/* simulator.c -- Interface for the AArch64 simulator. Copyright (C) 2015-2016 Free Software Foundation, Inc. Contributed by Red Hat. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "config.h" #include #include #include #include #include #include #include #include "simulator.h" #include "cpustate.h" #include "memory.h" #define NO_SP 0 #define SP_OK 1 #define TST(_flag) (aarch64_test_CPSR_bit (cpu, _flag)) #define IS_SET(_X) ( TST (( _X ))) #define IS_CLEAR(_X) (!TST (( _X ))) #define HALT_UNALLOC \ do \ { \ TRACE_DISASM (cpu, aarch64_get_PC (cpu)); \ TRACE_INSN (cpu, \ "Unallocated instruction detected at sim line %d," \ " exe addr %" PRIx64, \ __LINE__, aarch64_get_PC (cpu)); \ sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu),\ sim_stopped, SIM_SIGILL); \ } \ while (0) #define HALT_NYI \ do \ { \ TRACE_DISASM (cpu, aarch64_get_PC (cpu)); \ TRACE_INSN (cpu, \ "Unimplemented instruction detected at sim line %d," \ " exe addr %" PRIx64, \ __LINE__, aarch64_get_PC (cpu)); \ sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu),\ sim_stopped, SIM_SIGABRT); \ } \ while (0) #define NYI_assert(HI, LO, EXPECTED) \ do \ { \ if (uimm (aarch64_get_instr (cpu), (HI), (LO)) != (EXPECTED)) \ HALT_NYI; \ } \ while (0) #define HALT_UNREACHABLE \ do \ { \ TRACE_EVENTS (cpu, "ISE: unreachable code point"); \ sim_engine_abort (NULL, cpu, aarch64_get_PC (cpu), "Internal Error"); \ } \ while (0) /* Helper functions used by expandLogicalImmediate. */ /* for i = 1, ... N result = 1 other bits are zero */ static inline uint64_t ones (int N) { return (N == 64 ? (uint64_t)-1UL : ((1UL << N) - 1)); } /* result<0> to val */ static inline uint64_t pickbit (uint64_t val, int N) { return pickbits64 (val, N, N); } static uint64_t expand_logical_immediate (uint32_t S, uint32_t R, uint32_t N) { uint64_t mask; uint64_t imm; unsigned simd_size; /* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R (in other words, right rotated by R), then replicated. */ if (N != 0) { simd_size = 64; mask = 0xffffffffffffffffull; } else { switch (S) { case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break; case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break; case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break; case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break; case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break; default: return 0; } mask = (1ull << simd_size) - 1; /* Top bits are IGNORED. */ R &= simd_size - 1; } /* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */ if (S == simd_size - 1) return 0; /* S+1 consecutive bits to 1. */ /* NOTE: S can't be 63 due to detection above. */ imm = (1ull << (S + 1)) - 1; /* Rotate to the left by simd_size - R. */ if (R != 0) imm = ((imm << (simd_size - R)) & mask) | (imm >> R); /* Replicate the value according to SIMD size. */ switch (simd_size) { case 2: imm = (imm << 2) | imm; case 4: imm = (imm << 4) | imm; case 8: imm = (imm << 8) | imm; case 16: imm = (imm << 16) | imm; case 32: imm = (imm << 32) | imm; case 64: break; default: return 0; } return imm; } /* Instr[22,10] encodes N immr and imms. we want a lookup table for each possible combination i.e. 13 bits worth of int entries. */ #define LI_TABLE_SIZE (1 << 13) static uint64_t LITable[LI_TABLE_SIZE]; void aarch64_init_LIT_table (void) { unsigned index; for (index = 0; index < LI_TABLE_SIZE; index++) { uint32_t N = uimm (index, 12, 12); uint32_t immr = uimm (index, 11, 6); uint32_t imms = uimm (index, 5, 0); LITable [index] = expand_logical_immediate (imms, immr, N); } } static void dexNotify (sim_cpu *cpu) { /* instr[14,0] == type : 0 ==> method entry, 1 ==> method reentry 2 ==> exit Java, 3 ==> start next bytecode. */ uint32_t type = uimm (aarch64_get_instr (cpu), 14, 0); TRACE_EVENTS (cpu, "Notify Insn encountered, type = 0x%x", type); switch (type) { case 0: /* aarch64_notifyMethodEntry (aarch64_get_reg_u64 (cpu, R23, 0), aarch64_get_reg_u64 (cpu, R22, 0)); */ break; case 1: /* aarch64_notifyMethodReentry (aarch64_get_reg_u64 (cpu, R23, 0), aarch64_get_reg_u64 (cpu, R22, 0)); */ break; case 2: /* aarch64_notifyMethodExit (); */ break; case 3: /* aarch64_notifyBCStart (aarch64_get_reg_u64 (cpu, R23, 0), aarch64_get_reg_u64 (cpu, R22, 0)); */ break; } } /* secondary decode within top level groups */ static void dexPseudo (sim_cpu *cpu) { /* assert instr[28,27] = 00 We provide 2 pseudo instructions: HALT stops execution of the simulator causing an immediate return to the x86 code which entered it. CALLOUT initiates recursive entry into x86 code. A register argument holds the address of the x86 routine. Immediate values in the instruction identify the number of general purpose and floating point register arguments to be passed and the type of any value to be returned. */ uint32_t PSEUDO_HALT = 0xE0000000U; uint32_t PSEUDO_CALLOUT = 0x00018000U; uint32_t PSEUDO_CALLOUTR = 0x00018001U; uint32_t PSEUDO_NOTIFY = 0x00014000U; uint32_t dispatch; if (aarch64_get_instr (cpu) == PSEUDO_HALT) { TRACE_EVENTS (cpu, " Pseudo Halt Instruction"); sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_stopped, SIM_SIGTRAP); } dispatch = uimm (aarch64_get_instr (cpu), 31, 15); /* We do not handle callouts at the moment. */ if (dispatch == PSEUDO_CALLOUT || dispatch == PSEUDO_CALLOUTR) { TRACE_EVENTS (cpu, " Callout"); sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_stopped, SIM_SIGABRT); } else if (dispatch == PSEUDO_NOTIFY) dexNotify (cpu); else HALT_UNALLOC; } /* Load-store single register (unscaled offset) These instructions employ a base register plus an unscaled signed 9 bit offset. N.B. the base register (source) can be Xn or SP. all other registers may not be SP. */ /* 32 bit load 32 bit unscaled signed 9 bit. */ static void ldur32 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u32 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 64 bit load 64 bit unscaled signed 9 bit. */ static void ldur64 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u64 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 32 bit load zero-extended byte unscaled signed 9 bit. */ static void ldurb32 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u8 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 32 bit load sign-extended byte unscaled signed 9 bit. */ static void ldursb32 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rt, NO_SP, (uint32_t) aarch64_get_mem_s8 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 64 bit load sign-extended byte unscaled signed 9 bit. */ static void ldursb64 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_s64 (cpu, rt, NO_SP, aarch64_get_mem_s8 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 32 bit load zero-extended short unscaled signed 9 bit */ static void ldurh32 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_mem_u16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 32 bit load sign-extended short unscaled signed 9 bit */ static void ldursh32 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, (uint32_t) aarch64_get_mem_s16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 64 bit load sign-extended short unscaled signed 9 bit */ static void ldursh64 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_s64 (cpu, rt, NO_SP, aarch64_get_mem_s16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 64 bit load sign-extended word unscaled signed 9 bit */ static void ldursw (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, (uint32_t) aarch64_get_mem_s32 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* N.B. with stores the value in source is written to the address identified by source2 modified by offset. */ /* 32 bit store 32 bit unscaled signed 9 bit. */ static void stur32 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_mem_u32 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset, aarch64_get_reg_u32 (cpu, rd, NO_SP)); } /* 64 bit store 64 bit unscaled signed 9 bit */ static void stur64 (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_mem_u64 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset, aarch64_get_reg_u64 (cpu, rd, NO_SP)); } /* 32 bit store byte unscaled signed 9 bit */ static void sturb (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_mem_u8 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset, aarch64_get_reg_u8 (cpu, rd, NO_SP)); } /* 32 bit store short unscaled signed 9 bit */ static void sturh (sim_cpu *cpu, int32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_mem_u16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset, aarch64_get_reg_u16 (cpu, rd, NO_SP)); } /* Load single register pc-relative label Offset is a signed 19 bit immediate count in words rt may not be SP. */ /* 32 bit pc-relative load */ static void ldr32_pcrel (sim_cpu *cpu, int32_t offset) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_mem_u32 (cpu, aarch64_get_PC (cpu) + offset * 4)); } /* 64 bit pc-relative load */ static void ldr_pcrel (sim_cpu *cpu, int32_t offset) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_mem_u64 (cpu, aarch64_get_PC (cpu) + offset * 4)); } /* sign extended 32 bit pc-relative load */ static void ldrsw_pcrel (sim_cpu *cpu, int32_t offset) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_mem_s32 (cpu, aarch64_get_PC (cpu) + offset * 4)); } /* float pc-relative load */ static void fldrs_pcrel (sim_cpu *cpu, int32_t offset) { unsigned int rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, rd, aarch64_get_mem_float (cpu, aarch64_get_PC (cpu) + offset * 4)); } /* double pc-relative load */ static void fldrd_pcrel (sim_cpu *cpu, int32_t offset) { unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, st, aarch64_get_mem_double (cpu, aarch64_get_PC (cpu) + offset * 4)); } /* long double pc-relative load. */ static void fldrq_pcrel (sim_cpu *cpu, int32_t offset) { unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t addr = aarch64_get_PC (cpu) + offset * 4; FRegister a; aarch64_get_mem_long_double (cpu, addr, & a); aarch64_set_FP_long_double (cpu, st, a); } /* This can be used to scale an offset by applying the requisite shift. the second argument is either 16, 32 or 64. */ #define SCALE(_offset, _elementSize) \ ((_offset) << ScaleShift ## _elementSize) /* This can be used to optionally scale a register derived offset by applying the requisite shift as indicated by the Scaling argument. the second argument is either Byte, Short, Word or Long. The third argument is either Scaled or Unscaled. N.B. when _Scaling is Scaled the shift gets ANDed with all 1s while when it is Unscaled it gets ANDed with 0. */ #define OPT_SCALE(_offset, _elementType, _Scaling) \ ((_offset) << (_Scaling ? ScaleShift ## _elementType : 0)) /* This can be used to zero or sign extend a 32 bit register derived value to a 64 bit value. the first argument must be the value as a uint32_t and the second must be either UXTW or SXTW. The result is returned as an int64_t. */ static inline int64_t extend (uint32_t value, Extension extension) { union { uint32_t u; int32_t n; } x; /* A branchless variant of this ought to be possible. */ if (extension == UXTW || extension == NoExtension) return value; x.u = value; return x.n; } /* Scalar Floating Point FP load/store single register (4 addressing modes) N.B. the base register (source) can be the stack pointer. The secondary source register (source2) can only be an Xn register. */ /* Load 32 bit unscaled signed 9 bit with pre- or post-writeback. */ static void fldrs_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_FP_float (cpu, st, aarch64_get_mem_float (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* Load 32 bit scaled unsigned 12 bit. */ static void fldrs_abs (sim_cpu *cpu, uint32_t offset) { unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); aarch64_set_FP_float (cpu, st, aarch64_get_mem_float (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 32))); } /* Load 32 bit scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void fldrs_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 32, scaling); aarch64_set_FP_float (cpu, st, aarch64_get_mem_float (cpu, address + displacement)); } /* Load 64 bit unscaled signed 9 bit with pre- or post-writeback. */ static void fldrd_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_FP_double (cpu, st, aarch64_get_mem_double (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* Load 64 bit scaled unsigned 12 bit. */ static void fldrd_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 64); aarch64_set_FP_double (cpu, st, aarch64_get_mem_double (cpu, address)); } /* Load 64 bit scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void fldrd_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 64, scaling); fldrd_wb (cpu, displacement, NoWriteBack); } /* Load 128 bit unscaled signed 9 bit with pre- or post-writeback. */ static void fldrq_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { FRegister a; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_get_mem_long_double (cpu, address, & a); aarch64_set_FP_long_double (cpu, st, a); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* Load 128 bit scaled unsigned 12 bit. */ static void fldrq_abs (sim_cpu *cpu, uint32_t offset) { FRegister a; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 128); aarch64_get_mem_long_double (cpu, address, & a); aarch64_set_FP_long_double (cpu, st, a); } /* Load 128 bit scaled or unscaled zero- or sign-extended 32-bit register offset */ static void fldrq_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 128, scaling); fldrq_wb (cpu, displacement, NoWriteBack); } /* Memory Access load-store single register There are four addressing modes available here which all employ a 64 bit source (base) register. N.B. the base register (source) can be the stack pointer. The secondary source register (source2)can only be an Xn register. Scaled, 12-bit, unsigned immediate offset, without pre- and post-index options. Unscaled, 9-bit, signed immediate offset with pre- or post-index writeback. scaled or unscaled 64-bit register offset. scaled or unscaled 32-bit extended register offset. All offsets are assumed to be raw from the decode i.e. the simulator is expected to adjust scaled offsets based on the accessed data size with register or extended register offset versions the same applies except that in the latter case the operation may also require a sign extend. A separate method is provided for each possible addressing mode. */ /* 32 bit load 32 bit scaled unsigned 12 bit */ static void ldr32_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u32 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 32))); } /* 32 bit load 32 bit unscaled signed 9 bit with pre- or post-writeback. */ static void ldr32_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u32 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit load 32 bit scaled or unscaled zero- or sign-extended 32-bit register offset */ static void ldr32_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 32, scaling); aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u32 (cpu, address + displacement)); } /* 64 bit load 64 bit scaled unsigned 12 bit */ static void ldr_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u64 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 64))); } /* 64 bit load 64 bit unscaled signed 9 bit with pre- or post-writeback. */ static void ldr_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u64 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 64 bit load 64 bit scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldr_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 64, scaling); aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u64 (cpu, address + displacement)); } /* 32 bit load zero-extended byte scaled unsigned 12 bit. */ static void ldrb32_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be there is no scaling required for a byte load. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u8 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* 32 bit load zero-extended byte unscaled signed 9 bit with pre- or post-writeback. */ static void ldrb32_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u8 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit load zero-extended byte scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldrb32_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t displacement = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); /* There is no scaling required for a byte load. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u8 (cpu, address + displacement)); } /* 64 bit load sign-extended byte unscaled signed 9 bit with pre- or post-writeback. */ static void ldrsb_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_s8 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 64 bit load sign-extended byte scaled unsigned 12 bit. */ static void ldrsb_abs (sim_cpu *cpu, uint32_t offset) { ldrsb_wb (cpu, offset, NoWriteBack); } /* 64 bit load sign-extended byte scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldrsb_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t displacement = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); /* There is no scaling required for a byte load. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_s8 (cpu, address + displacement)); } /* 32 bit load zero-extended short scaled unsigned 12 bit. */ static void ldrh32_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 16))); } /* 32 bit load zero-extended short unscaled signed 9 bit with pre- or post-writeback. */ static void ldrh32_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u16 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit load zero-extended short scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldrh32_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 16, scaling); aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u16 (cpu, address + displacement)); } /* 32 bit load sign-extended short scaled unsigned 12 bit. */ static void ldrsh32_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, (uint32_t) aarch64_get_mem_s16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 16))); } /* 32 bit load sign-extended short unscaled signed 9 bit with pre- or post-writeback. */ static void ldrsh32_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, (uint32_t) aarch64_get_mem_s16 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit load sign-extended short scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldrsh32_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 16, scaling); aarch64_set_reg_u64 (cpu, rt, NO_SP, (uint32_t) aarch64_get_mem_s16 (cpu, address + displacement)); } /* 64 bit load sign-extended short scaled unsigned 12 bit. */ static void ldrsh_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_s16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 16))); } /* 64 bit load sign-extended short unscaled signed 9 bit with pre- or post-writeback. */ static void ldrsh64_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_s16 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 64 bit load sign-extended short scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldrsh_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 16, scaling); aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_s16 (cpu, address + displacement)); } /* 64 bit load sign-extended 32 bit scaled unsigned 12 bit. */ static void ldrsw_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ return aarch64_set_reg_s64 (cpu, rt, NO_SP, aarch64_get_mem_s32 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 32))); } /* 64 bit load sign-extended 32 bit unscaled signed 9 bit with pre- or post-writeback. */ static void ldrsw_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_reg_s64 (cpu, rt, NO_SP, aarch64_get_mem_s32 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 64 bit load sign-extended 32 bit scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldrsw_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 32, scaling); aarch64_set_reg_s64 (cpu, rt, NO_SP, aarch64_get_mem_s32 (cpu, address + displacement)); } /* N.B. with stores the value in source is written to the address identified by source2 modified by source3/offset. */ /* 32 bit store scaled unsigned 12 bit. */ static void str32_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ aarch64_set_mem_u32 (cpu, (aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 32)), aarch64_get_reg_u32 (cpu, rt, NO_SP)); } /* 32 bit store unscaled signed 9 bit with pre- or post-writeback. */ static void str32_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_mem_u32 (cpu, address, aarch64_get_reg_u32 (cpu, rt, NO_SP)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit store scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void str32_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 32, scaling); aarch64_set_mem_u32 (cpu, address + displacement, aarch64_get_reg_u64 (cpu, rt, NO_SP)); } /* 64 bit store scaled unsigned 12 bit. */ static void str_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_mem_u64 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 64), aarch64_get_reg_u64 (cpu, rt, NO_SP)); } /* 64 bit store unscaled signed 9 bit with pre- or post-writeback. */ static void str_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_mem_u64 (cpu, address, aarch64_get_reg_u64 (cpu, rt, NO_SP)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 64 bit store scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void str_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 64, scaling); aarch64_set_mem_u64 (cpu, address + displacement, aarch64_get_reg_u64 (cpu, rt, NO_SP)); } /* 32 bit store byte scaled unsigned 12 bit. */ static void strb_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. There is no scaling required for a byte load. */ aarch64_set_mem_u8 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset, aarch64_get_reg_u8 (cpu, rt, NO_SP)); } /* 32 bit store byte unscaled signed 9 bit with pre- or post-writeback. */ static void strb_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_mem_u8 (cpu, address, aarch64_get_reg_u8 (cpu, rt, NO_SP)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit store byte scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void strb_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t displacement = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); /* There is no scaling required for a byte load. */ aarch64_set_mem_u8 (cpu, address + displacement, aarch64_get_reg_u8 (cpu, rt, NO_SP)); } /* 32 bit store short scaled unsigned 12 bit. */ static void strh_abs (sim_cpu *cpu, uint32_t offset) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be. */ aarch64_set_mem_u16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 16), aarch64_get_reg_u16 (cpu, rt, NO_SP)); } /* 32 bit store short unscaled signed 9 bit with pre- or post-writeback. */ static void strh_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address; if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_mem_u16 (cpu, address, aarch64_get_reg_u16 (cpu, rt, NO_SP)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit store short scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void strh_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 16, scaling); aarch64_set_mem_u16 (cpu, address + displacement, aarch64_get_reg_u16 (cpu, rt, NO_SP)); } /* Prefetch unsigned 12 bit. */ static void prfm_abs (sim_cpu *cpu, uint32_t offset) { /* instr[4,0] = prfop : 00000 ==> PLDL1KEEP, 00001 ==> PLDL1STRM, 00010 ==> PLDL2KEEP, 00001 ==> PLDL2STRM, 00100 ==> PLDL3KEEP, 00101 ==> PLDL3STRM, 10000 ==> PSTL1KEEP, 10001 ==> PSTL1STRM, 10010 ==> PSTL2KEEP, 10001 ==> PSTL2STRM, 10100 ==> PSTL3KEEP, 10101 ==> PSTL3STRM, ow ==> UNALLOC PrfOp prfop = prfop (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 64). */ /* TODO : implement prefetch of address. */ } /* Prefetch scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void prfm_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { /* instr[4,0] = prfop : 00000 ==> PLDL1KEEP, 00001 ==> PLDL1STRM, 00010 ==> PLDL2KEEP, 00001 ==> PLDL2STRM, 00100 ==> PLDL3KEEP, 00101 ==> PLDL3STRM, 10000 ==> PSTL1KEEP, 10001 ==> PSTL1STRM, 10010 ==> PSTL2KEEP, 10001 ==> PSTL2STRM, 10100 ==> PSTL3KEEP, 10101 ==> PSTL3STRM, ow ==> UNALLOC rn may reference SP, rm may only reference ZR PrfOp prfop = prfop (aarch64_get_instr (cpu), 4, 0); uint64_t base = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 64, scaling); uint64_t address = base + displacement. */ /* TODO : implement prefetch of address */ } /* 64 bit pc-relative prefetch. */ static void prfm_pcrel (sim_cpu *cpu, int32_t offset) { /* instr[4,0] = prfop : 00000 ==> PLDL1KEEP, 00001 ==> PLDL1STRM, 00010 ==> PLDL2KEEP, 00001 ==> PLDL2STRM, 00100 ==> PLDL3KEEP, 00101 ==> PLDL3STRM, 10000 ==> PSTL1KEEP, 10001 ==> PSTL1STRM, 10010 ==> PSTL2KEEP, 10001 ==> PSTL2STRM, 10100 ==> PSTL3KEEP, 10101 ==> PSTL3STRM, ow ==> UNALLOC PrfOp prfop = prfop (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_PC (cpu) + offset. */ /* TODO : implement this */ } /* Load-store exclusive. */ static void ldxr (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int size = uimm (aarch64_get_instr (cpu), 31, 30); /* int ordered = uimm (aarch64_get_instr (cpu), 15, 15); */ /* int exclusive = ! uimm (aarch64_get_instr (cpu), 23, 23); */ switch (size) { case 0: aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u8 (cpu, address)); break; case 1: aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u16 (cpu, address)); break; case 2: aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u32 (cpu, address)); break; case 3: aarch64_set_reg_u64 (cpu, rt, NO_SP, aarch64_get_mem_u64 (cpu, address)); break; default: HALT_UNALLOC; } } static void stxr (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); unsigned rs = uimm (aarch64_get_instr (cpu), 20, 16); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int size = uimm (aarch64_get_instr (cpu), 31, 30); uint64_t data = aarch64_get_reg_u64 (cpu, rt, NO_SP); switch (size) { case 0: aarch64_set_mem_u8 (cpu, address, data); break; case 1: aarch64_set_mem_u16 (cpu, address, data); break; case 2: aarch64_set_mem_u32 (cpu, address, data); break; case 3: aarch64_set_mem_u64 (cpu, address, data); break; default: HALT_UNALLOC; } aarch64_set_reg_u64 (cpu, rs, NO_SP, 0); /* Always exclusive... */ } static void dexLoadLiteral (sim_cpu *cpu) { /* instr[29,27] == 011 instr[25,24] == 00 instr[31,30:26] = opc: 000 ==> LDRW, 001 ==> FLDRS 010 ==> LDRX, 011 ==> FLDRD 100 ==> LDRSW, 101 ==> FLDRQ 110 ==> PRFM, 111 ==> UNALLOC instr[26] ==> V : 0 ==> GReg, 1 ==> FReg instr[23, 5] == simm19 */ /* unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); */ uint32_t dispatch = ( (uimm (aarch64_get_instr (cpu), 31, 30) << 1) | uimm (aarch64_get_instr (cpu), 26, 26)); int32_t imm = simm32 (aarch64_get_instr (cpu), 23, 5); switch (dispatch) { case 0: ldr32_pcrel (cpu, imm); break; case 1: fldrs_pcrel (cpu, imm); break; case 2: ldr_pcrel (cpu, imm); break; case 3: fldrd_pcrel (cpu, imm); break; case 4: ldrsw_pcrel (cpu, imm); break; case 5: fldrq_pcrel (cpu, imm); break; case 6: prfm_pcrel (cpu, imm); break; case 7: default: HALT_UNALLOC; } } /* Immediate arithmetic The aimm argument is a 12 bit unsigned value or a 12 bit unsigned value left shifted by 12 bits (done at decode). N.B. the register args (dest, source) can normally be Xn or SP. the exception occurs for flag setting instructions which may only use Xn for the output (dest). */ /* 32 bit add immediate. */ static void add32 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u32 (cpu, rn, SP_OK) + aimm); } /* 64 bit add immediate. */ static void add64 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u64 (cpu, rn, SP_OK) + aimm); } static void set_flags_for_add32 (sim_cpu *cpu, int32_t value1, int32_t value2) { int32_t result = value1 + value2; int64_t sresult = (int64_t) value1 + (int64_t) value2; uint64_t uresult = (uint64_t)(uint32_t) value1 + (uint64_t)(uint32_t) value2; uint32_t flags = 0; if (result == 0) flags |= Z; if (result & (1 << 31)) flags |= N; if (uresult != result) flags |= C; if (sresult != result) flags |= V; aarch64_set_CPSR (cpu, flags); } static void set_flags_for_add64 (sim_cpu *cpu, uint64_t value1, uint64_t value2) { int64_t sval1 = value1; int64_t sval2 = value2; uint64_t result = value1 + value2; int64_t sresult = sval1 + sval2; uint32_t flags = 0; if (result == 0) flags |= Z; if (result & (1ULL << 63)) flags |= N; if (sval1 < 0) { if (sval2 < 0) { /* Negative plus a negative. Overflow happens if the result is greater than either of the operands. */ if (sresult > sval1 || sresult > sval2) flags |= V; } /* else Negative plus a positive. Overflow cannot happen. */ } else /* value1 is +ve. */ { if (sval2 < 0) { /* Overflow can only occur if we computed "0 - MININT". */ if (sval1 == 0 && sval2 == (1LL << 63)) flags |= V; } else { /* Postive plus positive - overflow has happened if the result is smaller than either of the operands. */ if (result < value1 || result < value2) flags |= V | C; } } aarch64_set_CPSR (cpu, flags); } #define NEG(a) (((a) & signbit) == signbit) #define POS(a) (((a) & signbit) == 0) static void set_flags_for_sub32 (sim_cpu *cpu, uint32_t value1, uint32_t value2) { uint32_t result = value1 - value2; uint32_t flags = 0; uint32_t signbit = 1ULL << 31; if (result == 0) flags |= Z; if (NEG (result)) flags |= N; if ( (NEG (value1) && POS (value2)) || (NEG (value1) && POS (result)) || (POS (value2) && POS (result))) flags |= C; if ( (NEG (value1) && POS (value2) && POS (result)) || (POS (value1) && NEG (value2) && NEG (result))) flags |= V; aarch64_set_CPSR (cpu, flags); } static void set_flags_for_sub64 (sim_cpu *cpu, uint64_t value1, uint64_t value2) { uint64_t result = value1 - value2; uint32_t flags = 0; uint64_t signbit = 1ULL << 63; if (result == 0) flags |= Z; if (NEG (result)) flags |= N; if ( (NEG (value1) && POS (value2)) || (NEG (value1) && POS (result)) || (POS (value2) && POS (result))) flags |= C; if ( (NEG (value1) && POS (value2) && POS (result)) || (POS (value1) && NEG (value2) && NEG (result))) flags |= V; aarch64_set_CPSR (cpu, flags); } static void set_flags_for_binop32 (sim_cpu *cpu, uint32_t result) { uint32_t flags = 0; if (result == 0) flags |= Z; else flags &= ~ Z; if (result & (1 << 31)) flags |= N; else flags &= ~ N; aarch64_set_CPSR (cpu, flags); } static void set_flags_for_binop64 (sim_cpu *cpu, uint64_t result) { uint32_t flags = 0; if (result == 0) flags |= Z; else flags &= ~ Z; if (result & (1ULL << 63)) flags |= N; else flags &= ~ N; aarch64_set_CPSR (cpu, flags); } /* 32 bit add immediate set flags. */ static void adds32 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* TODO : do we need to worry about signs here? */ int32_t value1 = aarch64_get_reg_s32 (cpu, rn, SP_OK); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + aimm); set_flags_for_add32 (cpu, value1, aimm); } /* 64 bit add immediate set flags. */ static void adds64 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, SP_OK); uint64_t value2 = aimm; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + value2); set_flags_for_add64 (cpu, value1, value2); } /* 32 bit sub immediate. */ static void sub32 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u32 (cpu, rn, SP_OK) - aimm); } /* 64 bit sub immediate. */ static void sub64 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u64 (cpu, rn, SP_OK) - aimm); } /* 32 bit sub immediate set flags. */ static void subs32 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u64 (cpu, rn, SP_OK); uint32_t value2 = aimm; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 - value2); set_flags_for_sub32 (cpu, value1, value2); } /* 64 bit sub immediate set flags. */ static void subs64 (sim_cpu *cpu, uint32_t aimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, SP_OK); uint32_t value2 = aimm; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 - value2); set_flags_for_sub64 (cpu, value1, value2); } /* Data Processing Register. */ /* First two helpers to perform the shift operations. */ static inline uint32_t shifted32 (uint32_t value, Shift shift, uint32_t count) { switch (shift) { default: case LSL: return (value << count); case LSR: return (value >> count); case ASR: { int32_t svalue = value; return (svalue >> count); } case ROR: { uint32_t top = value >> count; uint32_t bottom = value << (32 - count); return (bottom | top); } } } static inline uint64_t shifted64 (uint64_t value, Shift shift, uint32_t count) { switch (shift) { default: case LSL: return (value << count); case LSR: return (value >> count); case ASR: { int64_t svalue = value; return (svalue >> count); } case ROR: { uint64_t top = value >> count; uint64_t bottom = value << (64 - count); return (bottom | top); } } } /* Arithmetic shifted register. These allow an optional LSL, ASR or LSR to the second source register with a count up to the register bit count. N.B register args may not be SP. */ /* 32 bit ADD shifted register. */ static void add32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) + shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit ADD shifted register. */ static void add64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) + shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } /* 32 bit ADD shifted register setting flags. */ static void adds32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t value2 = shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + value2); set_flags_for_add32 (cpu, value1, value2); } /* 64 bit ADD shifted register setting flags. */ static void adds64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t value2 = shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + value2); set_flags_for_add64 (cpu, value1, value2); } /* 32 bit SUB shifted register. */ static void sub32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) - shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit SUB shifted register. */ static void sub64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) - shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } /* 32 bit SUB shifted register setting flags. */ static void subs32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t value2 = shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 - value2); set_flags_for_sub32 (cpu, value1, value2); } /* 64 bit SUB shifted register setting flags. */ static void subs64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t value2 = shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 - value2); set_flags_for_sub64 (cpu, value1, value2); } /* First a couple more helpers to fetch the relevant source register element either sign or zero extended as required by the extension value. */ static uint32_t extreg32 (sim_cpu *cpu, unsigned int lo, Extension extension) { switch (extension) { case UXTB: return aarch64_get_reg_u8 (cpu, lo, NO_SP); case UXTH: return aarch64_get_reg_u16 (cpu, lo, NO_SP); case UXTW: /* Fall through. */ case UXTX: return aarch64_get_reg_u32 (cpu, lo, NO_SP); case SXTB: return aarch64_get_reg_s8 (cpu, lo, NO_SP); case SXTH: return aarch64_get_reg_s16 (cpu, lo, NO_SP); case SXTW: /* Fall through. */ case SXTX: /* Fall through. */ default: return aarch64_get_reg_s32 (cpu, lo, NO_SP); } } static uint64_t extreg64 (sim_cpu *cpu, unsigned int lo, Extension extension) { switch (extension) { case UXTB: return aarch64_get_reg_u8 (cpu, lo, NO_SP); case UXTH: return aarch64_get_reg_u16 (cpu, lo, NO_SP); case UXTW: return aarch64_get_reg_u32 (cpu, lo, NO_SP); case UXTX: return aarch64_get_reg_u64 (cpu, lo, NO_SP); case SXTB: return aarch64_get_reg_s8 (cpu, lo, NO_SP); case SXTH: return aarch64_get_reg_s16 (cpu, lo, NO_SP); case SXTW: return aarch64_get_reg_s32 (cpu, lo, NO_SP); case SXTX: default: return aarch64_get_reg_s64 (cpu, lo, NO_SP); } } /* Arithmetic extending register These allow an optional sign extension of some portion of the second source register followed by an optional left shift of between 1 and 4 bits (i.e. a shift of 0-4 bits???) N.B output (dest) and first input arg (source) may normally be Xn or SP. However, for flag setting operations dest can only be Xn. Second input registers are always Xn. */ /* 32 bit ADD extending register. */ static void add32_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u32 (cpu, rn, SP_OK) + (extreg32 (cpu, rm, extension) << shift)); } /* 64 bit ADD extending register. N.B. This subsumes the case with 64 bit source2 and UXTX #n or LSL #0. */ static void add64_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u64 (cpu, rn, SP_OK) + (extreg64 (cpu, rm, extension) << shift)); } /* 32 bit ADD extending register setting flags. */ static void adds32_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, SP_OK); uint32_t value2 = extreg32 (cpu, rm, extension) << shift; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + value2); set_flags_for_add32 (cpu, value1, value2); } /* 64 bit ADD extending register setting flags */ /* N.B. this subsumes the case with 64 bit source2 and UXTX #n or LSL #0 */ static void adds64_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, SP_OK); uint64_t value2 = extreg64 (cpu, rm, extension) << shift; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + value2); set_flags_for_add64 (cpu, value1, value2); } /* 32 bit SUB extending register. */ static void sub32_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u32 (cpu, rn, SP_OK) - (extreg32 (cpu, rm, extension) << shift)); } /* 64 bit SUB extending register. */ /* N.B. this subsumes the case with 64 bit source2 and UXTX #n or LSL #0. */ static void sub64_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u64 (cpu, rn, SP_OK) - (extreg64 (cpu, rm, extension) << shift)); } /* 32 bit SUB extending register setting flags. */ static void subs32_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, SP_OK); uint32_t value2 = extreg32 (cpu, rm, extension) << shift; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 - value2); set_flags_for_sub32 (cpu, value1, value2); } /* 64 bit SUB extending register setting flags */ /* N.B. this subsumes the case with 64 bit source2 and UXTX #n or LSL #0 */ static void subs64_ext (sim_cpu *cpu, Extension extension, uint32_t shift) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, SP_OK); uint64_t value2 = extreg64 (cpu, rm, extension) << shift; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 - value2); set_flags_for_sub64 (cpu, value1, value2); } static void dexAddSubtractImmediate (sim_cpu *cpu) { /* instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30] = op : 0 ==> ADD, 1 ==> SUB instr[29] = set : 0 ==> no flags, 1 ==> set flags instr[28,24] = 10001 instr[23,22] = shift : 00 == LSL#0, 01 = LSL#12 1x = UNALLOC instr[21,10] = uimm12 instr[9,5] = Rn instr[4,0] = Rd */ /* N.B. the shift is applied at decode before calling the add/sub routine. */ uint32_t shift = uimm (aarch64_get_instr (cpu), 23, 22); uint32_t imm = uimm (aarch64_get_instr (cpu), 21, 10); uint32_t dispatch = uimm (aarch64_get_instr (cpu), 31, 29); NYI_assert (28, 24, 0x11); if (shift > 1) HALT_UNALLOC; if (shift) imm <<= 12; switch (dispatch) { case 0: add32 (cpu, imm); break; case 1: adds32 (cpu, imm); break; case 2: sub32 (cpu, imm); break; case 3: subs32 (cpu, imm); break; case 4: add64 (cpu, imm); break; case 5: adds64 (cpu, imm); break; case 6: sub64 (cpu, imm); break; case 7: subs64 (cpu, imm); break; default: HALT_UNALLOC; } } static void dexAddSubtractShiftedRegister (sim_cpu *cpu) { /* instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30,29] = op : 00 ==> ADD, 01 ==> ADDS, 10 ==> SUB, 11 ==> SUBS instr[28,24] = 01011 instr[23,22] = shift : 0 ==> LSL, 1 ==> LSR, 2 ==> ASR, 3 ==> UNALLOC instr[21] = 0 instr[20,16] = Rm instr[15,10] = count : must be 0xxxxx for 32 bit instr[9,5] = Rn instr[4,0] = Rd */ uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); /* 32 bit operations must have count[5] = 0 or else we have an UNALLOC. */ uint32_t count = uimm (aarch64_get_instr (cpu), 15, 10); /* Shift encoded as ROR is unallocated. */ Shift shiftType = shift (aarch64_get_instr (cpu), 22); /* Dispatch on size:op i.e aarch64_get_instr (cpu)[31,29]. */ uint32_t dispatch = uimm (aarch64_get_instr (cpu), 31, 29); NYI_assert (28, 24, 0x0B); NYI_assert (21, 21, 0); if (shiftType == ROR) HALT_UNALLOC; if (!size && uimm (count, 5, 5)) HALT_UNALLOC; switch (dispatch) { case 0: add32_shift (cpu, shiftType, count); break; case 1: adds32_shift (cpu, shiftType, count); break; case 2: sub32_shift (cpu, shiftType, count); break; case 3: subs32_shift (cpu, shiftType, count); break; case 4: add64_shift (cpu, shiftType, count); break; case 5: adds64_shift (cpu, shiftType, count); break; case 6: sub64_shift (cpu, shiftType, count); break; case 7: subs64_shift (cpu, shiftType, count); break; default: HALT_UNALLOC; } } static void dexAddSubtractExtendedRegister (sim_cpu *cpu) { /* instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30] = op : 0 ==> ADD, 1 ==> SUB instr[29] = set? : 0 ==> no flags, 1 ==> set flags instr[28,24] = 01011 instr[23,22] = opt : 0 ==> ok, 1,2,3 ==> UNALLOC instr[21] = 1 instr[20,16] = Rm instr[15,13] = option : 000 ==> UXTB, 001 ==> UXTH, 000 ==> LSL|UXTW, 001 ==> UXTZ, 000 ==> SXTB, 001 ==> SXTH, 000 ==> SXTW, 001 ==> SXTX, instr[12,10] = shift : 0,1,2,3,4 ==> ok, 5,6,7 ==> UNALLOC instr[9,5] = Rn instr[4,0] = Rd */ Extension extensionType = extension (aarch64_get_instr (cpu), 13); uint32_t shift = uimm (aarch64_get_instr (cpu), 12, 10); /* dispatch on size:op:set? i.e aarch64_get_instr (cpu)[31,29] */ uint32_t dispatch = uimm (aarch64_get_instr (cpu), 31, 29); NYI_assert (28, 24, 0x0B); NYI_assert (21, 21, 1); /* Shift may not exceed 4. */ if (shift > 4) HALT_UNALLOC; switch (dispatch) { case 0: add32_ext (cpu, extensionType, shift); break; case 1: adds32_ext (cpu, extensionType, shift); break; case 2: sub32_ext (cpu, extensionType, shift); break; case 3: subs32_ext (cpu, extensionType, shift); break; case 4: add64_ext (cpu, extensionType, shift); break; case 5: adds64_ext (cpu, extensionType, shift); break; case 6: sub64_ext (cpu, extensionType, shift); break; case 7: subs64_ext (cpu, extensionType, shift); break; default: HALT_UNALLOC; } } /* Conditional data processing Condition register is implicit 3rd source. */ /* 32 bit add with carry. */ /* N.B register args may not be SP. */ static void adc32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) + aarch64_get_reg_u32 (cpu, rm, NO_SP) + IS_SET (C)); } /* 64 bit add with carry */ static void adc64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) + aarch64_get_reg_u64 (cpu, rm, NO_SP) + IS_SET (C)); } /* 32 bit add with carry setting flags. */ static void adcs32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t value2 = aarch64_get_reg_u32 (cpu, rm, NO_SP); uint32_t carry = IS_SET (C); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + value2 + carry); set_flags_for_add32 (cpu, value1, value2 + carry); } /* 64 bit add with carry setting flags. */ static void adcs64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t value2 = aarch64_get_reg_u64 (cpu, rm, NO_SP); uint64_t carry = IS_SET (C); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 + value2 + carry); set_flags_for_add64 (cpu, value1, value2 + carry); } /* 32 bit sub with carry. */ static void sbc32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) - aarch64_get_reg_u32 (cpu, rm, NO_SP) - 1 + IS_SET (C)); } /* 64 bit sub with carry */ static void sbc64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) - aarch64_get_reg_u64 (cpu, rm, NO_SP) - 1 + IS_SET (C)); } /* 32 bit sub with carry setting flags */ static void sbcs32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t value2 = aarch64_get_reg_u32 (cpu, rm, NO_SP); uint32_t carry = IS_SET (C); uint32_t result = value1 - value2 + 1 - carry; aarch64_set_reg_u64 (cpu, rd, NO_SP, result); set_flags_for_sub32 (cpu, value1, value2 + 1 - carry); } /* 64 bit sub with carry setting flags */ static void sbcs64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t value2 = aarch64_get_reg_u64 (cpu, rm, NO_SP); uint64_t carry = IS_SET (C); uint64_t result = value1 - value2 + 1 - carry; aarch64_set_reg_u64 (cpu, rd, NO_SP, result); set_flags_for_sub64 (cpu, value1, value2 + 1 - carry); } static void dexAddSubtractWithCarry (sim_cpu *cpu) { /* instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30] = op : 0 ==> ADC, 1 ==> SBC instr[29] = set? : 0 ==> no flags, 1 ==> set flags instr[28,21] = 1 1010 000 instr[20,16] = Rm instr[15,10] = op2 : 00000 ==> ok, ow ==> UNALLOC instr[9,5] = Rn instr[4,0] = Rd */ uint32_t op2 = uimm (aarch64_get_instr (cpu), 15, 10); /* Dispatch on size:op:set? i.e aarch64_get_instr (cpu)[31,29] */ uint32_t dispatch = uimm (aarch64_get_instr (cpu), 31, 29); NYI_assert (28, 21, 0xD0); if (op2 != 0) HALT_UNALLOC; switch (dispatch) { case 0: adc32 (cpu); break; case 1: adcs32 (cpu); break; case 2: sbc32 (cpu); break; case 3: sbcs32 (cpu); break; case 4: adc64 (cpu); break; case 5: adcs64 (cpu); break; case 6: sbc64 (cpu); break; case 7: sbcs64 (cpu); break; default: HALT_UNALLOC; } } static uint32_t testConditionCode (sim_cpu *cpu, CondCode cc) { /* This should be reduceable to branchless logic by some careful testing of bits in CC followed by the requisite masking and combining of bits from the flag register. For now we do it with a switch. */ int res; switch (cc) { case EQ: res = IS_SET (Z); break; case NE: res = IS_CLEAR (Z); break; case CS: res = IS_SET (C); break; case CC: res = IS_CLEAR (C); break; case MI: res = IS_SET (N); break; case PL: res = IS_CLEAR (N); break; case VS: res = IS_SET (V); break; case VC: res = IS_CLEAR (V); break; case HI: res = IS_SET (C) && IS_CLEAR (Z); break; case LS: res = IS_CLEAR (C) || IS_SET (Z); break; case GE: res = IS_SET (N) == IS_SET (V); break; case LT: res = IS_SET (N) != IS_SET (V); break; case GT: res = IS_CLEAR (Z) && (IS_SET (N) == IS_SET (V)); break; case LE: res = IS_SET (Z) || (IS_SET (N) != IS_SET (V)); break; case AL: case NV: default: res = 1; break; } return res; } static void CondCompare (sim_cpu *cpu) /* aka: ccmp and ccmn */ { /* instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30] = compare with positive (0) or negative value (1) instr[29,21] = 1 1101 0010 instr[20,16] = Rm or const instr[15,12] = cond instr[11] = compare reg (0) or const (1) instr[10] = 0 instr[9,5] = Rn instr[4] = 0 instr[3,0] = value for CPSR bits if the comparison does not take place. */ signed int negate; unsigned rm; unsigned rn; NYI_assert (29, 21, 0x1d2); NYI_assert (10, 10, 0); NYI_assert (4, 4, 0); if (! testConditionCode (cpu, uimm (aarch64_get_instr (cpu), 15, 12))) { aarch64_set_CPSR (cpu, uimm (aarch64_get_instr (cpu), 3, 0)); return; } negate = uimm (aarch64_get_instr (cpu), 30, 30) ? -1 : 1; rm = uimm (aarch64_get_instr (cpu), 20, 16); rn = uimm (aarch64_get_instr (cpu), 9, 5); if (uimm (aarch64_get_instr (cpu), 31, 31)) { if (uimm (aarch64_get_instr (cpu), 11, 11)) set_flags_for_sub64 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK), negate * (uint64_t) rm); else set_flags_for_sub64 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK), negate * aarch64_get_reg_u64 (cpu, rm, SP_OK)); } else { if (uimm (aarch64_get_instr (cpu), 11, 11)) set_flags_for_sub32 (cpu, aarch64_get_reg_u32 (cpu, rn, SP_OK), negate * rm); else set_flags_for_sub32 (cpu, aarch64_get_reg_u32 (cpu, rn, SP_OK), negate * aarch64_get_reg_u32 (cpu, rm, SP_OK)); } } static void do_vec_MOV_whole_vector (sim_cpu *cpu) { /* MOV Vd.T, Vs.T (alias for ORR Vd.T, Vn.T, Vm.T where Vn == Vm) instr[31] = 0 instr[30] = half(0)/full(1) instr[29,21] = 001110101 instr[20,16] = Vs instr[15,10] = 000111 instr[9,5] = Vs instr[4,0] = Vd */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (29, 21, 0x075); NYI_assert (15, 10, 0x07); if (uimm (aarch64_get_instr (cpu), 20, 16) != vs) HALT_NYI; if (uimm (aarch64_get_instr (cpu), 30, 30)) aarch64_set_vec_u64 (cpu, vd, 1, aarch64_get_vec_u64 (cpu, vs, 1)); aarch64_set_vec_u64 (cpu, vd, 0, aarch64_get_vec_u64 (cpu, vs, 0)); } static void do_vec_MOV_into_scalar (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = word(0)/long(1) instr[29,21] = 00 1110 000 instr[20,18] = element size and index instr[17,10] = 00 0011 11 instr[9,5] = V source instr[4,0] = R dest */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (29, 21, 0x070); NYI_assert (17, 10, 0x0F); switch (uimm (aarch64_get_instr (cpu), 20, 18)) { case 0x2: aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u64 (cpu, vs, 0)); break; case 0x6: aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u64 (cpu, vs, 1)); break; case 0x1: case 0x3: case 0x5: case 0x7: aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u32 (cpu, vs, uimm (aarch64_get_instr (cpu), 20, 19))); break; default: HALT_NYI; } } static void do_vec_INS (sim_cpu *cpu) { /* instr[31,21] = 01001110000 instr[20,16] = element size and index instr[15,10] = 000111 instr[9,5] = W source instr[4,0] = V dest */ int index; unsigned rs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 21, 0x270); NYI_assert (15, 10, 0x07); if (uimm (aarch64_get_instr (cpu), 16, 16)) { index = uimm (aarch64_get_instr (cpu), 20, 17); aarch64_set_vec_u8 (cpu, vd, index, aarch64_get_reg_u8 (cpu, rs, NO_SP)); } else if (uimm (aarch64_get_instr (cpu), 17, 17)) { index = uimm (aarch64_get_instr (cpu), 20, 18); aarch64_set_vec_u16 (cpu, vd, index, aarch64_get_reg_u16 (cpu, rs, NO_SP)); } else if (uimm (aarch64_get_instr (cpu), 18, 18)) { index = uimm (aarch64_get_instr (cpu), 20, 19); aarch64_set_vec_u32 (cpu, vd, index, aarch64_get_reg_u32 (cpu, rs, NO_SP)); } else if (uimm (aarch64_get_instr (cpu), 19, 19)) { index = uimm (aarch64_get_instr (cpu), 20, 20); aarch64_set_vec_u64 (cpu, vd, index, aarch64_get_reg_u64 (cpu, rs, NO_SP)); } else HALT_NYI; } static void do_vec_DUP_vector_into_vector (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,21] = 00 1110 000 instr[20,16] = element size and index instr[15,10] = 0000 01 instr[9,5] = V source instr[4,0] = V dest. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); int i, index; NYI_assert (29, 21, 0x070); NYI_assert (15, 10, 0x01); if (uimm (aarch64_get_instr (cpu), 16, 16)) { index = uimm (aarch64_get_instr (cpu), 20, 17); for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vs, index)); } else if (uimm (aarch64_get_instr (cpu), 17, 17)) { index = uimm (aarch64_get_instr (cpu), 20, 18); for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vs, index)); } else if (uimm (aarch64_get_instr (cpu), 18, 18)) { index = uimm (aarch64_get_instr (cpu), 20, 19); for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vs, index)); } else { if (uimm (aarch64_get_instr (cpu), 19, 19) == 0) HALT_UNALLOC; if (! full) HALT_UNALLOC; index = uimm (aarch64_get_instr (cpu), 20, 20); for (i = 0; i < 2; i++) aarch64_set_vec_u64 (cpu, vd, i, aarch64_get_vec_u64 (cpu, vs, index)); } } static void do_vec_TBL (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,21] = 00 1110 000 instr[20,16] = Vm instr[15] = 0 instr[14,13] = vec length instr[12,10] = 000 instr[9,5] = V start instr[4,0] = V dest */ int full = uimm (aarch64_get_instr (cpu), 30, 30); int len = uimm (aarch64_get_instr (cpu), 14, 13) + 1; unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 21, 0x070); NYI_assert (12, 10, 0); for (i = 0; i < (full ? 16 : 8); i++) { unsigned int selector = aarch64_get_vec_u8 (cpu, vm, i); uint8_t val; if (selector < 16) val = aarch64_get_vec_u8 (cpu, vn, selector); else if (selector < 32) val = len < 2 ? 0 : aarch64_get_vec_u8 (cpu, vn + 1, selector - 16); else if (selector < 48) val = len < 3 ? 0 : aarch64_get_vec_u8 (cpu, vn + 2, selector - 32); else if (selector < 64) val = len < 4 ? 0 : aarch64_get_vec_u8 (cpu, vn + 3, selector - 48); else val = 0; aarch64_set_vec_u8 (cpu, vd, i, val); } } static void do_vec_TRN (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 00 1110 instr[23,22] = size instr[21] = 0 instr[20,16] = Vm instr[15] = 0 instr[14] = TRN1 (0) / TRN2 (1) instr[13,10] = 1010 instr[9,5] = V source instr[4,0] = V dest. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); int second = uimm (aarch64_get_instr (cpu), 14, 14); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 24, 0x0E); NYI_assert (13, 10, 0xA); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 8 : 4); i++) { aarch64_set_vec_u8 (cpu, vd, i * 2, aarch64_get_vec_u8 (cpu, second ? vm : vn, i * 2)); aarch64_set_vec_u8 (cpu, vd, 1 * 2 + 1, aarch64_get_vec_u8 (cpu, second ? vn : vm, i * 2 + 1)); } break; case 1: for (i = 0; i < (full ? 4 : 2); i++) { aarch64_set_vec_u16 (cpu, vd, i * 2, aarch64_get_vec_u16 (cpu, second ? vm : vn, i * 2)); aarch64_set_vec_u16 (cpu, vd, 1 * 2 + 1, aarch64_get_vec_u16 (cpu, second ? vn : vm, i * 2 + 1)); } break; case 2: aarch64_set_vec_u32 (cpu, vd, 0, aarch64_get_vec_u32 (cpu, second ? vm : vn, 0)); aarch64_set_vec_u32 (cpu, vd, 1, aarch64_get_vec_u32 (cpu, second ? vn : vm, 1)); aarch64_set_vec_u32 (cpu, vd, 2, aarch64_get_vec_u32 (cpu, second ? vm : vn, 2)); aarch64_set_vec_u32 (cpu, vd, 3, aarch64_get_vec_u32 (cpu, second ? vn : vm, 3)); break; case 3: if (! full) HALT_UNALLOC; aarch64_set_vec_u64 (cpu, vd, 0, aarch64_get_vec_u64 (cpu, second ? vm : vn, 0)); aarch64_set_vec_u64 (cpu, vd, 1, aarch64_get_vec_u64 (cpu, second ? vn : vm, 1)); break; default: HALT_UNALLOC; } } static void do_vec_DUP_scalar_into_vector (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = 0=> zero top 64-bits, 1=> duplicate into top 64-bits [must be 1 for 64-bit xfer] instr[29,20] = 00 1110 0000 instr[19,16] = element size: 0001=> 8-bits, 0010=> 16-bits, 0100=> 32-bits. 1000=>64-bits instr[15,10] = 0000 11 instr[9,5] = W source instr[4,0] = V dest. */ unsigned i; unsigned Vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned Rs = uimm (aarch64_get_instr (cpu), 9, 5); int both = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 20, 0x0E0); NYI_assert (15, 10, 0x03); switch (uimm (aarch64_get_instr (cpu), 19, 16)) { case 1: for (i = 0; i < (both ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, Vd, i, aarch64_get_reg_u8 (cpu, Rs, NO_SP)); break; case 2: for (i = 0; i < (both ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, Vd, i, aarch64_get_reg_u16 (cpu, Rs, NO_SP)); break; case 4: for (i = 0; i < (both ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, Vd, i, aarch64_get_reg_u32 (cpu, Rs, NO_SP)); break; case 8: if (!both) HALT_NYI; aarch64_set_vec_u64 (cpu, Vd, 0, aarch64_get_reg_u64 (cpu, Rs, NO_SP)); aarch64_set_vec_u64 (cpu, Vd, 1, aarch64_get_reg_u64 (cpu, Rs, NO_SP)); break; default: HALT_NYI; } } static void do_vec_UZP (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 00 1110 instr[23,22] = size: byte(00), half(01), word (10), long (11) instr[21] = 0 instr[20,16] = Vm instr[15] = 0 instr[14] = lower (0) / upper (1) instr[13,10] = 0110 instr[9,5] = Vn instr[4,0] = Vd. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); int upper = uimm (aarch64_get_instr (cpu), 14, 14); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t val_m1 = aarch64_get_vec_u64 (cpu, vm, 0); uint64_t val_m2 = aarch64_get_vec_u64 (cpu, vm, 1); uint64_t val_n1 = aarch64_get_vec_u64 (cpu, vn, 0); uint64_t val_n2 = aarch64_get_vec_u64 (cpu, vn, 1); uint64_t val1 = 0; uint64_t val2 = 0; uint64_t input1 = upper ? val_n1 : val_m1; uint64_t input2 = upper ? val_n2 : val_m2; unsigned i; NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 0); NYI_assert (15, 15, 0); NYI_assert (13, 10, 6); switch (uimm (aarch64_get_instr (cpu), 23, 23)) { case 0: for (i = 0; i < 8; i++) { val1 |= (input1 >> (i * 8)) & (0xFFULL << (i * 8)); val2 |= (input2 >> (i * 8)) & (0xFFULL << (i * 8)); } break; case 1: for (i = 0; i < 4; i++) { val1 |= (input1 >> (i * 16)) & (0xFFFFULL << (i * 16)); val2 |= (input2 >> (i * 16)) & (0xFFFFULL << (i * 16)); } break; case 2: val1 = ((input1 & 0xFFFFFFFF) | ((input1 >> 32) & 0xFFFFFFFF00000000ULL)); val2 = ((input2 & 0xFFFFFFFF) | ((input2 >> 32) & 0xFFFFFFFF00000000ULL)); case 3: val1 = input1; val2 = input2; break; } aarch64_set_vec_u64 (cpu, vd, 0, val1); if (full) aarch64_set_vec_u64 (cpu, vd, 1, val2); } static void do_vec_ZIP (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 00 1110 instr[23,22] = size: byte(00), hald(01), word (10), long (11) instr[21] = 0 instr[20,16] = Vm instr[15] = 0 instr[14] = lower (0) / upper (1) instr[13,10] = 1110 instr[9,5] = Vn instr[4,0] = Vd. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); int upper = uimm (aarch64_get_instr (cpu), 14, 14); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t val_m1 = aarch64_get_vec_u64 (cpu, vm, 0); uint64_t val_m2 = aarch64_get_vec_u64 (cpu, vm, 1); uint64_t val_n1 = aarch64_get_vec_u64 (cpu, vn, 0); uint64_t val_n2 = aarch64_get_vec_u64 (cpu, vn, 1); uint64_t val1 = 0; uint64_t val2 = 0; uint64_t input1 = upper ? val_n1 : val_m1; uint64_t input2 = upper ? val_n2 : val_m2; NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 0); NYI_assert (15, 15, 0); NYI_assert (13, 10, 0xE); switch (uimm (aarch64_get_instr (cpu), 23, 23)) { case 0: val1 = ((input1 << 0) & (0xFF << 0)) | ((input2 << 8) & (0xFF << 8)) | ((input1 << 8) & (0xFF << 16)) | ((input2 << 16) & (0xFF << 24)) | ((input1 << 16) & (0xFFULL << 32)) | ((input2 << 24) & (0xFFULL << 40)) | ((input1 << 24) & (0xFFULL << 48)) | ((input2 << 32) & (0xFFULL << 56)); val2 = ((input1 >> 32) & (0xFF << 0)) | ((input2 >> 24) & (0xFF << 8)) | ((input1 >> 24) & (0xFF << 16)) | ((input2 >> 16) & (0xFF << 24)) | ((input1 >> 16) & (0xFFULL << 32)) | ((input2 >> 8) & (0xFFULL << 40)) | ((input1 >> 8) & (0xFFULL << 48)) | ((input2 >> 0) & (0xFFULL << 56)); break; case 1: val1 = ((input1 << 0) & (0xFFFF << 0)) | ((input2 << 16) & (0xFFFF << 16)) | ((input1 << 16) & (0xFFFFULL << 32)) | ((input2 << 32) & (0xFFFFULL << 48)); val2 = ((input1 >> 32) & (0xFFFF << 0)) | ((input2 >> 16) & (0xFFFF << 16)) | ((input1 >> 16) & (0xFFFFULL << 32)) | ((input2 >> 0) & (0xFFFFULL << 48)); break; case 2: val1 = (input1 & 0xFFFFFFFFULL) | (input2 << 32); val2 = (input2 & 0xFFFFFFFFULL) | (input1 << 32); break; case 3: val1 = input1; val2 = input2; break; } aarch64_set_vec_u64 (cpu, vd, 0, val1); if (full) aarch64_set_vec_u64 (cpu, vd, 1, val2); } /* Floating point immediates are encoded in 8 bits. fpimm[7] = sign bit. fpimm[6:4] = signed exponent. fpimm[3:0] = fraction (assuming leading 1). i.e. F = s * 1.f * 2^(e - b). */ static float fp_immediate_for_encoding_32 (uint32_t imm8) { float u; uint32_t s, e, f, i; s = (imm8 >> 7) & 0x1; e = (imm8 >> 4) & 0x7; f = imm8 & 0xf; /* The fp value is s * n/16 * 2r where n is 16+e. */ u = (16.0 + f) / 16.0; /* N.B. exponent is signed. */ if (e < 4) { int epos = e; for (i = 0; i <= epos; i++) u *= 2.0; } else { int eneg = 7 - e; for (i = 0; i < eneg; i++) u /= 2.0; } if (s) u = - u; return u; } static double fp_immediate_for_encoding_64 (uint32_t imm8) { double u; uint32_t s, e, f, i; s = (imm8 >> 7) & 0x1; e = (imm8 >> 4) & 0x7; f = imm8 & 0xf; /* The fp value is s * n/16 * 2r where n is 16+e. */ u = (16.0 + f) / 16.0; /* N.B. exponent is signed. */ if (e < 4) { int epos = e; for (i = 0; i <= epos; i++) u *= 2.0; } else { int eneg = 7 - e; for (i = 0; i < eneg; i++) u /= 2.0; } if (s) u = - u; return u; } static void do_vec_MOV_immediate (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29,19] = 00111100000 instr[18,16] = high 3 bits of uimm8 instr[15,12] = size & shift: 0000 => 32-bit 0010 => 32-bit + LSL#8 0100 => 32-bit + LSL#16 0110 => 32-bit + LSL#24 1010 => 16-bit + LSL#8 1000 => 16-bit 1101 => 32-bit + MSL#16 1100 => 32-bit + MSL#8 1110 => 8-bit 1111 => double instr[11,10] = 01 instr[9,5] = low 5-bits of uimm8 instr[4,0] = Vd. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned val = uimm (aarch64_get_instr (cpu), 18, 16) << 5 | uimm (aarch64_get_instr (cpu), 9, 5); unsigned i; NYI_assert (29, 19, 0x1E0); NYI_assert (11, 10, 1); switch (uimm (aarch64_get_instr (cpu), 15, 12)) { case 0x0: /* 32-bit, no shift. */ case 0x2: /* 32-bit, shift by 8. */ case 0x4: /* 32-bit, shift by 16. */ case 0x6: /* 32-bit, shift by 24. */ val <<= (8 * uimm (aarch64_get_instr (cpu), 14, 13)); for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, val); break; case 0xa: /* 16-bit, shift by 8. */ val <<= 8; /* Fall through. */ case 0x8: /* 16-bit, no shift. */ for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, val); /* Fall through. */ case 0xd: /* 32-bit, mask shift by 16. */ val <<= 8; val |= 0xFF; /* Fall through. */ case 0xc: /* 32-bit, mask shift by 8. */ val <<= 8; val |= 0xFF; for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, val); break; case 0xe: /* 8-bit, no shift. */ for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, val); break; case 0xf: /* FMOV Vs.{2|4}S, #fpimm. */ { float u = fp_immediate_for_encoding_32 (val); for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, u); break; } default: HALT_NYI; } } static void do_vec_MVNI (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29,19] = 10111100000 instr[18,16] = high 3 bits of uimm8 instr[15,12] = selector instr[11,10] = 01 instr[9,5] = low 5-bits of uimm8 instr[4,0] = Vd. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned val = uimm (aarch64_get_instr (cpu), 18, 16) << 5 | uimm (aarch64_get_instr (cpu), 9, 5); unsigned i; NYI_assert (29, 19, 0x5E0); NYI_assert (11, 10, 1); switch (uimm (aarch64_get_instr (cpu), 15, 12)) { case 0x0: /* 32-bit, no shift. */ case 0x2: /* 32-bit, shift by 8. */ case 0x4: /* 32-bit, shift by 16. */ case 0x6: /* 32-bit, shift by 24. */ val <<= (8 * uimm (aarch64_get_instr (cpu), 14, 13)); val = ~ val; for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, val); return; case 0xa: /* 16-bit, 8 bit shift. */ val <<= 8; case 0x8: /* 16-bit, no shift. */ val = ~ val; for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, val); return; case 0xd: /* 32-bit, mask shift by 16. */ val <<= 8; val |= 0xFF; case 0xc: /* 32-bit, mask shift by 8. */ val <<= 8; val |= 0xFF; val = ~ val; for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, val); return; case 0xE: /* MOVI Dn, #mask64 */ { uint64_t mask = 0; for (i = 0; i < 8; i++) if (val & (1 << i)) mask |= (0xF << (i * 4)); aarch64_set_vec_u64 (cpu, vd, 0, mask); aarch64_set_vec_u64 (cpu, vd, 1, 0); return; } case 0xf: /* FMOV Vd.2D, #fpimm. */ { double u = fp_immediate_for_encoding_64 (val); if (! full) HALT_UNALLOC; aarch64_set_vec_double (cpu, vd, 0, u); aarch64_set_vec_double (cpu, vd, 1, u); return; } default: HALT_NYI; } } #define ABS(A) ((A) < 0 ? - (A) : (A)) static void do_vec_ABS (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 00 1110 instr[23,22] = size: 00=> 8-bit, 01=> 16-bit, 10=> 32-bit, 11=> 64-bit instr[21,10] = 10 0000 1011 10 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned i; NYI_assert (29, 24, 0x0E); NYI_assert (21, 10, 0x82E); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_s8 (cpu, vd, i, ABS (aarch64_get_vec_s8 (cpu, vn, i))); break; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_s16 (cpu, vd, i, ABS (aarch64_get_vec_s16 (cpu, vn, i))); break; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_s32 (cpu, vd, i, ABS (aarch64_get_vec_s32 (cpu, vn, i))); break; case 3: if (! full) HALT_NYI; for (i = 0; i < 2; i++) aarch64_set_vec_s64 (cpu, vd, i, ABS (aarch64_get_vec_s64 (cpu, vn, i))); break; } } static void do_vec_ADDV (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29,24] = 00 1110 instr[23,22] = size: 00=> 8-bit, 01=> 16-bit, 10=> 32-bit, 11=> 64-bit instr[21,10] = 11 0001 1011 10 instr[9,5] = Vm instr[4.0] = Rd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; uint64_t val = 0; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 24, 0x0E); NYI_assert (21, 10, 0xC6E); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) val += aarch64_get_vec_u8 (cpu, vm, i); aarch64_set_reg_u64 (cpu, rd, NO_SP, val); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) val += aarch64_get_vec_u16 (cpu, vm, i); aarch64_set_reg_u64 (cpu, rd, NO_SP, val); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) val += aarch64_get_vec_u32 (cpu, vm, i); aarch64_set_reg_u64 (cpu, rd, NO_SP, val); return; case 3: if (! full) HALT_UNALLOC; val = aarch64_get_vec_u64 (cpu, vm, 0); val += aarch64_get_vec_u64 (cpu, vm, 1); aarch64_set_reg_u64 (cpu, rd, NO_SP, val); return; default: HALT_UNREACHABLE; } } static void do_vec_ins_2 (sim_cpu *cpu) { /* instr[31,21] = 01001110000 instr[20,18] = size & element selector instr[17,14] = 0000 instr[13] = direction: to vec(0), from vec (1) instr[12,10] = 111 instr[9,5] = Vm instr[4,0] = Vd. */ unsigned elem; unsigned vm = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 21, 0x270); NYI_assert (17, 14, 0); NYI_assert (12, 10, 7); if (uimm (aarch64_get_instr (cpu), 13, 13) == 1) { if (uimm (aarch64_get_instr (cpu), 18, 18) == 1) { /* 32-bit moves. */ elem = uimm (aarch64_get_instr (cpu), 20, 19); aarch64_set_reg_u64 (cpu, vd, NO_SP, aarch64_get_vec_u32 (cpu, vm, elem)); } else { /* 64-bit moves. */ if (uimm (aarch64_get_instr (cpu), 19, 19) != 1) HALT_NYI; elem = uimm (aarch64_get_instr (cpu), 20, 20); aarch64_set_reg_u64 (cpu, vd, NO_SP, aarch64_get_vec_u64 (cpu, vm, elem)); } } else { if (uimm (aarch64_get_instr (cpu), 18, 18) == 1) { /* 32-bit moves. */ elem = uimm (aarch64_get_instr (cpu), 20, 19); aarch64_set_vec_u32 (cpu, vd, elem, aarch64_get_reg_u32 (cpu, vm, NO_SP)); } else { /* 64-bit moves. */ if (uimm (aarch64_get_instr (cpu), 19, 19) != 1) HALT_NYI; elem = uimm (aarch64_get_instr (cpu), 20, 20); aarch64_set_vec_u64 (cpu, vd, elem, aarch64_get_reg_u64 (cpu, vm, NO_SP)); } } } static void do_vec_mull (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = lower(0)/upper(1) selector instr[29] = signed(0)/unsigned(1) instr[28,24] = 0 1110 instr[23,22] = size: 8-bit (00), 16-bit (01), 32-bit (10) instr[21] = 1 instr[20,16] = Vm instr[15,10] = 11 0000 instr[9,5] = Vn instr[4.0] = Vd. */ int unsign = uimm (aarch64_get_instr (cpu), 29, 29); int bias = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (28, 24, 0x0E); NYI_assert (15, 10, 0x30); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: if (bias) bias = 8; if (unsign) for (i = 0; i < 8; i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i + bias) * aarch64_get_vec_u8 (cpu, vm, i + bias)); else for (i = 0; i < 8; i++) aarch64_set_vec_s16 (cpu, vd, i, aarch64_get_vec_s8 (cpu, vn, i + bias) * aarch64_get_vec_s8 (cpu, vm, i + bias)); return; case 1: if (bias) bias = 4; if (unsign) for (i = 0; i < 4; i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vn, i + bias) * aarch64_get_vec_u16 (cpu, vm, i + bias)); else for (i = 0; i < 4; i++) aarch64_set_vec_s32 (cpu, vd, i, aarch64_get_vec_s16 (cpu, vn, i + bias) * aarch64_get_vec_s16 (cpu, vm, i + bias)); return; case 2: if (bias) bias = 2; if (unsign) for (i = 0; i < 2; i++) aarch64_set_vec_u64 (cpu, vd, i, (uint64_t) aarch64_get_vec_u32 (cpu, vn, i + bias) * (uint64_t) aarch64_get_vec_u32 (cpu, vm, i + bias)); else for (i = 0; i < 2; i++) aarch64_set_vec_s64 (cpu, vd, i, aarch64_get_vec_s32 (cpu, vn, i + bias) * aarch64_get_vec_s32 (cpu, vm, i + bias)); return; case 3: default: HALT_NYI; } } static void do_vec_fadd (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 001110 instr[23] = FADD(0)/FSUB(1) instr[22] = float (0)/double(1) instr[21] = 1 instr[20,16] = Vm instr[15,10] = 110101 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x35); if (uimm (aarch64_get_instr (cpu), 23, 23)) { if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_NYI; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, aarch64_get_vec_double (cpu, vn, i) - aarch64_get_vec_double (cpu, vm, i)); } else { for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, aarch64_get_vec_float (cpu, vn, i) - aarch64_get_vec_float (cpu, vm, i)); } } else { if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_NYI; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, aarch64_get_vec_double (cpu, vm, i) + aarch64_get_vec_double (cpu, vn, i)); } else { for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, aarch64_get_vec_float (cpu, vm, i) + aarch64_get_vec_float (cpu, vn, i)); } } } static void do_vec_add (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29,24] = 001110 instr[23,22] = size: 00=> 8-bit, 01=> 16-bit, 10=> 32-bit, 11=> 64-bit instr[21] = 1 instr[20,16] = Vn instr[15,10] = 100001 instr[9,5] = Vm instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x21); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i) + aarch64_get_vec_u8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vn, i) + aarch64_get_vec_u16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vn, i) + aarch64_get_vec_u32 (cpu, vm, i)); return; case 3: if (! full) HALT_UNALLOC; aarch64_set_vec_u64 (cpu, vd, 0, aarch64_get_vec_u64 (cpu, vn, 0) + aarch64_get_vec_u64 (cpu, vm, 0)); aarch64_set_vec_u64 (cpu, vd, 1, aarch64_get_vec_u64 (cpu, vn, 1) + aarch64_get_vec_u64 (cpu, vm, 1)); return; default: HALT_UNREACHABLE; } } static void do_vec_mul (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29,24] = 00 1110 instr[23,22] = size: 00=> 8-bit, 01=> 16-bit, 10=> 32-bit instr[21] = 1 instr[20,16] = Vn instr[15,10] = 10 0111 instr[9,5] = Vm instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x27); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) { uint16_t val = aarch64_get_vec_u8 (cpu, vn, i); val *= aarch64_get_vec_u8 (cpu, vm, i); aarch64_set_vec_u16 (cpu, vd, i, val); } return; case 1: for (i = 0; i < (full ? 