/* Linker command language support. Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of the GNU Binutils. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "libiberty.h" #include "safe-ctype.h" #include "obstack.h" #include "bfdlink.h" #include "ld.h" #include "ldmain.h" #include "ldexp.h" #include "ldlang.h" #include #include "ldlex.h" #include "ldmisc.h" #include "ldctor.h" #include "ldfile.h" #include "ldemul.h" #include "fnmatch.h" #include "demangle.h" #include "hashtab.h" #ifndef offsetof #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER)) #endif /* Locals variables. */ static struct obstack stat_obstack; static struct obstack map_obstack; #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free static const char *startup_file; static const char *entry_symbol_default = "start"; static bfd_boolean placed_commons = FALSE; static bfd_boolean stripped_excluded_sections = FALSE; static lang_output_section_statement_type *default_common_section; static bfd_boolean map_option_f; static bfd_vma print_dot; static lang_input_statement_type *first_file; static const char *current_target; static lang_statement_list_type statement_list; static struct bfd_hash_table lang_definedness_table; static lang_statement_list_type *stat_save[10]; static lang_statement_list_type **stat_save_ptr = &stat_save[0]; /* Forward declarations. */ static void exp_init_os (etree_type *); static void init_map_userdata (bfd *, asection *, void *); static lang_input_statement_type *lookup_name (const char *); static struct bfd_hash_entry *lang_definedness_newfunc (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); static void insert_undefined (const char *); static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *); static void print_statement (lang_statement_union_type *, lang_output_section_statement_type *); static void print_statement_list (lang_statement_union_type *, lang_output_section_statement_type *); static void print_statements (void); static void print_input_section (asection *, bfd_boolean); static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *); static void lang_record_phdrs (void); static void lang_do_version_exports_section (void); static void lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *); /* Exported variables. */ const char *output_target; lang_output_section_statement_type *abs_output_section; lang_statement_list_type lang_output_section_statement; lang_statement_list_type *stat_ptr = &statement_list; lang_statement_list_type file_chain = { NULL, NULL }; lang_statement_list_type input_file_chain; struct bfd_sym_chain entry_symbol = { NULL, NULL }; const char *entry_section = ".text"; bfd_boolean entry_from_cmdline; bfd_boolean lang_has_input_file = FALSE; bfd_boolean had_output_filename = FALSE; bfd_boolean lang_float_flag = FALSE; bfd_boolean delete_output_file_on_failure = FALSE; struct lang_phdr *lang_phdr_list; struct lang_nocrossrefs *nocrossref_list; static struct unique_sections *unique_section_list; static bfd_boolean ldlang_sysrooted_script = FALSE; /* Functions that traverse the linker script and might evaluate DEFINED() need to increment this. */ int lang_statement_iteration = 0; etree_type *base; /* Relocation base - or null */ /* Return TRUE if the PATTERN argument is a wildcard pattern. Although backslashes are treated specially if a pattern contains wildcards, we do not consider the mere presence of a backslash to be enough to cause the pattern to be treated as a wildcard. That lets us handle DOS filenames more naturally. */ #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL) #define new_stat(x, y) \ (x##_type *) new_statement (x##_enum, sizeof (x##_type), y) #define outside_section_address(q) \ ((q)->output_offset + (q)->output_section->vma) #define outside_symbol_address(q) \ ((q)->value + outside_section_address (q->section)) #define SECTION_NAME_MAP_LENGTH (16) void * stat_alloc (size_t size) { return obstack_alloc (&stat_obstack, size); } static int name_match (const char *pattern, const char *name) { if (wildcardp (pattern)) return fnmatch (pattern, name, 0); return strcmp (pattern, name); } /* If PATTERN is of the form archive:file, return a pointer to the separator. If not, return NULL. */ static char * archive_path (const char *pattern) { char *p = NULL; if (link_info.path_separator == 0) return p; p = strchr (pattern, link_info.path_separator); #ifdef HAVE_DOS_BASED_FILE_SYSTEM if (p == NULL || link_info.path_separator != ':') return p; /* Assume a match on the second char is part of drive specifier, as in "c:\silly.dos". */ if (p == pattern + 1 && ISALPHA (*pattern)) p = strchr (p + 1, link_info.path_separator); #endif return p; } /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path, return whether F matches FILE_SPEC. */ static bfd_boolean input_statement_is_archive_path (const char *file_spec, char *sep, lang_input_statement_type *f) { bfd_boolean match = FALSE; if ((*(sep + 1) == 0 || name_match (sep + 1, f->filename) == 0) && ((sep != file_spec) == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL))) { match = TRUE; if (sep != file_spec) { const char *aname = f->the_bfd->my_archive->filename; *sep = 0; match = name_match (file_spec, aname) == 0; *sep = link_info.path_separator; } } return match; } static bfd_boolean unique_section_p (const asection *sec) { struct unique_sections *unam; const char *secnam; if (link_info.relocatable && sec->owner != NULL && bfd_is_group_section (sec->owner, sec)) return TRUE; secnam = sec->name; for (unam = unique_section_list; unam; unam = unam->next) if (name_match (unam->name, secnam) == 0) return TRUE; return FALSE; } /* Generic traversal routines for finding matching sections. */ /* Try processing a section against a wildcard. This just calls the callback unless the filename exclusion list is present and excludes the file. It's hardly ever present so this function is very fast. */ static void walk_wild_consider_section (lang_wild_statement_type *ptr, lang_input_statement_type *file, asection *s, struct wildcard_list *sec, callback_t callback, void *data) { struct name_list *list_tmp; /* Don't process sections from files which were excluded. */ for (list_tmp = sec->spec.exclude_name_list; list_tmp; list_tmp = list_tmp->next) { char *p = archive_path (list_tmp->name); if (p != NULL) { if (input_statement_is_archive_path (list_tmp->name, p, file)) return; } else if (name_match (list_tmp->name, file->filename) == 0) return; /* FIXME: Perhaps remove the following at some stage? Matching unadorned archives like this was never documented and has been superceded by the archive:path syntax. */ else if (file->the_bfd != NULL && file->the_bfd->my_archive != NULL && name_match (list_tmp->name, file->the_bfd->my_archive->filename) == 0) return; } (*callback) (ptr, sec, s, file, data); } /* Lowest common denominator routine that can handle everything correctly, but slowly. */ static void walk_wild_section_general (lang_wild_statement_type *ptr, lang_input_statement_type *file, callback_t callback, void *data) { asection *s; struct wildcard_list *sec; for (s = file->the_bfd->sections; s != NULL; s = s->next) { sec = ptr->section_list; if (sec == NULL) (*callback) (ptr, sec, s, file, data); while (sec != NULL) { bfd_boolean skip = FALSE; if (sec->spec.name != NULL) { const char *sname = bfd_get_section_name (file->the_bfd, s); skip = name_match (sec->spec.name, sname) != 0; } if (!skip) walk_wild_consider_section (ptr, file, s, sec, callback, data); sec = sec->next; } } } /* Routines to find a single section given its name. If there's more than one section with that name, we report that. */ typedef struct { asection *found_section; bfd_boolean multiple_sections_found; } section_iterator_callback_data; static bfd_boolean section_iterator_callback (bfd *bfd ATTRIBUTE_UNUSED, asection *s, void *data) { section_iterator_callback_data *d = (section_iterator_callback_data *) data; if (d->found_section != NULL) { d->multiple_sections_found = TRUE; return TRUE; } d->found_section = s; return FALSE; } static asection * find_section (lang_input_statement_type *file, struct wildcard_list *sec, bfd_boolean *multiple_sections_found) { section_iterator_callback_data cb_data = { NULL, FALSE }; bfd_get_section_by_name_if (file->the_bfd, sec->spec.name, section_iterator_callback, &cb_data); *multiple_sections_found = cb_data.multiple_sections_found; return cb_data.found_section; } /* Code for handling simple wildcards without going through fnmatch, which can be expensive because of charset translations etc. */ /* A simple wild is a literal string followed by a single '*', where the literal part is at least 4 characters long. */ static bfd_boolean is_simple_wild (const char *name) { size_t len = strcspn (name, "*?