP isntruction. */
void
ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED)
{
ARMul_Abort (state, ARMul_UndefinedInstrV);
}
/* Return TRUE if an interrupt is pending, FALSE otherwise. */
unsigned
IntPending (ARMul_State * state)
{
if (state->Exception)
{
/* Any exceptions. */
if (state->NresetSig == LOW)
{
ARMul_Abort (state, ARMul_ResetV);
return TRUE;
}
else if (!state->NfiqSig && !FFLAG)
{
ARMul_Abort (state, ARMul_FIQV);
return TRUE;
}
else if (!state->NirqSig && !IFLAG)
{
ARMul_Abort (state, ARMul_IRQV);
return TRUE;
}
}
return FALSE;
}
/* Align a word access to a non word boundary. */
ARMword
ARMul_Align (ARMul_State *state ATTRIBUTE_UNUSED, ARMword address, ARMword data)
{
/* This code assumes the address is really unaligned,
as a shift by 32 is undefined in C. */
address = (address & 3) << 3; /* Get the word address. */
return ((data >> address) | (data << (32 - address))); /* rot right */
}
/* This routine is used to call another routine after a certain number of
cycles have been executed. The first parameter is the number of cycles
delay before the function is called, the second argument is a pointer
to the function. A delay of zero doesn't work, just call the function. */
void
ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay,
unsigned (*what) (ARMul_State *))
{
unsigned long when;
struct EventNode *event;
if (state->EventSet++ == 0)
state->Now = ARMul_Time (state);
when = (state->Now + delay) % EVENTLISTSIZE;
event = (struct EventNode *) malloc (sizeof (struct EventNode));
event->func = what;
event->next = *(state->EventPtr + when);
*(state->EventPtr + when) = event;
}
/* This routine is called at the beginning of
every cycle, to envoke scheduled events. */
void
ARMul_EnvokeEvent (ARMul_State * state)
{
static unsigned long then;
then = state->Now;
state->Now = ARMul_Time (state) % EVENTLISTSIZE;
if (then < state->Now)
/* Schedule events. */
EnvokeList (state, then, state->Now);
else if (then > state->Now)
{
/* Need to wrap around the list. */
EnvokeList (state, then, EVENTLISTSIZE - 1L);
EnvokeList (state, 0L, state->Now);
}
}
/* Envokes all the entries in a range. */
static void
EnvokeList (ARMul_State * state, unsigned long from, unsigned long to)
{
for (; from <= to; from++)
{
struct EventNode *anevent;
anevent = *(state->EventPtr + from);
while (anevent)
{
(anevent->func) (state);
state->EventSet--;
anevent = anevent->next;
}
*(state->EventPtr + from) = NULL;
}
}
/* This routine is returns the number of clock ticks since the last reset. */
unsigned long
ARMul_Time (ARMul_State * state)
{
return (state->NumScycles + state->NumNcycles +
state->NumIcycles + state->NumCcycles + state->NumFcycles);
}