/* Utilities to execute a program in a subprocess (possibly linked by pipes with other subprocesses), and wait for it. Generic Unix version (also used for UWIN and VMS). Copyright (C) 1996-2024 Free Software Foundation, Inc. This file is part of the libiberty library. Libiberty is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Libiberty is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with libiberty; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "config.h" #include "libiberty.h" #include "pex-common.h" #include "environ.h" #include <stdio.h> #include <signal.h> #include <errno.h> #ifdef NEED_DECLARATION_ERRNO extern int errno; #endif #ifdef HAVE_STDLIB_H #include <stdlib.h> #endif #ifdef HAVE_STRING_H #include <string.h> #endif #ifdef HAVE_UNISTD_H #include <unistd.h> #endif #include <sys/types.h> #ifdef HAVE_FCNTL_H #include <fcntl.h> #endif #ifdef HAVE_SYS_WAIT_H #include <sys/wait.h> #endif #ifdef HAVE_GETRUSAGE #include <sys/time.h> #include <sys/resource.h> #endif #ifdef HAVE_SYS_STAT_H #include <sys/stat.h> #endif #ifdef HAVE_PROCESS_H #include <process.h> #endif #ifdef HAVE_SPAWN_H #include <spawn.h> #endif #ifdef vfork /* Autoconf may define this to fork for us. */ # define VFORK_STRING "fork" #else # define VFORK_STRING "vfork" #endif #ifdef HAVE_VFORK_H #include <vfork.h> #endif #if defined(VMS) && defined (__LONG_POINTERS) #ifndef __CHAR_PTR32 typedef char * __char_ptr32 __attribute__ ((mode (SI))); #endif typedef __char_ptr32 *__char_ptr_char_ptr32 __attribute__ ((mode (SI))); /* Return a 32 bit pointer to an array of 32 bit pointers given a 64 bit pointer to an array of 64 bit pointers. */ static __char_ptr_char_ptr32 to_ptr32 (char **ptr64) { int argc; __char_ptr_char_ptr32 short_argv; /* Count number of arguments. */ for (argc = 0; ptr64[argc] != NULL; argc++) ; /* Reallocate argv with 32 bit pointers. */ short_argv = (__char_ptr_char_ptr32) decc$malloc (sizeof (__char_ptr32) * (argc + 1)); for (argc = 0; ptr64[argc] != NULL; argc++) short_argv[argc] = (__char_ptr32) decc$strdup (ptr64[argc]); short_argv[argc] = (__char_ptr32) 0; return short_argv; } #else #define to_ptr32(argv) argv #endif /* File mode to use for private and world-readable files. */ #if defined (S_IRUSR) && defined (S_IWUSR) && defined (S_IRGRP) && defined (S_IWGRP) && defined (S_IROTH) && defined (S_IWOTH) #define PUBLIC_MODE \ (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH) #else #define PUBLIC_MODE 0666 #endif /* Get the exit status of a particular process, and optionally get the time that it took. This is simple if we have wait4, slightly harder if we have waitpid, and is a pain if we only have wait. */ static pid_t pex_wait (struct pex_obj *, pid_t, int *, struct pex_time *); #ifdef HAVE_WAIT4 static pid_t pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status, struct pex_time *time) { pid_t ret; struct rusage r; #ifdef HAVE_WAITPID if (time == NULL) return waitpid (pid, status, 0); #endif ret = wait4 (pid, status, 0, &r); if (time != NULL) { time->user_seconds = r.ru_utime.tv_sec; time->user_microseconds= r.ru_utime.tv_usec; time->system_seconds = r.ru_stime.tv_sec; time->system_microseconds= r.ru_stime.tv_usec; } return ret; } #else /* ! defined (HAVE_WAIT4) */ #ifdef HAVE_WAITPID #ifndef HAVE_GETRUSAGE static pid_t pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status, struct pex_time *time) { if (time != NULL) memset (time, 0, sizeof (struct pex_time)); return waitpid (pid, status, 0); } #else /* defined (HAVE_GETRUSAGE) */ static pid_t pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status, struct pex_time *time) { struct