8 : 4); i++) { uint32_t val = aarch64_get_vec_u16 (cpu, vn, i); val *= aarch64_get_vec_u16 (cpu, vm, i); aarch64_set_vec_u32 (cpu, vd, i, val); } return; case 2: for (i = 0; i < (full ? 4 : 2); i++) { uint64_t val = aarch64_get_vec_u32 (cpu, vn, i); val *= aarch64_get_vec_u32 (cpu, vm, i); aarch64_set_vec_u64 (cpu, vd, i, val); } return; default: case 3: HALT_UNALLOC; } } static void do_vec_MLA (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29,24] = 00 1110 instr[23,22] = size: 00=> 8-bit, 01=> 16-bit, 10=> 32-bit instr[21] = 1 instr[20,16] = Vn instr[15,10] = 1001 01 instr[9,5] = Vm instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x25); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) { uint16_t val = aarch64_get_vec_u8 (cpu, vn, i); val *= aarch64_get_vec_u8 (cpu, vm, i); val += aarch64_get_vec_u8 (cpu, vd, i); aarch64_set_vec_u16 (cpu, vd, i, val); } return; case 1: for (i = 0; i < (full ? 8 : 4); i++) { uint32_t val = aarch64_get_vec_u16 (cpu, vn, i); val *= aarch64_get_vec_u16 (cpu, vm, i); val += aarch64_get_vec_u16 (cpu, vd, i); aarch64_set_vec_u32 (cpu, vd, i, val); } return; case 2: for (i = 0; i < (full ? 4 : 2); i++) { uint64_t val = aarch64_get_vec_u32 (cpu, vn, i); val *= aarch64_get_vec_u32 (cpu, vm, i); val += aarch64_get_vec_u32 (cpu, vd, i); aarch64_set_vec_u64 (cpu, vd, i, val); } return; default: case 3: HALT_UNALLOC; } } static float fmaxnm (float a, float b) { if (fpclassify (a) == FP_NORMAL) { if (fpclassify (b) == FP_NORMAL) return a > b ? a : b; return a; } else if (fpclassify (b) == FP_NORMAL) return b; return a; } static float fminnm (float a, float b) { if (fpclassify (a) == FP_NORMAL) { if (fpclassify (b) == FP_NORMAL) return a < b ? a : b; return a; } else if (fpclassify (b) == FP_NORMAL) return b; return a; } static double dmaxnm (double a, double b) { if (fpclassify (a) == FP_NORMAL) { if (fpclassify (b) == FP_NORMAL) return a > b ? a : b; return a; } else if (fpclassify (b) == FP_NORMAL) return b; return a; } static double dminnm (double a, double b) { if (fpclassify (a) == FP_NORMAL) { if (fpclassify (b) == FP_NORMAL) return a < b ? a : b; return a; } else if (fpclassify (b) == FP_NORMAL) return b; return a; } static void do_vec_FminmaxNMP (sim_cpu *cpu) { /* aarch64_get_instr (cpu)[31] = 0 aarch64_get_instr (cpu)[30] = half (0)/full (1) aarch64_get_instr (cpu)[29,24] = 10 1110 aarch64_get_instr (cpu)[23] = max(0)/min(1) aarch64_get_instr (cpu)[22] = float (0)/double (1) aarch64_get_instr (cpu)[21] = 1 aarch64_get_instr (cpu)[20,16] = Vn aarch64_get_instr (cpu)[15,10] = 1100 01 aarch64_get_instr (cpu)[9,5] = Vm aarch64_get_instr (cpu)[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 24, 0x2E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x31); if (uimm (aarch64_get_instr (cpu), 22, 22)) { double (* fn)(double, double) = uimm (aarch64_get_instr (cpu), 23, 23) ? dminnm : dmaxnm; if (! full) HALT_NYI; aarch64_set_vec_double (cpu, vd, 0, fn (aarch64_get_vec_double (cpu, vn, 0), aarch64_get_vec_double (cpu, vn, 1))); aarch64_set_vec_double (cpu, vd, 0, fn (aarch64_get_vec_double (cpu, vm, 0), aarch64_get_vec_double (cpu, vm, 1))); } else { float (* fn)(float, float) = uimm (aarch64_get_instr (cpu), 23, 23) ? fminnm : fmaxnm; aarch64_set_vec_float (cpu, vd, 0, fn (aarch64_get_vec_float (cpu, vn, 0), aarch64_get_vec_float (cpu, vn, 1))); if (full) aarch64_set_vec_float (cpu, vd, 1, fn (aarch64_get_vec_float (cpu, vn, 2), aarch64_get_vec_float (cpu, vn, 3))); aarch64_set_vec_float (cpu, vd, (full ? 2 : 1), fn (aarch64_get_vec_float (cpu, vm, 0), aarch64_get_vec_float (cpu, vm, 1))); if (full) aarch64_set_vec_float (cpu, vd, 3, fn (aarch64_get_vec_float (cpu, vm, 2), aarch64_get_vec_float (cpu, vm, 3))); } } static void do_vec_AND (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,21] = 001110001 instr[20,16] = Vm instr[15,10] = 000111 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 21, 0x071); NYI_assert (15, 10, 0x07); for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vn, i) & aarch64_get_vec_u32 (cpu, vm, i)); } static void do_vec_BSL (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,21] = 101110011 instr[20,16] = Vm instr[15,10] = 000111 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 21, 0x173); NYI_assert (15, 10, 0x07); for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, ( aarch64_get_vec_u8 (cpu, vd, i) & aarch64_get_vec_u8 (cpu, vn, i)) | ((~ aarch64_get_vec_u8 (cpu, vd, i)) & aarch64_get_vec_u8 (cpu, vm, i))); } static void do_vec_EOR (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,21] = 10 1110 001 instr[20,16] = Vm instr[15,10] = 000111 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 21, 0x171); NYI_assert (15, 10, 0x07); for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vn, i) ^ aarch64_get_vec_u32 (cpu, vm, i)); } static void do_vec_bit (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,23] = 10 1110 1 instr[22] = BIT (0) / BIF (1) instr[21] = 1 instr[20,16] = Vm instr[15,10] = 0001 11 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned test_false = uimm (aarch64_get_instr (cpu), 22, 22); unsigned i; NYI_assert (29, 23, 0x5D); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x07); if (test_false) { for (i = 0; i < (full ? 16 : 8); i++) if (aarch64_get_vec_u32 (cpu, vn, i) == 0) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vm, i)); } else { for (i = 0; i < (full ? 16 : 8); i++) if (aarch64_get_vec_u32 (cpu, vn, i) != 0) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vm, i)); } } static void do_vec_ORN (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,21] = 00 1110 111 instr[20,16] = Vm instr[15,10] = 00 0111 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 21, 0x077); NYI_assert (15, 10, 0x07); for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i) | ~ aarch64_get_vec_u8 (cpu, vm, i)); } static void do_vec_ORR (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,21] = 00 1110 101 instr[20,16] = Vm instr[15,10] = 0001 11 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 21, 0x075); NYI_assert (15, 10, 0x07); for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i) | aarch64_get_vec_u8 (cpu, vm, i)); } static void do_vec_BIC (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,21] = 00 1110 011 instr[20,16] = Vm instr[15,10] = 00 0111 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 21, 0x073); NYI_assert (15, 10, 0x07); for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i) & ~ aarch64_get_vec_u8 (cpu, vm, i)); } static void do_vec_XTN (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = first part (0)/ second part (1) instr[29,24] = 00 1110 instr[23,22] = size: byte(00), half(01), word (10) instr[21,10] = 1000 0100 1010 instr[9,5] = Vs instr[4,0] = Vd. */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned bias = uimm (aarch64_get_instr (cpu), 30, 30); unsigned i; NYI_assert (29, 24, 0x0E); NYI_assert (21, 10, 0x84A); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: if (bias) for (i = 0; i < 8; i++) aarch64_set_vec_u8 (cpu, vd, i + 8, aarch64_get_vec_u16 (cpu, vs, i) >> 8); else for (i = 0; i < 8; i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vs, i)); return; case 1: if (bias) for (i = 0; i < 4; i++) aarch64_set_vec_u16 (cpu, vd, i + 4, aarch64_get_vec_u32 (cpu, vs, i) >> 16); else for (i = 0; i < 4; i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vs, i)); return; case 2: if (bias) for (i = 0; i < 2; i++) aarch64_set_vec_u32 (cpu, vd, i + 4, aarch64_get_vec_u64 (cpu, vs, i) >> 32); else for (i = 0; i < 2; i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u64 (cpu, vs, i)); return; default: HALT_UNALLOC; } } static void do_vec_maxv (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29] = signed (0)/unsigned(1) instr[28,24] = 0 1110 instr[23,22] = size: byte(00), half(01), word (10) instr[21] = 1 instr[20,17] = 1 000 instr[16] = max(0)/min(1) instr[15,10] = 1010 10 instr[9,5] = V source instr[4.0] = R dest. */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned i; NYI_assert (28, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (20, 17, 8); NYI_assert (15, 10, 0x2A); switch ((uimm (aarch64_get_instr (cpu), 29, 29) << 1) | uimm (aarch64_get_instr (cpu), 16, 16)) { case 0: /* SMAXV. */ { int64_t smax; switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: smax = aarch64_get_vec_s8 (cpu, vs, 0); for (i = 1; i < (full ? 16 : 8); i++) smax = max (smax, aarch64_get_vec_s8 (cpu, vs, i)); break; case 1: smax = aarch64_get_vec_s16 (cpu, vs, 0); for (i = 1; i < (full ? 8 : 4); i++) smax = max (smax, aarch64_get_vec_s16 (cpu, vs, i)); break; case 2: smax = aarch64_get_vec_s32 (cpu, vs, 0); for (i = 1; i < (full ? 4 : 2); i++) smax = max (smax, aarch64_get_vec_s32 (cpu, vs, i)); break; default: case 3: HALT_UNALLOC; } aarch64_set_reg_s64 (cpu, rd, NO_SP, smax); return; } case 1: /* SMINV. */ { int64_t smin; switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: smin = aarch64_get_vec_s8 (cpu, vs, 0); for (i = 1; i < (full ? 16 : 8); i++) smin = min (smin, aarch64_get_vec_s8 (cpu, vs, i)); break; case 1: smin = aarch64_get_vec_s16 (cpu, vs, 0); for (i = 1; i < (full ? 8 : 4); i++) smin = min (smin, aarch64_get_vec_s16 (cpu, vs, i)); break; case 2: smin = aarch64_get_vec_s32 (cpu, vs, 0); for (i = 1; i < (full ? 4 : 2); i++) smin = min (smin, aarch64_get_vec_s32 (cpu, vs, i)); break; default: case 3: HALT_UNALLOC; } aarch64_set_reg_s64 (cpu, rd, NO_SP, smin); return; } case 2: /* UMAXV. */ { uint64_t umax; switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: umax = aarch64_get_vec_u8 (cpu, vs, 0); for (i = 1; i < (full ? 16 : 8); i++) umax = max (umax, aarch64_get_vec_u8 (cpu, vs, i)); break; case 1: umax = aarch64_get_vec_u16 (cpu, vs, 0); for (i = 1; i < (full ? 8 : 4); i++) umax = max (umax, aarch64_get_vec_u16 (cpu, vs, i)); break; case 2: umax = aarch64_get_vec_u32 (cpu, vs, 0); for (i = 1; i < (full ? 4 : 2); i++) umax = max (umax, aarch64_get_vec_u32 (cpu, vs, i)); break; default: case 3: HALT_UNALLOC; } aarch64_set_reg_u64 (cpu, rd, NO_SP, umax); return; } case 3: /* UMINV. */ { uint64_t umin; switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: umin = aarch64_get_vec_u8 (cpu, vs, 0); for (i = 1; i < (full ? 16 : 8); i++) umin = min (umin, aarch64_get_vec_u8 (cpu, vs, i)); break; case 1: umin = aarch64_get_vec_u16 (cpu, vs, 0); for (i = 1; i < (full ? 8 : 4); i++) umin = min (umin, aarch64_get_vec_u16 (cpu, vs, i)); break; case 2: umin = aarch64_get_vec_u32 (cpu, vs, 0); for (i = 1; i < (full ? 4 : 2); i++) umin = min (umin, aarch64_get_vec_u32 (cpu, vs, i)); break; default: case 3: HALT_UNALLOC; } aarch64_set_reg_u64 (cpu, rd, NO_SP, umin); return; } default: HALT_UNALLOC; } } static void do_vec_fminmaxV (sim_cpu *cpu) { /* instr[31,24] = 0110 1110 instr[23] = max(0)/min(1) instr[22,14] = 011 0000 11 instr[13,12] = nm(00)/normal(11) instr[11,10] = 10 instr[9,5] = V source instr[4.0] = R dest. */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; float res = aarch64_get_vec_float (cpu, vs, 0); NYI_assert (31, 24, 0x6E); NYI_assert (22, 14, 0x0C3); NYI_assert (11, 10, 2); if (uimm (aarch64_get_instr (cpu), 23, 23)) { switch (uimm (aarch64_get_instr (cpu), 13, 12)) { case 0: /* FMNINNMV. */ for (i = 1; i < 4; i++) res = fminnm (res, aarch64_get_vec_float (cpu, vs, i)); break; case 3: /* FMINV. */ for (i = 1; i < 4; i++) res = min (res, aarch64_get_vec_float (cpu, vs, i)); break; default: HALT_NYI; } } else { switch (uimm (aarch64_get_instr (cpu), 13, 12)) { case 0: /* FMNAXNMV. */ for (i = 1; i < 4; i++) res = fmaxnm (res, aarch64_get_vec_float (cpu, vs, i)); break; case 3: /* FMAXV. */ for (i = 1; i < 4; i++) res = max (res, aarch64_get_vec_float (cpu, vs, i)); break; default: HALT_NYI; } } aarch64_set_FP_float (cpu, rd, res); } static void do_vec_Fminmax (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 00 1110 instr[23] = max(0)/min(1) instr[22] = float(0)/double(1) instr[21] = 1 instr[20,16] = Vm instr[15,14] = 11 instr[13,12] = nm(00)/normal(11) instr[11,10] = 01 instr[9,5] = Vn instr[4,0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned min = uimm (aarch64_get_instr (cpu), 23, 23); unsigned i; NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 14, 3); NYI_assert (11, 10, 1); if (uimm (aarch64_get_instr (cpu), 22, 22)) { double (* func)(double, double); if (! full) HALT_NYI; if (uimm (aarch64_get_instr (cpu), 13, 12) == 0) func = min ? dminnm : dmaxnm; else if (uimm (aarch64_get_instr (cpu), 13, 12) == 3) func = min ? fmin : fmax; else HALT_NYI; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, func (aarch64_get_vec_double (cpu, vn, i), aarch64_get_vec_double (cpu, vm, i))); } else { float (* func)(float, float); if (uimm (aarch64_get_instr (cpu), 13, 12) == 0) func = min ? fminnm : fmaxnm; else if (uimm (aarch64_get_instr (cpu), 13, 12) == 3) func = min ? fminf : fmaxf; else HALT_NYI; for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, func (aarch64_get_vec_float (cpu, vn, i), aarch64_get_vec_float (cpu, vm, i))); } } static void do_vec_SCVTF (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = Q instr[29,23] = 00 1110 0 instr[22] = float(0)/double(1) instr[21,10] = 10 0001 1101 10 instr[9,5] = Vn instr[4,0] = Vd. */ unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned size = uimm (aarch64_get_instr (cpu), 22, 22); unsigned i; NYI_assert (29, 23, 0x1C); NYI_assert (21, 10, 0x876); if (size) { if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) { double val = (double) aarch64_get_vec_u64 (cpu, vn, i); aarch64_set_vec_double (cpu, vd, i, val); } } else { for (i = 0; i < (full ? 4 : 2); i++) { float val = (float) aarch64_get_vec_u32 (cpu, vn, i); aarch64_set_vec_float (cpu, vd, i, val); } } } #define VEC_CMP(SOURCE, CMP) \ do \ { \ switch (size) \ { \ case 0: \ for (i = 0; i < (full ? 16 : 8); i++) \ aarch64_set_vec_u8 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##8 (cpu, vn, i) \ CMP \ aarch64_get_vec_##SOURCE##8 (cpu, vm, i) \ ? -1 : 0); \ return; \ case 1: \ for (i = 0; i < (full ? 8 : 4); i++) \ aarch64_set_vec_u16 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##16 (cpu, vn, i) \ CMP \ aarch64_get_vec_##SOURCE##16 (cpu, vm, i) \ ? -1 : 0); \ return; \ case 2: \ for (i = 0; i < (full ? 4 : 2); i++) \ aarch64_set_vec_u32 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##32 (cpu, vn, i) \ CMP \ aarch64_get_vec_##SOURCE##32 (cpu, vm, i) \ ? -1 : 0); \ return; \ case 3: \ if (! full) \ HALT_UNALLOC; \ for (i = 0; i < 2; i++) \ aarch64_set_vec_u64 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##64 (cpu, vn, i) \ CMP \ aarch64_get_vec_##SOURCE##64 (cpu, vm, i) \ ? -1ULL : 0); \ return; \ default: \ HALT_UNALLOC; \ } \ } \ while (0) #define VEC_CMP0(SOURCE, CMP) \ do \ { \ switch (size) \ { \ case 0: \ for (i = 0; i < (full ? 16 : 8); i++) \ aarch64_set_vec_u8 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##8 (cpu, vn, i) \ CMP 0 ? -1 : 0); \ return; \ case 1: \ for (i = 0; i < (full ? 8 : 4); i++) \ aarch64_set_vec_u16 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##16 (cpu, vn, i) \ CMP 0 ? -1 : 0); \ return; \ case 2: \ for (i = 0; i < (full ? 4 : 2); i++) \ aarch64_set_vec_u32 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##32 (cpu, vn, i) \ CMP 0 ? -1 : 0); \ return; \ case 3: \ if (! full) \ HALT_UNALLOC; \ for (i = 0; i < 2; i++) \ aarch64_set_vec_u64 (cpu, vd, i, \ aarch64_get_vec_##SOURCE##64 (cpu, vn, i) \ CMP 0 ? -1ULL : 0); \ return; \ default: \ HALT_UNALLOC; \ } \ } \ while (0) #define VEC_FCMP0(CMP) \ do \ { \ if (vm != 0) \ HALT_NYI; \ if (uimm (aarch64_get_instr (cpu), 22, 22)) \ { \ if (! full) \ HALT_NYI; \ for (i = 0; i < 2; i++) \ aarch64_set_vec_u64 (cpu, vd, i, \ aarch64_get_vec_double (cpu, vn, i) \ CMP 0.0 ? -1 : 0); \ } \ else \ { \ for (i = 0; i < (full ? 4 : 2); i++) \ aarch64_set_vec_u32 (cpu, vd, i, \ aarch64_get_vec_float (cpu, vn, i) \ CMP 0.0 ? -1 : 0); \ } \ return; \ } \ while (0) #define VEC_FCMP(CMP) \ do \ { \ if (uimm (aarch64_get_instr (cpu), 22, 22)) \ { \ if (! full) \ HALT_NYI; \ for (i = 0; i < 2; i++) \ aarch64_set_vec_u64 (cpu, vd, i, \ aarch64_get_vec_double (cpu, vn, i) \ CMP \ aarch64_get_vec_double (cpu, vm, i) \ ? -1 : 0); \ } \ else \ { \ for (i = 0; i < (full ? 4 : 2); i++) \ aarch64_set_vec_u32 (cpu, vd, i, \ aarch64_get_vec_float (cpu, vn, i) \ CMP \ aarch64_get_vec_float (cpu, vm, i) \ ? -1 : 0); \ } \ return; \ } \ while (0) static void do_vec_compare (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29] = part-of-comparison-type instr[28,24] = 0 1110 instr[23,22] = size of integer compares: byte(00), half(01), word (10), long (11) type of float compares: single (-0) / double (-1) instr[21] = 1 instr[20,16] = Vm or 00000 (compare vs 0) instr[15,10] = part-of-comparison-type instr[9,5] = Vn instr[4.0] = Vd. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); int size = uimm (aarch64_get_instr (cpu), 23, 22); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (28, 24, 0x0E); NYI_assert (21, 21, 1); if ((uimm (aarch64_get_instr (cpu), 11, 11) && uimm (aarch64_get_instr (cpu), 14, 14)) || ((uimm (aarch64_get_instr (cpu), 11, 11) == 0 && uimm (aarch64_get_instr (cpu), 10, 10) == 0))) { /* A compare vs 0. */ if (vm != 0) { if (uimm (aarch64_get_instr (cpu), 15, 10) == 0x2A) do_vec_maxv (cpu); else if (uimm (aarch64_get_instr (cpu), 15, 10) == 0x32 || uimm (aarch64_get_instr (cpu), 15, 10) == 0x3E) do_vec_fminmaxV (cpu); else if (uimm (aarch64_get_instr (cpu), 29, 23) == 0x1C && uimm (aarch64_get_instr (cpu), 21, 10) == 0x876) do_vec_SCVTF (cpu); else HALT_NYI; return; } } if (uimm (aarch64_get_instr (cpu), 14, 14)) { /* A floating point compare. */ unsigned decode = (uimm (aarch64_get_instr (cpu), 29, 29) << 5) | (uimm (aarch64_get_instr (cpu), 23, 23) << 4) | uimm (aarch64_get_instr (cpu), 13, 10); NYI_assert (15, 15, 1); switch (decode) { case /* 0b010010: GT#0 */ 0x12: VEC_FCMP0 (>); case /* 0b110010: GE#0 */ 0x32: VEC_FCMP0 (>=); case /* 0b010110: EQ#0 */ 0x16: VEC_FCMP0 (==); case /* 0b110110: LE#0 */ 0x36: VEC_FCMP0 (<=); case /* 0b011010: LT#0 */ 0x1A: VEC_FCMP0 (<); case /* 0b111001: GT */ 0x39: VEC_FCMP (>); case /* 0b101001: GE */ 0x29: VEC_FCMP (>=); case /* 0b001001: EQ */ 0x09: VEC_FCMP (==); default: HALT_NYI; } } else { unsigned decode = (uimm (aarch64_get_instr (cpu), 29, 29) << 6) | uimm (aarch64_get_instr (cpu), 15, 10); switch (decode) { case 0x0D: /* 0001101 GT */ VEC_CMP (s, > ); case 0x0F: /* 0001111 GE */ VEC_CMP (s, >= ); case 0x22: /* 0100010 GT #0 */ VEC_CMP0 (s, > ); case 0x26: /* 0100110 EQ #0 */ VEC_CMP0 (s, == ); case 0x2A: /* 0101010 LT #0 */ VEC_CMP0 (s, < ); case 0x4D: /* 1001101 HI */ VEC_CMP (u, > ); case 0x4F: /* 1001111 HS */ VEC_CMP (u, >= ); case 0x62: /* 1100010 GE #0 */ VEC_CMP0 (s, >= ); case 0x63: /* 1100011 EQ */ VEC_CMP (u, == ); case 0x66: /* 1100110 LE #0 */ VEC_CMP0 (s, <= ); default: if (vm == 0) HALT_NYI; do_vec_maxv (cpu); } } } static void do_vec_SSHL (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = first part (0)/ second part (1) instr[29,24] = 00 1110 instr[23,22] = size: byte(00), half(01), word (10), long (11) instr[21] = 1 instr[20,16] = Vm instr[15,10] = 0100 01 instr[9,5] = Vn instr[4,0] = Vd. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x11); /* FIXME: What is a signed shift left in this context ?. */ switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_s8 (cpu, vd, i, aarch64_get_vec_s8 (cpu, vn, i) << aarch64_get_vec_s8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_s16 (cpu, vd, i, aarch64_get_vec_s16 (cpu, vn, i) << aarch64_get_vec_s16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_s32 (cpu, vd, i, aarch64_get_vec_s32 (cpu, vn, i) << aarch64_get_vec_s32 (cpu, vm, i)); return; case 3: if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_s64 (cpu, vd, i, aarch64_get_vec_s64 (cpu, vn, i) << aarch64_get_vec_s64 (cpu, vm, i)); return; default: HALT_NYI; } } static void do_vec_USHL (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = first part (0)/ second part (1) instr[29,24] = 10 1110 instr[23,22] = size: byte(00), half(01), word (10), long (11) instr[21] = 1 instr[20,16] = Vm instr[15,10] = 0100 01 instr[9,5] = Vn instr[4,0] = Vd */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 24, 0x2E); NYI_assert (15, 10, 0x11); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i) << aarch64_get_vec_u8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vn, i) << aarch64_get_vec_u16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vn, i) << aarch64_get_vec_u32 (cpu, vm, i)); return; case 3: if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_u64 (cpu, vd, i, aarch64_get_vec_u64 (cpu, vn, i) << aarch64_get_vec_u64 (cpu, vm, i)); return; default: HALT_NYI; } } static void do_vec_FMLA (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29,23] = 0011100 instr[22] = size: 0=>float, 1=>double instr[21] = 1 instr[20,16] = Vn instr[15,10] = 1100 11 instr[9,5] = Vm instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 23, 0x1C); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x33); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, aarch64_get_vec_double (cpu, vn, i) * aarch64_get_vec_double (cpu, vm, i) + aarch64_get_vec_double (cpu, vd, i)); } else { for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, aarch64_get_vec_float (cpu, vn, i) * aarch64_get_vec_float (cpu, vm, i) + aarch64_get_vec_float (cpu, vd, i)); } } static void do_vec_max (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29] = SMAX (0) / UMAX (1) instr[28,24] = 0 1110 instr[23,22] = size: 00=> 8-bit, 01=> 16-bit, 10=> 32-bit instr[21] = 1 instr[20,16] = Vn instr[15,10] = 0110 01 instr[9,5] = Vm instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (28, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x19); if (uimm (aarch64_get_instr (cpu), 29, 29)) { switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i) > aarch64_get_vec_u8 (cpu, vm, i) ? aarch64_get_vec_u8 (cpu, vn, i) : aarch64_get_vec_u8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vn, i) > aarch64_get_vec_u16 (cpu, vm, i) ? aarch64_get_vec_u16 (cpu, vn, i) : aarch64_get_vec_u16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vn, i) > aarch64_get_vec_u32 (cpu, vm, i) ? aarch64_get_vec_u32 (cpu, vn, i) : aarch64_get_vec_u32 (cpu, vm, i)); return; default: case 3: HALT_UNALLOC; } } else { switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_s8 (cpu, vd, i, aarch64_get_vec_s8 (cpu, vn, i) > aarch64_get_vec_s8 (cpu, vm, i) ? aarch64_get_vec_s8 (cpu, vn, i) : aarch64_get_vec_s8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_s16 (cpu, vd, i, aarch64_get_vec_s16 (cpu, vn, i) > aarch64_get_vec_s16 (cpu, vm, i) ? aarch64_get_vec_s16 (cpu, vn, i) : aarch64_get_vec_s16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_s32 (cpu, vd, i, aarch64_get_vec_s32 (cpu, vn, i) > aarch64_get_vec_s32 (cpu, vm, i) ? aarch64_get_vec_s32 (cpu, vn, i) : aarch64_get_vec_s32 (cpu, vm, i)); return; default: case 3: HALT_UNALLOC; } } } static void do_vec_min (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full/half selector instr[29] = SMIN (0) / UMIN (1) instr[28,24] = 0 1110 instr[23,22] = size: 00=> 8-bit, 01=> 16-bit, 10=> 32-bit instr[21] = 1 instr[20,16] = Vn instr[15,10] = 0110 11 instr[9,5] = Vm instr[4.0] = Vd. */ unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (28, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x1B); if (uimm (aarch64_get_instr (cpu), 29, 29)) { switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i) < aarch64_get_vec_u8 (cpu, vm, i) ? aarch64_get_vec_u8 (cpu, vn, i) : aarch64_get_vec_u8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vn, i) < aarch64_get_vec_u16 (cpu, vm, i) ? aarch64_get_vec_u16 (cpu, vn, i) : aarch64_get_vec_u16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vn, i) < aarch64_get_vec_u32 (cpu, vm, i) ? aarch64_get_vec_u32 (cpu, vn, i) : aarch64_get_vec_u32 (cpu, vm, i)); return; default: case 3: HALT_UNALLOC; } } else { switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_s8 (cpu, vd, i, aarch64_get_vec_s8 (cpu, vn, i) < aarch64_get_vec_s8 (cpu, vm, i) ? aarch64_get_vec_s8 (cpu, vn, i) : aarch64_get_vec_s8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_s16 (cpu, vd, i, aarch64_get_vec_s16 (cpu, vn, i) < aarch64_get_vec_s16 (cpu, vm, i) ? aarch64_get_vec_s16 (cpu, vn, i) : aarch64_get_vec_s16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_s32 (cpu, vd, i, aarch64_get_vec_s32 (cpu, vn, i) < aarch64_get_vec_s32 (cpu, vm, i) ? aarch64_get_vec_s32 (cpu, vn, i) : aarch64_get_vec_s32 (cpu, vm, i)); return; default: case 3: HALT_UNALLOC; } } } static void do_vec_sub_long (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = lower (0) / upper (1) instr[29] = signed (0) / unsigned (1) instr[28,24] = 0 1110 instr[23,22] = size: bytes (00), half (01), word (10) instr[21] = 1 insrt[20,16] = Vm instr[15,10] = 0010 00 instr[9,5] = Vn instr[4,0] = V dest. */ unsigned size = uimm (aarch64_get_instr (cpu), 23, 22); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned bias = 0; unsigned i; NYI_assert (28, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x08); if (size == 3) HALT_UNALLOC; switch (uimm (aarch64_get_instr (cpu), 30, 29)) { case 2: /* SSUBL2. */ bias = 2; case 0: /* SSUBL. */ switch (size) { case 0: bias *= 3; for (i = 0; i < 8; i++) aarch64_set_vec_s16 (cpu, vd, i, aarch64_get_vec_s8 (cpu, vn, i + bias) - aarch64_get_vec_s8 (cpu, vm, i + bias)); break; case 1: bias *= 2; for (i = 0; i < 4; i++) aarch64_set_vec_s32 (cpu, vd, i, aarch64_get_vec_s16 (cpu, vn, i + bias) - aarch64_get_vec_s16 (cpu, vm, i + bias)); break; case 2: for (i = 0; i < 2; i++) aarch64_set_vec_s64 (cpu, vd, i, aarch64_get_vec_s32 (cpu, vn, i + bias) - aarch64_get_vec_s32 (cpu, vm, i + bias)); break; default: HALT_UNALLOC; } break; case 3: /* USUBL2. */ bias = 2; case 1: /* USUBL. */ switch (size) { case 0: bias *= 3; for (i = 0; i < 8; i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vn, i + bias) - aarch64_get_vec_u8 (cpu, vm, i + bias)); break; case 1: bias *= 2; for (i = 0; i < 4; i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vn, i + bias) - aarch64_get_vec_u16 (cpu, vm, i + bias)); break; case 2: for (i = 0; i < 2; i++) aarch64_set_vec_u64 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vn, i + bias) - aarch64_get_vec_u32 (cpu, vm, i + bias)); break; default: HALT_UNALLOC; } break; } } #define DO_ADDP(FN) \ do \ { \ for (i = 0; i < range; i++) \ { \ aarch64_set_vec_##FN (cpu, vd, i, \ aarch64_get_vec_##FN (cpu, vn, i * 2) \ + aarch64_get_vec_##FN (cpu, vn, i * 2 + 1)); \ aarch64_set_vec_##FN (cpu, vd, i + range, \ aarch64_get_vec_##FN (cpu, vm, i * 2) \ + aarch64_get_vec_##FN (cpu, vm, i * 2 + 1)); \ } \ } \ while (0) static void do_vec_ADDP (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 00 1110 instr[23,22] = size: bytes (00), half (01), word (10), long (11) instr[21] = 1 insrt[20,16] = Vm instr[15,10] = 1011 11 instr[9,5] = Vn instr[4,0] = V dest. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned size = uimm (aarch64_get_instr (cpu), 23, 22); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i, range; NYI_assert (29, 24, 0x0E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x2F); switch (size) { case 0: range = full ? 8 : 4; DO_ADDP (u8); return; case 1: range = full ? 4 : 2; DO_ADDP (u16); return; case 2: range = full ? 