/* cpustate.h -- Prototypes for AArch64 simulator functions. Copyright (C) 2015-2022 Free Software Foundation, Inc. Contributed by Red Hat. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* This must come before any other includes. */ #include "defs.h" #include #include #include "sim-main.h" #include "sim-signal.h" #include "cpustate.h" #include "simulator.h" #include "libiberty.h" #include "aarch64-sim.h" /* Some operands are allowed to access the stack pointer (reg 31). For others a read from r31 always returns 0, and a write to r31 is ignored. */ #define reg_num(reg) (((reg) == R31 && !r31_is_sp) ? 32 : (reg)) void aarch64_set_reg_u64 (sim_cpu *cpu, GReg reg, int r31_is_sp, uint64_t val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (reg == R31 && ! r31_is_sp) { TRACE_REGISTER (cpu, "GR[31] NOT CHANGED!"); return; } if (val != aarch64_cpu->gr[reg].u64) TRACE_REGISTER (cpu, "GR[%2d] changes from %16" PRIx64 " to %16" PRIx64, reg, aarch64_cpu->gr[reg].u64, val); aarch64_cpu->gr[reg].u64 = val; } void aarch64_set_reg_s64 (sim_cpu *cpu, GReg reg, int r31_is_sp, int64_t val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (reg == R31 && ! r31_is_sp) { TRACE_REGISTER (cpu, "GR[31] NOT CHANGED!"); return; } if (val != aarch64_cpu->gr[reg].s64) TRACE_REGISTER (cpu, "GR[%2d] changes from %16" PRIx64 " to %16" PRIx64, reg, aarch64_cpu->gr[reg].s64, val); aarch64_cpu->gr[reg].s64 = val; } uint64_t aarch64_get_reg_u64 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].u64; } int64_t aarch64_get_reg_s64 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].s64; } uint32_t aarch64_get_reg_u32 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].u32; } int32_t aarch64_get_reg_s32 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].s32; } void aarch64_set_reg_s32 (sim_cpu *cpu, GReg reg, int r31_is_sp, int32_t val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (reg == R31 && ! r31_is_sp) { TRACE_REGISTER (cpu, "GR[31] NOT CHANGED!"); return; } if (val != aarch64_cpu->gr[reg].s32) TRACE_REGISTER (cpu, "GR[%2d] changes from %8x to %8x", reg, aarch64_cpu->gr[reg].s32, val); /* The ARM ARM states that (C1.2.4): When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read and cleared to zero on a write. We simulate this by first clearing the whole 64-bits and then writing to the 32-bit value in the GRegister union. */ aarch64_cpu->gr[reg].s64 = 0; aarch64_cpu->gr[reg].s32 = val; } void aarch64_set_reg_u32 (sim_cpu *cpu, GReg reg, int r31_is_sp, uint32_t val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (reg == R31 && ! r31_is_sp) { TRACE_REGISTER (cpu, "GR[31] NOT CHANGED!"); return; } if (val != aarch64_cpu->gr[reg].u32) TRACE_REGISTER (cpu, "GR[%2d] changes from %8x to %8x", reg, aarch64_cpu->gr[reg].u32, val); aarch64_cpu->gr[reg].u64 = 0; aarch64_cpu->gr[reg].u32 = val; } uint32_t aarch64_get_reg_u16 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].u16; } int32_t aarch64_get_reg_s16 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].s16; } uint32_t aarch64_get_reg_u8 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].u8; } int32_t aarch64_get_reg_s8 (sim_cpu *cpu, GReg reg, int r31_is_sp) { return AARCH64_SIM_CPU (cpu)->gr[reg_num(reg)].s8; } uint64_t aarch64_get_PC (sim_cpu *cpu) { return AARCH64_SIM_CPU (cpu)->pc; } uint64_t aarch64_get_next_PC (sim_cpu *cpu) { return AARCH64_SIM_CPU (cpu)->nextpc; } void aarch64_set_next_PC (sim_cpu *cpu, uint64_t next) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (next != aarch64_cpu->nextpc + 4) TRACE_REGISTER (cpu, "NextPC changes from %16" PRIx64 " to %16" PRIx64, aarch64_cpu->nextpc, next); aarch64_cpu->nextpc = next; } void aarch64_set_next_PC_by_offset (sim_cpu *cpu, int64_t offset) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (aarch64_cpu->pc + offset != aarch64_cpu->nextpc + 4) TRACE_REGISTER (cpu, "NextPC changes from %16" PRIx64 " to %16" PRIx64, aarch64_cpu->nextpc, aarch64_cpu->pc + offset); aarch64_cpu->nextpc = aarch64_cpu->pc + offset; } /* Install nextpc as current pc. */ void aarch64_update_PC (sim_cpu *cpu) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); aarch64_cpu->pc = aarch64_cpu->nextpc; /* Rezero the register we hand out when asked for ZR just in case it was used as the destination for a write by the previous instruction. */ aarch64_cpu->gr[32].u64 = 0UL; } /* This instruction can be used to save the next PC to LR just before installing a branch PC. */ void aarch64_save_LR (sim_cpu *cpu) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (aarch64_cpu->gr[LR].u64 != aarch64_cpu->nextpc) TRACE_REGISTER (cpu, "LR changes from %16" PRIx64 " to %16" PRIx64, aarch64_cpu->gr[LR].u64, aarch64_cpu->nextpc); aarch64_cpu->gr[LR].u64 = aarch64_cpu->nextpc; } static const char * decode_cpsr (FlagMask flags) { switch (flags & CPSR_ALL_FLAGS) { default: case 0: return "----"; case 1: return "---V"; case 2: return "--C-"; case 3: return "--CV"; case 4: return "-Z--"; case 5: return "-Z-V"; case 6: return "-ZC-"; case 7: return "-ZCV"; case 8: return "N---"; case 9: return "N--V"; case 10: return "N-C-"; case 11: return "N-CV"; case 12: return "NZ--"; case 13: return "NZ-V"; case 14: return "NZC-"; case 15: return "NZCV"; } } /* Retrieve the CPSR register as an int. */ uint32_t aarch64_get_CPSR (sim_cpu *cpu) { return AARCH64_SIM_CPU (cpu)->CPSR; } /* Set the CPSR register as an int. */ void aarch64_set_CPSR (sim_cpu *cpu, uint32_t new_flags) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (TRACE_REGISTER_P (cpu)) { if (aarch64_cpu->CPSR != new_flags) TRACE_REGISTER (cpu, "CPSR changes from %s to %s", decode_cpsr (aarch64_cpu->CPSR), decode_cpsr (new_flags)); else TRACE_REGISTER (cpu, "CPSR stays at %s", decode_cpsr (aarch64_cpu->CPSR)); } aarch64_cpu->CPSR = new_flags & CPSR_ALL_FLAGS; } /* Read a specific subset of the CPSR as a bit pattern. */ uint32_t aarch64_get_CPSR_bits (sim_cpu *cpu, FlagMask mask) { return AARCH64_SIM_CPU (cpu)->CPSR & mask; } /* Assign a specific subset of the CPSR as a bit pattern. */ void aarch64_set_CPSR_bits (sim_cpu *cpu, uint32_t mask, uint32_t value) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); uint32_t old_flags = aarch64_cpu->CPSR; mask &= CPSR_ALL_FLAGS; aarch64_cpu->CPSR &= ~ mask; aarch64_cpu->CPSR |= (value & mask); if (old_flags != aarch64_cpu->CPSR) TRACE_REGISTER (cpu, "CPSR changes from %s to %s", decode_cpsr (old_flags), decode_cpsr (aarch64_cpu->CPSR)); } /* Test the value of a single CPSR returned as non-zero or zero. */ uint32_t aarch64_test_CPSR_bit (sim_cpu *cpu, FlagMask bit) { return AARCH64_SIM_CPU (cpu)->CPSR & bit; } /* Set a single flag in the CPSR. */ void aarch64_set_CPSR_bit (sim_cpu *cpu, FlagMask bit) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); uint32_t old_flags = aarch64_cpu->CPSR; aarch64_cpu->CPSR |= (bit & CPSR_ALL_FLAGS); if (old_flags != aarch64_cpu->CPSR) TRACE_REGISTER (cpu, "CPSR changes from %s to %s", decode_cpsr (old_flags), decode_cpsr (aarch64_cpu->CPSR)); } /* Clear a single flag in the CPSR. */ void aarch64_clear_CPSR_bit (sim_cpu *cpu, FlagMask bit) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); uint32_t old_flags = aarch64_cpu->CPSR; aarch64_cpu->CPSR &= ~(bit & CPSR_ALL_FLAGS); if (old_flags != aarch64_cpu->CPSR) TRACE_REGISTER (cpu, "CPSR changes from %s to %s", decode_cpsr (old_flags), decode_cpsr (aarch64_cpu->CPSR)); } float aarch64_get_FP_half (sim_cpu *cpu, VReg reg) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); union { uint16_t h[2]; float f; } u; u.h[0] = 0; u.h[1] = aarch64_cpu->fr[reg].h[0]; return u.f; } float aarch64_get_FP_float (sim_cpu *cpu, VReg reg) { return AARCH64_SIM_CPU (cpu)->fr[reg].s; } double aarch64_get_FP_double (sim_cpu *cpu, VReg reg) { return AARCH64_SIM_CPU (cpu)->fr[reg].d; } void aarch64_get_FP_long_double (sim_cpu *cpu, VReg reg, FRegister *a) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); a->v[0] = aarch64_cpu->fr[reg].v[0]; a->v[1] = aarch64_cpu->fr[reg].v[1]; } void aarch64_set_FP_half (sim_cpu *cpu, VReg reg, float val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); union { uint16_t h[2]; float f; } u; u.f = val; aarch64_cpu->fr[reg].h[0] = u.h[1]; aarch64_cpu->fr[reg].h[1] = 0; } void aarch64_set_FP_float (sim_cpu *cpu, VReg reg, float val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (val != aarch64_cpu->fr[reg].s /* Handle +/- zero. */ || signbit (val) != signbit (aarch64_cpu->fr[reg].s)) { FRegister v; v.s = val; TRACE_REGISTER (cpu, "FR[%d].s changes from %f to %f [hex: %0" PRIx64 "]", reg, aarch64_cpu->fr[reg].s, val, v.v[0]); } aarch64_cpu->fr[reg].s = val; } void aarch64_set_FP_double (sim_cpu *cpu, VReg reg, double val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (val != aarch64_cpu->fr[reg].d /* Handle +/- zero. */ || signbit (val) != signbit (aarch64_cpu->fr[reg].d)) { FRegister v; v.d = val; TRACE_REGISTER (cpu, "FR[%d].d changes from %f to %f [hex: %0" PRIx64 "]", reg, aarch64_cpu->fr[reg].d, val, v.v[0]); } aarch64_cpu->fr[reg].d = val; } void aarch64_set_FP_long_double (sim_cpu *cpu, VReg reg, FRegister a) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (aarch64_cpu->fr[reg].v[0] != a.v[0] || aarch64_cpu->fr[reg].v[1] != a.v[1]) TRACE_REGISTER (cpu, "FR[%d].q changes from [%0" PRIx64 " %0" PRIx64 "] to [%0" PRIx64 " %0" PRIx64 "] ", reg, aarch64_cpu->fr[reg].v[0], aarch64_cpu->fr[reg].v[1], a.v[0], a.v[1]); aarch64_cpu->fr[reg].v[0] = a.v[0]; aarch64_cpu->fr[reg].v[1] = a.v[1]; } #define GET_VEC_ELEMENT(REG, ELEMENT, FIELD) \ do \ { \ struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); \ \ if (ELEMENT >= ARRAY_SIZE (aarch64_cpu->fr[0].FIELD)) \ { \ TRACE_REGISTER (cpu, \ "Internal SIM error: invalid element number: %d ",\ ELEMENT); \ sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), \ sim_stopped, SIM_SIGBUS); \ } \ return aarch64_cpu->fr[REG].FIELD [ELEMENT]; \ } \ while (0) uint64_t aarch64_get_vec_u64 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, v); } uint32_t aarch64_get_vec_u32 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, w); } uint16_t aarch64_get_vec_u16 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, h); } uint8_t aarch64_get_vec_u8 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, b); } int64_t aarch64_get_vec_s64 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, V); } int32_t aarch64_get_vec_s32 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, W); } int16_t aarch64_get_vec_s16 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, H); } int8_t aarch64_get_vec_s8 (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, B); } float