rusage r1, r2; pid_t ret; if (time == NULL) return waitpid (pid, status, 0); getrusage (RUSAGE_CHILDREN, &r1); ret = waitpid (pid, status, 0); if (ret < 0) return ret; getrusage (RUSAGE_CHILDREN, &r2); time->user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec; time->user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec; if (r2.ru_utime.tv_usec < r1.ru_utime.tv_usec) { --time->user_seconds; time->user_microseconds += 1000000; } time->system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec; time->system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec; if (r2.ru_stime.tv_usec < r1.ru_stime.tv_usec) { --time->system_seconds; time->system_microseconds += 1000000; } return ret; } #endif /* defined (HAVE_GETRUSAGE) */ #else /* ! defined (HAVE_WAITPID) */ struct status_list { struct status_list *next; pid_t pid; int status; struct pex_time time; }; static pid_t pex_wait (struct pex_obj *obj, pid_t pid, int *status, struct pex_time *time) { struct status_list **pp; for (pp = (struct status_list **) &obj->sysdep; *pp != NULL; pp = &(*pp)->next) { if ((*pp)->pid == pid) { struct status_list *p; p = *pp; *status = p->status; if (time != NULL) *time = p->time; *pp = p->next; free (p); return pid; } } while (1) { pid_t cpid; struct status_list *psl; struct pex_time pt; #ifdef HAVE_GETRUSAGE struct rusage r1, r2; #endif if (time != NULL) { #ifdef HAVE_GETRUSAGE getrusage (RUSAGE_CHILDREN, &r1); #else memset (&pt, 0, sizeof (struct pex_time)); #endif } cpid = wait (status); #ifdef HAVE_GETRUSAGE if (time != NULL && cpid >= 0) { getrusage (RUSAGE_CHILDREN, &r2); pt.user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec; pt.user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec; if (pt.user_microseconds < 0) { --pt.user_seconds; pt.user_microseconds += 1000000; } pt.system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec; pt.system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec; if (pt.system_microseconds < 0) { --pt.system_seconds; pt.system_microseconds += 1000000; } } #endif if (cpid < 0 || cpid == pid) { if (time != NULL) *time = pt; return cpid; } psl = XNEW (struct status_list); psl->pid = cpid; psl->status = *status; if (time != NULL) psl->time = pt; psl->next = (struct status_list *) obj->sysdep; obj->sysdep = (void *) psl; } } #endif /* ! defined (HAVE_WAITPID) */ #endif /* ! defined (HAVE_WAIT4) */ static int pex_unix_open_read (struct pex_obj *, const char *, int); static int pex_unix_open_write (struct pex_obj *, const char *, int, int); static pid_t pex_unix_exec_child (struct pex_obj *, int, const char *, char * const *, char * const *, int, int, int, int, const char **, int *); static int pex_unix_close (struct pex_obj *, int); static pid_t pex_unix_wait (struct pex_obj *, pid_t, int *, struct pex_time *, int, const char **, int *); static int pex_unix_pipe (struct pex_obj *, int *, int); static FILE *pex_unix_fdopenr (struct pex_obj *, int, int); static FILE *pex_unix_fdopenw (struct pex_obj *, int, int); static void pex_unix_cleanup (struct pex_obj *); /* The list of functions we pass to the common routines. */ const struct pex_funcs funcs = { pex_unix_open_read, pex_unix_open_write, pex_unix_exec_child, pex_unix_close, pex_unix_wait, pex_unix_pipe, pex_unix_fdopenr, pex_unix_fdopenw, pex_unix_cleanup }; /* Return a newly initialized pex_obj structure. */ struct pex_obj * pex_init (int flags, const char *pname, const char *tempbase) { return pex_init_common (flags, pname, tempbase, &funcs); } /* Open a file for reading. */ static int pex_unix_open_read (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name, int