2 : 1; DO_ADDP (u32); return; case 3: if (! full) HALT_UNALLOC; range = 1; DO_ADDP (u64); return; default: HALT_NYI; } } static void do_vec_UMOV (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = 32-bit(0)/64-bit(1) instr[29,21] = 00 1110 000 insrt[20,16] = size & index instr[15,10] = 0011 11 instr[9,5] = V source instr[4,0] = R dest. */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned index; NYI_assert (29, 21, 0x070); NYI_assert (15, 10, 0x0F); if (uimm (aarch64_get_instr (cpu), 16, 16)) { /* Byte transfer. */ index = uimm (aarch64_get_instr (cpu), 20, 17); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u8 (cpu, vs, index)); } else if (uimm (aarch64_get_instr (cpu), 17, 17)) { index = uimm (aarch64_get_instr (cpu), 20, 18); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u16 (cpu, vs, index)); } else if (uimm (aarch64_get_instr (cpu), 18, 18)) { index = uimm (aarch64_get_instr (cpu), 20, 19); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u32 (cpu, vs, index)); } else { if (uimm (aarch64_get_instr (cpu), 30, 30) != 1) HALT_UNALLOC; index = uimm (aarch64_get_instr (cpu), 20, 20); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u64 (cpu, vs, index)); } } static void do_vec_FABS (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,23] = 00 1110 1 instr[22] = float(0)/double(1) instr[21,16] = 10 0000 instr[15,10] = 1111 10 instr[9,5] = Vn instr[4,0] = Vd. */ unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned i; NYI_assert (29, 23, 0x1D); NYI_assert (21, 10, 0x83E); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_NYI; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, fabs (aarch64_get_vec_double (cpu, vn, i))); } else { for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, fabsf (aarch64_get_vec_float (cpu, vn, i))); } } static void do_vec_FCVTZS (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0) / all (1) instr[29,23] = 00 1110 1 instr[22] = single (0) / double (1) instr[21,10] = 10 0001 1011 10 instr[9,5] = Rn instr[4,0] = Rd. */ unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned i; NYI_assert (31, 31, 0); NYI_assert (29, 23, 0x1D); NYI_assert (21, 10, 0x86E); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_s64 (cpu, rd, i, (int64_t) aarch64_get_vec_double (cpu, rn, i)); } else for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_s32 (cpu, rd, i, (int32_t) aarch64_get_vec_float (cpu, rn, i)); } static void do_vec_op1 (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half/full instr[29,24] = 00 1110 instr[23,21] = ??? instr[20,16] = Vm instr[15,10] = sub-opcode instr[9,5] = Vn instr[4,0] = Vd */ NYI_assert (29, 24, 0x0E); if (uimm (aarch64_get_instr (cpu), 21, 21) == 0) { if (uimm (aarch64_get_instr (cpu), 23, 22) == 0) { if (uimm (aarch64_get_instr (cpu), 30, 30) == 1 && uimm (aarch64_get_instr (cpu), 17, 14) == 0 && uimm (aarch64_get_instr (cpu), 12, 10) == 7) return do_vec_ins_2 (cpu); switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x01: do_vec_DUP_vector_into_vector (cpu); return; case 0x03: do_vec_DUP_scalar_into_vector (cpu); return; case 0x07: do_vec_INS (cpu); return; case 0x0A: do_vec_TRN (cpu); return; case 0x0F: if (uimm (aarch64_get_instr (cpu), 17, 16) == 0) { do_vec_MOV_into_scalar (cpu); return; } break; case 0x00: case 0x08: case 0x10: case 0x18: do_vec_TBL (cpu); return; case 0x06: case 0x16: do_vec_UZP (cpu); return; case 0x0E: case 0x1E: do_vec_ZIP (cpu); return; default: HALT_NYI; } } switch (uimm (aarch64_get_instr (cpu), 13, 10)) { case 0x6: do_vec_UZP (cpu); return; case 0xE: do_vec_ZIP (cpu); return; case 0xA: do_vec_TRN (cpu); return; case 0xF: do_vec_UMOV (cpu); return; default: HALT_NYI; } } switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x07: switch (uimm (aarch64_get_instr (cpu), 23, 21)) { case 1: do_vec_AND (cpu); return; case 3: do_vec_BIC (cpu); return; case 5: do_vec_ORR (cpu); return; case 7: do_vec_ORN (cpu); return; default: HALT_NYI; } case 0x08: do_vec_sub_long (cpu); return; case 0x0a: do_vec_XTN (cpu); return; case 0x11: do_vec_SSHL (cpu); return; case 0x19: do_vec_max (cpu); return; case 0x1B: do_vec_min (cpu); return; case 0x21: do_vec_add (cpu); return; case 0x25: do_vec_MLA (cpu); return; case 0x27: do_vec_mul (cpu); return; case 0x2F: do_vec_ADDP (cpu); return; case 0x30: do_vec_mull (cpu); return; case 0x33: do_vec_FMLA (cpu); return; case 0x35: do_vec_fadd (cpu); return; case 0x2E: switch (uimm (aarch64_get_instr (cpu), 20, 16)) { case 0x00: do_vec_ABS (cpu); return; case 0x01: do_vec_FCVTZS (cpu); return; case 0x11: do_vec_ADDV (cpu); return; default: HALT_NYI; } case 0x31: case 0x3B: do_vec_Fminmax (cpu); return; case 0x0D: case 0x0F: case 0x22: case 0x23: case 0x26: case 0x2A: case 0x32: case 0x36: case 0x39: case 0x3A: do_vec_compare (cpu); return; case 0x3E: do_vec_FABS (cpu); return; default: HALT_NYI; } } static void do_vec_xtl (sim_cpu *cpu) { /* instr[31] = 0 instr[30,29] = SXTL (00), UXTL (01), SXTL2 (10), UXTL2 (11) instr[28,22] = 0 1111 00 instr[21,16] = size & shift (USHLL, SSHLL, USHLL2, SSHLL2) instr[15,10] = 1010 01 instr[9,5] = V source instr[4,0] = V dest. */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i, shift, bias = 0; NYI_assert (28, 22, 0x3C); NYI_assert (15, 10, 0x29); switch (uimm (aarch64_get_instr (cpu), 30, 29)) { case 2: /* SXTL2, SSHLL2. */ bias = 2; case 0: /* SXTL, SSHLL. */ if (uimm (aarch64_get_instr (cpu), 21, 21)) { shift = uimm (aarch64_get_instr (cpu), 20, 16); aarch64_set_vec_s64 (cpu, vd, 0, aarch64_get_vec_s32 (cpu, vs, bias) << shift); aarch64_set_vec_s64 (cpu, vd, 1, aarch64_get_vec_s32 (cpu, vs, bias + 1) << shift); } else if (uimm (aarch64_get_instr (cpu), 20, 20)) { shift = uimm (aarch64_get_instr (cpu), 19, 16); bias *= 2; for (i = 0; i < 4; i++) aarch64_set_vec_s32 (cpu, vd, i, aarch64_get_vec_s16 (cpu, vs, i + bias) << shift); } else { NYI_assert (19, 19, 1); shift = uimm (aarch64_get_instr (cpu), 18, 16); bias *= 3; for (i = 0; i < 8; i++) aarch64_set_vec_s16 (cpu, vd, i, aarch64_get_vec_s8 (cpu, vs, i + bias) << shift); } return; case 3: /* UXTL2, USHLL2. */ bias = 2; case 1: /* UXTL, USHLL. */ if (uimm (aarch64_get_instr (cpu), 21, 21)) { shift = uimm (aarch64_get_instr (cpu), 20, 16); aarch64_set_vec_u64 (cpu, vd, 0, aarch64_get_vec_u32 (cpu, vs, bias) << shift); aarch64_set_vec_u64 (cpu, vd, 1, aarch64_get_vec_u32 (cpu, vs, bias + 1) << shift); } else if (uimm (aarch64_get_instr (cpu), 20, 20)) { shift = uimm (aarch64_get_instr (cpu), 19, 16); bias *= 2; for (i = 0; i < 4; i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u16 (cpu, vs, i + bias) << shift); } else { NYI_assert (19, 19, 1); shift = uimm (aarch64_get_instr (cpu), 18, 16); bias *= 3; for (i = 0; i < 8; i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_vec_u8 (cpu, vs, i + bias) << shift); } return; default: HALT_NYI; } } static void do_vec_SHL (sim_cpu *cpu) { /* instr [31] = 0 instr [30] = half(0)/full(1) instr [29,23] = 001 1110 instr [22,16] = size and shift amount instr [15,10] = 01 0101 instr [9, 5] = Vs instr [4, 0] = Vd. */ int shift; int full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 23, 0x1E); NYI_assert (15, 10, 0x15); if (uimm (aarch64_get_instr (cpu), 22, 22)) { shift = uimm (aarch64_get_instr (cpu), 21, 16) - 1; if (full == 0) HALT_UNALLOC; for (i = 0; i < 2; i++) { uint64_t val = aarch64_get_vec_u64 (cpu, vs, i); aarch64_set_vec_u64 (cpu, vd, i, val << shift); } return; } if (uimm (aarch64_get_instr (cpu), 21, 21)) { shift = uimm (aarch64_get_instr (cpu), 20, 16) - 1; for (i = 0; i < (full ? 4 : 2); i++) { uint32_t val = aarch64_get_vec_u32 (cpu, vs, i); aarch64_set_vec_u32 (cpu, vd, i, val << shift); } return; } if (uimm (aarch64_get_instr (cpu), 20, 20)) { shift = uimm (aarch64_get_instr (cpu), 19, 16) - 1; for (i = 0; i < (full ? 8 : 4); i++) { uint16_t val = aarch64_get_vec_u16 (cpu, vs, i); aarch64_set_vec_u16 (cpu, vd, i, val << shift); } return; } if (uimm (aarch64_get_instr (cpu), 19, 19) == 0) HALT_UNALLOC; shift = uimm (aarch64_get_instr (cpu), 18, 16) - 1; for (i = 0; i < (full ? 16 : 8); i++) { uint8_t val = aarch64_get_vec_u8 (cpu, vs, i); aarch64_set_vec_u8 (cpu, vd, i, val << shift); } } static void do_vec_SSHR_USHR (sim_cpu *cpu) { /* instr [31] = 0 instr [30] = half(0)/full(1) instr [29] = signed(0)/unsigned(1) instr [28,23] = 01 1110 instr [22,16] = size and shift amount instr [15,10] = 0000 01 instr [9, 5] = Vs instr [4, 0] = Vd. */ int shift; int full = uimm (aarch64_get_instr (cpu), 30, 30); int sign = uimm (aarch64_get_instr (cpu), 29, 29); unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (28, 23, 0x1E); NYI_assert (15, 10, 0x01); if (uimm (aarch64_get_instr (cpu), 22, 22)) { shift = uimm (aarch64_get_instr (cpu), 21, 16); if (full == 0) HALT_UNALLOC; if (sign) for (i = 0; i < 2; i++) { int64_t val = aarch64_get_vec_s64 (cpu, vs, i); aarch64_set_vec_s64 (cpu, vd, i, val >> shift); } else for (i = 0; i < 2; i++) { uint64_t val = aarch64_get_vec_u64 (cpu, vs, i); aarch64_set_vec_u64 (cpu, vd, i, val >> shift); } return; } if (uimm (aarch64_get_instr (cpu), 21, 21)) { shift = uimm (aarch64_get_instr (cpu), 20, 16); if (sign) for (i = 0; i < (full ? 4 : 2); i++) { int32_t val = aarch64_get_vec_s32 (cpu, vs, i); aarch64_set_vec_s32 (cpu, vd, i, val >> shift); } else for (i = 0; i < (full ? 4 : 2); i++) { uint32_t val = aarch64_get_vec_u32 (cpu, vs, i); aarch64_set_vec_u32 (cpu, vd, i, val >> shift); } return; } if (uimm (aarch64_get_instr (cpu), 20, 20)) { shift = uimm (aarch64_get_instr (cpu), 19, 16); if (sign) for (i = 0; i < (full ? 8 : 4); i++) { int16_t val = aarch64_get_vec_s16 (cpu, vs, i); aarch64_set_vec_s16 (cpu, vd, i, val >> shift); } else for (i = 0; i < (full ? 8 : 4); i++) { uint16_t val = aarch64_get_vec_u16 (cpu, vs, i); aarch64_set_vec_u16 (cpu, vd, i, val >> shift); } return; } if (uimm (aarch64_get_instr (cpu), 19, 19) == 0) HALT_UNALLOC; shift = uimm (aarch64_get_instr (cpu), 18, 16); if (sign) for (i = 0; i < (full ? 16 : 8); i++) { int8_t val = aarch64_get_vec_s8 (cpu, vs, i); aarch64_set_vec_s8 (cpu, vd, i, val >> shift); } else for (i = 0; i < (full ? 16 : 8); i++) { uint8_t val = aarch64_get_vec_u8 (cpu, vs, i); aarch64_set_vec_u8 (cpu, vd, i, val >> shift); } } static void do_vec_op2 (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half/full instr[29,24] = 00 1111 instr[23] = ? instr[22,16] = element size & index instr[15,10] = sub-opcode instr[9,5] = Vm instr[4.0] = Vd */ NYI_assert (29, 24, 0x0F); if (uimm (aarch64_get_instr (cpu), 23, 23) != 0) HALT_NYI; switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x01: do_vec_SSHR_USHR (cpu); return; case 0x15: do_vec_SHL (cpu); return; case 0x29: do_vec_xtl (cpu); return; default: HALT_NYI; } } static void do_vec_neg (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full(1)/half(0) instr[29,24] = 10 1110 instr[23,22] = size: byte(00), half (01), word (10), long (11) instr[21,10] = 1000 0010 1110 instr[9,5] = Vs instr[4,0] = Vd */ int full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 24, 0x2E); NYI_assert (21, 10, 0x82E); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_s8 (cpu, vd, i, - aarch64_get_vec_s8 (cpu, vs, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_s16 (cpu, vd, i, - aarch64_get_vec_s16 (cpu, vs, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_s32 (cpu, vd, i, - aarch64_get_vec_s32 (cpu, vs, i)); return; case 3: if (! full) HALT_NYI; for (i = 0; i < 2; i++) aarch64_set_vec_s64 (cpu, vd, i, - aarch64_get_vec_s64 (cpu, vs, i)); return; default: HALT_UNREACHABLE; } } static void do_vec_sqrt (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = full(1)/half(0) instr[29,23] = 101 1101 instr[22] = single(0)/double(1) instr[21,10] = 1000 0111 1110 instr[9,5] = Vs instr[4,0] = Vd. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 23, 0x5B); NYI_assert (21, 10, 0x87E); if (uimm (aarch64_get_instr (cpu), 22, 22) == 0) for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, sqrtf (aarch64_get_vec_float (cpu, vs, i))); else for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, sqrt (aarch64_get_vec_double (cpu, vs, i))); } static void do_vec_mls_indexed (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,24] = 10 1111 instr[23,22] = 16-bit(01)/32-bit(10) instr[21,20+11] = index (if 16-bit) instr[21+11] = index (if 32-bit) instr[20,16] = Vm instr[15,12] = 0100 instr[11] = part of index instr[10] = 0 instr[9,5] = Vs instr[4,0] = Vd. */ int full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned i; NYI_assert (15, 12, 4); NYI_assert (10, 10, 0); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 1: { unsigned elem; uint32_t val; if (vm > 15) HALT_NYI; elem = (uimm (aarch64_get_instr (cpu), 21, 20) << 1) | uimm (aarch64_get_instr (cpu), 11, 11); val = aarch64_get_vec_u16 (cpu, vm, elem); for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_vec_u32 (cpu, vd, i) - (aarch64_get_vec_u32 (cpu, vs, i) * val)); return; } case 2: { unsigned elem = (uimm (aarch64_get_instr (cpu), 21, 21) << 1) | uimm (aarch64_get_instr (cpu), 11, 11); uint64_t val = aarch64_get_vec_u32 (cpu, vm, elem); for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u64 (cpu, vd, i, aarch64_get_vec_u64 (cpu, vd, i) - (aarch64_get_vec_u64 (cpu, vs, i) * val)); return; } case 0: case 3: default: HALT_NYI; } } static void do_vec_SUB (sim_cpu *cpu) { /* instr [31] = 0 instr [30] = half(0)/full(1) instr [29,24] = 10 1110 instr [23,22] = size: byte(00, half(01), word (10), long (11) instr [21] = 1 instr [20,16] = Vm instr [15,10] = 10 0001 instr [9, 5] = Vn instr [4, 0] = Vd. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 24, 0x2E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x21); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_s8 (cpu, vd, i, aarch64_get_vec_s8 (cpu, vn, i) - aarch64_get_vec_s8 (cpu, vm, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_s16 (cpu, vd, i, aarch64_get_vec_s16 (cpu, vn, i) - aarch64_get_vec_s16 (cpu, vm, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_s32 (cpu, vd, i, aarch64_get_vec_s32 (cpu, vn, i) - aarch64_get_vec_s32 (cpu, vm, i)); return; case 3: if (full == 0) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_s64 (cpu, vd, i, aarch64_get_vec_s64 (cpu, vn, i) - aarch64_get_vec_s64 (cpu, vm, i)); return; default: HALT_UNREACHABLE; } } static void do_vec_MLS (sim_cpu *cpu) { /* instr [31] = 0 instr [30] = half(0)/full(1) instr [29,24] = 10 1110 instr [23,22] = size: byte(00, half(01), word (10) instr [21] = 1 instr [20,16] = Vm instr [15,10] = 10 0101 instr [9, 5] = Vn instr [4, 0] = Vd. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 24, 0x2E); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x25); switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, (aarch64_get_vec_u8 (cpu, vn, i) * aarch64_get_vec_u8 (cpu, vm, i)) - aarch64_get_vec_u8 (cpu, vd, i)); return; case 1: for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, (aarch64_get_vec_u16 (cpu, vn, i) * aarch64_get_vec_u16 (cpu, vm, i)) - aarch64_get_vec_u16 (cpu, vd, i)); return; case 2: for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, (aarch64_get_vec_u32 (cpu, vn, i) * aarch64_get_vec_u32 (cpu, vm, i)) - aarch64_get_vec_u32 (cpu, vd, i)); return; default: HALT_UNALLOC; } } static void do_vec_FDIV (sim_cpu *cpu) { /* instr [31] = 0 instr [30] = half(0)/full(1) instr [29,23] = 10 1110 0 instr [22] = float()/double(1) instr [21] = 1 instr [20,16] = Vm instr [15,10] = 1111 11 instr [9, 5] = Vn instr [4, 0] = Vd. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 23, 0x5C); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x3F); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, aarch64_get_vec_double (cpu, vn, i) / aarch64_get_vec_double (cpu, vm, i)); } else for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, aarch64_get_vec_float (cpu, vn, i) / aarch64_get_vec_float (cpu, vm, i)); } static void do_vec_FMUL (sim_cpu *cpu) { /* instr [31] = 0 instr [30] = half(0)/full(1) instr [29,23] = 10 1110 0 instr [22] = float(0)/double(1) instr [21] = 1 instr [20,16] = Vm instr [15,10] = 1101 11 instr [9, 5] = Vn instr [4, 0] = Vd. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; NYI_assert (29, 23, 0x5C); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x37); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, aarch64_get_vec_double (cpu, vn, i) * aarch64_get_vec_double (cpu, vm, i)); } else for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, aarch64_get_vec_float (cpu, vn, i) * aarch64_get_vec_float (cpu, vm, i)); } static void do_vec_FADDP (sim_cpu *cpu) { /* instr [31] = 0 instr [30] = half(0)/full(1) instr [29,23] = 10 1110 0 instr [22] = float(0)/double(1) instr [21] = 1 instr [20,16] = Vm instr [15,10] = 1101 01 instr [9, 5] = Vn instr [4, 0] = Vd. */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (29, 23, 0x5C); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x35); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_UNALLOC; aarch64_set_vec_double (cpu, vd, 0, aarch64_get_vec_double (cpu, vn, 0) + aarch64_get_vec_double (cpu, vn, 1)); aarch64_set_vec_double (cpu, vd, 1, aarch64_get_vec_double (cpu, vm, 0) + aarch64_get_vec_double (cpu, vm, 1)); } else { aarch64_set_vec_float (cpu, vd, 0, aarch64_get_vec_float (cpu, vn, 0) + aarch64_get_vec_float (cpu, vn, 1)); if (full) aarch64_set_vec_float (cpu, vd, 1, aarch64_get_vec_float (cpu, vn, 2) + aarch64_get_vec_float (cpu, vn, 3)); aarch64_set_vec_float (cpu, vd, full ? 2 : 1, aarch64_get_vec_float (cpu, vm, 0) + aarch64_get_vec_float (cpu, vm, 1)); if (full) aarch64_set_vec_float (cpu, vd, 3, aarch64_get_vec_float (cpu, vm, 2) + aarch64_get_vec_float (cpu, vm, 3)); } } static void do_vec_FSQRT (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half(0)/full(1) instr[29,23] = 10 1110 1 instr[22] = single(0)/double(1) instr[21,10] = 10 0001 1111 10 instr[9,5] = Vsrc instr[4,0] = Vdest. */ unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); int i; NYI_assert (29, 23, 0x5D); NYI_assert (21, 10, 0x87E); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, sqrt (aarch64_get_vec_double (cpu, vn, i))); } else { for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, sqrtf (aarch64_get_vec_float (cpu, vn, i))); } } static void do_vec_FNEG (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,23] = 10 1110 1 instr[22] = single (0)/double (1) instr[21,10] = 10 0000 1111 10 instr[9,5] = Vsrc instr[4,0] = Vdest. */ unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); int i; NYI_assert (29, 23, 0x5D); NYI_assert (21, 10, 0x83E); if (uimm (aarch64_get_instr (cpu), 22, 22)) { if (! full) HALT_UNALLOC; for (i = 0; i < 2; i++) aarch64_set_vec_double (cpu, vd, i, - aarch64_get_vec_double (cpu, vn, i)); } else { for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_float (cpu, vd, i, - aarch64_get_vec_float (cpu, vn, i)); } } static void do_vec_NOT (sim_cpu *cpu) { /* instr[31] = 0 instr[30] = half (0)/full (1) instr[29,21] = 10 1110 001 instr[20,16] = 0 0000 instr[15,10] = 0101 10 instr[9,5] = Vn instr[4.0] = Vd. */ unsigned vn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; int full = uimm (aarch64_get_instr (cpu), 30, 30); NYI_assert (29, 10, 0xB8816); for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, ~ aarch64_get_vec_u8 (cpu, vn, i)); } static void do_vec_MOV_element (sim_cpu *cpu) { /* instr[31,21] = 0110 1110 000 instr[20,16] = size & dest index instr[15] = 0 instr[14,11] = source index instr[10] = 1 instr[9,5] = Vs instr[4.0] = Vd. */ unsigned vs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned src_index; unsigned dst_index; NYI_assert (31, 21, 0x370); NYI_assert (15, 15, 0); NYI_assert (10, 10, 1); if (uimm (aarch64_get_instr (cpu), 16, 16)) { /* Move a byte. */ src_index = uimm (aarch64_get_instr (cpu), 14, 11); dst_index = uimm (aarch64_get_instr (cpu), 20, 17); aarch64_set_vec_u8 (cpu, vd, dst_index, aarch64_get_vec_u8 (cpu, vs, src_index)); } else if (uimm (aarch64_get_instr (cpu), 17, 17)) { /* Move 16-bits. */ NYI_assert (11, 11, 0); src_index = uimm (aarch64_get_instr (cpu), 14, 12); dst_index = uimm (aarch64_get_instr (cpu), 20, 18); aarch64_set_vec_u16 (cpu, vd, dst_index, aarch64_get_vec_u16 (cpu, vs, src_index)); } else if (uimm (aarch64_get_instr (cpu), 18, 18)) { /* Move 32-bits. */ NYI_assert (12, 11, 0); src_index = uimm (aarch64_get_instr (cpu), 14, 13); dst_index = uimm (aarch64_get_instr (cpu), 20, 19); aarch64_set_vec_u32 (cpu, vd, dst_index, aarch64_get_vec_u32 (cpu, vs, src_index)); } else { NYI_assert (19, 19, 1); NYI_assert (13, 11, 0); src_index = uimm (aarch64_get_instr (cpu), 14, 14); dst_index = uimm (aarch64_get_instr (cpu), 20, 20); aarch64_set_vec_u64 (cpu, vd, dst_index, aarch64_get_vec_u64 (cpu, vs, src_index)); } } static void dexAdvSIMD0 (sim_cpu *cpu) { /* instr [28,25] = 0 111. */ if ( uimm (aarch64_get_instr (cpu), 15, 10) == 0x07 && (uimm (aarch64_get_instr (cpu), 9, 5) == uimm (aarch64_get_instr (cpu), 20, 16))) { if (uimm (aarch64_get_instr (cpu), 31, 21) == 0x075 || uimm (aarch64_get_instr (cpu), 31, 21) == 0x275) { do_vec_MOV_whole_vector (cpu); return; } } if (uimm (aarch64_get_instr (cpu), 29, 19) == 0x1E0) { do_vec_MOV_immediate (cpu); return; } if (uimm (aarch64_get_instr (cpu), 29, 19) == 0x5E0) { do_vec_MVNI (cpu); return; } if (uimm (aarch64_get_instr (cpu), 29, 19) == 0x1C0 || uimm (aarch64_get_instr (cpu), 29, 19) == 0x1C1) { if (uimm (aarch64_get_instr (cpu), 15, 10) == 0x03) { do_vec_DUP_scalar_into_vector (cpu); return; } } switch (uimm (aarch64_get_instr (cpu), 29, 24)) { case 0x0E: do_vec_op1 (cpu); return; case 0x0F: do_vec_op2 (cpu); return; case 0x2f: switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x01: do_vec_SSHR_USHR (cpu); return; case 0x10: case 0x12: do_vec_mls_indexed (cpu); return; case 0x29: do_vec_xtl (cpu); return; default: HALT_NYI; } case 0x2E: if (uimm (aarch64_get_instr (cpu), 21, 21) == 1) { switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x07: switch (uimm (aarch64_get_instr (cpu), 23, 22)) { case 0: do_vec_EOR (cpu); return; case 1: do_vec_BSL (cpu); return; case 2: case 3: do_vec_bit (cpu); return; } break; case 0x08: do_vec_sub_long (cpu); return; case 0x11: do_vec_USHL (cpu); return; case 0x16: do_vec_NOT (cpu); return; case 0x19: do_vec_max (cpu); return; case 0x1B: do_vec_min (cpu); return; case 0x21: do_vec_SUB (cpu); return; case 0x25: do_vec_MLS (cpu); return; case 0x31: do_vec_FminmaxNMP (cpu); return; case 0x35: do_vec_FADDP (cpu); return; case 0x37: do_vec_FMUL (cpu); return; case 0x3F: do_vec_FDIV (cpu); return; case 0x3E: switch (uimm (aarch64_get_instr (cpu), 20, 16)) { case 0x00: do_vec_FNEG (cpu); return; case 0x01: do_vec_FSQRT (cpu); return; default: HALT_NYI; } case 0x0D: case 0x0F: case 0x22: case 0x23: case 0x26: case 0x2A: case 0x32: case 0x36: case 0x39: case 0x3A: do_vec_compare (cpu); return; default: break; } } if (uimm (aarch64_get_instr (cpu), 31, 21) == 0x370) { do_vec_MOV_element (cpu); return; } switch (uimm (aarch64_get_instr (cpu), 21, 10)) { case 0x82E: do_vec_neg (cpu); return; case 0x87E: do_vec_sqrt (cpu); return; default: if (uimm (aarch64_get_instr (cpu), 15, 10) == 0x30) { do_vec_mull (cpu); return; } break; } break; default: break; } HALT_NYI; } /* 3 sources. */ /* Float multiply add. */ static void fmadds (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, aarch64_get_FP_float (cpu, sa) + aarch64_get_FP_float (cpu, sn) * aarch64_get_FP_float (cpu, sm)); } /* Double multiply add. */ static void fmaddd (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, aarch64_get_FP_double (cpu, sa) + aarch64_get_FP_double (cpu, sn) * aarch64_get_FP_double (cpu, sm)); } /* Float multiply subtract. */ static void fmsubs (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, aarch64_get_FP_float (cpu, sa) - aarch64_get_FP_float (cpu, sn) * aarch64_get_FP_float (cpu, sm)); } /* Double multiply subtract. */ static void fmsubd (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, aarch64_get_FP_double (cpu, sa) - aarch64_get_FP_double (cpu, sn) * aarch64_get_FP_double (cpu, sm)); } /* Float negative multiply add. */ static void fnmadds (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, - aarch64_get_FP_float (cpu, sa) + (- aarch64_get_FP_float (cpu, sn)) * aarch64_get_FP_float (cpu, sm)); } /* Double negative multiply add. */ static void fnmaddd (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, - aarch64_get_FP_double (cpu, sa) + (- aarch64_get_FP_double (cpu, sn)) * aarch64_get_FP_double (cpu, sm)); } /* Float negative multiply subtract. */ static void fnmsubs (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, - aarch64_get_FP_float (cpu, sa) + aarch64_get_FP_float (cpu, sn) * aarch64_get_FP_float (cpu, sm)); } /* Double negative multiply subtract. */ static void fnmsubd (sim_cpu *cpu) { unsigned sa = uimm (aarch64_get_instr (cpu), 14, 10); unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, - aarch64_get_FP_double (cpu, sa) + aarch64_get_FP_double (cpu, sn) * aarch64_get_FP_double (cpu, sm)); } static void dexSimpleFPDataProc3Source (sim_cpu *cpu) { /* instr[31] ==> M : 0 ==> OK, 1 ==> UNALLOC instr[30] = 0 instr[29] ==> S : 0 ==> OK, 1 ==> UNALLOC instr[28,25] = 1111 instr[24] = 1 instr[23,22] ==> type : 0 ==> single, 01 ==> double, 1x ==> UNALLOC instr[21] ==> o1 : 0 ==> unnegated, 1 ==> negated instr[15] ==> o2 : 0 ==> ADD, 1 ==> SUB */ uint32_t M_S = (uimm (aarch64_get_instr (cpu), 31, 31) << 1) | uimm (aarch64_get_instr (cpu), 29, 29); /* dispatch on combined type:o1:o2. */ uint32_t dispatch = (uimm (aarch64_get_instr (cpu), 23, 21) << 1) | uimm (aarch64_get_instr (cpu), 15, 15); if (M_S != 0) HALT_UNALLOC; switch (dispatch) { case 0: fmadds (cpu); return; case 1: fmsubs (cpu); return; case 2: fnmadds (cpu); return; case 3: fnmsubs (cpu); return; case 4: fmaddd (cpu); return; case 5: fmsubd (cpu); return; case 6: fnmaddd (cpu); return; case 7: fnmsubd (cpu); return; default: /* type > 1 is currently unallocated. */ HALT_UNALLOC; } } static void dexSimpleFPFixedConvert (sim_cpu *cpu) { HALT_NYI; } static void dexSimpleFPCondCompare (sim_cpu *cpu) { HALT_NYI; } /* 2 sources. */ /* Float add. */ static void fadds (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, aarch64_get_FP_float (cpu, sn) + aarch64_get_FP_float (cpu, sm)); } /* Double add. */ static void faddd (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, aarch64_get_FP_double (cpu, sn) + aarch64_get_FP_double (cpu, sm)); } /* Float divide. */ static void fdivs (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, aarch64_get_FP_float (cpu, sn) / aarch64_get_FP_float (cpu, sm)); } /* Double divide. */ static void fdivd (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, aarch64_get_FP_double (cpu, sn) / aarch64_get_FP_double (cpu, sm)); } /* Float multiply. */ static void fmuls (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, aarch64_get_FP_float (cpu, sn) * aarch64_get_FP_float (cpu, sm)); } /* Double multiply. */ static void fmuld (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, aarch64_get_FP_double (cpu, sn) * aarch64_get_FP_double (cpu, sm)); } /* Float negate and multiply. */ static void fnmuls (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, - (aarch64_get_FP_float (cpu, sn) * aarch64_get_FP_float (cpu, sm))); } /* Double negate and multiply. */ static void fnmuld (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, - (aarch64_get_FP_double (cpu, sn) * aarch64_get_FP_double (cpu, sm))); } /* Float subtract. */ static void fsubs (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, aarch64_get_FP_float (cpu, sn) - aarch64_get_FP_float (cpu, sm)); } /* Double subtract. */ static void fsubd (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, aarch64_get_FP_double (cpu, sn) - aarch64_get_FP_double (cpu, sm)); } static void do_FMINNM (sim_cpu *cpu) { /* instr[31,23] = 0 0011 1100 instr[22] = float(0)/double(1) instr[21] = 1 instr[20,16] = Sm instr[15,10] = 01 1110 instr[9,5] = Sn instr[4,0] = Cpu */ unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 23, 0x03C); NYI_assert (15, 10, 0x1E); if (uimm (aarch64_get_instr (cpu), 22, 22)) aarch64_set_FP_double (cpu, sd, dminnm (aarch64_get_FP_double (cpu, sn), aarch64_get_FP_double (cpu, sm))); else aarch64_set_FP_float (cpu, sd, fminnm (aarch64_get_FP_float (cpu, sn), aarch64_get_FP_float (cpu, sm))); } static void do_FMAXNM (sim_cpu *cpu) { /* instr[31,23] = 0 0011 1100 instr[22] = float(0)/double(1) instr[21] = 1 instr[20,16] = Sm instr[15,10] = 01 1010 instr[9,5] = Sn instr[4,0] = Cpu */ unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 23, 0x03C); NYI_assert (15, 10, 0x1A); if (uimm (aarch64_get_instr (cpu), 22, 22)) aarch64_set_FP_double (cpu, sd, dmaxnm (aarch64_get_FP_double (cpu, sn), aarch64_get_FP_double (cpu, sm))); else aarch64_set_FP_float (cpu, sd, fmaxnm (aarch64_get_FP_float (cpu, sn), aarch64_get_FP_float (cpu, sm))); } static void dexSimpleFPDataProc2Source (sim_cpu *cpu) { /* instr[31] ==> M : 0 ==> OK, 1 ==> UNALLOC instr[30] = 0 instr[29] ==> S : 0 ==> OK, 1 ==> UNALLOC instr[28,25] = 1111 instr[24] = 0 instr[23,22] ==> type : 0 ==> single, 01 ==> double, 1x ==> UNALLOC instr[21] = 1 instr[20,16] = Vm instr[15,12] ==> opcode : 0000 ==> FMUL, 0001 ==> FDIV 0010 ==> FADD, 0011 ==> FSUB, 0100 ==> FMAX, 0101 ==> FMIN 0110 ==> FMAXNM, 0111 ==> FMINNM 1000 ==> FNMUL, ow ==> UNALLOC instr[11,10] = 10 instr[9,5] = Vn instr[4,0] = Vd */ uint32_t M_S = (uimm (aarch64_get_instr (cpu), 31, 31) << 1) | uimm (aarch64_get_instr (cpu), 29, 29); uint32_t type = uimm (aarch64_get_instr (cpu), 23, 22); /* Dispatch on opcode. */ uint32_t dispatch = uimm (aarch64_get_instr (cpu), 15, 12); if (type > 1) HALT_UNALLOC; if (M_S != 0) HALT_UNALLOC; if (type) switch (dispatch) { case 0: fmuld (cpu); return; case 1: fdivd (cpu); return; case 2: faddd (cpu); return; case 3: fsubd (cpu); return; case 6: do_FMAXNM (cpu); return; case 7: do_FMINNM (cpu); return; case 8: fnmuld (cpu); return; /* Have not yet implemented fmax and fmin. */ case 4: case 5: HALT_NYI; default: HALT_UNALLOC; } else /* type == 0 => floats. */ switch (dispatch) { case 0: fmuls (cpu); return; case 1: fdivs (cpu); return; case 2: fadds (cpu); return; case 3: fsubs (cpu); return; case 6: do_FMAXNM (cpu); return; case 7: do_FMINNM (cpu); return; case 8: fnmuls (cpu); return; case 4: case 5: HALT_NYI; default: HALT_UNALLOC; } } static void dexSimpleFPCondSelect (sim_cpu *cpu) { /* FCSEL instr[31,23] = 0 0011 1100 instr[22] = 0=>single 1=>double instr[21] = 1 instr[20,16] = Sm instr[15,12] = cond instr[11,10] = 11 instr[9,5] = Sn instr[4,0] = Cpu */ unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t set = testConditionCode (cpu, uimm (aarch64_get_instr (cpu), 15, 12)); NYI_assert (31, 23, 0x03C); NYI_assert (11, 10, 0x3); if (uimm (aarch64_get_instr (cpu), 22, 22)) aarch64_set_FP_double (cpu, sd, set ? sn : sm); else aarch64_set_FP_float (cpu, sd, set ? sn : sm); } /* Store 32 bit unscaled signed 9 bit. */ static void fsturs (sim_cpu *cpu, int32_t offset) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_mem_float (cpu, aarch64_get_reg_u64 (cpu, st, 1) + offset, aarch64_get_FP_float (cpu, rn)); } /* Store 64 bit unscaled signed 9 bit. */ static void fsturd (sim_cpu *cpu, int32_t offset) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_mem_double (cpu, aarch64_get_reg_u64 (cpu, st, 1) + offset, aarch64_get_FP_double (cpu, rn)); } /* Store 128 bit unscaled signed 9 bit. */ static void fsturq (sim_cpu *cpu, int32_t offset) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); FRegister a; aarch64_get_FP_long_double (cpu, rn, & a); aarch64_set_mem_long_double (cpu, aarch64_get_reg_u64 (cpu, st, 1) + offset, a); } /* TODO FP move register. */ /* 32 bit fp to fp move register. */ static void ffmovs (sim_cpu *cpu) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, st, aarch64_get_FP_float (cpu, rn)); } /* 64 bit fp to fp move register. */ static void ffmovd (sim_cpu *cpu) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, st, aarch64_get_FP_double (cpu, rn)); } /* 32 bit GReg to Vec move register. */ static void fgmovs (sim_cpu *cpu) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_vec_u32 (cpu, st, 0, aarch64_get_reg_u32 (cpu, rn, NO_SP)); } /* 64 bit g to fp move register. */ static void fgmovd (sim_cpu *cpu) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_vec_u64 (cpu, st, 0, aarch64_get_reg_u64 (cpu, rn, NO_SP)); } /* 32 bit fp to g move register. */ static void gfmovs (sim_cpu *cpu) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, st, NO_SP, aarch64_get_vec_u32 (cpu, rn, 0)); } /* 64 bit fp to g move register. */ static void gfmovd (sim_cpu *cpu) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, st, NO_SP, aarch64_get_vec_u64 (cpu, rn, 0)); } /* FP move immediate These install an immediate 8 bit value in the target register where the 8 bits comprise 1 sign bit, 4 bits of fraction and a 3 bit exponent. */ static void fmovs (sim_cpu *cpu) { unsigned int sd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t imm = uimm (aarch64_get_instr (cpu), 20, 13); float f = fp_immediate_for_encoding_32 (imm); aarch64_set_FP_float (cpu, sd, f); } static void fmovd (sim_cpu *cpu) { unsigned int sd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t imm = uimm (aarch64_get_instr (cpu), 20, 13); double d = fp_immediate_for_encoding_64 (imm); aarch64_set_FP_double (cpu, sd, d); } static void dexSimpleFPImmediate (sim_cpu *cpu) { /* instr[31,23] == 00111100 instr[22] == type : single(0)/double(1) instr[21] == 1 instr[20,13] == imm8 instr[12,10] == 100 instr[9,5] == imm5 : 00000 ==> PK, ow ==> UNALLOC instr[4,0] == Rd */ uint32_t imm5 = uimm (aarch64_get_instr (cpu), 9, 5); NYI_assert (31, 23, 0x3C); if (imm5 != 0) HALT_UNALLOC; if (uimm (aarch64_get_instr (cpu), 22, 22)) fmovd (cpu); else fmovs (cpu); } /* TODO specific decode and execute for group Load Store. */ /* TODO FP load/store single register (unscaled offset). */ /* TODO load 8 bit unscaled signed 9 bit. */ /* TODO load 16 bit unscaled signed 9 bit. */ /* Load 32 bit unscaled signed 9 bit. */ static void fldurs (sim_cpu *cpu, int32_t offset) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, st, aarch64_get_mem_float (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* Load 