["); return len >= 4 && name[len] == '*' && name[len + 1] == '\0'; } static bfd_boolean match_simple_wild (const char *pattern, const char *name) { /* The first four characters of the pattern are guaranteed valid non-wildcard characters. So we can go faster. */ if (pattern[0] != name[0] || pattern[1] != name[1] || pattern[2] != name[2] || pattern[3] != name[3]) return FALSE; pattern += 4; name += 4; while (*pattern != '*') if (*name++ != *pattern++) return FALSE; return TRUE; } /* Compare sections ASEC and BSEC according to SORT. */ static int compare_section (sort_type sort, asection *asec, asection *bsec) { int ret; switch (sort) { default: abort (); case by_alignment_name: ret = (bfd_section_alignment (bsec->owner, bsec) - bfd_section_alignment (asec->owner, asec)); if (ret) break; /* Fall through. */ case by_name: ret = strcmp (bfd_get_section_name (asec->owner, asec), bfd_get_section_name (bsec->owner, bsec)); break; case by_name_alignment: ret = strcmp (bfd_get_section_name (asec->owner, asec), bfd_get_section_name (bsec->owner, bsec)); if (ret) break; /* Fall through. */ case by_alignment: ret = (bfd_section_alignment (bsec->owner, bsec) - bfd_section_alignment (asec->owner, asec)); break; } return ret; } /* Build a Binary Search Tree to sort sections, unlike insertion sort used in wild_sort(). BST is considerably faster if the number of of sections are large. */ static lang_section_bst_type ** wild_sort_fast (lang_wild_statement_type *wild, struct wildcard_list *sec, lang_input_statement_type *file ATTRIBUTE_UNUSED, asection *section) { lang_section_bst_type **tree; tree = &wild->tree; if (!wild->filenames_sorted && (sec == NULL || sec->spec.sorted == none)) { /* Append at the right end of tree. */ while (*tree) tree = &((*tree)->right); return tree; } while (*tree) { /* Find the correct node to append this section. */ if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0) tree = &((*tree)->left); else tree = &((*tree)->right); } return tree; } /* Use wild_sort_fast to build a BST to sort sections. */ static void output_section_callback_fast (lang_wild_statement_type *ptr, struct wildcard_list *sec, asection *section, lang_input_statement_type *file, void *output ATTRIBUTE_UNUSED) { lang_section_bst_type *node; lang_section_bst_type **tree; if (unique_section_p (section)) return; node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type)); node->left = 0; node->right = 0; node->section = section; tree = wild_sort_fast (ptr, sec, file, section); if (tree != NULL) *tree = node; } /* Convert a sorted sections' BST back to list form. */ static void output_section_callback_tree_to_list (lang_wild_statement_type *ptr, lang_section_bst_type *tree, void *output) { if (tree->left) output_section_callback_tree_to_list (ptr, tree->left, output); lang_add_section (&ptr->children, tree->section, (lang_output_section_statement_type *) output); if (tree->right) output_section_callback_tree_to_list (ptr, tree->right, output); free (tree); } /* Specialized, optimized routines for handling different kinds of wildcards */ static void walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr, lang_input_statement_type *file, callback_t callback, void *data) { /* We can just do a hash lookup for the section with the right name. But if that lookup discovers more than one section with the name (should be rare), we fall back to the general algorithm because we would otherwise have to sort the sections to make sure they get processed in the bfd's order. */ bfd_boolean multiple_sections_found; struct wildcard_list *sec0 = ptr->handler_data[0]; asection *s0 = find_section (file, sec0, &multiple_sections_found); if (multiple_sections_found) walk_wild_section_general (ptr, file, callback, data); else if (s0) walk_wild_consider_section (ptr, file, s0, sec0, callback, data); } static void walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr, lang_input_statement_type *file, callback_t callback, void *data) { asection *s; struct wildcard_list *wildsec0 = ptr->handler_data[0]; for (s = file->the_bfd->sections; s != NULL; s = s->next) { const char *sname = bfd_get_section_name (file->the_bfd, s); bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname); if (!skip) walk_wild_consider_section (ptr, file, s, wildsec0, callback, data); } } static void walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr, lang_input_statement_type *file, callback_t callback, void *data) { asection *s; struct wildcard_list *sec0 = ptr->handler_data[0]; struct wildcard_list *wildsec1 = ptr->handler_data[1]; bfd_boolean multiple_sections_found; asection *s0 = find_section (file, sec0, &multiple_sections_found); if (multiple_sections_found) { walk_wild_section_general (ptr, file, callback, data); return; } /* Note that if the section was not found, s0 is NULL and we'll simply never succeed the s == s0 test below. */ for (s = file->the_bfd->sections; s != NULL; s = s->next) { /* Recall that in this code path, a section cannot satisfy more than one spec, so if s == s0 then it cannot match wildspec1. */ if (s == s0) walk_wild_consider_section (ptr, file, s, sec0, callback, data); else { const char *sname = bfd_get_section_name (file->the_bfd, s); bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname); if (!skip) walk_wild_consider_section (ptr, file, s, wildsec1, callback, data); } } } static void walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr, lang_input_statement_type *file, callback_t callback, void *data) { asection *s; struct wildcard_list *sec0 = ptr->handler_data[0]; struct wildcard_list *wildsec1 = ptr->handler_data[1]; struct wildcard_list *wildsec2 = ptr->handler_data[2]; bfd_boolean multiple_sections_found; asection *s0 = find_section (file, sec0, &multiple_sections_found); if (multiple_sections_found) { walk_wild_section_general (ptr, file, callback, data); return; } for (s = file->the_bfd->sections; s != NULL; s = s->next) { if (s == s0) walk_wild_consider_section (ptr, file, s, sec0, callback, data); else { const char *sname = bfd_get_section_name (file->the_bfd, s); bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname); if (!skip) walk_wild_consider_section (ptr, file, s, wildsec1, callback, data); else { skip = !match_simple_wild (wildsec2->spec.name, sname); if (!skip) walk_wild_consider_section (ptr, file, s, wildsec2, callback, data); } } } } static void walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr, lang_input_statement_type *file, callback_t callback, void *data) { asection *s; struct wildcard_list *sec0 = ptr->handler_data[0]; struct wildcard_list *sec1 = ptr->handler_data[1]; struct wildcard_list *wildsec2 = ptr->handler_data[2]; struct wildcard_list *wildsec3 = ptr->handler_data[3]; bfd_boolean multiple_sections_found; asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1; if (multiple_sections_found) { walk_wild_section_general (ptr, file, callback, data); return; } s1 = find_section (file, sec1, &multiple_sections_found); if (multiple_sections_found) { walk_wild_section_general (ptr, file, callback, data); return; } for (s = file->the_bfd->sections; s != NULL; s = s->next) { if (s == s0) walk_wild_consider_section (ptr, file, s, sec0, callback, data); else if (s == s1) walk_wild_consider_section (ptr, file, s, sec1, callback, data); else { const char *sname = bfd_get_section_name (file->the_bfd, s); bfd_boolean skip = !match_simple_wild (wildsec2->spec.name, sname); if (!skip) walk_wild_consider_section (ptr, file, s, wildsec2, callback, data); else { skip = !match_simple_wild (wildsec3->spec.name, sname); if (!skip) walk_wild_consider_section (ptr, file, s, wildsec3, callback, data); } } } } static void walk_wild_section (lang_wild_statement_type *ptr, lang_input_statement_type *file, callback_t callback, void *data) { if (file->just_syms_flag) return; (*ptr->walk_wild_section_handler) (ptr, file, callback, data); } /* Returns TRUE when name1 is a wildcard spec that might match something name2 can match. We're conservative: we return FALSE only if the prefixes of name1 and name2 are different up to the first wildcard character. */ static bfd_boolean wild_spec_can_overlap (const char *name1, const char *name2) { size_t prefix1_len = strcspn (name1, "?*["); size_t prefix2_len = strcspn (name2, "?*["); size_t min_prefix_len; /* Note that if there is no wildcard character, then we treat the terminating 0 as part of the prefix. Thus ".text" won't match ".text." or ".text.