binary ATTRIBUTE_UNUSED) { return open (name, O_RDONLY); } /* Open a file for writing. */ static int pex_unix_open_write (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name, int binary ATTRIBUTE_UNUSED, int append) { /* Note that we can't use O_EXCL here because gcc may have already created the temporary file via make_temp_file. */ return open (name, O_WRONLY | O_CREAT | (append ? O_APPEND : O_TRUNC), PUBLIC_MODE); } /* Close a file. */ static int pex_unix_close (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd) { return close (fd); } /* Execute a child. */ #if defined(HAVE_SPAWNVE) && defined(HAVE_SPAWNVPE) /* Implementation of pex->exec_child using the Cygwin spawn operation. */ /* Subroutine of pex_unix_exec_child. Move OLD_FD to a new file descriptor to be stored in *PNEW_FD, save the flags in *PFLAGS, and arrange for the saved copy to be close-on-exec. Move CHILD_FD into OLD_FD. If CHILD_FD is -1, OLD_FD is to be closed. Return -1 on error. */ static int save_and_install_fd(int *pnew_fd, int *pflags, int old_fd, int child_fd) { int new_fd, flags; flags = fcntl (old_fd, F_GETFD); /* If we could not retrieve the flags, then OLD_FD was not open. */ if (flags < 0) { new_fd = -1, flags = 0; if (child_fd >= 0 && dup2 (child_fd, old_fd) < 0) return -1; } /* If we wish to close OLD_FD, just mark it CLOEXEC. */ else if (child_fd == -1) { new_fd = old_fd; if ((flags & FD_CLOEXEC) == 0 && fcntl (old_fd, F_SETFD, FD_CLOEXEC) < 0) return -1; } /* Otherwise we need to save a copy of OLD_FD before installing CHILD_FD. */ else { #ifdef F_DUPFD_CLOEXEC new_fd = fcntl (old_fd, F_DUPFD_CLOEXEC, 3); if (new_fd < 0) return -1; #else /* Prefer F_DUPFD over dup in order to avoid getting a new fd in the range 0-2, right where a new stderr fd might get put. */ new_fd = fcntl (old_fd, F_DUPFD, 3); if (new_fd < 0) return -1; if (fcntl (new_fd, F_SETFD, FD_CLOEXEC) < 0) return -1; #endif if (dup2 (child_fd, old_fd) < 0) return -1; } *pflags = flags; if (pnew_fd) *pnew_fd = new_fd; else if (new_fd != old_fd) abort (); return 0; } /* Subroutine of pex_unix_exec_child. Move SAVE_FD back to OLD_FD restoring FLAGS. If SAVE_FD < 0, OLD_FD is to be closed. */ static int restore_fd(int old_fd, int save_fd, int flags) { /* For SAVE_FD < 0, all we have to do is restore the "closed-ness" of the original. */ if (save_fd < 0) return close (old_fd); /* For SAVE_FD == OLD_FD, all we have to do is restore the original setting of the CLOEXEC flag. */ if (save_fd == old_fd) { if (flags & FD_CLOEXEC) return 0; return fcntl (old_fd, F_SETFD, flags); } /* Otherwise we have to move the descriptor back, restore the flags, and close the saved copy. */ #ifdef HAVE_DUP3 if (flags == FD_CLOEXEC) { if (dup3 (save_fd, old_fd, O_CLOEXEC) < 0) return -1; } else #endif { if (dup2 (save_fd, old_fd) < 0) return -1; if (flags != 0 && fcntl (old_fd, F_SETFD, flags) < 0) return -1; } return close (save_fd); } static pid_t pex_unix_exec_child (struct pex_obj *obj ATTRIBUTE_UNUSED, int flags, const char *executable, char * const * argv, char * const * env, int in, int out, int errdes, int toclose, const char **errmsg, int *err) { int fl_in = 0, fl_out = 0, fl_err = 0, fl_tc = 0; int save_in = -1, save_out = -1, save_err = -1; int max, retries; pid_t pid; if (flags & PEX_STDERR_TO_STDOUT) errdes = out; /* We need the three standard file descriptors to be set up as for the child before we perform the spawn. The file descriptors for the parent need to be moved and marked for close-on-exec. */ if (in != STDIN_FILE_NO && save_and_install_fd (&save_in, &fl_in, STDIN_FILE_NO, in) < 0) goto