64 bit unscaled signed 9 bit. */ static void fldurd (sim_cpu *cpu, int32_t offset) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, st, aarch64_get_mem_double (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset)); } /* Load 128 bit unscaled signed 9 bit. */ static void fldurq (sim_cpu *cpu, int32_t offset) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int st = uimm (aarch64_get_instr (cpu), 4, 0); FRegister a; uint64_t addr = aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset; aarch64_get_mem_long_double (cpu, addr, & a); aarch64_set_FP_long_double (cpu, st, a); } /* TODO store 8 bit unscaled signed 9 bit. */ /* TODO store 16 bit unscaled signed 9 bit. */ /* 1 source. */ /* Float absolute value. */ static void fabss (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); float value = aarch64_get_FP_float (cpu, sn); aarch64_set_FP_float (cpu, sd, fabsf (value)); } /* Double absolute value. */ static void fabcpu (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); double value = aarch64_get_FP_double (cpu, sn); aarch64_set_FP_double (cpu, sd, fabs (value)); } /* Float negative value. */ static void fnegs (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, - aarch64_get_FP_float (cpu, sn)); } /* Double negative value. */ static void fnegd (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, - aarch64_get_FP_double (cpu, sn)); } /* Float square root. */ static void fsqrts (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, sqrt (aarch64_get_FP_float (cpu, sn))); } /* Double square root. */ static void fsqrtd (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, sqrt (aarch64_get_FP_double (cpu, sn))); } /* Convert double to float. */ static void fcvtds (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, (float) aarch64_get_FP_double (cpu, sn)); } /* Convert float to double. */ static void fcvtcpu (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, (double) aarch64_get_FP_float (cpu, sn)); } static void do_FRINT (sim_cpu *cpu) { /* instr[31,23] = 0001 1110 0 instr[22] = single(0)/double(1) instr[21,18] = 1001 instr[17,15] = rounding mode instr[14,10] = 10000 instr[9,5] = source instr[4,0] = dest */ float val; unsigned rs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned int rmode = uimm (aarch64_get_instr (cpu), 17, 15); NYI_assert (31, 23, 0x03C); NYI_assert (21, 18, 0x9); NYI_assert (14, 10, 0x10); if (rmode == 6 || rmode == 7) /* FIXME: Add support for rmode == 6 exactness check. */ rmode = uimm (aarch64_get_FPSR (cpu), 23, 22); if (uimm (aarch64_get_instr (cpu), 22, 22)) { double val = aarch64_get_FP_double (cpu, rs); switch (rmode) { case 0: /* mode N: nearest or even. */ { double rval = round (val); if (val - rval == 0.5) { if (((rval / 2.0) * 2.0) != rval) rval += 1.0; } aarch64_set_FP_double (cpu, rd, round (val)); return; } case 1: /* mode P: towards +inf. */ if (val < 0.0) aarch64_set_FP_double (cpu, rd, trunc (val)); else aarch64_set_FP_double (cpu, rd, round (val)); return; case 2: /* mode M: towards -inf. */ if (val < 0.0) aarch64_set_FP_double (cpu, rd, round (val)); else aarch64_set_FP_double (cpu, rd, trunc (val)); return; case 3: /* mode Z: towards 0. */ aarch64_set_FP_double (cpu, rd, trunc (val)); return; case 4: /* mode A: away from 0. */ aarch64_set_FP_double (cpu, rd, round (val)); return; case 6: /* mode X: use FPCR with exactness check. */ case 7: /* mode I: use FPCR mode. */ HALT_NYI; default: HALT_UNALLOC; } } val = aarch64_get_FP_float (cpu, rs); switch (rmode) { case 0: /* mode N: nearest or even. */ { float rval = roundf (val); if (val - rval == 0.5) { if (((rval / 2.0) * 2.0) != rval) rval += 1.0; } aarch64_set_FP_float (cpu, rd, rval); return; } case 1: /* mode P: towards +inf. */ if (val < 0.0) aarch64_set_FP_float (cpu, rd, truncf (val)); else aarch64_set_FP_float (cpu, rd, roundf (val)); return; case 2: /* mode M: towards -inf. */ if (val < 0.0) aarch64_set_FP_float (cpu, rd, truncf (val)); else aarch64_set_FP_float (cpu, rd, roundf (val)); return; case 3: /* mode Z: towards 0. */ aarch64_set_FP_float (cpu, rd, truncf (val)); return; case 4: /* mode A: away from 0. */ aarch64_set_FP_float (cpu, rd, roundf (val)); return; case 6: /* mode X: use FPCR with exactness check. */ case 7: /* mode I: use FPCR mode. */ HALT_NYI; default: HALT_UNALLOC; } } static void dexSimpleFPDataProc1Source (sim_cpu *cpu) { /* instr[31] ==> M : 0 ==> OK, 1 ==> UNALLOC instr[30] = 0 instr[29] ==> S : 0 ==> OK, 1 ==> UNALLOC instr[28,25] = 1111 instr[24] = 0 instr[23,22] ==> type : 00 ==> source is single, 01 ==> source is double 10 ==> UNALLOC 11 ==> UNALLOC or source is half instr[21] = 1 instr[20,15] ==> opcode : with type 00 or 01 000000 ==> FMOV, 000001 ==> FABS, 000010 ==> FNEG, 000011 ==> FSQRT, 000100 ==> UNALLOC, 000101 ==> FCVT,(to single/double) 000110 ==> UNALLOC, 000111 ==> FCVT (to half) 001000 ==> FRINTN, 001001 ==> FRINTP, 001010 ==> FRINTM, 001011 ==> FRINTZ, 001100 ==> FRINTA, 001101 ==> UNALLOC 001110 ==> FRINTX, 001111 ==> FRINTI with type 11 000100 ==> FCVT (half-to-single) 000101 ==> FCVT (half-to-double) instr[14,10] = 10000. */ uint32_t M_S = (uimm (aarch64_get_instr (cpu), 31, 31) << 1) | uimm (aarch64_get_instr (cpu), 29, 29); uint32_t type = uimm (aarch64_get_instr (cpu), 23, 22); uint32_t opcode = uimm (aarch64_get_instr (cpu), 20, 15); if (M_S != 0) HALT_UNALLOC; if (type == 3) { if (opcode == 4 || opcode == 5) HALT_NYI; else HALT_UNALLOC; } if (type == 2) HALT_UNALLOC; switch (opcode) { case 0: if (type) ffmovd (cpu); else ffmovs (cpu); return; case 1: if (type) fabcpu (cpu); else fabss (cpu); return; case 2: if (type) fnegd (cpu); else fnegs (cpu); return; case 3: if (type) fsqrtd (cpu); else fsqrts (cpu); return; case 4: if (type) fcvtds (cpu); else HALT_UNALLOC; return; case 5: if (type) HALT_UNALLOC; fcvtcpu (cpu); return; case 8: /* FRINTN etc. */ case 9: case 10: case 11: case 12: case 14: case 15: do_FRINT (cpu); return; case 7: /* FCVT double/single to half precision. */ case 13: HALT_NYI; default: HALT_UNALLOC; } } /* 32 bit signed int to float. */ static void scvtf32 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, (float) aarch64_get_reg_s32 (cpu, rn, NO_SP)); } /* signed int to float. */ static void scvtf (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_float (cpu, sd, (float) aarch64_get_reg_s64 (cpu, rn, NO_SP)); } /* 32 bit signed int to double. */ static void scvtd32 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, (double) aarch64_get_reg_s32 (cpu, rn, NO_SP)); } /* signed int to double. */ static void scvtd (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned sd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_FP_double (cpu, sd, (double) aarch64_get_reg_s64 (cpu, rn, NO_SP)); } static const float FLOAT_INT_MAX = (float) INT_MAX; static const float FLOAT_INT_MIN = (float) INT_MIN; static const double DOUBLE_INT_MAX = (double) INT_MAX; static const double DOUBLE_INT_MIN = (double) INT_MIN; static const float FLOAT_LONG_MAX = (float) LONG_MAX; static const float FLOAT_LONG_MIN = (float) LONG_MIN; static const double DOUBLE_LONG_MAX = (double) LONG_MAX; static const double DOUBLE_LONG_MIN = (double) LONG_MIN; /* Check for FP exception conditions: NaN raises IO Infinity raises IO Out of Range raises IO and IX and saturates value Denormal raises ID and IX and sets to zero. */ #define RAISE_EXCEPTIONS(F, VALUE, FTYPE, ITYPE) \ do \ { \ switch (fpclassify (F)) \ { \ case FP_INFINITE: \ case FP_NAN: \ aarch64_set_FPSR (cpu, IO); \ if (signbit (F)) \ VALUE = ITYPE##_MAX; \ else \ VALUE = ITYPE##_MIN; \ break; \ \ case FP_NORMAL: \ if (F >= FTYPE##_##ITYPE##_MAX) \ { \ aarch64_set_FPSR_bits (cpu, IO | IX, IO | IX); \ VALUE = ITYPE##_MAX; \ } \ else if (F <= FTYPE##_##ITYPE##_MIN) \ { \ aarch64_set_FPSR_bits (cpu, IO | IX, IO | IX); \ VALUE = ITYPE##_MIN; \ } \ break; \ \ case FP_SUBNORMAL: \ aarch64_set_FPSR_bits (cpu, IO | IX | ID, IX | ID); \ VALUE = 0; \ break; \ \ default: \ case FP_ZERO: \ VALUE = 0; \ break; \ } \ } \ while (0) /* 32 bit convert float to signed int truncate towards zero. */ static void fcvtszs32 (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* TODO : check that this rounds toward zero. */ float f = aarch64_get_FP_float (cpu, sn); int32_t value = (int32_t) f; RAISE_EXCEPTIONS (f, value, FLOAT, INT); /* Avoid sign extension to 64 bit. */ aarch64_set_reg_u64 (cpu, rd, NO_SP, (uint32_t) value); } /* 64 bit convert float to signed int truncate towards zero. */ static void fcvtszs (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); float f = aarch64_get_FP_float (cpu, sn); int64_t value = (int64_t) f; RAISE_EXCEPTIONS (f, value, FLOAT, LONG); aarch64_set_reg_s64 (cpu, rd, NO_SP, value); } /* 32 bit convert double to signed int truncate towards zero. */ static void fcvtszd32 (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* TODO : check that this rounds toward zero. */ double d = aarch64_get_FP_double (cpu, sn); int32_t value = (int32_t) d; RAISE_EXCEPTIONS (d, value, DOUBLE, INT); /* Avoid sign extension to 64 bit. */ aarch64_set_reg_u64 (cpu, rd, NO_SP, (uint32_t) value); } /* 64 bit convert double to signed int truncate towards zero. */ static void fcvtszd (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* TODO : check that this rounds toward zero. */ double d = aarch64_get_FP_double (cpu, sn); int64_t value; value = (int64_t) d; RAISE_EXCEPTIONS (d, value, DOUBLE, LONG); aarch64_set_reg_s64 (cpu, rd, NO_SP, value); } static void do_fcvtzu (sim_cpu *cpu) { /* instr[31] = size: 32-bit (0), 64-bit (1) instr[30,23] = 00111100 instr[22] = type: single (0)/ double (1) instr[21] = enable (0)/disable(1) precision instr[20,16] = 11001 instr[15,10] = precision instr[9,5] = Rs instr[4,0] = Rd. */ unsigned rs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (30, 23, 0x3C); NYI_assert (20, 16, 0x19); if (uimm (aarch64_get_instr (cpu), 21, 21) != 1) /* Convert to fixed point. */ HALT_NYI; if (uimm (aarch64_get_instr (cpu), 31, 31)) { /* Convert to unsigned 64-bit integer. */ if (uimm (aarch64_get_instr (cpu), 22, 22)) { double d = aarch64_get_FP_double (cpu, rs); uint64_t value = (uint64_t) d; /* Do not raise an exception if we have reached ULONG_MAX. */ if (value != (1UL << 63)) RAISE_EXCEPTIONS (d, value, DOUBLE, LONG); aarch64_set_reg_u64 (cpu, rd, NO_SP, value); } else { float f = aarch64_get_FP_float (cpu, rs); uint64_t value = (uint64_t) f; /* Do not raise an exception if we have reached ULONG_MAX. */ if (value != (1UL << 63)) RAISE_EXCEPTIONS (f, value, FLOAT, LONG); aarch64_set_reg_u64 (cpu, rd, NO_SP, value); } } else { uint32_t value; /* Convert to unsigned 32-bit integer. */ if (uimm (aarch64_get_instr (cpu), 22, 22)) { double d = aarch64_get_FP_double (cpu, rs); value = (uint32_t) d; /* Do not raise an exception if we have reached UINT_MAX. */ if (value != (1UL << 31)) RAISE_EXCEPTIONS (d, value, DOUBLE, INT); } else { float f = aarch64_get_FP_float (cpu, rs); value = (uint32_t) f; /* Do not raise an exception if we have reached UINT_MAX. */ if (value != (1UL << 31)) RAISE_EXCEPTIONS (f, value, FLOAT, INT); } aarch64_set_reg_u64 (cpu, rd, NO_SP, value); } } static void do_UCVTF (sim_cpu *cpu) { /* instr[31] = size: 32-bit (0), 64-bit (1) instr[30,23] = 001 1110 0 instr[22] = type: single (0)/ double (1) instr[21] = enable (0)/disable(1) precision instr[20,16] = 0 0011 instr[15,10] = precision instr[9,5] = Rs instr[4,0] = Rd. */ unsigned rs = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (30, 23, 0x3C); NYI_assert (20, 16, 0x03); if (uimm (aarch64_get_instr (cpu), 21, 21) != 1) HALT_NYI; /* FIXME: Add exception raising. */ if (uimm (aarch64_get_instr (cpu), 31, 31)) { uint64_t value = aarch64_get_reg_u64 (cpu, rs, NO_SP); if (uimm (aarch64_get_instr (cpu), 22, 22)) aarch64_set_FP_double (cpu, rd, (double) value); else aarch64_set_FP_float (cpu, rd, (float) value); } else { uint32_t value = aarch64_get_reg_u32 (cpu, rs, NO_SP); if (uimm (aarch64_get_instr (cpu), 22, 22)) aarch64_set_FP_double (cpu, rd, (double) value); else aarch64_set_FP_float (cpu, rd, (float) value); } } static void float_vector_move (sim_cpu *cpu) { /* instr[31,17] == 100 1111 0101 0111 instr[16] ==> direction 0=> to GR, 1=> from GR instr[15,10] => ??? instr[9,5] ==> source instr[4,0] ==> dest. */ unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 17, 0x4F57); if (uimm (aarch64_get_instr (cpu), 15, 10) != 0) HALT_UNALLOC; if (uimm (aarch64_get_instr (cpu), 16, 16)) aarch64_set_vec_u64 (cpu, rd, 1, aarch64_get_reg_u64 (cpu, rn, NO_SP)); else aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_vec_u64 (cpu, rn, 1)); } static void dexSimpleFPIntegerConvert (sim_cpu *cpu) { /* instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30 = 0 instr[29] = S : 0 ==> OK, 1 ==> UNALLOC instr[28,25] = 1111 instr[24] = 0 instr[23,22] = type : 00 ==> single, 01 ==> double, 1x ==> UNALLOC instr[21] = 1 instr[20,19] = rmode instr[18,16] = opcode instr[15,10] = 10 0000 */ uint32_t rmode_opcode; uint32_t size_type; uint32_t type; uint32_t size; uint32_t S; if (uimm (aarch64_get_instr (cpu), 31, 17) == 0x4F57) { float_vector_move (cpu); return; } size = uimm (aarch64_get_instr (cpu), 31, 31); S = uimm (aarch64_get_instr (cpu), 29, 29); if (S != 0) HALT_UNALLOC; type = uimm (aarch64_get_instr (cpu), 23, 22); if (type > 1) HALT_UNALLOC; rmode_opcode = uimm (aarch64_get_instr (cpu), 20, 16); size_type = (size << 1) | type; /* 0==32f, 1==32d, 2==64f, 3==64d. */ switch (rmode_opcode) { case 2: /* SCVTF. */ switch (size_type) { case 0: scvtf32 (cpu); return; case 1: scvtd32 (cpu); return; case 2: scvtf (cpu); return; case 3: scvtd (cpu); return; default: HALT_UNREACHABLE; } case 6: /* FMOV GR, Vec. */ switch (size_type) { case 0: gfmovs (cpu); return; case 3: gfmovd (cpu); return; default: HALT_UNALLOC; } case 7: /* FMOV vec, GR. */ switch (size_type) { case 0: fgmovs (cpu); return; case 3: fgmovd (cpu); return; default: HALT_UNALLOC; } case 24: /* FCVTZS. */ switch (size_type) { case 0: fcvtszs32 (cpu); return; case 1: fcvtszd32 (cpu); return; case 2: fcvtszs (cpu); return; case 3: fcvtszd (cpu); return; default: HALT_UNREACHABLE; } case 25: do_fcvtzu (cpu); return; case 3: do_UCVTF (cpu); return; case 0: /* FCVTNS. */ case 1: /* FCVTNU. */ case 4: /* FCVTAS. */ case 5: /* FCVTAU. */ case 8: /* FCVPTS. */ case 9: /* FCVTPU. */ case 16: /* FCVTMS. */ case 17: /* FCVTMU. */ default: HALT_NYI; } } static void set_flags_for_float_compare (sim_cpu *cpu, float fvalue1, float fvalue2) { uint32_t flags; if (isnan (fvalue1) || isnan (fvalue2)) flags = C|V; else { float result = fvalue1 - fvalue2; if (result == 0.0) flags = Z|C; else if (result < 0) flags = N; else /* (result > 0). */ flags = C; } aarch64_set_CPSR (cpu, flags); } static void fcmps (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); float fvalue1 = aarch64_get_FP_float (cpu, sn); float fvalue2 = aarch64_get_FP_float (cpu, sm); set_flags_for_float_compare (cpu, fvalue1, fvalue2); } /* Float compare to zero -- Invalid Operation exception only on signaling NaNs. */ static void fcmpzs (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); float fvalue1 = aarch64_get_FP_float (cpu, sn); set_flags_for_float_compare (cpu, fvalue1, 0.0f); } /* Float compare -- Invalid Operation exception on all NaNs. */ static void fcmpes (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); float fvalue1 = aarch64_get_FP_float (cpu, sn); float fvalue2 = aarch64_get_FP_float (cpu, sm); set_flags_for_float_compare (cpu, fvalue1, fvalue2); } /* Float compare to zero -- Invalid Operation exception on all NaNs. */ static void fcmpzes (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); float fvalue1 = aarch64_get_FP_float (cpu, sn); set_flags_for_float_compare (cpu, fvalue1, 0.0f); } static void set_flags_for_double_compare (sim_cpu *cpu, double dval1, double dval2) { uint32_t flags; if (isnan (dval1) || isnan (dval2)) flags = C|V; else { double result = dval1 - dval2; if (result == 0.0) flags = Z|C; else if (result < 0) flags = N; else /* (result > 0). */ flags = C; } aarch64_set_CPSR (cpu, flags); } /* Double compare -- Invalid Operation exception only on signaling NaNs. */ static void fcmpd (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); double dvalue1 = aarch64_get_FP_double (cpu, sn); double dvalue2 = aarch64_get_FP_double (cpu, sm); set_flags_for_double_compare (cpu, dvalue1, dvalue2); } /* Double compare to zero -- Invalid Operation exception only on signaling NaNs. */ static void fcmpzd (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); double dvalue1 = aarch64_get_FP_double (cpu, sn); set_flags_for_double_compare (cpu, dvalue1, 0.0); } /* Double compare -- Invalid Operation exception on all NaNs. */ static void fcmped (sim_cpu *cpu) { unsigned sm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); double dvalue1 = aarch64_get_FP_double (cpu, sn); double dvalue2 = aarch64_get_FP_double (cpu, sm); set_flags_for_double_compare (cpu, dvalue1, dvalue2); } /* Double compare to zero -- Invalid Operation exception on all NaNs. */ static void fcmpzed (sim_cpu *cpu) { unsigned sn = uimm (aarch64_get_instr (cpu), 9, 5); double dvalue1 = aarch64_get_FP_double (cpu, sn); set_flags_for_double_compare (cpu, dvalue1, 0.0); } static void dexSimpleFPCompare (sim_cpu *cpu) { /* assert instr[28,25] == 1111 instr[30:24:21:13,10] = 0011000 instr[31] = M : 0 ==> OK, 1 ==> UNALLOC instr[29] ==> S : 0 ==> OK, 1 ==> UNALLOC instr[23,22] ==> type : 0 ==> single, 01 ==> double, 1x ==> UNALLOC instr[15,14] ==> op : 00 ==> OK, ow ==> UNALLOC instr[4,0] ==> opcode2 : 00000 ==> FCMP, 10000 ==> FCMPE, 01000 ==> FCMPZ, 11000 ==> FCMPEZ, ow ==> UNALLOC */ uint32_t dispatch; uint32_t M_S = (uimm (aarch64_get_instr (cpu), 31, 31) << 1) | uimm (aarch64_get_instr (cpu), 29, 29); uint32_t type = uimm (aarch64_get_instr (cpu), 23, 22); uint32_t op = uimm (aarch64_get_instr (cpu), 15, 14); uint32_t op2_2_0 = uimm (aarch64_get_instr (cpu), 2, 0); if (op2_2_0 != 0) HALT_UNALLOC; if (M_S != 0) HALT_UNALLOC; if (type > 1) HALT_UNALLOC; if (op != 0) HALT_UNALLOC; /* dispatch on type and top 2 bits of opcode. */ dispatch = (type << 2) | uimm (aarch64_get_instr (cpu), 4, 3); switch (dispatch) { case 0: fcmps (cpu); return; case 1: fcmpzs (cpu); return; case 2: fcmpes (cpu); return; case 3: fcmpzes (cpu); return; case 4: fcmpd (cpu); return; case 5: fcmpzd (cpu); return; case 6: fcmped (cpu); return; case 7: fcmpzed (cpu); return; default: HALT_UNREACHABLE; } } static void do_scalar_FADDP (sim_cpu *cpu) { /* instr [31,23] = 011111100 instr [22] = single(0)/double(1) instr [21,10] = 1100 0011 0110 instr [9,5] = Fn instr [4,0] = Fd. */ unsigned Fn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned Fd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 23, 0x0FC); NYI_assert (21, 10, 0xC36); if (uimm (aarch64_get_instr (cpu), 22, 22)) { double val1 = aarch64_get_vec_double (cpu, Fn, 0); double val2 = aarch64_get_vec_double (cpu, Fn, 1); aarch64_set_FP_double (cpu, Fd, val1 + val2); } else { float val1 = aarch64_get_vec_float (cpu, Fn, 0); float val2 = aarch64_get_vec_float (cpu, Fn, 1); aarch64_set_FP_float (cpu, Fd, val1 + val2); } } /* Floating point absolute difference. */ static void do_scalar_FABD (sim_cpu *cpu) { /* instr [31,23] = 0111 1110 1 instr [22] = float(0)/double(1) instr [21] = 1 instr [20,16] = Rm instr [15,10] = 1101 01 instr [9, 5] = Rn instr [4, 0] = Rd. */ unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 23, 0x0FD); NYI_assert (21, 21, 1); NYI_assert (15, 10, 0x35); if (uimm (aarch64_get_instr (cpu), 22, 22)) aarch64_set_FP_double (cpu, rd, fabs (aarch64_get_FP_double (cpu, rn) - aarch64_get_FP_double (cpu, rm))); else aarch64_set_FP_float (cpu, rd, fabsf (aarch64_get_FP_float (cpu, rn) - aarch64_get_FP_float (cpu, rm))); } static void do_scalar_CMGT (sim_cpu *cpu) { /* instr [31,21] = 0101 1110 111 instr [20,16] = Rm instr [15,10] = 00 1101 instr [9, 5] = Rn instr [4, 0] = Rd. */ unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 21, 0x2F7); NYI_assert (15, 10, 0x0D); aarch64_set_vec_u64 (cpu, rd, 0, aarch64_get_vec_u64 (cpu, rn, 0) > aarch64_get_vec_u64 (cpu, rm, 0) ? -1L : 0L); } static void do_scalar_USHR (sim_cpu *cpu) { /* instr [31,23] = 0111 1111 0 instr [22,16] = shift amount instr [15,10] = 0000 01 instr [9, 5] = Rn instr [4, 0] = Rd. */ unsigned amount = 128 - uimm (aarch64_get_instr (cpu), 22, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 23, 0x0FE); NYI_assert (15, 10, 0x01); aarch64_set_vec_u64 (cpu, rd, 0, aarch64_get_vec_u64 (cpu, rn, 0) >> amount); } static void do_scalar_SHL (sim_cpu *cpu) { /* instr [31,23] = 0111 1101 0 instr [22,16] = shift amount instr [15,10] = 0101 01 instr [9, 5] = Rn instr [4, 0] = Rd. */ unsigned amount = uimm (aarch64_get_instr (cpu), 22, 16) - 64; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 23, 0x0BE); NYI_assert (15, 10, 0x15); if (uimm (aarch64_get_instr (cpu), 22, 22) == 0) HALT_UNALLOC; aarch64_set_vec_u64 (cpu, rd, 0, aarch64_get_vec_u64 (cpu, rn, 0) << amount); } /* FCMEQ FCMGT FCMGE. */ static void do_scalar_FCM (sim_cpu *cpu) { /* instr [31,30] = 01 instr [29] = U instr [28,24] = 1 1110 instr [23] = E instr [22] = size instr [21] = 1 instr [20,16] = Rm instr [15,12] = 1110 instr [11] = AC instr [10] = 1 instr [9, 5] = Rn instr [4, 0] = Rd. */ unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned EUac = (uimm (aarch64_get_instr (cpu), 23, 23) << 2) | (uimm (aarch64_get_instr (cpu), 29, 29) << 1) | uimm (aarch64_get_instr (cpu), 11, 11); unsigned result; float val1; float val2; NYI_assert (31, 30, 1); NYI_assert (28, 24, 0x1E); NYI_assert (21, 21, 1); NYI_assert (15, 12, 0xE); NYI_assert (10, 10, 1); if (uimm (aarch64_get_instr (cpu), 22, 22)) { double val1 = aarch64_get_FP_double (cpu, rn); double val2 = aarch64_get_FP_double (cpu, rm); switch (EUac) { case 0: /* 000 */ result = val1 == val2; break; case 3: /* 011 */ val1 = fabs (val1); val2 = fabs (val2); /* Fall through. */ case 2: /* 010 */ result = val1 >= val2; break; case 7: /* 111 */ val1 = fabs (val1); val2 = fabs (val2); /* Fall through. */ case 6: /* 110 */ result = val1 > val2; break; default: HALT_UNALLOC; } aarch64_set_vec_u32 (cpu, rd, 0, result ? -1 : 0); return; } val1 = aarch64_get_FP_float (cpu, rn); val2 = aarch64_get_FP_float (cpu, rm); switch (EUac) { case 0: /* 000 */ result = val1 == val2; break; case 3: /* 011 */ val1 = fabsf (val1); val2 = fabsf (val2); /* Fall through. */ case 2: /* 010 */ result = val1 >= val2; break; case 7: /* 111 */ val1 = fabsf (val1); val2 = fabsf (val2); /* Fall through. */ case 6: /* 110 */ result = val1 > val2; break; default: HALT_UNALLOC; } aarch64_set_vec_u32 (cpu, rd, 0, result ? -1 : 0); } /* An alias of DUP. */ static void do_scalar_MOV (sim_cpu *cpu) { /* instr [31,21] = 0101 1110 000 instr [20,16] = imm5 instr [15,10] = 0000 01 instr [9, 5] = Rn instr [4, 0] = Rd. */ unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned index; NYI_assert (31, 21, 0x2F0); NYI_assert (15, 10, 0x01); if (uimm (aarch64_get_instr (cpu), 16, 16)) { /* 8-bit. */ index = uimm (aarch64_get_instr (cpu), 20, 17); aarch64_set_vec_u8 (cpu, rd, 0, aarch64_get_vec_u8 (cpu, rn, index)); } else if (uimm (aarch64_get_instr (cpu), 17, 17)) { /* 16-bit. */ index = uimm (aarch64_get_instr (cpu), 20, 18); aarch64_set_vec_u16 (cpu, rd, 0, aarch64_get_vec_u16 (cpu, rn, index)); } else if (uimm (aarch64_get_instr (cpu), 18, 18)) { /* 32-bit. */ index = uimm (aarch64_get_instr (cpu), 20, 19); aarch64_set_vec_u32 (cpu, rd, 0, aarch64_get_vec_u32 (cpu, rn, index)); } else if (uimm (aarch64_get_instr (cpu), 19, 19)) { /* 64-bit. */ index = uimm (aarch64_get_instr (cpu), 20, 20); aarch64_set_vec_u64 (cpu, rd, 0, aarch64_get_vec_u64 (cpu, rn, index)); } else HALT_UNALLOC; } static void do_double_add (sim_cpu *cpu) { /* instr [28,25] = 1111. */ unsigned Fd; unsigned Fm; unsigned Fn; double val1; double val2; switch (uimm (aarch64_get_instr (cpu), 31, 23)) { case 0xBC: switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x01: do_scalar_MOV (cpu); return; case 0x39: do_scalar_FCM (cpu); return; case 0x3B: do_scalar_FCM (cpu); return; } break; case 0xBE: do_scalar_SHL (cpu); return; case 0xFC: switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x36: do_scalar_FADDP (cpu); return; case 0x39: do_scalar_FCM (cpu); return; case 0x3B: do_scalar_FCM (cpu); return; } break; case 0xFD: switch (uimm (aarch64_get_instr (cpu), 15, 10)) { case 0x0D: do_scalar_CMGT (cpu); return; case 0x35: do_scalar_FABD (cpu); return; case 0x39: do_scalar_FCM (cpu); return; case 0x3B: do_scalar_FCM (cpu); return; default: HALT_NYI; } case 0xFE: do_scalar_USHR (cpu); return; default: break; } /* instr [31,21] = 0101 1110 111 instr [20,16] = Fn instr [15,10] = 1000 01 instr [9,5] = Fm instr [4,0] = Fd. */ if (uimm (aarch64_get_instr (cpu), 31, 21) != 0x2F7 || uimm (aarch64_get_instr (cpu), 15, 10) != 0x21) HALT_NYI; Fd = uimm (aarch64_get_instr (cpu), 4, 0); Fm = uimm (aarch64_get_instr (cpu), 9, 5); Fn = uimm (aarch64_get_instr (cpu), 20, 16); val1 = aarch64_get_FP_double (cpu, Fm); val2 = aarch64_get_FP_double (cpu, Fn); aarch64_set_FP_double (cpu, Fd, val1 + val2); } static void dexAdvSIMD1 (sim_cpu *cpu) { /* instr [28,25] = 1 111. */ /* we are currently only interested in the basic scalar fp routines which all have bit 30 = 0. */ if (uimm (aarch64_get_instr (cpu), 30, 30)) do_double_add (cpu); /* instr[24] is set for FP data processing 3-source and clear for all other basic scalar fp instruction groups. */ else if (uimm (aarch64_get_instr (cpu), 24, 24)) dexSimpleFPDataProc3Source (cpu); /* instr[21] is clear for floating <-> fixed conversions and set for all other basic scalar fp instruction groups. */ else if (!uimm (aarch64_get_instr (cpu), 21, 21)) dexSimpleFPFixedConvert (cpu); /* instr[11,10] : 01 ==> cond compare, 10 ==> Data Proc 2 Source 11 ==> cond select, 00 ==> other. */ else switch (uimm (aarch64_get_instr (cpu), 11, 10)) { case 1: dexSimpleFPCondCompare (cpu); return; case 2: dexSimpleFPDataProc2Source (cpu); return; case 3: dexSimpleFPCondSelect (cpu); return; default: /* Now an ordered cascade of tests. FP immediate has aarch64_get_instr (cpu)[12] == 1. FP compare has aarch64_get_instr (cpu)[13] == 1. FP Data Proc 1 Source has aarch64_get_instr (cpu)[14] == 1. FP floating <--> integer conversions has aarch64_get_instr (cpu)[15] == 0. */ if (uimm (aarch64_get_instr (cpu), 12, 12)) dexSimpleFPImmediate (cpu); else if (uimm (aarch64_get_instr (cpu), 13, 13)) dexSimpleFPCompare (cpu); else if (uimm (aarch64_get_instr (cpu), 14, 14)) dexSimpleFPDataProc1Source (cpu); else if (!uimm (aarch64_get_instr (cpu), 15, 15)) dexSimpleFPIntegerConvert (cpu); else /* If we get here then instr[15] == 1 which means UNALLOC. */ HALT_UNALLOC; } } /* PC relative addressing. */ static void pcadr (sim_cpu *cpu) { /* instr[31] = op : 0 ==> ADR, 1 ==> ADRP instr[30,29] = immlo instr[23,5] = immhi. */ uint64_t address; unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t isPage = uimm (aarch64_get_instr (cpu), 31, 31); union { int64_t u64; uint64_t s64; } imm; uint64_t offset; imm.s64 = simm64 (aarch64_get_instr (cpu), 23, 5); offset = imm.u64; offset = (offset << 2) | uimm (aarch64_get_instr (cpu), 30, 29); address = aarch64_get_PC (cpu); if (isPage) { offset <<= 12; address &= ~0xfff; } aarch64_set_reg_u64 (cpu, rd, NO_SP, address + offset); } /* Specific decode and execute for group Data Processing Immediate. */ static void dexPCRelAddressing (sim_cpu *cpu) { /* assert instr[28,24] = 10000. */ pcadr (cpu); } /* Immediate logical. The bimm32/64 argument is constructed by replicating a 2, 4, 8, 16, 32 or 64 bit sequence pulled out at decode and possibly inverting it.. N.B. the output register (dest) can normally be Xn or SP the exception occurs for flag setting instructions which may only use Xn for the output (dest). The input register can never be SP. */ /* 32 bit and immediate. */ static void and32 (sim_cpu *cpu, uint32_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u32 (cpu, rn, NO_SP) & bimm); } /* 64 bit and immediate. */ static void and64 (sim_cpu *cpu, uint64_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u64 (cpu, rn, NO_SP) & bimm); } /* 32 bit and immediate set flags. */ static void ands32 (sim_cpu *cpu, uint32_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t value2 = bimm; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 & value2); set_flags_for_binop32 (cpu, value1 & value2); } /* 64 bit and immediate set flags. */ static void ands64 (sim_cpu *cpu, uint64_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t value2 = bimm; aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 & value2); set_flags_for_binop64 (cpu, value1 & value2); } /* 32 bit exclusive or immediate. */ static void eor32 (sim_cpu *cpu, uint32_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u32 (cpu, rn, NO_SP) ^ bimm); } /* 64 bit exclusive or immediate. */ static void eor64 (sim_cpu *cpu, uint64_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u64 (cpu, rn, NO_SP) ^ bimm); } /* 32 bit or immediate. */ static void orr32 (sim_cpu *cpu, uint32_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u32 (cpu, rn, NO_SP) | bimm); } /* 64 bit or immediate. */ static void orr64 (sim_cpu *cpu, uint64_t bimm) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, SP_OK, aarch64_get_reg_u64 (cpu, rn, NO_SP) | bimm); } /* Logical shifted register. These allow an optional LSL, ASR, LSR or ROR to the second source register with a count up to the register bit count. N.B register args may not be SP. */ /* 32 bit AND shifted register. */ static void and32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) & shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit AND shifted register. */ static void and64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) & shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } /* 32 bit AND shifted register setting flags. */ static void ands32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t value2 = shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 & value2); set_flags_for_binop32 (cpu, value1 & value2); } /* 64 bit AND shifted register setting flags. */ static void ands64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t value2 = shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 & value2); set_flags_for_binop64 (cpu, value1 & value2); } /* 32 bit BIC shifted register. */ static void bic32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) & ~ shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit BIC shifted register. */ static void bic64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) & ~ shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } /* 32 bit BIC shifted register setting flags. */ static void bics32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value1 = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t value2 = ~ shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 & value2); set_flags_for_binop32 (cpu, value1 & value2); } /* 64 bit BIC shifted register setting flags. */ static void bics64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t value2 = ~ shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count); aarch64_set_reg_u64 (cpu, rd, NO_SP, value1 & value2); set_flags_for_binop64 (cpu, value1 & value2); } /* 32 bit EON shifted register. */ static void eon32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) ^ ~ shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit EON shifted register. */ static void eon64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) ^ ~ shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } /* 32 bit EOR shifted register. */ static void eor32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) ^ shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit EOR shifted register. */ static void eor64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) ^ shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } /* 32 bit ORR shifted register. */ static void orr32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) | shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit ORR shifted register. */ static void orr64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) | shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } /* 32 bit ORN shifted register. */ static void orn32_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, rn, NO_SP) | ~ shifted32 (aarch64_get_reg_u32 (cpu, rm, NO_SP), shift, count)); } /* 64 bit ORN shifted register. */ static void orn64_shift (sim_cpu *cpu, Shift shift, uint32_t count) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, rn, NO_SP) | ~ shifted64 (aarch64_get_reg_u64 (cpu, rm, NO_SP), shift, count)); } static void dexLogicalImmediate (sim_cpu *cpu) { /* assert