aarch64_get_vec_float (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, S); } double aarch64_get_vec_double (sim_cpu *cpu, VReg reg, unsigned element) { GET_VEC_ELEMENT (reg, element, D); } #define SET_VEC_ELEMENT(REG, ELEMENT, VAL, FIELD, PRINTER) \ do \ { \ struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); \ \ if (ELEMENT >= ARRAY_SIZE (aarch64_cpu->fr[0].FIELD)) \ { \ TRACE_REGISTER (cpu, \ "Internal SIM error: invalid element number: %d ",\ ELEMENT); \ sim_engine_halt (CPU_STATE (cpu), cpu, NULL, aarch64_get_PC (cpu), \ sim_stopped, SIM_SIGBUS); \ } \ if (VAL != aarch64_cpu->fr[REG].FIELD [ELEMENT]) \ TRACE_REGISTER (cpu, \ "VR[%2d]." #FIELD " [%d] changes from " PRINTER \ " to " PRINTER , REG, \ ELEMENT, aarch64_cpu->fr[REG].FIELD [ELEMENT], VAL); \ \ aarch64_cpu->fr[REG].FIELD [ELEMENT] = VAL; \ } \ while (0) void aarch64_set_vec_u64 (sim_cpu *cpu, VReg reg, unsigned element, uint64_t val) { SET_VEC_ELEMENT (reg, element, val, v, "%16" PRIx64); } void aarch64_set_vec_u32 (sim_cpu *cpu, VReg reg, unsigned element, uint32_t val) { SET_VEC_ELEMENT (reg, element, val, w, "%8x"); } void aarch64_set_vec_u16 (sim_cpu *cpu, VReg reg, unsigned element, uint16_t val) { SET_VEC_ELEMENT (reg, element, val, h, "%4x"); } void aarch64_set_vec_u8 (sim_cpu *cpu, VReg reg, unsigned element, uint8_t val) { SET_VEC_ELEMENT (reg, element, val, b, "%x"); } void aarch64_set_vec_s64 (sim_cpu *cpu, VReg reg, unsigned element, int64_t val) { SET_VEC_ELEMENT (reg, element, val, V, "%16" PRIx64); } void aarch64_set_vec_s32 (sim_cpu *cpu, VReg reg, unsigned element, int32_t val) { SET_VEC_ELEMENT (reg, element, val, W, "%8x"); } void aarch64_set_vec_s16 (sim_cpu *cpu, VReg reg, unsigned element, int16_t val) { SET_VEC_ELEMENT (reg, element, val, H, "%4x"); } void aarch64_set_vec_s8 (sim_cpu *cpu, VReg reg, unsigned element, int8_t val) { SET_VEC_ELEMENT (reg, element, val, B, "%x"); } void aarch64_set_vec_float (sim_cpu *cpu, VReg reg, unsigned element, float val) { SET_VEC_ELEMENT (reg, element, val, S, "%f"); } void aarch64_set_vec_double (sim_cpu *cpu, VReg reg, unsigned element, double val) { SET_VEC_ELEMENT (reg, element, val, D, "%f"); } void aarch64_set_FPSR (sim_cpu *cpu, uint32_t value) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (aarch64_cpu->FPSR != value) TRACE_REGISTER (cpu, "FPSR changes from %x to %x", aarch64_cpu->FPSR, value); aarch64_cpu->FPSR = value & FPSR_ALL_FPSRS; } uint32_t aarch64_get_FPSR (sim_cpu *cpu) { return AARCH64_SIM_CPU (cpu)->FPSR; } void aarch64_set_FPSR_bits (sim_cpu *cpu, uint32_t mask, uint32_t value) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); uint32_t old_FPSR = aarch64_cpu->FPSR; mask &= FPSR_ALL_FPSRS; aarch64_cpu->FPSR &= ~mask; aarch64_cpu->FPSR |= (value & mask); if (aarch64_cpu->FPSR != old_FPSR) TRACE_REGISTER (cpu, "FPSR changes from %x to %x", old_FPSR, aarch64_cpu->FPSR); } uint32_t aarch64_get_FPSR_bits (sim_cpu *cpu, uint32_t mask) { mask &= FPSR_ALL_FPSRS; return AARCH64_SIM_CPU (cpu)->FPSR & mask; } int aarch64_test_FPSR_bit (sim_cpu *cpu, FPSRMask flag) { return AARCH64_SIM_CPU (cpu)->FPSR & flag; } uint64_t aarch64_get_thread_id (sim_cpu *cpu) { return AARCH64_SIM_CPU (cpu)->tpidr; } uint32_t aarch64_get_FPCR (sim_cpu *cpu) { return AARCH64_SIM_CPU (cpu)->FPCR; } void aarch64_set_FPCR (sim_cpu *cpu, uint32_t val) { struct aarch64_sim_cpu *aarch64_cpu = AARCH64_SIM_CPU (cpu); if (aarch64_cpu->FPCR != val) TRACE_REGISTER (cpu, "FPCR changes from %x to %x", aarch64_cpu->FPCR, val); aarch64_cpu->FPCR = val; }