error_dup2; if (out != STDOUT_FILE_NO && save_and_install_fd (&save_out, &fl_out, STDOUT_FILE_NO, out) < 0) goto error_dup2; if (errdes != STDERR_FILE_NO && save_and_install_fd (&save_err, &fl_err, STDERR_FILE_NO, errdes) < 0) goto error_dup2; if (toclose >= 0 && save_and_install_fd (NULL, &fl_tc, toclose, -1) < 0) goto error_dup2; /* Now that we've moved the file descriptors for the child into place, close the originals. Be careful not to close any of the standard file descriptors that we just set up. */ max = -1; if (errdes >= 0) max = STDERR_FILE_NO; else if (out >= 0) max = STDOUT_FILE_NO; else if (in >= 0) max = STDIN_FILE_NO; if (in > max) close (in); if (out > max) close (out); if (errdes > max && errdes != out) close (errdes); /* If we were not given an environment, use the global environment. */ if (env == NULL) env = environ; /* Launch the program. If we get EAGAIN (normally out of pid's), try again a few times with increasing backoff times. */ retries = 0; while (1) { typedef const char * const *cc_cp; if (flags & PEX_SEARCH) pid = spawnvpe (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env); else pid = spawnve (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env); if (pid > 0) break; *err = errno; *errmsg = "spawn"; if (errno != EAGAIN || ++retries == 4) return (pid_t) -1; sleep (1 << retries); } /* Success. Restore the parent's file descriptors that we saved above. */ if (toclose >= 0 && restore_fd (toclose, toclose, fl_tc) < 0) goto error_dup2; if (in != STDIN_FILE_NO && restore_fd (STDIN_FILE_NO, save_in, fl_in) < 0) goto error_dup2; if (out != STDOUT_FILE_NO && restore_fd (STDOUT_FILE_NO, save_out, fl_out) < 0) goto error_dup2; if (errdes != STDERR_FILE_NO && restore_fd (STDERR_FILE_NO, save_err, fl_err) < 0) goto error_dup2; return pid; error_dup2: *err = errno; *errmsg = "dup2"; return (pid_t) -1; } #elif defined(HAVE_POSIX_SPAWN) && defined(HAVE_POSIX_SPAWNP) /* Implementation of pex->exec_child using posix_spawn. */ static pid_t pex_unix_exec_child (struct pex_obj *obj ATTRIBUTE_UNUSED, int flags, const char *executable, char * const * argv, char * const * env, int in, int out, int errdes, int toclose, const char **errmsg, int *err) { int ret; pid_t pid = -1; posix_spawnattr_t attr; posix_spawn_file_actions_t actions; int attr_initialized = 0, actions_initialized = 0; *err = 0; ret = posix_spawnattr_init (&attr); if (ret) { *err = ret; *errmsg = "posix_spawnattr_init"; goto exit; } attr_initialized = 1; /* Use vfork() on glibc <=2.24. */ #ifdef POSIX_SPAWN_USEVFORK ret = posix_spawnattr_setflags (&attr, POSIX_SPAWN_USEVFORK); if (ret) { *err = ret; *errmsg = "posix_spawnattr_setflags"; goto exit; } #endif ret = posix_spawn_file_actions_init (&actions); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_init"; goto exit; } actions_initialized = 1; if (in != STDIN_FILE_NO) { ret = posix_spawn_file_actions_adddup2 (&actions, in, STDIN_FILE_NO); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_adddup2"; goto exit; } ret = posix_spawn_file_actions_addclose (&actions, in); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_addclose"; goto exit; } } if (out != STDOUT_FILE_NO) { ret = posix_spawn_file_actions_adddup2 (&actions, out, STDOUT_FILE_NO); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_adddup2"; goto exit; } ret = posix_spawn_file_actions_addclose (&actions, out); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_addclose"; goto exit; } } if (errdes != STDERR_FILE_NO) { ret = posix_spawn_file_actions_adddup2 (&actions, errdes, STDERR_FILE_NO); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_adddup2"; goto