instr[28,23] = 1001000 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30,29] = op : 0 ==> AND, 1 ==> ORR, 2 ==> EOR, 3 ==> ANDS instr[22] = N : used to construct immediate mask instr[21,16] = immr instr[15,10] = imms instr[9,5] = Rn instr[4,0] = Rd */ /* 32 bit operations must have N = 0 or else we have an UNALLOC. */ uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); uint32_t N = uimm (aarch64_get_instr (cpu), 22, 22); /* uint32_t immr = uimm (aarch64_get_instr (cpu), 21, 16);. */ /* uint32_t imms = uimm (aarch64_get_instr (cpu), 15, 10);. */ uint32_t index = uimm (aarch64_get_instr (cpu), 22, 10); uint64_t bimm64 = LITable [index]; uint32_t dispatch = uimm (aarch64_get_instr (cpu), 30, 29); if (~size & N) HALT_UNALLOC; if (!bimm64) HALT_UNALLOC; if (size == 0) { uint32_t bimm = (uint32_t) bimm64; switch (dispatch) { case 0: and32 (cpu, bimm); return; case 1: orr32 (cpu, bimm); return; case 2: eor32 (cpu, bimm); return; case 3: ands32 (cpu, bimm); return; } } else { switch (dispatch) { case 0: and64 (cpu, bimm64); return; case 1: orr64 (cpu, bimm64); return; case 2: eor64 (cpu, bimm64); return; case 3: ands64 (cpu, bimm64); return; } } HALT_UNALLOC; } /* Immediate move. The uimm argument is a 16 bit value to be inserted into the target register the pos argument locates the 16 bit word in the dest register i.e. it is in {0, 1} for 32 bit and {0, 1, 2, 3} for 64 bit. N.B register arg may not be SP so it should be. accessed using the setGZRegisterXXX accessors. */ /* 32 bit move 16 bit immediate zero remaining shorts. */ static void movz32 (sim_cpu *cpu, uint32_t val, uint32_t pos) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, val << (pos * 16)); } /* 64 bit move 16 bit immediate zero remaining shorts. */ static void movz64 (sim_cpu *cpu, uint32_t val, uint32_t pos) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, ((uint64_t) val) << (pos * 16)); } /* 32 bit move 16 bit immediate negated. */ static void movn32 (sim_cpu *cpu, uint32_t val, uint32_t pos) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, ((val << (pos * 16)) ^ 0xffffffffU)); } /* 64 bit move 16 bit immediate negated. */ static void movn64 (sim_cpu *cpu, uint32_t val, uint32_t pos) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, ((((uint64_t) val) << (pos * 16)) ^ 0xffffffffffffffffULL)); } /* 32 bit move 16 bit immediate keep remaining shorts. */ static void movk32 (sim_cpu *cpu, uint32_t val, uint32_t pos) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t current = aarch64_get_reg_u32 (cpu, rd, NO_SP); uint32_t value = val << (pos * 16); uint32_t mask = ~(0xffffU << (pos * 16)); aarch64_set_reg_u64 (cpu, rd, NO_SP, (value | (current & mask))); } /* 64 bit move 16 it immediate keep remaining shorts. */ static void movk64 (sim_cpu *cpu, uint32_t val, uint32_t pos) { unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t current = aarch64_get_reg_u64 (cpu, rd, NO_SP); uint64_t value = (uint64_t) val << (pos * 16); uint64_t mask = ~(0xffffULL << (pos * 16)); aarch64_set_reg_u64 (cpu, rd, NO_SP, (value | (current & mask))); } static void dexMoveWideImmediate (sim_cpu *cpu) { /* assert instr[28:23] = 100101 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30,29] = op : 0 ==> MOVN, 1 ==> UNALLOC, 2 ==> MOVZ, 3 ==> MOVK instr[22,21] = shift : 00 == LSL#0, 01 = LSL#16, 10 = LSL#32, 11 = LSL#48 instr[20,5] = uimm16 instr[4,0] = Rd */ /* N.B. the (multiple of 16) shift is applied by the called routine, we just pass the multiplier. */ uint32_t imm; uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); uint32_t op = uimm (aarch64_get_instr (cpu), 30, 29); uint32_t shift = uimm (aarch64_get_instr (cpu), 22, 21); /* 32 bit can only shift 0 or 1 lot of 16. anything else is an unallocated instruction. */ if (size == 0 && (shift > 1)) HALT_UNALLOC; if (op == 1) HALT_UNALLOC; imm = uimm (aarch64_get_instr (cpu), 20, 5); if (size == 0) { if (op == 0) movn32 (cpu, imm, shift); else if (op == 2) movz32 (cpu, imm, shift); else movk32 (cpu, imm, shift); } else { if (op == 0) movn64 (cpu, imm, shift); else if (op == 2) movz64 (cpu, imm, shift); else movk64 (cpu, imm, shift); } } /* Bitfield operations. These take a pair of bit positions r and s which are in {0..31} or {0..63} depending on the instruction word size. N.B register args may not be SP. */ /* OK, we start with ubfm which just needs to pick some bits out of source zero the rest and write the result to dest. Just need two logical shifts. */ /* 32 bit bitfield move, left and right of affected zeroed if r <= s Wd = Wn else Wd<32+s-r,32-r> = Wn. */ static void ubfm32 (sim_cpu *cpu, uint32_t r, uint32_t s) { unsigned rd; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); uint32_t value = aarch64_get_reg_u32 (cpu, rn, NO_SP); /* Pick either s+1-r or s+1 consecutive bits out of the original word. */ if (r <= s) { /* 31:...:s:xxx:r:...:0 ==> 31:...:s-r:xxx:0. We want only bits s:xxx:r at the bottom of the word so we LSL bit s up to bit 31 i.e. by 31 - s and then we LSR to bring bit 31 down to bit s - r i.e. by 31 + r - s. */ value <<= 31 - s; value >>= 31 + r - s; } else { /* 31:...:s:xxx:0 ==> 31:...:31-(r-1)+s:xxx:31-(r-1):...:0 We want only bits s:xxx:0 starting at it 31-(r-1) so we LSL bit s up to bit 31 i.e. by 31 - s and then we LSL to bring bit 31 down to 31-(r-1)+s i.e. by r - (s + 1). */ value <<= 31 - s; value >>= r - (s + 1); } rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, value); } /* 64 bit bitfield move, left and right of affected zeroed if r <= s Wd = Wn else Wd<64+s-r,64-r> = Wn. */ static void ubfm (sim_cpu *cpu, uint32_t r, uint32_t s) { unsigned rd; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); uint64_t value = aarch64_get_reg_u64 (cpu, rn, NO_SP); if (r <= s) { /* 63:...:s:xxx:r:...:0 ==> 63:...:s-r:xxx:0. We want only bits s:xxx:r at the bottom of the word. So we LSL bit s up to bit 63 i.e. by 63 - s and then we LSR to bring bit 63 down to bit s - r i.e. by 63 + r - s. */ value <<= 63 - s; value >>= 63 + r - s; } else { /* 63:...:s:xxx:0 ==> 63:...:63-(r-1)+s:xxx:63-(r-1):...:0. We want only bits s:xxx:0 starting at it 63-(r-1). So we LSL bit s up to bit 63 i.e. by 63 - s and then we LSL to bring bit 63 down to 63-(r-1)+s i.e. by r - (s + 1). */ value <<= 63 - s; value >>= r - (s + 1); } rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, value); } /* The signed versions need to insert sign bits on the left of the inserted bit field. so we do much the same as the unsigned version except we use an arithmetic shift right -- this just means we need to operate on signed values. */ /* 32 bit bitfield move, left of affected sign-extended, right zeroed. */ /* If r <= s Wd = Wn else Wd<32+s-r,32-r> = Wn. */ static void sbfm32 (sim_cpu *cpu, uint32_t r, uint32_t s) { unsigned rd; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); /* as per ubfm32 but use an ASR instead of an LSR. */ int32_t value = aarch64_get_reg_s32 (cpu, rn, NO_SP); if (r <= s) { value <<= 31 - s; value >>= 31 + r - s; } else { value <<= 31 - s; value >>= r - (s + 1); } rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, (uint32_t) value); } /* 64 bit bitfield move, left of affected sign-extended, right zeroed. */ /* If r <= s Wd = Wn else Wd<64+s-r,64-r> = Wn. */ static void sbfm (sim_cpu *cpu, uint32_t r, uint32_t s) { unsigned rd; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); /* acpu per ubfm but use an ASR instead of an LSR. */ int64_t value = aarch64_get_reg_s64 (cpu, rn, NO_SP); if (r <= s) { value <<= 63 - s; value >>= 63 + r - s; } else { value <<= 63 - s; value >>= r - (s + 1); } rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_s64 (cpu, rd, NO_SP, value); } /* Finally, these versions leave non-affected bits as is. so we need to generate the bits as per ubfm and also generate a mask to pick the bits from the original and computed values. */ /* 32 bit bitfield move, non-affected bits left as is. If r <= s Wd = Wn else Wd<32+s-r,32-r> = Wn. */ static void bfm32 (sim_cpu *cpu, uint32_t r, uint32_t s) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); uint32_t value = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t mask = -1; unsigned rd; uint32_t value2; /* Pick either s+1-r or s+1 consecutive bits out of the original word. */ if (r <= s) { /* 31:...:s:xxx:r:...:0 ==> 31:...:s-r:xxx:0. We want only bits s:xxx:r at the bottom of the word so we LSL bit s up to bit 31 i.e. by 31 - s and then we LSR to bring bit 31 down to bit s - r i.e. by 31 + r - s. */ value <<= 31 - s; value >>= 31 + r - s; /* the mask must include the same bits. */ mask <<= 31 - s; mask >>= 31 + r - s; } else { /* 31:...:s:xxx:0 ==> 31:...:31-(r-1)+s:xxx:31-(r-1):...:0. We want only bits s:xxx:0 starting at it 31-(r-1) so we LSL bit s up to bit 31 i.e. by 31 - s and then we LSL to bring bit 31 down to 31-(r-1)+s i.e. by r - (s + 1). */ value <<= 31 - s; value >>= r - (s + 1); /* The mask must include the same bits. */ mask <<= 31 - s; mask >>= r - (s + 1); } rd = uimm (aarch64_get_instr (cpu), 4, 0); value2 = aarch64_get_reg_u32 (cpu, rd, NO_SP); value2 &= ~mask; value2 |= value; aarch64_set_reg_u64 (cpu, rd, NO_SP, (aarch64_get_reg_u32 (cpu, rd, NO_SP) & ~mask) | value); } /* 64 bit bitfield move, non-affected bits left as is. If r <= s Wd = Wn else Wd<64+s-r,64-r> = Wn. */ static void bfm (sim_cpu *cpu, uint32_t r, uint32_t s) { unsigned rd; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); uint64_t value = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t mask = 0xffffffffffffffffULL; if (r <= s) { /* 63:...:s:xxx:r:...:0 ==> 63:...:s-r:xxx:0. We want only bits s:xxx:r at the bottom of the word so we LSL bit s up to bit 63 i.e. by 63 - s and then we LSR to bring bit 63 down to bit s - r i.e. by 63 + r - s. */ value <<= 63 - s; value >>= 63 + r - s; /* The mask must include the same bits. */ mask <<= 63 - s; mask >>= 63 + r - s; } else { /* 63:...:s:xxx:0 ==> 63:...:63-(r-1)+s:xxx:63-(r-1):...:0 We want only bits s:xxx:0 starting at it 63-(r-1) so we LSL bit s up to bit 63 i.e. by 63 - s and then we LSL to bring bit 63 down to 63-(r-1)+s i.e. by r - (s + 1). */ value <<= 63 - s; value >>= r - (s + 1); /* The mask must include the same bits. */ mask <<= 63 - s; mask >>= r - (s + 1); } rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, (aarch64_get_reg_u64 (cpu, rd, NO_SP) & ~mask) | value); } static void dexBitfieldImmediate (sim_cpu *cpu) { /* assert instr[28:23] = 100110 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30,29] = op : 0 ==> SBFM, 1 ==> BFM, 2 ==> UBFM, 3 ==> UNALLOC instr[22] = N : must be 0 for 32 bit, 1 for 64 bit ow UNALLOC instr[21,16] = immr : 0xxxxx for 32 bit, xxxxxx for 64 bit instr[15,10] = imms : 0xxxxx for 32 bit, xxxxxx for 64 bit instr[9,5] = Rn instr[4,0] = Rd */ /* 32 bit operations must have N = 0 or else we have an UNALLOC. */ uint32_t dispatch; uint32_t imms; uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); uint32_t N = uimm (aarch64_get_instr (cpu), 22, 22); /* 32 bit operations must have immr[5] = 0 and imms[5] = 0. */ /* or else we have an UNALLOC. */ uint32_t immr = uimm (aarch64_get_instr (cpu), 21, 16); if (~size & N) HALT_UNALLOC; if (!size && uimm (immr, 5, 5)) HALT_UNALLOC; imms = uimm (aarch64_get_instr (cpu), 15, 10); if (!size && uimm (imms, 5, 5)) HALT_UNALLOC; /* Switch on combined size and op. */ dispatch = uimm (aarch64_get_instr (cpu), 31, 29); switch (dispatch) { case 0: sbfm32 (cpu, immr, imms); return; case 1: bfm32 (cpu, immr, imms); return; case 2: ubfm32 (cpu, immr, imms); return; case 4: sbfm (cpu, immr, imms); return; case 5: bfm (cpu, immr, imms); return; case 6: ubfm (cpu, immr, imms); return; default: HALT_UNALLOC; } } static void do_EXTR_32 (sim_cpu *cpu) { /* instr[31:21] = 00010011100 instr[20,16] = Rm instr[15,10] = imms : 0xxxxx for 32 bit instr[9,5] = Rn instr[4,0] = Rd */ unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned imms = uimm (aarch64_get_instr (cpu), 15, 10) & 31; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t val1; uint64_t val2; val1 = aarch64_get_reg_u32 (cpu, rm, NO_SP); val1 >>= imms; val2 = aarch64_get_reg_u32 (cpu, rn, NO_SP); val2 <<= (32 - imms); aarch64_set_reg_u64 (cpu, rd, NO_SP, val1 | val2); } static void do_EXTR_64 (sim_cpu *cpu) { /* instr[31:21] = 10010011100 instr[20,16] = Rm instr[15,10] = imms instr[9,5] = Rn instr[4,0] = Rd */ unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned imms = uimm (aarch64_get_instr (cpu), 15, 10) & 63; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t val; val = aarch64_get_reg_u64 (cpu, rm, NO_SP); val >>= imms; val |= (aarch64_get_reg_u64 (cpu, rn, NO_SP) << (64 - imms)); aarch64_set_reg_u64 (cpu, rd, NO_SP, val); } static void dexExtractImmediate (sim_cpu *cpu) { /* assert instr[28:23] = 100111 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30,29] = op21 : 0 ==> EXTR, 1,2,3 ==> UNALLOC instr[22] = N : must be 0 for 32 bit, 1 for 64 bit or UNALLOC instr[21] = op0 : must be 0 or UNALLOC instr[20,16] = Rm instr[15,10] = imms : 0xxxxx for 32 bit, xxxxxx for 64 bit instr[9,5] = Rn instr[4,0] = Rd */ /* 32 bit operations must have N = 0 or else we have an UNALLOC. */ /* 64 bit operations must have N = 1 or else we have an UNALLOC. */ uint32_t dispatch; uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); uint32_t N = uimm (aarch64_get_instr (cpu), 22, 22); /* 32 bit operations must have imms[5] = 0 or else we have an UNALLOC. */ uint32_t imms = uimm (aarch64_get_instr (cpu), 15, 10); if (size ^ N) HALT_UNALLOC; if (!size && uimm (imms, 5, 5)) HALT_UNALLOC; /* Switch on combined size and op. */ dispatch = uimm (aarch64_get_instr (cpu), 31, 29); if (dispatch == 0) do_EXTR_32 (cpu); else if (dispatch == 4) do_EXTR_64 (cpu); else if (dispatch == 1) HALT_NYI; else HALT_UNALLOC; } static void dexDPImm (sim_cpu *cpu) { /* uint32_t group = dispatchGroup (aarch64_get_instr (cpu)); assert group == GROUP_DPIMM_1000 || grpoup == GROUP_DPIMM_1001 bits [25,23] of a DPImm are the secondary dispatch vector. */ uint32_t group2 = dispatchDPImm (aarch64_get_instr (cpu)); switch (group2) { case DPIMM_PCADR_000: case DPIMM_PCADR_001: dexPCRelAddressing (cpu); return; case DPIMM_ADDSUB_010: case DPIMM_ADDSUB_011: dexAddSubtractImmediate (cpu); return; case DPIMM_LOG_100: dexLogicalImmediate (cpu); return; case DPIMM_MOV_101: dexMoveWideImmediate (cpu); return; case DPIMM_BITF_110: dexBitfieldImmediate (cpu); return; case DPIMM_EXTR_111: dexExtractImmediate (cpu); return; default: /* Should never reach here. */ HALT_NYI; } } static void dexLoadUnscaledImmediate (sim_cpu *cpu) { /* instr[29,24] == 111_00 instr[21] == 0 instr[11,10] == 00 instr[31,30] = size instr[26] = V instr[23,22] = opc instr[20,12] = simm9 instr[9,5] = rn may be SP. */ /* unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); */ uint32_t V = uimm (aarch64_get_instr (cpu), 26, 26); uint32_t dispatch = ( (uimm (aarch64_get_instr (cpu), 31, 30) << 2) | uimm (aarch64_get_instr (cpu), 23, 22)); int32_t imm = simm32 (aarch64_get_instr (cpu), 20, 12); if (!V) { /* GReg operations. */ switch (dispatch) { case 0: sturb (cpu, imm); return; case 1: ldurb32 (cpu, imm); return; case 2: ldursb64 (cpu, imm); return; case 3: ldursb32 (cpu, imm); return; case 4: sturh (cpu, imm); return; case 5: ldurh32 (cpu, imm); return; case 6: ldursh64 (cpu, imm); return; case 7: ldursh32 (cpu, imm); return; case 8: stur32 (cpu, imm); return; case 9: ldur32 (cpu, imm); return; case 10: ldursw (cpu, imm); return; case 12: stur64 (cpu, imm); return; case 13: ldur64 (cpu, imm); return; case 14: /* PRFUM NYI. */ HALT_NYI; default: case 11: case 15: HALT_UNALLOC; } } /* FReg operations. */ switch (dispatch) { case 2: fsturq (cpu, imm); return; case 3: fldurq (cpu, imm); return; case 8: fsturs (cpu, imm); return; case 9: fldurs (cpu, imm); return; case 12: fsturd (cpu, imm); return; case 13: fldurd (cpu, imm); return; case 0: /* STUR 8 bit FP. */ case 1: /* LDUR 8 bit FP. */ case 4: /* STUR 16 bit FP. */ case 5: /* LDUR 8 bit FP. */ HALT_NYI; default: case 6: case 7: case 10: case 11: case 14: case 15: HALT_UNALLOC; } } /* N.B. A preliminary note regarding all the ldrs32 instructions The signed value loaded by these instructions is cast to unsigned before being assigned to aarch64_get_reg_u64 (cpu, N) i.e. to the 64 bit element of the GReg union. this performs a 32 bit sign extension (as required) but avoids 64 bit sign extension, thus ensuring that the top half of the register word is zero. this is what the spec demands when a 32 bit load occurs. */ /* 32 bit load sign-extended byte scaled unsigned 12 bit. */ static void ldrsb32_abs (sim_cpu *cpu, uint32_t offset) { unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int rt = uimm (aarch64_get_instr (cpu), 4, 0); /* The target register may not be SP but the source may be there is no scaling required for a byte load. */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, (int64_t) aarch64_get_mem_s8 (cpu, address)); } /* 32 bit load sign-extended byte scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void ldrsb32_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned int rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int rt = uimm (aarch64_get_instr (cpu), 4, 0); /* rn may reference SP, rm and rt must reference ZR. */ uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t displacement = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); /* There is no scaling required for a byte load. */ aarch64_set_reg_u64 (cpu, rt, NO_SP, (int64_t) aarch64_get_mem_s8 (cpu, address + displacement)); } /* 32 bit load sign-extended byte unscaled signed 9 bit with pre- or post-writeback. */ static void ldrsb32_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { uint64_t address; unsigned int rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned int rt = uimm (aarch64_get_instr (cpu), 4, 0); if (rn == rt && wb != NoWriteBack) HALT_UNALLOC; address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb == Pre) address += offset; aarch64_set_reg_u64 (cpu, rt, NO_SP, (int64_t) aarch64_get_mem_s8 (cpu, address)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, NO_SP, address); } /* 8 bit store scaled. */ static void fstrb_abs (sim_cpu *cpu, uint32_t offset) { unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); aarch64_set_mem_u8 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + offset, aarch64_get_vec_u8 (cpu, st, 0)); } /* 8 bit store scaled or unscaled zero- or sign-extended 8-bit register offset. */ static void fstrb_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 32, scaling); aarch64_set_mem_u8 (cpu, address + displacement, aarch64_get_vec_u8 (cpu, st, 0)); } /* 16 bit store scaled. */ static void fstrh_abs (sim_cpu *cpu, uint32_t offset) { unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); aarch64_set_mem_u16 (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 16), aarch64_get_vec_u16 (cpu, st, 0)); } /* 16 bit store scaled or unscaled zero- or sign-extended 16-bit register offset. */ static void fstrh_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 32, scaling); aarch64_set_mem_u16 (cpu, address + displacement, aarch64_get_vec_u16 (cpu, st, 0)); } /* 32 bit store scaled unsigned 12 bit. */ static void fstrs_abs (sim_cpu *cpu, uint32_t offset) { unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); aarch64_set_mem_float (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 32), aarch64_get_FP_float (cpu, st)); } /* 32 bit store unscaled signed 9 bit with pre- or post-writeback. */ static void fstrs_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_mem_float (cpu, address, aarch64_get_FP_float (cpu, st)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 32 bit store scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void fstrs_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 32, scaling); aarch64_set_mem_float (cpu, address + displacement, aarch64_get_FP_float (cpu, st)); } /* 64 bit store scaled unsigned 12 bit. */ static void fstrd_abs (sim_cpu *cpu, uint32_t offset) { unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); aarch64_set_mem_double (cpu, aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 64), aarch64_get_FP_double (cpu, st)); } /* 64 bit store unscaled signed 9 bit with pre- or post-writeback. */ static void fstrd_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_set_mem_double (cpu, address, aarch64_get_FP_double (cpu, st)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 64 bit store scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void fstrd_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 64, scaling); aarch64_set_mem_double (cpu, address + displacement, aarch64_get_FP_double (cpu, st)); } /* 128 bit store scaled unsigned 12 bit. */ static void fstrq_abs (sim_cpu *cpu, uint32_t offset) { FRegister a; unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); uint64_t addr; aarch64_get_FP_long_double (cpu, st, & a); addr = aarch64_get_reg_u64 (cpu, rn, SP_OK) + SCALE (offset, 128); aarch64_set_mem_long_double (cpu, addr, a); } /* 128 bit store unscaled signed 9 bit with pre- or post-writeback. */ static void fstrq_wb (sim_cpu *cpu, int32_t offset, WriteBack wb) { FRegister a; unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); if (wb != Post) address += offset; aarch64_get_FP_long_double (cpu, st, & a); aarch64_set_mem_long_double (cpu, address, a); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rn, SP_OK, address); } /* 128 bit store scaled or unscaled zero- or sign-extended 32-bit register offset. */ static void fstrq_scale_ext (sim_cpu *cpu, Scaling scaling, Extension extension) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned st = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rn, SP_OK); int64_t extended = extend (aarch64_get_reg_u32 (cpu, rm, NO_SP), extension); uint64_t displacement = OPT_SCALE (extended, 128, scaling); FRegister a; aarch64_get_FP_long_double (cpu, st, & a); aarch64_set_mem_long_double (cpu, address + displacement, a); } static void dexLoadImmediatePrePost (sim_cpu *cpu) { /* instr[29,24] == 111_00 instr[21] == 0 instr[11,10] == 00 instr[31,30] = size instr[26] = V instr[23,22] = opc instr[20,12] = simm9 instr[11] = wb : 0 ==> Post, 1 ==> Pre instr[9,5] = rn may be SP. */ /* unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); */ uint32_t V = uimm (aarch64_get_instr (cpu), 26, 26); uint32_t dispatch = ( (uimm (aarch64_get_instr (cpu), 31, 30) << 2) | uimm (aarch64_get_instr (cpu), 23, 22)); int32_t imm = simm32 (aarch64_get_instr (cpu), 20, 12); WriteBack wb = writeback (aarch64_get_instr (cpu), 11); if (!V) { /* GReg operations. */ switch (dispatch) { case 0: strb_wb (cpu, imm, wb); return; case 1: ldrb32_wb (cpu, imm, wb); return; case 2: ldrsb_wb (cpu, imm, wb); return; case 3: ldrsb32_wb (cpu, imm, wb); return; case 4: strh_wb (cpu, imm, wb); return; case 5: ldrh32_wb (cpu, imm, wb); return; case 6: ldrsh64_wb (cpu, imm, wb); return; case 7: ldrsh32_wb (cpu, imm, wb); return; case 8: str32_wb (cpu, imm, wb); return; case 9: ldr32_wb (cpu, imm, wb); return; case 10: ldrsw_wb (cpu, imm, wb); return; case 12: str_wb (cpu, imm, wb); return; case 13: ldr_wb (cpu, imm, wb); return; default: case 11: case 14: case 15: HALT_UNALLOC; } } /* FReg operations. */ switch (dispatch) { case 2: fstrq_wb (cpu, imm, wb); return; case 3: fldrq_wb (cpu, imm, wb); return; case 8: fstrs_wb (cpu, imm, wb); return; case 9: fldrs_wb (cpu, imm, wb); return; case 12: fstrd_wb (cpu, imm, wb); return; case 13: fldrd_wb (cpu, imm, wb); return; case 0: /* STUR 8 bit FP. */ case 1: /* LDUR 8 bit FP. */ case 4: /* STUR 16 bit FP. */ case 5: /* LDUR 8 bit FP. */ HALT_NYI; default: case 6: case 7: case 10: case 11: case 14: case 15: HALT_UNALLOC; } } static void dexLoadRegisterOffset (sim_cpu *cpu) { /* instr[31,30] = size instr[29,27] = 111 instr[26] = V instr[25,24] = 00 instr[23,22] = opc instr[21] = 1 instr[20,16] = rm instr[15,13] = option : 010 ==> UXTW, 011 ==> UXTX/LSL, 110 ==> SXTW, 111 ==> SXTX, ow ==> RESERVED instr[12] = scaled instr[11,10] = 10 instr[9,5] = rn instr[4,0] = rt. */ uint32_t V = uimm (aarch64_get_instr (cpu), 26,26); uint32_t dispatch = ( (uimm (aarch64_get_instr (cpu), 31, 30) << 2) | uimm (aarch64_get_instr (cpu), 23, 22)); Scaling scale = scaling (aarch64_get_instr (cpu), 12); Extension extensionType = extension (aarch64_get_instr (cpu), 13); /* Check for illegal extension types. */ if (uimm (extensionType, 1, 1) == 0) HALT_UNALLOC; if (extensionType == UXTX || extensionType == SXTX) extensionType = NoExtension; if (!V) { /* GReg operations. */ switch (dispatch) { case 0: strb_scale_ext (cpu, scale, extensionType); return; case 1: ldrb32_scale_ext (cpu, scale, extensionType); return; case 2: ldrsb_scale_ext (cpu, scale, extensionType); return; case 3: ldrsb32_scale_ext (cpu, scale, extensionType); return; case 4: strh_scale_ext (cpu, scale, extensionType); return; case 5: ldrh32_scale_ext (cpu, scale, extensionType); return; case 6: ldrsh_scale_ext (cpu, scale, extensionType); return; case 7: ldrsh32_scale_ext (cpu, scale, extensionType); return; case 8: str32_scale_ext (cpu, scale, extensionType); return; case 9: ldr32_scale_ext (cpu, scale, extensionType); return; case 10: ldrsw_scale_ext (cpu, scale, extensionType); return; case 12: str_scale_ext (cpu, scale, extensionType); return; case 13: ldr_scale_ext (cpu, scale, extensionType); return; case 14: prfm_scale_ext (cpu, scale, extensionType); return; default: case 11: case 15: HALT_UNALLOC; } } /* FReg operations. */ switch (dispatch) { case 1: /* LDUR 8 bit FP. */ HALT_NYI; case 3: fldrq_scale_ext (cpu, scale, extensionType); return; case 5: /* LDUR 8 bit FP. */ HALT_NYI; case 9: fldrs_scale_ext (cpu, scale, extensionType); return; case 13: fldrd_scale_ext (cpu, scale, extensionType); return; case 0: fstrb_scale_ext (cpu, scale, extensionType); return; case 2: fstrq_scale_ext (cpu, scale, extensionType); return; case 4: fstrh_scale_ext (cpu, scale, extensionType); return; case 8: fstrs_scale_ext (cpu, scale, extensionType); return; case 12: fstrd_scale_ext (cpu, scale, extensionType); return; default: case 6: case 7: case 10: case 11: case 14: case 15: HALT_UNALLOC; } } static void dexLoadUnsignedImmediate (sim_cpu *cpu) { /* assert instr[29,24] == 111_01 instr[31,30] = size instr[26] = V instr[23,22] = opc instr[21,10] = uimm12 : unsigned immediate offset instr[9,5] = rn may be SP. */ /* unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); */ uint32_t V = uimm (aarch64_get_instr (cpu), 26,26); uint32_t dispatch = ( (uimm (aarch64_get_instr (cpu), 31, 30) << 2) | uimm (aarch64_get_instr (cpu), 23, 22)); uint32_t imm = uimm (aarch64_get_instr (cpu), 21, 10); if (!V) { /* GReg operations. */ switch (dispatch) { case 0: strb_abs (cpu, imm); return; case 1: ldrb32_abs (cpu, imm); return; case 2: ldrsb_abs (cpu, imm); return; case 3: ldrsb32_abs (cpu, imm); return; case 4: strh_abs (cpu, imm); return; case 5: ldrh32_abs (cpu, imm); return; case 6: ldrsh_abs (cpu, imm); return; case 7: ldrsh32_abs (cpu, imm); return; case 8: str32_abs (cpu, imm); return; case 9: ldr32_abs (cpu, imm); return; case 10: ldrsw_abs (cpu, imm); return; case 12: str_abs (cpu, imm); return; case 13: ldr_abs (cpu, imm); return; case 14: prfm_abs (cpu, imm); return; default: case 11: case 15: HALT_UNALLOC; } } /* FReg operations. */ switch (dispatch) { case 3: fldrq_abs (cpu, imm); return; case 9: fldrs_abs (cpu, imm); return; case 13: fldrd_abs (cpu, imm); return; case 0: fstrb_abs (cpu, imm); return; case 2: fstrq_abs (cpu, imm); return; case 4: fstrh_abs (cpu, imm); return; case 8: fstrs_abs (cpu, imm); return; case 12: fstrd_abs (cpu, imm); return; case 1: /* LDR 8 bit FP. */ case 5: /* LDR 8 bit FP. */ HALT_NYI; default: case 6: case 7: case 10: case 11: case 14: case 15: HALT_UNALLOC; } } static void dexLoadExclusive (sim_cpu *cpu) { /* assert instr[29:24] = 001000; instr[31,30] = size instr[23] = 0 if exclusive instr[22] = L : 1 if load, 0 if store instr[21] = 1 if pair instr[20,16] = Rs instr[15] = o0 : 1 if ordered instr[14,10] = Rt2 instr[9,5] = Rn instr[4.0] = Rt. */ switch (uimm (aarch64_get_instr (cpu), 22, 21)) { case 2: ldxr (cpu); return; case 0: stxr (cpu); return; default: HALT_NYI; } } static void dexLoadOther (sim_cpu *cpu) { uint32_t dispatch; /* instr[29,25] = 111_0 instr[24] == 0 ==> dispatch, 1 ==> ldst reg unsigned immediate instr[21:11,10] is the secondary dispatch. */ if (uimm (aarch64_get_instr (cpu), 24, 24)) { dexLoadUnsignedImmediate (cpu); return; } dispatch = ( (uimm (aarch64_get_instr (cpu), 21, 21) << 2) | uimm (aarch64_get_instr (cpu), 11, 10)); switch (dispatch) { case 0: dexLoadUnscaledImmediate (cpu); return; case 1: dexLoadImmediatePrePost (cpu); return; case 3: dexLoadImmediatePrePost (cpu); return; case 6: dexLoadRegisterOffset (cpu); return; default: case 2: case 4: case 5: case 7: HALT_NYI; } } static void store_pair_u32 (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); if ((rn == rd || rm == rd) && wb != NoWriteBack) HALT_UNALLOC; /* ??? */ offset <<= 2; if (wb != Post) address += offset; aarch64_set_mem_u32 (cpu, address, aarch64_get_reg_u32 (cpu, rm, NO_SP)); aarch64_set_mem_u32 (cpu, address + 4, aarch64_get_reg_u32 (cpu, rn, NO_SP)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void store_pair_u64 (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); if ((rn == rd || rm == rd) && wb != NoWriteBack) HALT_UNALLOC; /* ??? */ offset <<= 3; if (wb != Post) address += offset; aarch64_set_mem_u64 (cpu, address, aarch64_get_reg_u64 (cpu, rm, SP_OK)); aarch64_set_mem_u64 (cpu, address + 8, aarch64_get_reg_u64 (cpu, rn, SP_OK)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void load_pair_u32 (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); /* treat this as unalloc to make sure we don't do it. */ if (rn == rm) HALT_UNALLOC; offset <<= 2; if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rm, SP_OK, aarch64_get_mem_u32 (cpu, address)); aarch64_set_reg_u64 (cpu, rn, SP_OK, aarch64_get_mem_u32 (cpu, address + 4)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void load_pair_s32 (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); /* Treat this as unalloc to make sure we don't do it. */ if (rn == rm) HALT_UNALLOC; offset <<= 2; if (wb != Post) address += offset; aarch64_set_reg_s64 (cpu, rm, SP_OK, aarch64_get_mem_s32 (cpu, address)); aarch64_set_reg_s64 (cpu, rn, SP_OK, aarch64_get_mem_s32 (cpu, address + 4)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void load_pair_u64 (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); /* Treat this as unalloc to make sure we don't do it. */ if (rn == rm) HALT_UNALLOC; offset <<= 3; if (wb != Post) address += offset; aarch64_set_reg_u64 (cpu, rm, SP_OK, aarch64_get_mem_u64 (cpu, address)); aarch64_set_reg_u64 (cpu, rn, SP_OK, aarch64_get_mem_u64 (cpu, address + 8)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void dex_load_store_pair_gr (sim_cpu *cpu) { /* instr[31,30] = size (10=> 64-bit, 01=> signed 32-bit, 00=> 32-bit) instr[29,25] = instruction encoding: 101_0 instr[26] = V : 1 if fp 0 if gp instr[24,23] = addressing mode (10=> offset, 01=> post, 11=> pre) instr[22] = load/store (1=> load) instr[21,15] = signed, scaled, offset instr[14,10] = Rn instr[ 9, 5] = Rd instr[ 4, 0] = Rm. */ uint32_t dispatch = ((uimm (aarch64_get_instr (cpu), 31, 30) << 3) | uimm (aarch64_get_instr (cpu), 24, 22)); int32_t offset = simm32 (aarch64_get_instr (cpu), 21, 15); switch (dispatch) { case 2: store_pair_u32 (cpu, offset, Post); return; case 3: load_pair_u32 (cpu, offset, Post); return; case 4: store_pair_u32 (cpu, offset, NoWriteBack); return; case 5: load_pair_u32 (cpu, offset, NoWriteBack); return; case 6: store_pair_u32 (cpu, offset, Pre); return; case 7: load_pair_u32 (cpu, offset, Pre); return; case 11: load_pair_s32 (cpu, offset, Post); return; case 13: load_pair_s32 (cpu, offset, NoWriteBack); return; case 15: load_pair_s32 (cpu, offset, Pre); return; case 18: store_pair_u64 (cpu, offset, Post); return; case 19: load_pair_u64 (cpu, offset, Post); return; case 20: store_pair_u64 (cpu, offset, NoWriteBack); return; case 21: load_pair_u64 (cpu, offset, NoWriteBack); return; case 22: store_pair_u64 (cpu, offset, Pre); return; case 23: load_pair_u64 (cpu, offset, Pre); return; default: HALT_UNALLOC; } } static void store_pair_float (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); offset <<= 2; if (wb != Post) address += offset; aarch64_set_mem_float (cpu, address, aarch64_get_FP_float (cpu, rm)); aarch64_set_mem_float (cpu, address + 4, aarch64_get_FP_float (cpu, rn)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void store_pair_double (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); offset <<= 3; if (wb != Post) address += offset; aarch64_set_mem_double (cpu, address, aarch64_get_FP_double (cpu, rm)); aarch64_set_mem_double (cpu, address + 8, aarch64_get_FP_double (cpu, rn)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void store_pair_long_double (sim_cpu *cpu, int32_t offset, WriteBack wb) { FRegister a; unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); offset <<= 4; if (wb != Post) address += offset; aarch64_get_FP_long_double (cpu, rm, & a); aarch64_set_mem_long_double (cpu, address, a); aarch64_get_FP_long_double (cpu, rn, & a); aarch64_set_mem_long_double (cpu, address + 16, a); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void load_pair_float (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); if (rm == rn) HALT_UNALLOC; offset <<= 2; if (wb != Post) address += offset; aarch64_set_FP_float (cpu, rm, aarch64_get_mem_float (cpu, address)); aarch64_set_FP_float (cpu, rn, aarch64_get_mem_float (cpu, address + 4)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void load_pair_double (sim_cpu *cpu, int32_t offset, WriteBack wb) { unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); if (rm == rn) HALT_UNALLOC; offset <<= 3; if (wb != Post) address += offset; aarch64_set_FP_double (cpu, rm, aarch64_get_mem_double (cpu, address)); aarch64_set_FP_double (cpu, rn, aarch64_get_mem_double (cpu, address + 8)); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void load_pair_long_double (sim_cpu *cpu, int32_t offset, WriteBack wb) { FRegister a; unsigned rn = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rd = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rm = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t address = aarch64_get_reg_u64 (cpu, rd, SP_OK); if (rm == rn) HALT_UNALLOC; offset <<= 4; if (wb != Post) address += offset; aarch64_get_mem_long_double (cpu, address, & a); aarch64_set_FP_long_double (cpu, rm, a); aarch64_get_mem_long_double (cpu, address + 16, & a); aarch64_set_FP_long_double (cpu, rn, a); if (wb == Post) address += offset; if (wb != NoWriteBack) aarch64_set_reg_u64 (cpu, rd, SP_OK, address); } static void dex_load_store_pair_fp (sim_cpu *cpu) { /* instr[31,30] = size (10=> 128-bit, 01=> 64-bit, 00=> 32-bit) instr[29,25] = instruction encoding instr[24,23] = addressing mode (10=> offset, 01=> post, 11=> pre) instr[22] = load/store (1=> load) instr[21,15] = signed, scaled, offset instr[14,10] = Rn instr[ 9, 5] = Rd instr[ 4, 0] = Rm */ uint32_t dispatch = ((uimm (aarch64_get_instr (cpu), 31, 30) << 3) | uimm (aarch64_get_instr (cpu), 24, 22)); int32_t offset = simm32 (aarch64_get_instr (cpu), 21, 15); switch (dispatch) { case 2: store_pair_float (cpu, offset, Post); return; case 3: load_pair_float (cpu, offset, Post); return; case 4: store_pair_float (cpu, offset, NoWriteBack); return; case 5: load_pair_float (cpu, offset, NoWriteBack); return; case 6: store_pair_float (cpu, offset, Pre); return; case 7: load_pair_float (cpu, offset, Pre); return; case 10: store_pair_double (cpu, offset, Post); return; case 11: load_pair_double (cpu, offset, Post); return; case 12: store_pair_double (cpu, offset, NoWriteBack); return; case 13: load_pair_double (cpu, offset, NoWriteBack); return; case 14: store_pair_double (cpu, offset, Pre); return; case 15: load_pair_double (cpu, offset, Pre); return; case 18: store_pair_long_double (cpu, offset, Post); return; case 19: load_pair_long_double (cpu, offset, Post); return; case 20: store_pair_long_double (cpu, offset, NoWriteBack); return; case 21: load_pair_long_double (cpu, offset, NoWriteBack); return; case 22: store_pair_long_double (cpu, offset, Pre); return; case 23: load_pair_long_double (cpu, offset, Pre); return; default: HALT_UNALLOC; } } static inline unsigned vec_reg (unsigned v, unsigned o) { return (v + o) & 0x3F; } /* Load multiple N-element structures to N consecutive registers. */ static void vec_load (sim_cpu *cpu, uint64_t address, unsigned N) { int all = uimm (aarch64_get_instr (cpu), 30, 30); unsigned size = uimm (aarch64_get_instr (cpu), 11, 10); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; switch (size) { case 0: /* 8-bit operations. */ if (all) for (i = 0; i < (16 * N); i++) aarch64_set_vec_u8 (cpu, vec_reg (vd, i >> 4), i & 15, aarch64_get_mem_u8 (cpu, address + i)); else for (i = 0; i < (8 * N); i++) aarch64_set_vec_u8 (cpu, vec_reg (vd, i >> 3), i & 7, aarch64_get_mem_u8 (cpu, address + i)); return; case 1: /* 16-bit operations. */ if (all) for (i = 0; i < (8 * N); i++) aarch64_set_vec_u16 (cpu, vec_reg (vd, i >> 3), i & 7, aarch64_get_mem_u16 (cpu, address + i * 2)); else for (i = 0; i < (4 * N); i++) aarch64_set_vec_u16 (cpu, vec_reg (vd, i >> 2), i & 3, aarch64_get_mem_u16 (cpu, address + i * 2)); return; case 2: /* 32-bit operations. */ if (all) for (i = 0; i < (4 * N); i++) aarch64_set_vec_u32 (cpu, vec_reg (vd, i >> 2), i & 3, aarch64_get_mem_u32 (cpu, address + i * 4)); else for (i = 0; i < (2 * N); i++) aarch64_set_vec_u32 (cpu, vec_reg (vd, i >> 1), i & 1, aarch64_get_mem_u32 (cpu, address + i * 4)); return; case 3: /* 64-bit operations. */ if (all) for (i = 0; i < (2 * N); i++) aarch64_set_vec_u64 (cpu, vec_reg (vd, i >> 1), i & 1, aarch64_get_mem_u64 (cpu, address + i * 8)); else for (i = 0; i < N; i++) aarch64_set_vec_u64 (cpu, vec_reg (vd, i), 0, aarch64_get_mem_u64 (cpu, address + i * 8)); return; default: HALT_UNREACHABLE; } } /* LD4: load multiple 4-element to four consecutive registers. */ static void LD4 (sim_cpu *cpu, uint64_t address) { vec_load (cpu, address, 4); } /* LD3: load multiple 3-element structures to three consecutive registers. */ static void LD3 (sim_cpu *cpu, uint64_t address) { vec_load (cpu, address, 3); } /* LD2: load multiple 2-element structures to two consecutive registers. */ static void LD2 (sim_cpu *cpu, uint64_t address) { vec_load (cpu, address, 2); } /* Load multiple 1-element structures into one register. */ static void LD1_1 (sim_cpu *cpu, uint64_t address) { int all = uimm (aarch64_get_instr (cpu), 30, 30); unsigned size = uimm (aarch64_get_instr (cpu), 11, 10); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; switch (size) { case 0: /* LD1 {Vd.16b}, addr, #16 */ /* LD1 {Vd.8b}, addr, #8 */ for (i = 0; i < (all ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, aarch64_get_mem_u8 (cpu, address + i)); return; case 1: /* LD1 {Vd.8h}, addr, #16 */ /* LD1 {Vd.4h}, addr, #8 */ for (i = 0; i < (all ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, aarch64_get_mem_u16 (cpu, address + i * 2)); return; case 2: /* LD1 {Vd.4s}, addr, #16 */ /* LD1 {Vd.2s}, addr, #8 */ for (i = 0; i < (all ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, aarch64_get_mem_u32 (cpu, address + i * 4)); return; case 3: /* LD1 {Vd.2d}, addr, #16 */ /* LD1 {Vd.1d}, addr, #8 */ for (i = 0; i < (all ? 2 : 1); i++) aarch64_set_vec_u64 (cpu, vd, i, aarch64_get_mem_u64 (cpu, address + i * 8)); return; default: HALT_UNREACHABLE; } } /* Load multiple 1-element structures into two registers. */ static void LD1_2 (sim_cpu *cpu, uint64_t address) { /* FIXME: This algorithm is *exactly* the same as the LD2 version. So why have two different instructions ? There must be something wrong somewhere. */ vec_load (cpu, address, 2); } /* Load multiple 1-element structures into three registers. */ static void LD1_3 (sim_cpu *cpu, uint64_t address) { /* FIXME: This algorithm is *exactly* the same as the LD3 version. So why have two different instructions ? There must be something wrong somewhere. */ vec_load (cpu, address, 3); } /* Load multiple 1-element structures into four registers. */ static void LD1_4 (sim_cpu *cpu, uint64_t address) { /* FIXME: This algorithm is *exactly* the same as the LD4 version. So why have two different instructions ? There must be something wrong somewhere. */ vec_load (cpu, address, 4); } /* Store multiple N-element structures to N consecutive registers. */ static void vec_store (sim_cpu *cpu, uint64_t address, unsigned N) { int all = uimm (aarch64_get_instr (cpu), 30, 30); unsigned size = uimm (aarch64_get_instr (cpu), 11, 10); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; switch (size) { case 0: /* 8-bit operations. */ if (all) for (i = 0; i < (16 * N); i++) aarch64_set_mem_u8 (cpu, address + i, aarch64_get_vec_u8 (cpu, vec_reg (vd, i >> 4), i & 15)); else for (i = 0; i < (8 * N); i++) aarch64_set_mem_u8 (cpu, address + i, aarch64_get_vec_u8 (cpu, vec_reg (vd, i >> 3), i & 7)); return; case 1: /* 16-bit operations. */ if (all) for (i = 0; i < (8 * N); i++) aarch64_set_mem_u16 (cpu, address + i * 2, aarch64_get_vec_u16 (cpu, vec_reg (vd, i >> 3), i & 7)); else for (i = 0; i < (4 * N); i++) aarch64_set_mem_u16 (cpu, address + i * 2, aarch64_get_vec_u16 (cpu, vec_reg (vd, i >> 2), i & 3)); return; case 2: /* 32-bit operations. */ if (all) for (i = 0; i < (4 * N); i++) aarch64_set_mem_u32 (cpu, address + i * 4, aarch64_get_vec_u32 (cpu, vec_reg (vd, i >> 2), i & 3)); else for (i = 0; i < (2 * N); i++) aarch64_set_mem_u32 (cpu, address + i * 4, aarch64_get_vec_u32 (cpu, vec_reg (vd, i >> 1), i & 1)); return; case 3: /* 64-bit operations. */ if (all) for (i = 0; i < (2 * N); i++) aarch64_set_mem_u64 (cpu, address + i * 8, aarch64_get_vec_u64 (cpu, vec_reg (vd, i >> 1), i & 1)); else for (i = 0; i < N; i++) aarch64_set_mem_u64 (cpu, address + i * 8, aarch64_get_vec_u64 (cpu, vec_reg (vd, i), 0)); return; default: HALT_UNREACHABLE; } } /* Store multiple 4-element structure to four consecutive registers. */ static void ST4 (sim_cpu *cpu, uint64_t address) { vec_store (cpu, address, 4); } /* Store multiple 3-element structures to three consecutive registers. */ static void ST3 (sim_cpu *cpu, uint64_t address) { vec_store (cpu, address, 3); } /* Store multiple 2-element structures to two consecutive registers. */ static void ST2 (sim_cpu *cpu, uint64_t address) { vec_store (cpu, address, 2); } /* Store multiple 1-element structures into one register. */ static void ST1_1 (sim_cpu *cpu, uint64_t address) { int all = uimm (aarch64_get_instr (cpu), 30, 30); unsigned size = uimm (aarch64_get_instr (cpu), 11, 10); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned i; switch (size) { case 0: for (i = 0; i < (all ? 16 : 8); i++) aarch64_set_mem_u8 (cpu, address + i, aarch64_get_vec_u8 (cpu, vd, i)); return; case 1: for (i = 0; i < (all ? 8 : 4); i++) aarch64_set_mem_u16 (cpu, address + i * 2, aarch64_get_vec_u16 (cpu, vd, i)); return; case 2: for (i = 0; i < (all ? 4 : 2); i++) aarch64_set_mem_u32 (cpu, address + i * 4, aarch64_get_vec_u32 (cpu, vd, i)); return; case 3: for (i = 0; i < (all ? 2 : 1); i++) aarch64_set_mem_u64 (cpu, address + i * 8, aarch64_get_vec_u64 (cpu, vd, i)); return; default: HALT_UNREACHABLE; } } /* Store multiple 1-element structures into two registers. */ static void ST1_2 (sim_cpu *cpu, uint64_t address) { /* FIXME: This algorithm is *exactly* the same as the ST2 version. So why have two different instructions ? There must be something wrong somewhere. */ vec_store (cpu, address, 2); } /* Store multiple 1-element structures into three registers. */ static void ST1_3 (sim_cpu *cpu, uint64_t address) { /* FIXME: This algorithm is *exactly* the same as the ST3 version. So why have two different instructions ? There must be something wrong somewhere. */ vec_store (cpu, address, 3); } /* Store multiple 1-element structures into four registers. */ static void ST1_4 (sim_cpu *cpu, uint64_t address) { /* FIXME: This algorithm is *exactly* the same as the ST4 version. So why have two different instructions ? There must be something wrong somewhere. */ vec_store (cpu, address, 4); } static void do_vec_LDnR (sim_cpu *cpu, uint64_t address) { /* instr[31] = 0 instr[30] = element selector 0=>half, 1=>all elements instr[29,24] = 00 1101 instr[23] = 0=>simple, 1=>post instr[22] = 1 instr[21] = width: LD1R-or-LD3R (0) / LD2R-or-LD4R (1) instr[20,16] = 0 0000 (simple), Vinc (reg-post-inc, no SP), 11111 (immediate post inc) instr[15,14] = 11 instr[13] = width: LD1R-or-LD2R (0) / LD3R-or-LD4R (1) instr[12] = 0 instr[11,10] = element size 00=> byte(b), 01=> half(h), 10=> word(s), 11=> double(d) instr[9,5] = address instr[4,0] = Vd */ unsigned full = uimm (aarch64_get_instr (cpu), 30, 30); unsigned vd = uimm (aarch64_get_instr (cpu), 4, 0); unsigned size = uimm (aarch64_get_instr (cpu), 11, 10); int i; NYI_assert (29, 24, 0x0D); NYI_assert (22, 22, 1); NYI_assert (15, 14, 3); NYI_assert (12, 12, 0); switch ((uimm (aarch64_get_instr (cpu), 13, 13) << 1) | uimm (aarch64_get_instr (cpu), 21, 21)) { case 0: /* LD1R. */ switch (size) { case 0: { uint8_t val = aarch64_get_mem_u8 (cpu, address); for (i = 0; i < (full ? 16 : 8); i++) aarch64_set_vec_u8 (cpu, vd, i, val); break; } case 1: { uint16_t val = aarch64_get_mem_u16 (cpu, address); for (i = 0; i < (full ? 8 : 4); i++) aarch64_set_vec_u16 (cpu, vd, i, val); break; } case 2: { uint32_t val = aarch64_get_mem_u32 (cpu, address); for (i = 0; i < (full ? 4 : 2); i++) aarch64_set_vec_u32 (cpu, vd, i, val); break; } case 3: { uint64_t val = aarch64_get_mem_u64 (cpu, address); for (i = 0; i < (full ? 2 : 1); i++) aarch64_set_vec_u64 (cpu, vd, i, val); break; } default: HALT_UNALLOC; } break; case 1: /* LD2R. */ switch (size) { case 0: { uint8_t val1 = aarch64_get_mem_u8 (cpu, address); uint8_t val2 = aarch64_get_mem_u8 (cpu, address + 1); for (i = 0; i < (full ? 16 : 8); i++) { aarch64_set_vec_u8 (cpu, vd, 0, val1); aarch64_set_vec_u8 (cpu, vd + 1, 0, val2); } break; } case 1: { uint16_t val1 = aarch64_get_mem_u16 (cpu, address); uint16_t val2 = aarch64_get_mem_u16 (cpu, address + 2); for (i = 0; i < (full ? 8 : 4); i++) { aarch64_set_vec_u16 (cpu, vd, 0, val1); aarch64_set_vec_u16 (cpu, vd + 1, 0, val2); } break; } case 2: { uint32_t val1 = aarch64_get_mem_u32 (cpu, address); uint32_t val2 = aarch64_get_mem_u32 (cpu, address + 4); for (i = 0; i < (full ? 4 : 2); i++) { aarch64_set_vec_u32 (cpu, vd, 0, val1); aarch64_set_vec_u32 (cpu, vd + 1, 0, val2); } break; } case 3: { uint64_t val1 = aarch64_get_mem_u64 (cpu, address); uint64_t val2 = aarch64_get_mem_u64 (cpu, address + 8); for (i = 0; i < (full ? 2 : 1); i++) { aarch64_set_vec_u64 (cpu, vd, 0, val1); aarch64_set_vec_u64 (cpu, vd + 1, 0, val2); } break; } default: HALT_UNALLOC; } break; case 2: /* LD3R. */ switch (size) { case 0: { uint8_t val1 = aarch64_get_mem_u8 (cpu, address); uint8_t val2 = aarch64_get_mem_u8 (cpu, address + 1); uint8_t val3 = aarch64_get_mem_u8 (cpu, address + 2); for (i = 0; i < (full ? 16 : 8); i++) { aarch64_set_vec_u8 (cpu, vd, 0, val1); aarch64_set_vec_u8 (cpu, vd + 1, 0, val2); aarch64_set_vec_u8 (cpu, vd + 2, 0, val3); } } break; case 1: { uint32_t val1 = aarch64_get_mem_u16 (cpu, address); uint32_t val2 = aarch64_get_mem_u16 (cpu, address + 2); uint32_t val3 = aarch64_get_mem_u16 (cpu, address + 4); for (i = 0; i < (full ? 8 : 4); i++) { aarch64_set_vec_u16 (cpu, vd, 0, val1); aarch64_set_vec_u16 (cpu, vd + 1, 0, val2); aarch64_set_vec_u16 (cpu, vd + 2, 0, val3); } } break; case 2: { uint32_t val1 = aarch64_get_mem_u32 (cpu, address); uint32_t val2 = aarch64_get_mem_u32 (cpu, address + 4); uint32_t val3 = aarch64_get_mem_u32 (cpu, address + 8); for (i = 0; i < (full ? 4 : 2); i++) { aarch64_set_vec_u32 (cpu, vd, 0, val1); aarch64_set_vec_u32 (cpu, vd + 1, 0, val2); aarch64_set_vec_u32 (cpu, vd + 2, 0, val3); } } break; case 3: { uint64_t val1 = aarch64_get_mem_u64 (cpu, address); uint64_t val2 = aarch64_get_mem_u64 (cpu, address + 8); uint64_t val3 = aarch64_get_mem_u64 (cpu, address + 16); for (i = 0; i < (full ? 2 : 1); i++) { aarch64_set_vec_u64 (cpu, vd, 0, val1); aarch64_set_vec_u64 (cpu, vd + 1, 0, val2); aarch64_set_vec_u64 (cpu, vd + 2, 0, val3); } } break; default: HALT_UNALLOC; } break; case 3: /* LD4R. */ switch (size) { case 0: { uint8_t val1 = aarch64_get_mem_u8 (cpu, address); uint8_t val2 = aarch64_get_mem_u8 (cpu, address + 1); uint8_t val3 = aarch64_get_mem_u8 (cpu, address + 2); uint8_t val4 = aarch64_get_mem_u8 (cpu, address + 3); for (i = 0; i < (full ? 16 : 8); i++) { aarch64_set_vec_u8 (cpu, vd, 0, val1); aarch64_set_vec_u8 (cpu, vd + 1, 0, val2); aarch64_set_vec_u8 (cpu, vd + 2, 0, val3); aarch64_set_vec_u8 (cpu, vd + 3, 0, val4); } } break; case 1: { uint32_t val1 = aarch64_get_mem_u16 (cpu, address); uint32_t val2 = aarch64_get_mem_u16 (cpu, address + 2); uint32_t val3 = aarch64_get_mem_u16 (cpu, address + 4); uint32_t val4 = aarch64_get_mem_u16 (cpu, address + 6); for (i = 0; i < (full ? 8 : 4); i++) { aarch64_set_vec_u16 (cpu, vd, 0, val1); aarch64_set_vec_u16 (cpu, vd + 1, 0, val2); aarch64_set_vec_u16 (cpu, vd + 2, 0, val3); aarch64_set_vec_u16 (cpu, vd + 3, 0, val4); } } break; case 2: { uint32_t val1 = aarch64_get_mem_u32 (cpu, address); uint32_t val2 = aarch64_get_mem_u32 (cpu, address + 4); uint32_t val3 = aarch64_get_mem_u32 (cpu, address + 8); uint32_t val4 = aarch64_get_mem_u32 (cpu, address + 12); for (i = 0; i < (full ? 4 : 2); i++) { aarch64_set_vec_u32 (cpu, vd, 0, val1); aarch64_set_vec_u32 (cpu, vd + 1, 0, val2); aarch64_set_vec_u32 (cpu, vd + 2, 0, val3); aarch64_set_vec_u32 (cpu, vd + 3, 0, val4); } } break; case 3: { uint64_t val1 = aarch64_get_mem_u64 (cpu, address); uint64_t val2 = aarch64_get_mem_u64 (cpu, address + 8); uint64_t val3 = aarch64_get_mem_u64 (cpu, address + 16); uint64_t val4 = aarch64_get_mem_u64 (cpu, address + 24); for (i = 0; i < (full ? 2 : 1); i++) { aarch64_set_vec_u64 (cpu, vd, 0, val1); aarch64_set_vec_u64 (cpu, vd + 1, 0, val2); aarch64_set_vec_u64 (cpu, vd + 2, 0, val3); aarch64_set_vec_u64 (cpu, vd + 3, 0, val4); } } break; default: HALT_UNALLOC; } break; default: HALT_UNALLOC; } } static void do_vec_load_store (sim_cpu *cpu) { /* {LD|ST} {Vd..Vd+N}, vaddr instr[31] = 0 instr[30] = element selector 0=>half, 1=>all elements instr[29,25] = 00110 instr[24] = ? instr[23] = 0=>simple, 1=>post instr[22] = 0=>store, 1=>load instr[21] = 0 (LDn) / small(0)-large(1) selector (LDnR) instr[20,16] = 00000 (simple), Vinc (reg-post-inc, no SP), 11111 (immediate post inc) instr[15,12] = elements and destinations. eg for load: 0000=>LD4 => load multiple 4-element to four consecutive registers 0100=>LD3 => load multiple 3-element to three consecutive registers 1000=>LD2 => load multiple 2-element to two consecutive registers 0010=>LD1 => load multiple 1-element to four consecutive registers 0110=>LD1 => load multiple 1-element to three consecutive registers 1010=>LD1 => load multiple 1-element to two consecutive registers 0111=>LD1 => load multiple 1-element to one register 1100=>LDR1,LDR2 1110=>LDR3,LDR4 instr[11,10] = element size 00=> byte(b), 01=> half(h), 10=> word(s), 11=> double(d) instr[9,5] = Vn, can be SP instr[4,0] = Vd */ int post; int load; unsigned vn; uint64_t address; int type; if (uimm (aarch64_get_instr (cpu), 31, 31) != 0 || uimm (aarch64_get_instr (cpu), 29, 25) != 0x06) HALT_NYI; type = uimm (aarch64_get_instr (cpu), 15, 12); if (type != 0xE && type != 0xE && uimm (aarch64_get_instr (cpu), 21, 21) != 0) HALT_NYI; post = uimm (aarch64_get_instr (cpu), 23, 23); load = uimm (aarch64_get_instr (cpu), 22, 22); vn = uimm (aarch64_get_instr (cpu), 9, 5); address = aarch64_get_reg_u64 (cpu, vn, SP_OK); if (post) { unsigned vm = uimm (aarch64_get_instr (cpu), 20, 16); if (vm == R31) { unsigned sizeof_operation; switch (type) { case 0: sizeof_operation = 32; break; case 4: sizeof_operation = 24; break; case 8: sizeof_operation = 16; break; case 0xC: sizeof_operation = uimm (aarch64_get_instr (cpu), 21, 21) ? 2 : 1; sizeof_operation <<= uimm (aarch64_get_instr (cpu), 11, 10); break; case 0xE: sizeof_operation = uimm (aarch64_get_instr (cpu), 21, 21) ? 8 : 4; sizeof_operation <<= uimm (aarch64_get_instr (cpu), 11, 10); break; case 2: case 6: case 10: case 7: sizeof_operation = 2 << uimm (aarch64_get_instr (cpu), 11, 10); break; default: HALT_UNALLOC; } if (uimm (aarch64_get_instr (cpu), 30, 30)) sizeof_operation *= 2; aarch64_set_reg_u64 (cpu, vn, SP_OK, address + sizeof_operation); } else aarch64_set_reg_u64 (cpu, vn, SP_OK, address + aarch64_get_reg_u64 (cpu, vm, NO_SP)); } else { NYI_assert (20, 16, 0); } if (load) { switch (type) { case 0: LD4 (cpu, address); return; case 4: LD3 (cpu, address); return; case 8: LD2 (cpu, address); return; case 2: LD1_4 (cpu, address); return; case 6: LD1_3 (cpu, address); return; case 10: LD1_2 (cpu, address); return; case 7: LD1_1 (cpu, address); return; case 0xE: case 0xC: do_vec_LDnR (cpu, address); return; default: HALT_NYI; } } /* Stores. */ switch (type) { case 0: ST4 (cpu, address); return; case 4: ST3 (cpu, address); return; case 8: ST2 (cpu, address); return; case 2: ST1_4 (cpu, address); return; case 6: ST1_3 (cpu, address); return; case 10: ST1_2 (cpu, address); return; case 7: ST1_1 (cpu, address); return; default: HALT_NYI; } } static void dexLdSt (sim_cpu *cpu) { /* uint32_t group = dispatchGroup (aarch64_get_instr (cpu)); assert group == GROUP_LDST_0100 || group == GROUP_LDST_0110 || group == GROUP_LDST_1100 || group == GROUP_LDST_1110 bits [29,28:26] of a LS are the secondary dispatch vector. */ uint32_t group2 = dispatchLS (aarch64_get_instr (cpu)); switch (group2) { case LS_EXCL_000: dexLoadExclusive (cpu); return; case LS_LIT_010: case LS_LIT_011: dexLoadLiteral (cpu); return; case LS_OTHER_110: case LS_OTHER_111: dexLoadOther (cpu); return; case LS_ADVSIMD_001: do_vec_load_store (cpu); return; case LS_PAIR_100: dex_load_store_pair_gr (cpu); return; case LS_PAIR_101: dex_load_store_pair_fp (cpu); return; default: /* Should never reach here. */ HALT_NYI; } } /* Specific decode and execute for group Data Processing Register. */ static void dexLogicalShiftedRegister (sim_cpu *cpu) { /* assert instr[28:24] = 01010 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30,29:21] = op,N : 000 ==> AND, 001 ==> BIC, 010 ==> ORR, 011 ==> ORN 100 ==> EOR, 101 ==> EON, 110 ==> ANDS, 111 ==> BICS instr[23,22] = shift : 0 ==> LSL, 1 ==> LSR, 2 ==> ASR, 3 ==> ROR instr[15,10] = count : must be 0xxxxx for 32 bit instr[9,5] = Rn instr[4,0] = Rd */ /* unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); */ uint32_t dispatch; Shift shiftType; uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); /* 32 bit operations must have count[5] = 0. */ /* or else we have an UNALLOC. */ uint32_t count = uimm (aarch64_get_instr (cpu), 15, 10); if (!size && uimm (count, 5, 5)) HALT_UNALLOC; shiftType = shift (aarch64_get_instr (cpu), 22); /* dispatch on size:op:N i.e aarch64_get_instr (cpu)[31,29:21]. */ dispatch = ( (uimm (aarch64_get_instr (cpu), 31, 29) << 1) | uimm (aarch64_get_instr (cpu), 21, 21)); switch (dispatch) { case 0: and32_shift (cpu, shiftType, count); return; case 1: bic32_shift (cpu, shiftType, count); return; case 2: orr32_shift (cpu, shiftType, count); return; case 3: orn32_shift (cpu, shiftType, count); return; case 4: eor32_shift (cpu, shiftType, count); return; case 5: eon32_shift (cpu, shiftType, count); return; case 6: ands32_shift (cpu, shiftType, count); return; case 7: bics32_shift (cpu, shiftType, count); return; case 8: and64_shift (cpu, shiftType, count); return; case 9: bic64_shift (cpu, shiftType, count); return; case 10:orr64_shift (cpu, shiftType, count); return; case 11:orn64_shift (cpu, shiftType, count); return; case 12:eor64_shift (cpu, shiftType, count); return; case 13:eon64_shift (cpu, shiftType, count); return; case 14:ands64_shift (cpu, shiftType, count); return; case 15:bics64_shift (cpu, shiftType, count); return; default: HALT_UNALLOC; } } /* 32 bit conditional select. */ static void csel32 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u32 (cpu, rn, NO_SP) : aarch64_get_reg_u32 (cpu, rm, NO_SP)); } /* 64 bit conditional select. */ static void csel64 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u64 (cpu, rn, NO_SP) : aarch64_get_reg_u64 (cpu, rm, NO_SP)); } /* 32 bit conditional increment. */ static void csinc32 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u32 (cpu, rn, NO_SP) : aarch64_get_reg_u32 (cpu, rm, NO_SP) + 1); } /* 64 bit conditional increment. */ static void csinc64 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u64 (cpu, rn, NO_SP) : aarch64_get_reg_u64 (cpu, rm, NO_SP) + 1); } /* 32 bit conditional invert. */ static void csinv32 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u32 (cpu, rn, NO_SP) : ~ aarch64_get_reg_u32 (cpu, rm, NO_SP)); } /* 64 bit conditional invert. */ static void csinv64 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u64 (cpu, rn, NO_SP) : ~ aarch64_get_reg_u64 (cpu, rm, NO_SP)); } /* 32 bit conditional negate. */ static void csneg32 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u32 (cpu, rn, NO_SP) : - aarch64_get_reg_u32 (cpu, rm, NO_SP)); } /* 64 bit conditional negate. */ static void csneg64 (sim_cpu *cpu, CondCode cc) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, testConditionCode (cpu, cc) ? aarch64_get_reg_u64 (cpu, rn, NO_SP) : - aarch64_get_reg_u64 (cpu, rm, NO_SP)); } static void dexCondSelect (sim_cpu *cpu) { /* assert instr[28,21] = 11011011 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[30:11,10] = op : 000 ==> CSEL, 001 ==> CSINC, 100 ==> CSINV, 101 ==> CSNEG, _1_ ==> UNALLOC instr[29] = S : 0 ==> ok, 1 ==> UNALLOC instr[15,12] = cond instr[29] = S : 0 ==> ok, 1 ==> UNALLOC */ CondCode cc; uint32_t dispatch; uint32_t S = uimm (aarch64_get_instr (cpu), 29, 29); uint32_t op2 = uimm (aarch64_get_instr (cpu), 11, 10); if (S == 1) HALT_UNALLOC; if (op2 & 0x2) HALT_UNALLOC; cc = condcode (aarch64_get_instr (cpu), 12); dispatch = ((uimm (aarch64_get_instr (cpu), 31, 30) << 1) | op2); switch (dispatch) { case 0: csel32 (cpu, cc); return; case 1: csinc32 (cpu, cc); return; case 2: csinv32 (cpu, cc); return; case 3: csneg32 (cpu, cc); return; case 4: csel64 (cpu, cc); return; case 5: csinc64 (cpu, cc); return; case 6: csinv64 (cpu, cc); return; case 7: csneg64 (cpu, cc); return; default: HALT_UNALLOC; } } /* Some helpers for counting leading 1 or 0 bits. */ /* Counts the number of leading bits which are the same in a 32 bit value in the range 1 to 32. */ static uint32_t leading32 (uint32_t value) { int32_t mask= 0xffff0000; uint32_t count= 16; /* Counts number of bits set in mask. */ uint32_t lo = 1; /* Lower bound for number of sign bits. */ uint32_t hi = 32; /* Upper bound for number of sign bits. */ while (lo + 1 < hi) { int32_t test = (value & mask); if (test == 0 || test == mask) { lo = count; count = (lo + hi) / 2; mask >>= (count - lo); } else { hi = count; count = (lo + hi) / 2; mask <<= hi - count; } } if (lo != hi) { int32_t test; mask >>= 1; test = (value & mask); if (test == 0 || test == mask) count = hi; else count = lo; } return count; } /* Counts the number of leading bits which are the same in a 64 bit value in the range 1 to 64. */ static uint64_t leading64 (uint64_t value) { int64_t mask= 0xffffffff00000000LL; uint64_t count = 32; /* Counts number of bits set in mask. */ uint64_t lo = 1; /* Lower bound for number of sign bits. */ uint64_t hi = 64; /* Upper bound for number of sign bits. */ while (lo + 1 < hi) { int64_t test = (value & mask); if (test == 0 || test == mask) { lo = count; count = (lo + hi) / 2; mask >>= (count - lo); } else { hi = count; count = (lo + hi) / 2; mask <<= hi - count; } } if (lo != hi) { int64_t test; mask >>= 1; test = (value & mask); if (test == 0 || test == mask) count = hi; else count = lo; } return count; } /* Bit operations. */ /* N.B register args may not be SP. */ /* 32 bit count leading sign bits. */ static void cls32 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. the result needs to exclude the leading bit. */ aarch64_set_reg_u64 (cpu, rd, NO_SP, leading32 (aarch64_get_reg_u32 (cpu, rn, NO_SP)) - 1); } /* 64 bit count leading sign bits. */ static void cls64 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. the result needs to exclude the leading bit. */ aarch64_set_reg_u64 (cpu, rd, NO_SP, leading64 (aarch64_get_reg_u64 (cpu, rn, NO_SP)) - 1); } /* 32 bit count leading zero bits. */ static void clz32 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value = aarch64_get_reg_u32 (cpu, rn, NO_SP); /* if the sign (top) bit is set then the count is 0. */ if (pick32 (value, 31, 31)) aarch64_set_reg_u64 (cpu, rd, NO_SP, 0L); else aarch64_set_reg_u64 (cpu, rd, NO_SP, leading32 (value)); } /* 64 bit count leading zero bits. */ static void clz64 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value = aarch64_get_reg_u64 (cpu, rn, NO_SP); /* if the sign (top) bit is set then the count is 0. */ if (pick64 (value, 63, 63)) aarch64_set_reg_u64 (cpu, rd, NO_SP, 0L); else aarch64_set_reg_u64 (cpu, rd, NO_SP, leading64 (value)); } /* 32 bit reverse bits. */ static void rbit32 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t result = 0; int i; for (i = 0; i < 32; i++) { result <<= 1; result |= (value & 1); value >>= 1; } aarch64_set_reg_u64 (cpu, rd, NO_SP, result); } /* 64 bit reverse bits. */ static void rbit64 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t result = 0; int i; for (i = 0; i < 64; i++) { result <<= 1; result |= (value & 1L); value >>= 1; } aarch64_set_reg_u64 (cpu, rd, NO_SP, result); } /* 32 bit reverse bytes. */ static void rev32 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t result = 0; int i; for (i = 0; i < 4; i++) { result <<= 8; result |= (value & 0xff); value >>= 8; } aarch64_set_reg_u64 (cpu, rd, NO_SP, result); } /* 64 bit reverse bytes. */ static void rev64 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t result = 0; int i; for (i = 0; i < 8; i++) { result <<= 8; result |= (value & 0xffULL); value >>= 8; } aarch64_set_reg_u64 (cpu, rd, NO_SP, result); } /* 32 bit reverse shorts. */ /* N.B.this reverses the order of the bytes in each half word. */ static void revh32 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t value = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint32_t result = 0; int i; for (i = 0; i < 2; i++) { result <<= 8; result |= (value & 0x00ff00ff); value >>= 8; } aarch64_set_reg_u64 (cpu, rd, NO_SP, result); } /* 64 bit reverse shorts. */ /* N.B.this reverses the order of the bytes in each half word. */ static void revh64 (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); uint64_t value = aarch64_get_reg_u64 (cpu, rn, NO_SP); uint64_t result = 0; int i; for (i = 0; i < 2; i++) { result <<= 8; result |= (value & 0x00ff00ff00ff00ffULL); value >>= 8; } aarch64_set_reg_u64 (cpu, rd, NO_SP, result); } static void dexDataProc1Source (sim_cpu *cpu) { /* assert instr[30] == 1 aarch64_get_instr (cpu)[28,21] == 111010110 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[29] = S : 0 ==> ok, 1 ==> UNALLOC instr[20,16] = opcode2 : 00000 ==> ok, ow ==> UNALLOC instr[15,10] = opcode : 000000 ==> RBIT, 000001 ==> REV16, 000010 ==> REV, 000011 ==> UNALLOC 000100 ==> CLZ, 000101 ==> CLS ow ==> UNALLOC instr[9,5] = rn : may not be SP instr[4,0] = rd : may not be SP. */ uint32_t S = uimm (aarch64_get_instr (cpu), 29, 29); uint32_t opcode2 = uimm (aarch64_get_instr (cpu), 20, 16); uint32_t opcode = uimm (aarch64_get_instr (cpu), 15, 10); uint32_t dispatch = ((uimm (aarch64_get_instr (cpu), 31, 31) << 3) | opcode); if (S == 1) HALT_UNALLOC; if (opcode2 != 0) HALT_UNALLOC; if (opcode & 0x38) HALT_UNALLOC; switch (dispatch) { case 0: rbit32 (cpu); return; case 1: revh32 (cpu); return; case 2: rev32 (cpu); return; case 4: clz32 (cpu); return; case 5: cls32 (cpu); return; case 8: rbit64 (cpu); return; case 9: revh64 (cpu); return; case 10:rev32 (cpu); return; case 11:rev64 (cpu); return; case 12:clz64 (cpu); return; case 13:cls64 (cpu); return; default: HALT_UNALLOC; } } /* Variable shift. Shifts by count supplied in register. N.B register args may not be SP. These all use the shifted auxiliary function for simplicity and clarity. Writing the actual shift inline would avoid a branch and so be faster but would also necessitate getting signs right. */ /* 32 bit arithmetic shift right. */ static void asrv32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted32 (aarch64_get_reg_u32 (cpu, rn, NO_SP), ASR, (aarch64_get_reg_u32 (cpu, rm, NO_SP) & 0x1f))); } /* 64 bit arithmetic shift right. */ static void asrv64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted64 (aarch64_get_reg_u64 (cpu, rn, NO_SP), ASR, (aarch64_get_reg_u64 (cpu, rm, NO_SP) & 0x3f))); } /* 32 bit logical shift left. */ static void lslv32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted32 (aarch64_get_reg_u32 (cpu, rn, NO_SP), LSL, (aarch64_get_reg_u32 (cpu, rm, NO_SP) & 0x1f))); } /* 64 bit arithmetic shift left. */ static void lslv64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted64 (aarch64_get_reg_u64 (cpu, rn, NO_SP), LSL, (aarch64_get_reg_u64 (cpu, rm, NO_SP) & 0x3f))); } /* 32 bit logical shift right. */ static void lsrv32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted32 (aarch64_get_reg_u32 (cpu, rn, NO_SP), LSR, (aarch64_get_reg_u32 (cpu, rm, NO_SP) & 0x1f))); } /* 64 bit logical shift right. */ static void lsrv64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted64 (aarch64_get_reg_u64 (cpu, rn, NO_SP), LSR, (aarch64_get_reg_u64 (cpu, rm, NO_SP) & 0x3f))); } /* 32 bit rotate right. */ static void rorv32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted32 (aarch64_get_reg_u32 (cpu, rn, NO_SP), ROR, (aarch64_get_reg_u32 (cpu, rm, NO_SP) & 0x1f))); } /* 64 bit rotate right. */ static void rorv64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, shifted64 (aarch64_get_reg_u64 (cpu, rn, NO_SP), ROR, (aarch64_get_reg_u64 (cpu, rm, NO_SP) & 0x3f))); } /* divide. */ /* 32 bit signed divide. */ static void cpuiv32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. the pseudo-code does the divide using 64 bit data. */ /* TODO : check that this rounds towards zero as required. */ int64_t dividend = aarch64_get_reg_s32 (cpu, rn, NO_SP); int64_t divisor = aarch64_get_reg_s32 (cpu, rm, NO_SP); aarch64_set_reg_s64 (cpu, rd, NO_SP, divisor ? ((int32_t) (dividend / divisor)) : 0); } /* 64 bit signed divide. */ static void cpuiv64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* TODO : check that this rounds towards zero as required. */ int64_t divisor = aarch64_get_reg_s64 (cpu, rm, NO_SP); aarch64_set_reg_s64 (cpu, rd, NO_SP, divisor ? (aarch64_get_reg_s64 (cpu, rn, NO_SP) / divisor) : 0); } /* 32 bit unsigned divide. */ static void udiv32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. the pseudo-code does the divide using 64 bit data. */ uint64_t dividend = aarch64_get_reg_u32 (cpu, rn, NO_SP); uint64_t divisor = aarch64_get_reg_u32 (cpu, rm, NO_SP); aarch64_set_reg_u64 (cpu, rd, NO_SP, divisor ? (uint32_t) (dividend / divisor) : 0); } /* 64 bit unsigned divide. */ static void udiv64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* TODO : check that this rounds towards zero as required. */ uint64_t divisor = aarch64_get_reg_u64 (cpu, rm, NO_SP); aarch64_set_reg_u64 (cpu, rd, NO_SP, divisor ? (aarch64_get_reg_u64 (cpu, rn, NO_SP) / divisor) : 0); } static void dexDataProc2Source (sim_cpu *cpu) { /* assert instr[30] == 0 instr[28,21] == 11010110 instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit instr[29] = S : 0 ==> ok, 1 ==> UNALLOC instr[15,10] = opcode : 000010 ==> UDIV, 000011 ==> CPUIV, 001000 ==> LSLV, 001001 ==> LSRV 001010 ==> ASRV, 001011 ==> RORV ow ==> UNALLOC. */ uint32_t dispatch; uint32_t S = uimm (aarch64_get_instr (cpu), 29, 29); uint32_t opcode = uimm (aarch64_get_instr (cpu), 15, 10); if (S == 1) HALT_UNALLOC; if (opcode & 0x34) HALT_UNALLOC; dispatch = ( (uimm (aarch64_get_instr (cpu), 31, 31) << 3) | (uimm (opcode, 3, 3) << 2) | uimm (opcode, 1, 0)); switch (dispatch) { case 2: udiv32 (cpu); return; case 3: cpuiv32 (cpu); return; case 4: lslv32 (cpu); return; case 5: lsrv32 (cpu); return; case 6: asrv32 (cpu); return; case 7: rorv32 (cpu); return; case 10: udiv64 (cpu); return; case 11: cpuiv64 (cpu); return; case 12: lslv64 (cpu); return; case 13: lsrv64 (cpu); return; case 14: asrv64 (cpu); return; case 15: rorv64 (cpu); return; default: HALT_UNALLOC; } } /* Multiply. */ /* 32 bit multiply and add. */ static void madd32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, ra, NO_SP) + aarch64_get_reg_u32 (cpu, rn, NO_SP) * aarch64_get_reg_u32 (cpu, rm, NO_SP)); } /* 64 bit multiply and add. */ static void madd64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, ra, NO_SP) + aarch64_get_reg_u64 (cpu, rn, NO_SP) * aarch64_get_reg_u64 (cpu, rm, NO_SP)); } /* 32 bit multiply and sub. */ static void msub32 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u32 (cpu, ra, NO_SP) - aarch64_get_reg_u32 (cpu, rn, NO_SP) * aarch64_get_reg_u32 (cpu, rm, NO_SP)); } /* 64 bit multiply and sub. */ static void msub64 (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, ra, NO_SP) - aarch64_get_reg_u64 (cpu, rn, NO_SP) * aarch64_get_reg_u64 (cpu, rm, NO_SP)); } /* Signed multiply add long -- source, source2 : 32 bit, source3 : 64 bit. */ static void smaddl (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. we need to multiply the signed 32 bit values in rn, rm to obtain a 64 bit product. */ aarch64_set_reg_s64 (cpu, rd, NO_SP, aarch64_get_reg_s64 (cpu, ra, NO_SP) + ((int64_t) aarch64_get_reg_s32 (cpu, rn, NO_SP)) * ((int64_t) aarch64_get_reg_s32 (cpu, rm, NO_SP))); } /* Signed multiply sub long -- source, source2 : 32 bit, source3 : 64 bit. */ static void smsubl (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. we need to multiply the signed 32 bit values in rn, rm to obtain a 64 bit product. */ aarch64_set_reg_s64 (cpu, rd, NO_SP, aarch64_get_reg_s64 (cpu, ra, NO_SP) - ((int64_t) aarch64_get_reg_s32 (cpu, rn, NO_SP)) * ((int64_t) aarch64_get_reg_s32 (cpu, rm, NO_SP))); } /* Integer Multiply/Divide. */ /* First some macros and a helper function. */ /* Macros to test or access elements of 64 bit words. */ /* Mask used to access lo 32 bits of 64 bit unsigned int. */ #define LOW_WORD_MASK ((1ULL << 32) - 1) /* Return the lo 32 bit word of a 64 bit unsigned int as a 64 bit unsigned int. */ #define lowWordToU64(_value_u64) ((_value_u64) & LOW_WORD_MASK) /* Return the hi 32 bit word of a 64 bit unsigned int as a 64 bit unsigned int. */ #define highWordToU64(_value_u64) ((_value_u64) >> 32) /* Offset of sign bit in 64 bit signed integger. */ #define SIGN_SHIFT_U64 63 /* The sign bit itself -- also identifies the minimum negative int value. */ #define SIGN_BIT_U64 (1UL << SIGN_SHIFT_U64) /* Return true if a 64 bit signed int presented as an unsigned int is the most negative value. */ #define isMinimumU64(_value_u64) ((_value_u64) == SIGN_BIT_U64) /* Return true (non-zero) if a 64 bit signed int presented as an unsigned int has its sign bit set to false. */ #define isSignSetU64(_value_u64) ((_value_u64) & SIGN_BIT_U64) /* Return 1L or -1L according to whether a 64 bit signed int presented as an unsigned int has its sign bit set or not. */ #define signOfU64(_value_u64) (1L + (((value_u64) >> SIGN_SHIFT_U64) * -2L) /* Clear the sign bit of a 64 bit signed int presented as an unsigned int. */ #define clearSignU64(_value_u64) ((_value_u64) &= ~SIGN_BIT_U64) /* Multiply two 64 bit ints and return. the hi 64 bits of the 128 bit product. */ static uint64_t mul64hi (uint64_t value1, uint64_t value2) { uint64_t resultmid1; uint64_t result; uint64_t value1_lo = lowWordToU64 (value1); uint64_t value1_hi = highWordToU64 (value1) ; uint64_t value2_lo = lowWordToU64 (value2); uint64_t value2_hi = highWordToU64 (value2); /* Cross-multiply and collect results. */ uint64_t xproductlo = value1_lo * value2_lo; uint64_t xproductmid1 = value1_lo * value2_hi; uint64_t xproductmid2 = value1_hi * value2_lo; uint64_t xproducthi = value1_hi * value2_hi; uint64_t carry = 0; /* Start accumulating 64 bit results. */ /* Drop bottom half of lowest cross-product. */ uint64_t resultmid = xproductlo >> 32; /* Add in middle products. */ resultmid = resultmid + xproductmid1; /* Check for overflow. */ if (resultmid < xproductmid1) /* Carry over 1 into top cross-product. */ carry++; resultmid1 = resultmid + xproductmid2; /* Check for overflow. */ if (resultmid1 < xproductmid2) /* Carry over 1 into top cross-product. */ carry++; /* Drop lowest 32 bits of middle cross-product. */ result = resultmid1 >> 32; /* Add top cross-product plus and any carry. */ result += xproducthi + carry; return result; } /* Signed multiply high, source, source2 : 64 bit, dest <-- high 64-bit of result. */ static void smulh (sim_cpu *cpu) { uint64_t uresult; int64_t result; unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); GReg ra = greg (aarch64_get_instr (cpu), 10); int64_t value1 = aarch64_get_reg_u64 (cpu, rn, NO_SP); int64_t value2 = aarch64_get_reg_u64 (cpu, rm, NO_SP); uint64_t uvalue1; uint64_t uvalue2; int64_t signum = 1; if (ra != R31) HALT_UNALLOC; /* Convert to unsigned and use the unsigned mul64hi routine the fix the sign up afterwards. */ if (value1 < 0) { signum *= -1L; uvalue1 = -value1; } else { uvalue1 = value1; } if (value2 < 0) { signum *= -1L; uvalue2 = -value2; } else { uvalue2 = value2; } uresult = mul64hi (uvalue1, uvalue2); result = uresult; result *= signum; aarch64_set_reg_s64 (cpu, rd, NO_SP, result); } /* Unsigned multiply add long -- source, source2 : 32 bit, source3 : 64 bit. */ static void umaddl (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. we need to multiply the signed 32 bit values in rn, rm to obtain a 64 bit product. */ aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, ra, NO_SP) + ((uint64_t) aarch64_get_reg_u32 (cpu, rn, NO_SP)) * ((uint64_t) aarch64_get_reg_u32 (cpu, rm, NO_SP))); } /* Unsigned multiply sub long -- source, source2 : 32 bit, source3 : 64 bit. */ static void umsubl (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned ra = uimm (aarch64_get_instr (cpu), 14, 10); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); /* N.B. we need to multiply the signed 32 bit values in rn, rm to obtain a 64 bit product. */ aarch64_set_reg_u64 (cpu, rd, NO_SP, aarch64_get_reg_u64 (cpu, ra, NO_SP) - ((uint64_t) aarch64_get_reg_u32 (cpu, rn, NO_SP)) * ((uint64_t) aarch64_get_reg_u32 (cpu, rm, NO_SP))); } /* Unsigned multiply high, source, source2 : 64 bit, dest <-- high 64-bit of result. */ static void umulh (sim_cpu *cpu) { unsigned rm = uimm (aarch64_get_instr (cpu), 20, 16); unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); unsigned rd = uimm (aarch64_get_instr (cpu), 4, 0); GReg ra = greg (aarch64_get_instr (cpu), 10); if (ra != R31) HALT_UNALLOC; aarch64_set_reg_u64 (cpu, rd, NO_SP, mul64hi (aarch64_get_reg_u64 (cpu, rn, NO_SP), aarch64_get_reg_u64 (cpu, rm, NO_SP))); } static void dexDataProc3Source (sim_cpu *cpu) { /* assert instr[28,24] == 11011. */ /* instr[31] = size : 0 ==> 32 bit, 1 ==> 64 bit (for rd at least) instr[30,29] = op54 : 00 ==> ok, ow ==> UNALLOC instr[23,21] = op31 : 111 ==> UNALLOC, o2 ==> ok instr[15] = o0 : 0/1 ==> ok instr[23,21:15] ==> op : 0000 ==> MADD, 0001 ==> MSUB, (32/64 bit) 0010 ==> SMADDL, 0011 ==> SMSUBL, (64 bit only) 0100 ==> SMULH, (64 bit only) 1010 ==> UMADDL, 1011 ==> UNSUBL, (64 bit only) 1100 ==> UMULH (64 bit only) ow ==> UNALLOC. */ uint32_t dispatch; uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); uint32_t op54 = uimm (aarch64_get_instr (cpu), 30, 29); uint32_t op31 = uimm (aarch64_get_instr (cpu), 23, 21); uint32_t o0 = uimm (aarch64_get_instr (cpu), 15, 15); if (op54 != 0) HALT_UNALLOC; if (size == 0) { if (op31 != 0) HALT_UNALLOC; if (o0 == 0) madd32 (cpu); else msub32 (cpu); return; } dispatch = (op31 << 1) | o0; switch (dispatch) { case 0: madd64 (cpu); return; case 1: msub64 (cpu); return; case 2: smaddl (cpu); return; case 3: smsubl (cpu); return; case 4: smulh (cpu); return; case 10: umaddl (cpu); return; case 11: umsubl (cpu); return; case 12: umulh (cpu); return; default: HALT_UNALLOC; } } static void dexDPReg (sim_cpu *cpu) { /* uint32_t group = dispatchGroup (aarch64_get_instr (cpu)); assert group == GROUP_DPREG_0101 || group == GROUP_DPREG_1101 bits [28:24:21] of a DPReg are the secondary dispatch vector. */ uint32_t group2 = dispatchDPReg (aarch64_get_instr (cpu)); switch (group2) { case DPREG_LOG_000: case DPREG_LOG_001: dexLogicalShiftedRegister (cpu); return; case DPREG_ADDSHF_010: dexAddSubtractShiftedRegister (cpu); return; case DPREG_ADDEXT_011: dexAddSubtractExtendedRegister (cpu); return; case DPREG_ADDCOND_100: { /* This set bundles a variety of different operations. */ /* Check for. */ /* 1) add/sub w carry. */ uint32_t mask1 = 0x1FE00000U; uint32_t val1 = 0x1A000000U; /* 2) cond compare register/immediate. */ uint32_t mask2 = 0x1FE00000U; uint32_t val2 = 0x1A400000U; /* 3) cond select. */ uint32_t mask3 = 0x1FE00000U; uint32_t val3 = 0x1A800000U; /* 4) data proc 1/2 source. */ uint32_t mask4 = 0x1FE00000U; uint32_t val4 = 0x1AC00000U; if ((aarch64_get_instr (cpu) & mask1) == val1) dexAddSubtractWithCarry (cpu); else if ((aarch64_get_instr (cpu) & mask2) == val2) CondCompare (cpu); else if ((aarch64_get_instr (cpu) & mask3) == val3) dexCondSelect (cpu); else if ((aarch64_get_instr (cpu) & mask4) == val4) { /* Bit 30 is clear for data proc 2 source and set for data proc 1 source. */ if (aarch64_get_instr (cpu) & (1U << 30)) dexDataProc1Source (cpu); else dexDataProc2Source (cpu); } else /* Should not reach here. */ HALT_NYI; return; } case DPREG_3SRC_110: dexDataProc3Source (cpu); return; case DPREG_UNALLOC_101: HALT_UNALLOC; case DPREG_3SRC_111: dexDataProc3Source (cpu); return; default: /* Should never reach here. */ HALT_NYI; } } /* Unconditional Branch immediate. Offset is a PC-relative byte offset in the range +/- 128MiB. The offset is assumed to be raw from the decode i.e. the simulator is expected to scale them from word offsets to byte. */ /* Unconditional branch. */ static void buc (sim_cpu *cpu, int32_t offset) { aarch64_set_next_PC_by_offset (cpu, offset); } static unsigned stack_depth = 0; /* Unconditional branch and link -- writes return PC to LR. */ static void bl (sim_cpu *cpu, int32_t offset) { aarch64_save_LR (cpu); aarch64_set_next_PC_by_offset (cpu, offset); if (TRACE_BRANCH_P (cpu)) { ++ stack_depth; TRACE_BRANCH (cpu, " %*scall %" PRIx64 " [%s]" " [args: %" PRIx64 " %" PRIx64 " %" PRIx64 "]", stack_depth, " ", aarch64_get_next_PC (cpu), aarch64_get_func (aarch64_get_next_PC (cpu)), aarch64_get_reg_u64 (cpu, 0, NO_SP), aarch64_get_reg_u64 (cpu, 1, NO_SP), aarch64_get_reg_u64 (cpu, 2, NO_SP) ); } } /* Unconditional Branch register. Branch/return address is in source register. */ /* Unconditional branch. */ static void br (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); aarch64_set_next_PC (cpu, aarch64_get_reg_u64 (cpu, rn, NO_SP)); } /* Unconditional branch and link -- writes return PC to LR. */ static void blr (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); /* The pseudo code in the spec says we update LR before fetching. the value from the rn. */ aarch64_save_LR (cpu); aarch64_set_next_PC (cpu, aarch64_get_reg_u64 (cpu, rn, NO_SP)); if (TRACE_BRANCH_P (cpu)) { ++ stack_depth; TRACE_BRANCH (cpu, " %*scall %" PRIx64 " [%s]" " [args: %" PRIx64 " %" PRIx64 " %" PRIx64 "]", stack_depth, " ", aarch64_get_next_PC (cpu), aarch64_get_func (aarch64_get_next_PC (cpu)), aarch64_get_reg_u64 (cpu, 0, NO_SP), aarch64_get_reg_u64 (cpu, 1, NO_SP), aarch64_get_reg_u64 (cpu, 2, NO_SP) ); } } /* Return -- assembler will default source to LR this is functionally equivalent to br but, presumably, unlike br it side effects the branch predictor. */ static void ret (sim_cpu *cpu) { unsigned rn = uimm (aarch64_get_instr (cpu), 9, 5); aarch64_set_next_PC (cpu, aarch64_get_reg_u64 (cpu, rn, NO_SP)); if (TRACE_BRANCH_P (cpu)) { TRACE_BRANCH (cpu, " %*sreturn [result: %" PRIx64 "]", stack_depth, " ", aarch64_get_reg_u64 (cpu, 0, NO_SP)); -- stack_depth; } } /* NOP -- we implement this and call it from the decode in case we want to intercept it later. */ static void nop (sim_cpu *cpu) { } /* Data synchronization barrier. */ static void dsb (sim_cpu *cpu) { } /* Data memory barrier. */ static void dmb (sim_cpu *cpu) { } /* Instruction synchronization barrier. */ static void isb (sim_cpu *cpu) { } static void dexBranchImmediate (sim_cpu *cpu) { /* assert instr[30,26] == 00101 instr[31] ==> 0 == B, 1 == BL instr[25,0] == imm26 branch offset counted in words. */ uint32_t top = uimm (aarch64_get_instr (cpu), 31, 31); /* We have a 26 byte signed word offset which we need to pass to the execute routine as a signed byte offset. */ int32_t offset = simm32 (aarch64_get_instr (cpu), 25, 0) << 2; if (top) bl (cpu, offset); else buc (cpu, offset); } /* Control Flow. */ /* Conditional branch Offset is a PC-relative byte offset in the range +/- 1MiB pos is a bit position in the range 0 .. 63 cc is a CondCode enum value as pulled out of the decode N.B. any offset register (source) can only be Xn or Wn. */ static void bcc (sim_cpu *cpu, int32_t offset, CondCode cc) { /* the test returns TRUE if CC is met. */ if (testConditionCode (cpu, cc)) aarch64_set_next_PC_by_offset (cpu, offset); } /* 32 bit branch on register non-zero. */ static void cbnz32 (sim_cpu *cpu, int32_t offset) { unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); if (aarch64_get_reg_u32 (cpu, rt, NO_SP) != 0) aarch64_set_next_PC_by_offset (cpu, offset); } /* 64 bit branch on register zero. */ static void cbnz (sim_cpu *cpu, int32_t offset) { unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); if (aarch64_get_reg_u64 (cpu, rt, NO_SP) != 0) aarch64_set_next_PC_by_offset (cpu, offset); } /* 32 bit branch on register non-zero. */ static void cbz32 (sim_cpu *cpu, int32_t offset) { unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); if (aarch64_get_reg_u32 (cpu, rt, NO_SP) == 0) aarch64_set_next_PC_by_offset (cpu, offset); } /* 64 bit branch on register zero. */ static void cbz (sim_cpu *cpu, int32_t offset) { unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); if (aarch64_get_reg_u64 (cpu, rt, NO_SP) == 0) aarch64_set_next_PC_by_offset (cpu, offset); } /* Branch on register bit test non-zero -- one size fits all. */ static void tbnz (sim_cpu *cpu, uint32_t pos, int32_t offset) { unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); if (aarch64_get_reg_u64 (cpu, rt, NO_SP) & (1 << pos)) aarch64_set_next_PC_by_offset (cpu, offset); } /* branch on register bit test zero -- one size fits all. */ static void tbz (sim_cpu *cpu, uint32_t pos, int32_t offset) { unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); if (!(aarch64_get_reg_u64 (cpu, rt, NO_SP) & (1 << pos))) aarch64_set_next_PC_by_offset (cpu, offset); } static void dexCompareBranchImmediate (sim_cpu *cpu) { /* instr[30,25] = 01 1010 instr[31] = size : 0 ==> 32, 1 ==> 64 instr[24] = op : 0 ==> CBZ, 1 ==> CBNZ instr[23,5] = simm19 branch offset counted in words instr[4,0] = rt */ uint32_t size = uimm (aarch64_get_instr (cpu), 31, 31); uint32_t op = uimm (aarch64_get_instr (cpu), 24, 24); int32_t offset = simm32 (aarch64_get_instr (cpu), 23, 5) << 2; if (size == 0) { if (op == 0) cbz32 (cpu, offset); else cbnz32 (cpu, offset); } else { if (op == 0) cbz (cpu, offset); else cbnz (cpu, offset); } } static void dexTestBranchImmediate (sim_cpu *cpu) { /* instr[31] = b5 : bit 5 of test bit idx instr[30,25] = 01 1011 instr[24] = op : 0 ==> TBZ, 1 == TBNZ instr[23,19] = b40 : bits 4 to 0 of test bit idx instr[18,5] = simm14 : signed offset counted in words instr[4,0] = uimm5 */ uint32_t pos = ((uimm (aarch64_get_instr (cpu), 31, 31) << 4) | uimm (aarch64_get_instr (cpu), 23,19)); int32_t offset = simm32 (aarch64_get_instr (cpu), 18, 5) << 2; NYI_assert (30, 25, 0x1b); if (uimm (aarch64_get_instr (cpu), 24, 24) == 0) tbz (cpu, pos, offset); else tbnz (cpu, pos, offset); } static void dexCondBranchImmediate (sim_cpu *cpu) { /* instr[31,25] = 010 1010 instr[24] = op1; op => 00 ==> B.cond instr[23,5] = simm19 : signed offset counted in words instr[4] = op0 instr[3,0] = cond */ int32_t offset; CondCode cc; uint32_t op = ((uimm (aarch64_get_instr (cpu), 24, 24) << 1) | uimm (aarch64_get_instr (cpu), 4, 4)); NYI_assert (31, 25, 0x2a); if (op != 0) HALT_UNALLOC; offset = simm32 (aarch64_get_instr (cpu), 23, 5) << 2; cc = condcode (aarch64_get_instr (cpu), 0); bcc (cpu, offset, cc); } static void dexBranchRegister (sim_cpu *cpu) { /* instr[31,25] = 110 1011 instr[24,21] = op : 0 ==> BR, 1 => BLR, 2 => RET, 3 => ERET, 4 => DRPS instr[20,16] = op2 : must be 11111 instr[15,10] = op3 : must be 000000 instr[4,0] = op2 : must be 11111. */ uint32_t op = uimm (aarch64_get_instr (cpu), 24, 21); uint32_t op2 = uimm (aarch64_get_instr (cpu), 20, 16); uint32_t op3 = uimm (aarch64_get_instr (cpu), 15, 10); uint32_t op4 = uimm (aarch64_get_instr (cpu), 4, 0); NYI_assert (31, 25, 0x6b); if (op2 != 0x1F || op3 != 0 || op4 != 0) HALT_UNALLOC; if (op == 0) br (cpu); else if (op == 1) blr (cpu); else if (op == 2) ret (cpu); else { /* ERET and DRPS accept 0b11111 for rn = aarch64_get_instr (cpu)[4,0]. */ /* anything else is unallocated. */ uint32_t rn = greg (aarch64_get_instr (cpu), 0); if (rn != 0x1f) HALT_UNALLOC; if (op == 4 || op == 5) HALT_NYI; HALT_UNALLOC; } } /* FIXME: We should get the Angel SWI values from ../../libgloss/aarch64/svc.h but this may not be available. So instead we define the values we need here. */ #define AngelSVC_Reason_Open 0x01 #define AngelSVC_Reason_Close 0x02 #define AngelSVC_Reason_Write 0x05 #define AngelSVC_Reason_Read 0x06 #define AngelSVC_Reason_IsTTY 0x09 #define AngelSVC_Reason_Seek 0x0A #define AngelSVC_Reason_FLen 0x0C #define AngelSVC_Reason_Remove 0x0E #define AngelSVC_Reason_Rename 0x0F #define AngelSVC_Reason_Clock 0x10 #define AngelSVC_Reason_Time 0x11 #define AngelSVC_Reason_System 0x12 #define AngelSVC_Reason_Errno 0x13 #define AngelSVC_Reason_GetCmdLine 0x15 #define AngelSVC_Reason_HeapInfo 0x16 #define AngelSVC_Reason_ReportException 0x18 #define AngelSVC_Reason_Elapsed 0x30 static void handle_halt (sim_cpu *cpu, uint32_t val) { uint64_t result = 0; if (val != 0xf000) { TRACE_SYSCALL (cpu, " HLT [0x%x]", val); sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_stopped, SIM_SIGTRAP); } /* We have encountered an Angel SVC call. See if we can process it. */ switch (aarch64_get_reg_u32 (cpu, 0, NO_SP)) { case AngelSVC_Reason_HeapInfo: { /* Get the values. */ uint64_t stack_top = aarch64_get_stack_start (cpu); uint64_t heap_base = aarch64_get_heap_start (cpu); /* Get the pointer */ uint64_t ptr = aarch64_get_reg_u64 (cpu, 1, SP_OK); ptr = aarch64_get_mem_u64 (cpu, ptr); /* Fill in the memory block. */ /* Start addr of heap. */ aarch64_set_mem_u64 (cpu, ptr + 0, heap_base); /* End addr of heap. */ aarch64_set_mem_u64 (cpu, ptr + 8, stack_top); /* Lowest stack addr. */ aarch64_set_mem_u64 (cpu, ptr + 16, heap_base); /* Initial stack addr. */ aarch64_set_mem_u64 (cpu, ptr + 24, stack_top); TRACE_SYSCALL (cpu, " AngelSVC: Get Heap Info"); } break; case AngelSVC_Reason_Open: { /* Get the pointer */ /* uint64_t ptr = aarch64_get_reg_u64 (cpu, 1, SP_OK);. */ /* FIXME: For now we just assume that we will only be asked to open the standard file descriptors. */ static int fd = 0; result = fd ++; TRACE_SYSCALL (cpu, " AngelSVC: Open file %d", fd - 1); } break; case AngelSVC_Reason_Close: { uint64_t fh = aarch64_get_reg_u64 (cpu, 1, SP_OK); TRACE_SYSCALL (cpu, " AngelSVC: Close file %d", (int) fh); result = 0; } break; case AngelSVC_Reason_Errno: result = 0; TRACE_SYSCALL (cpu, " AngelSVC: Get Errno"); break; case AngelSVC_Reason_Clock: result = #ifdef CLOCKS_PER_SEC (CLOCKS_PER_SEC >= 100) ? (clock () / (CLOCKS_PER_SEC / 100)) : ((clock () * 100) / CLOCKS_PER_SEC) #else /* Presume unix... clock() returns microseconds. */ (clock () / 10000) #endif ; TRACE_SYSCALL (cpu, " AngelSVC: Get Clock"); break; case AngelSVC_Reason_GetCmdLine: { /* Get the pointer */ uint64_t ptr = aarch64_get_reg_u64 (cpu, 1, SP_OK); ptr = aarch64_get_mem_u64 (cpu, ptr); /* FIXME: No command line for now. */ aarch64_set_mem_u64 (cpu, ptr, 0); TRACE_SYSCALL (cpu, " AngelSVC: Get Command Line"); } break; case AngelSVC_Reason_IsTTY: result = 1; TRACE_SYSCALL (cpu, " AngelSVC: IsTTY ?"); break; case AngelSVC_Reason_Write: { /* Get the pointer */ uint64_t ptr = aarch64_get_reg_u64 (cpu, 1, SP_OK); /* Get the write control block. */ uint64_t fd = aarch64_get_mem_u64 (cpu, ptr); uint64_t buf = aarch64_get_mem_u64 (cpu, ptr + 8); uint64_t len = aarch64_get_mem_u64 (cpu, ptr + 16); TRACE_SYSCALL (cpu, "write of %" PRIx64 " bytes from %" PRIx64 " on descriptor %" PRIx64, len, buf, fd); if (len > 1280) { TRACE_SYSCALL (cpu, " AngelSVC: Write: Suspiciously long write: %ld", (long) len); sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_stopped, SIM_SIGBUS); } else if (fd == 1) { printf ("%.*s", (int) len, aarch64_get_mem_ptr (cpu, buf)); } else if (fd == 2) { TRACE (cpu, 0, "\n"); sim_io_eprintf (CPU_STATE (cpu), "%.*s", (int) len, aarch64_get_mem_ptr (cpu, buf)); TRACE (cpu, 0, "\n"); } else { TRACE_SYSCALL (cpu, " AngelSVC: Write: Unexpected file handle: %d", (int) fd); sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_stopped, SIM_SIGABRT); } } break; case AngelSVC_Reason_ReportException: { /* Get the pointer */ uint64_t ptr = aarch64_get_reg_u64 (cpu, 1, SP_OK); /*ptr = aarch64_get_mem_u64 (cpu, ptr);. */ uint64_t type = aarch64_get_mem_u64 (cpu, ptr); uint64_t state = aarch64_get_mem_u64 (cpu, ptr + 8); TRACE_SYSCALL (cpu, "Angel Exception: type 0x%" PRIx64 " state %" PRIx64, type, state); if (type == 0x20026) sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_exited, state); else sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_stopped, SIM_SIGINT); } break; case AngelSVC_Reason_Read: case AngelSVC_Reason_FLen: case AngelSVC_Reason_Seek: case AngelSVC_Reason_Remove: case AngelSVC_Reason_Time: case AngelSVC_Reason_System: case AngelSVC_Reason_Rename: case AngelSVC_Reason_Elapsed: default: TRACE_SYSCALL (cpu, " HLT [Unknown angel %x]", aarch64_get_reg_u32 (cpu, 0, NO_SP)); sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_stopped, SIM_SIGTRAP); } aarch64_set_reg_u64 (cpu, 0, NO_SP, result); } static void dexExcpnGen (sim_cpu *cpu) { /* instr[31:24] = 11010100 instr[23,21] = opc : 000 ==> GEN EXCPN, 001 ==> BRK 010 ==> HLT, 101 ==> DBG GEN EXCPN instr[20,5] = imm16 instr[4,2] = opc2 000 ==> OK, ow ==> UNALLOC instr[1,0] = LL : discriminates opc */ uint32_t opc = uimm (aarch64_get_instr (cpu), 23, 21); uint32_t imm16 = uimm (aarch64_get_instr (cpu), 20, 5); uint32_t opc2 = uimm (aarch64_get_instr (cpu), 4, 2); uint32_t LL; NYI_assert (31, 24, 0xd4); if (opc2 != 0) HALT_UNALLOC; LL = uimm (aarch64_get_instr (cpu), 1, 0); /* We only implement HLT and BRK for now. */ if (opc == 1 && LL == 0) { TRACE_EVENTS (cpu, " BRK [0x%x]", imm16); sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), sim_exited, aarch64_get_reg_s32 (cpu, R0, SP_OK)); } if (opc == 2 && LL == 0) handle_halt (cpu, imm16); else if (opc == 0 || opc == 5) HALT_NYI; else HALT_UNALLOC; } /* Stub for accessing system registers. We implement support for the DCZID register since this is used by the C library's memset function. */ static uint64_t system_get (sim_cpu *cpu, unsigned op0, unsigned op1, unsigned crn, unsigned crm, unsigned op2) { if (crn == 0 && op1 == 3 && crm == 0 && op2 == 7) /* DCZID_EL0 - the Data Cache Zero ID register. We do not support DC ZVA at the moment, so we return a value with the disable bit set. */ return ((uint64_t) 1) << 4; HALT_NYI; } static void do_mrs (sim_cpu *cpu) { /* instr[31:20] = 1101 01010 0011 instr[19] = op0 instr[18,16] = op1 instr[15,12] = CRn instr[11,8] = CRm instr[7,5] = op2 instr[4,0] = Rt */ unsigned sys_op0 = uimm (aarch64_get_instr (cpu), 19, 19) + 2; unsigned sys_op1 = uimm (aarch64_get_instr (cpu), 18, 16); unsigned sys_crn = uimm (aarch64_get_instr (cpu), 15, 12); unsigned sys_crm = uimm (aarch64_get_instr (cpu), 11, 8); unsigned sys_op2 = uimm (aarch64_get_instr (cpu), 7, 5); unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); aarch64_set_reg_u64 (cpu, rt, NO_SP, system_get (cpu, sys_op0, sys_op1, sys_crn, sys_crm, sys_op2)); } static void dexSystem (sim_cpu *cpu) { /* instr[31:22] = 1101 01010 0 instr[21] = L instr[20,19] = op0 instr[18,16] = op1 instr[15,12] = CRn instr[11,8] = CRm instr[7,5] = op2 instr[4,0] = uimm5 */ /* We are interested in HINT, DSB, DMB and ISB Hint #0 encodes NOOP (this is the only hint we care about) L == 0, op0 == 0, op1 = 011, CRn = 0010, Rt = 11111, CRm op2 != 0000 000 OR CRm op2 == 0000 000 || CRm op > 0000 101 DSB, DMB, ISB are data store barrier, data memory barrier and instruction store barrier, respectively, where L == 0, op0 == 0, op1 = 011, CRn = 0011, Rt = 11111, op2 : DSB ==> 100, DMB ==> 101, ISB ==> 110 CRm<3:2> ==> domain, CRm<1:0> ==> types, domain : 00 ==> OuterShareable, 01 ==> Nonshareable, 10 ==> InerShareable, 11 ==> FullSystem types : 01 ==> Reads, 10 ==> Writes, 11 ==> All, 00 ==> All (domain == FullSystem). */ unsigned rt = uimm (aarch64_get_instr (cpu), 4, 0); uint32_t l_op0_op1_crn = uimm (aarch64_get_instr (cpu), 21, 12); NYI_assert (31, 22, 0x354); switch (l_op0_op1_crn) { case 0x032: if (rt == 0x1F) { /* NOP has CRm != 0000 OR. */ /* (CRm == 0000 AND (op2 == 000 OR op2 > 101)). */ uint32_t crm = uimm (aarch64_get_instr (cpu), 11, 8); uint32_t op2 = uimm (aarch64_get_instr (cpu), 7, 5); if (crm != 0 || (op2 == 0 || op2 > 5)) { /* Actually call nop method so we can reimplement it later. */ nop (cpu); return; } } HALT_NYI; case 0x033: { uint32_t op2 = uimm (aarch64_get_instr (cpu), 7, 5); switch (op2) { case 2: HALT_NYI; case 4: dsb (cpu); return; case 5: dmb (cpu); return; case 6: isb (cpu); return; case 7: default: HALT_UNALLOC; } } case 0x3B0: /* MRS Wt, sys-reg. */ do_mrs (cpu); return; case 0x3B4: case 0x3BD: /* MRS Xt, sys-reg. */ do_mrs (cpu); return; case 0x0B7: /* DC , x. */ HALT_NYI; return; default: /* if (uimm (aarch64_get_instr (cpu), 21, 20) == 0x1) MRS Xt, sys-reg. */ HALT_NYI; return; } } static void dexBr (sim_cpu *cpu) { /* uint32_t group = dispatchGroup (aarch64_get_instr (cpu)); assert group == GROUP_BREXSYS_1010 || group == GROUP_BREXSYS_1011 bits [31,29] of a BrExSys are the secondary dispatch vector. */ uint32_t group2 = dispatchBrExSys (aarch64_get_instr (cpu)); switch (group2) { case BR_IMM_000: return dexBranchImmediate (cpu); case BR_IMMCMP_001: /* Compare has bit 25 clear while test has it set. */ if (!uimm (aarch64_get_instr (cpu), 25, 25)) dexCompareBranchImmediate (cpu); else dexTestBranchImmediate (cpu); return; case BR_IMMCOND_010: /* This is a conditional branch if bit 25 is clear otherwise unallocated. */ if (!uimm (aarch64_get_instr (cpu), 25, 25)) dexCondBranchImmediate (cpu); else HALT_UNALLOC; return; case BR_UNALLOC_011: HALT_UNALLOC; case BR_IMM_100: dexBranchImmediate (cpu); return; case BR_IMMCMP_101: /* Compare has bit 25 clear while test has it set. */ if (!uimm (aarch64_get_instr (cpu), 25, 25)) dexCompareBranchImmediate (cpu); else dexTestBranchImmediate (cpu); return; case BR_REG_110: /* Unconditional branch reg has bit 25 set. */ if (uimm (aarch64_get_instr (cpu), 25, 25)) dexBranchRegister (cpu); /* This includes both Excpn Gen, System and unalloc operations. We need to decode the Excpn Gen operation BRK so we can plant debugger entry points. Excpn Gen operations have aarch64_get_instr (cpu)[24] = 0. we need to decode at least one of the System operations NOP which is an alias for HINT #0. System operations have aarch64_get_instr (cpu)[24,22] = 100. */ else if (uimm (aarch64_get_instr (cpu), 24, 24) == 0) dexExcpnGen (cpu); else if (uimm (aarch64_get_instr (cpu), 24, 22) == 4) dexSystem (cpu); else HALT_UNALLOC; return; case BR_UNALLOC_111: HALT_UNALLOC; default: /* Should never reach here. */ HALT_NYI; } } static void aarch64_decode_and_execute (sim_cpu *cpu, uint64_t pc) { /* We need to check if gdb wants an in here. */ /* checkBreak (cpu);. */ uint64_t group = dispatchGroup (aarch64_get_instr (cpu)); switch (group) { case GROUP_PSEUDO_0000: dexPseudo (cpu); break; case GROUP_LDST_0100: dexLdSt (cpu); break; case GROUP_DPREG_0101: dexDPReg (cpu); break; case GROUP_LDST_0110: dexLdSt (cpu); break; case GROUP_ADVSIMD_0111: dexAdvSIMD0 (cpu); break; case GROUP_DPIMM_1000: dexDPImm (cpu); break; case GROUP_DPIMM_1001: dexDPImm (cpu); break; case GROUP_BREXSYS_1010: dexBr (cpu); break; case GROUP_BREXSYS_1011: dexBr (cpu); break; case GROUP_LDST_1100: dexLdSt (cpu); break; case GROUP_DPREG_1101: dexDPReg (cpu); break; case GROUP_LDST_1110: dexLdSt (cpu); break; case GROUP_ADVSIMD_1111: dexAdvSIMD1 (cpu); break; case GROUP_UNALLOC_0001: case GROUP_UNALLOC_0010: case GROUP_UNALLOC_0011: HALT_UNALLOC; default: /* Should never reach here. */ HALT_NYI; } } static bfd_boolean aarch64_step (sim_cpu *cpu) { uint64_t pc = aarch64_get_PC (cpu); if (pc == TOP_LEVEL_RETURN_PC) return FALSE; aarch64_set_next_PC (cpu, pc + 4); aarch64_get_instr (cpu) = aarch64_get_mem_u32 (cpu, pc); TRACE_INSN (cpu, " pc = %" PRIx64 " instr = %x", pc, aarch64_get_instr (cpu)); TRACE_DISASM (cpu, pc); aarch64_decode_and_execute (cpu, pc); return TRUE; } void aarch64_run (SIM_DESC sd) { sim_cpu *cpu = STATE_CPU (sd, 0); while (aarch64_step (cpu)) aarch64_update_PC (cpu); sim_engine_halt (sd, NULL, NULL, aarch64_get_PC (cpu), sim_exited, aarch64_get_reg_s32 (cpu, R0, SP_OK)); } void aarch64_init (sim_cpu *cpu, uint64_t pc) { uint64_t sp = aarch64_get_stack_start (cpu); /* Install SP, FP and PC and set LR to -20 so we can detect a top-level return. */ aarch64_set_reg_u64 (cpu, SP, SP_OK, sp); aarch64_set_reg_u64 (cpu, FP, SP_OK, sp); aarch64_set_reg_u64 (cpu, LR, SP_OK, TOP_LEVEL_RETURN_PC); aarch64_set_next_PC (cpu, pc); aarch64_update_PC (cpu); aarch64_init_LIT_table (); }