exit; } ret = posix_spawn_file_actions_addclose (&actions, errdes); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_addclose"; goto exit; } } if (toclose >= 0) { ret = posix_spawn_file_actions_addclose (&actions, toclose); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_addclose"; goto exit; } } if ((flags & PEX_STDERR_TO_STDOUT) != 0) { ret = posix_spawn_file_actions_adddup2 (&actions, STDOUT_FILE_NO, STDERR_FILE_NO); if (ret) { *err = ret; *errmsg = "posix_spawn_file_actions_adddup2"; goto exit; } } if ((flags & PEX_SEARCH) != 0) { ret = posix_spawnp (&pid, executable, &actions, &attr, argv, env ? env : environ); if (ret) { *err = ret; *errmsg = "posix_spawnp"; goto exit; } } else { ret = posix_spawn (&pid, executable, &actions, &attr, argv, env ? env : environ); if (ret) { *err = ret; *errmsg = "posix_spawn"; goto exit; } } exit: if (actions_initialized) posix_spawn_file_actions_destroy (&actions); if (attr_initialized) posix_spawnattr_destroy (&attr); if (!*err && in != STDIN_FILE_NO) if (close (in)) *errmsg = "close", *err = errno, pid = -1; if (!*err && out != STDOUT_FILE_NO) if (close (out)) *errmsg = "close", *err = errno, pid = -1; if (!*err && errdes != STDERR_FILE_NO) if (close (errdes)) *errmsg = "close", *err = errno, pid = -1; return pid; } #else /* Implementation of pex->exec_child using standard vfork + exec. */ static pid_t pex_unix_exec_child (struct pex_obj *obj, int flags, const char *executable, char * const * argv, char * const * env, int in, int out, int errdes, int toclose, const char **errmsg, int *err) { pid_t pid = -1; /* Tuple to communicate error from child to parent. We can safely transfer string literal pointers as both run with identical address mappings. */ struct fn_err { const char *fn; int err; }; volatile int do_pipe = 0; volatile int pipes[2]; /* [0]:reader,[1]:writer. */ #ifdef O_CLOEXEC do_pipe = 1; #endif if (do_pipe) { #ifdef HAVE_PIPE2 if (pipe2 ((int *)pipes, O_CLOEXEC)) do_pipe = 0; #else if (pipe ((int *)pipes)) do_pipe = 0; else { if (fcntl (pipes[1], F_SETFD, FD_CLOEXEC) == -1) { close (pipes[0]); close (pipes[1]); do_pipe = 0; } } #endif } /* We declare these to be volatile to avoid warnings from gcc about them being clobbered by vfork. */ volatile int sleep_interval = 1; volatile int retries; /* We vfork and then set environ in the child before calling execvp. This clobbers the parent's environ so we need to restore it. It would be nice to use one of the exec* functions that takes an environment as a parameter, but that may have portability issues. It is marked volatile so the child doesn't consider it a dead variable and therefore clobber where ever it is stored. */ char **volatile save_environ = environ; for (retries = 0; retries < 4; ++retries) { pid = vfork (); if (pid >= 0) break; sleep (sleep_interval); sleep_interval *= 2; } switch (pid) { case -1: if (do_pipe) { close (pipes[0]); close (pipes[1]); } *err = errno; *errmsg = VFORK_STRING; return (pid_t) -1; case 0: /* Child process. */ { struct fn_err failed; failed.fn = NULL; if (do_pipe) close (pipes[0]); if (!failed.fn && in != STDIN_FILE_NO) { if (dup2 (in, STDIN_FILE_NO) < 0) failed.fn = "dup2", failed.err = errno; else if (close (in) < 0) failed.fn = "close", failed.err = errno; } if (!failed.fn && out != STDOUT_FILE_NO) { if (dup2 (out, STDOUT_FILE_NO) < 0) failed.fn = "dup2", failed.err = errno; else if (close (out) < 0) failed.fn = "close", failed.err = errno; } if (!failed.fn && errdes != STDERR_FILE_NO) { if (dup2 (errdes, STDERR_FILE_NO) < 0) failed.fn = "dup2", failed.err = errno; else if (close (errdes) < 0) failed.fn = "close", failed.err = errno; } if (!failed.fn && toclose >= 0) { if (close (toclose) < 0) failed.fn = "close", failed.err = errno; } if (!failed.fn && (flags & PEX_STDERR_TO_STDOUT) != 0) { if (dup2 (STDOUT_FILE_NO, STDERR_FILE_NO) < 0) failed.fn = "dup2", failed.err = errno; } if (!failed.fn) { if (env) /* NOTE: In a standard vfork implementation this clobbers the parent's copy of environ "too" (in reality there's only one copy). This is ok as we restore it below. */ environ = (char**) env; if ((flags & PEX_SEARCH) != 0) { execvp (executable, to_ptr32 (argv)); failed.fn = "execvp", failed.err = errno; } else { execv (executable, to_ptr32 (argv)); failed.fn = "execv", failed.err = errno; } } /* Something failed, report an error. We don't use stdio routines, because we might be here due to a vfork call. */ ssize_t retval = 0; if (!do_pipe || write (pipes[1], &failed, sizeof (failed)) != sizeof (failed)) { /* The parent will not see our scream above, so write to stdout. */ #define writeerr(s) (retval |= write (STDERR_FILE_NO, s, strlen (s))) writeerr (obj->pname); writeerr (": error trying to exec '"); writeerr (executable); writeerr ("': "); writeerr (failed.fn); writeerr (": "); writeerr (xstrerror (failed.err)); writeerr ("\n"); #undef writeerr } /* Exit with -2 if the error output failed, too. */ _exit (retval < 0 ? -2 : -1); } /* NOTREACHED */ return (pid_t) -1; default: /* Parent process. */ { /* Restore environ. Note that the parent either doesn't run until the child execs/exits (standard vfork behaviour), or if it does run then vfork is behaving more like fork. In either case we needn't worry about clobbering the child's copy of environ. */ environ = save_environ; struct fn_err failed; failed.fn = NULL; if (do_pipe) { close (pipes[1]); ssize_t len = read (pipes[0], &failed, sizeof (failed)); if (len < 0) failed.fn = NULL; close (pipes[0]); } if (!failed.fn && in != STDIN_FILE_NO) if (close (in) < 0) failed.fn = "close", failed.err = errno; if (!failed.fn && out != STDOUT_FILE_NO) if (close (out) < 0) failed.fn = "close", failed.err = errno; if (!failed.fn && errdes != STDERR_FILE_NO) if (close (errdes) < 0) failed.fn = "close", failed.err = errno; if (failed.fn) { *err = failed.err; *errmsg = failed.fn; return (pid_t) -1; } } return pid; } } #endif /* SPAWN */ /* Wait for a child process to complete. */ static pid_t pex_unix_wait (struct pex_obj *obj, pid_t pid, int *status, struct pex_time *time, int done, const char **errmsg, int *err) { /* If we are cleaning up when the caller didn't retrieve process status for some reason, encourage the process to go away. */ if (done) kill (pid, SIGTERM); if (pex_wait (obj, pid, status, time) < 0) { *err = errno; *errmsg = "wait"; return -1; } return 0; } /* Create a pipe. */ static int pex_unix_pipe (struct pex_obj *obj ATTRIBUTE_UNUSED, int *p, int binary ATTRIBUTE_UNUSED) { return pipe (p); } /* Get a FILE pointer to read from a file descriptor. */ static FILE * pex_unix_fdopenr (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd, int binary ATTRIBUTE_UNUSED) { return fdopen (fd, "r"); } static FILE * pex_unix_fdopenw (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd, int binary ATTRIBUTE_UNUSED) { if (fcntl (fd, F_SETFD, FD_CLOEXEC) < 0) return NULL; return fdopen (fd, "w"); } static void pex_unix_cleanup (struct pex_obj *obj ATTRIBUTE_UNUSED) { #if !defined (HAVE_WAIT4) && !defined (HAVE_WAITPID) while (obj->sysdep != NULL) { struct status_list *this; struct status_list *next; this = (struct status_list *) obj->sysdep; next = this->next; free (this); obj->sysdep = (void *) next; } #endif }