*", for example. */ if (name1[prefix1_len] == '\0') prefix1_len++; if (name2[prefix2_len] == '\0') prefix2_len++; min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len; return memcmp (name1, name2, min_prefix_len) == 0; } /* Select specialized code to handle various kinds of wildcard statements. */ static void analyze_walk_wild_section_handler (lang_wild_statement_type *ptr) { int sec_count = 0; int wild_name_count = 0; struct wildcard_list *sec; int signature; int data_counter; ptr->walk_wild_section_handler = walk_wild_section_general; ptr->handler_data[0] = NULL; ptr->handler_data[1] = NULL; ptr->handler_data[2] = NULL; ptr->handler_data[3] = NULL; ptr->tree = NULL; /* Count how many wildcard_specs there are, and how many of those actually use wildcards in the name. Also, bail out if any of the wildcard names are NULL. (Can this actually happen? walk_wild_section used to test for it.) And bail out if any of the wildcards are more complex than a simple string ending in a single '*'. */ for (sec = ptr->section_list; sec != NULL; sec = sec->next) { ++sec_count; if (sec->spec.name == NULL) return; if (wildcardp (sec->spec.name)) { ++wild_name_count; if (!is_simple_wild (sec->spec.name)) return; } } /* The zero-spec case would be easy to optimize but it doesn't happen in practice. Likewise, more than 4 specs doesn't happen in practice. */ if (sec_count == 0 || sec_count > 4) return; /* Check that no two specs can match the same section. */ for (sec = ptr->section_list; sec != NULL; sec = sec->next) { struct wildcard_list *sec2; for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next) { if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name)) return; } } signature = (sec_count << 8) + wild_name_count; switch (signature) { case 0x0100: ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0; break; case 0x0101: ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1; break; case 0x0201: ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1; break; case 0x0302: ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2; break; case 0x0402: ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2; break; default: return; } /* Now fill the data array with pointers to the specs, first the specs with non-wildcard names, then the specs with wildcard names. It's OK to process the specs in different order from the given order, because we've already determined that no section will match more than one spec. */ data_counter = 0; for (sec = ptr->section_list; sec != NULL; sec = sec->next) if (!wildcardp (sec->spec.name)) ptr->handler_data[data_counter++] = sec; for (sec = ptr->section_list; sec != NULL; sec = sec->next) if (wildcardp (sec->spec.name)) ptr->handler_data[data_counter++] = sec; } /* Handle a wild statement for a single file F. */ static void walk_wild_file (lang_wild_statement_type *s, lang_input_statement_type *f, callback_t callback, void *data) { if (f->the_bfd == NULL || ! bfd_check_format (f->the_bfd, bfd_archive)) walk_wild_section (s, f, callback, data); else { bfd *member; /* This is an archive file. We must map each member of the archive separately. */ member = bfd_openr_next_archived_file (f->the_bfd, NULL); while (member != NULL) { /* When lookup_name is called, it will call the add_symbols entry point for the archive. For each element of the archive which is included, BFD will call ldlang_add_file, which will set the usrdata field of the member to the lang_input_statement. */ if (member->usrdata != NULL) { walk_wild_section (s, (lang_input_statement_type *) member->usrdata, callback, data); } member = bfd_openr_next_archived_file (f->the_bfd, member); } } } static void walk_wild (lang_wild_statement_type *s, callback_t callback, void *data) { const char *file_spec = s->filename; char *p; if (file_spec == NULL) { /* Perform the iteration over all files in the list. */ LANG_FOR_EACH_INPUT_STATEMENT (f) { walk_wild_file (s, f, callback, data); } } else if ((p = archive_path (file_spec)) != NULL) { LANG_FOR_EACH_INPUT_STATEMENT (f) { if (input_statement_is_archive_path (file_spec, p, f)) walk_wild_file (s, f, callback, data); } } else if (wildcardp (file_spec)) { LANG_FOR_EACH_INPUT_STATEMENT (f) { if (fnmatch (file_spec, f->filename, 0) == 0) walk_wild_file (s, f, callback, data); } } else { lang_input_statement_type *f; /* Perform the iteration over a single file. */ f = lookup_name (file_spec); if (f) walk_wild_file (s, f, callback, data); } } /* lang_for_each_statement walks the parse tree and calls the provided function for each node. */ static void lang_for_each_statement_worker (void (*func) (lang_statement_union_type *), lang_statement_union_type *s) { for (; s != NULL; s = s->header.next) { func (s); switch (s->header.type) { case lang_constructors_statement_enum: lang_for_each_statement_worker (func, constructor_list.head); break; case lang_output_section_statement_enum: lang_for_each_statement_worker (func, s->output_section_statement.children.head); break; case lang_wild_statement_enum: lang_for_each_statement_worker (func, s->wild_statement.children.head); break; case lang_group_statement_enum: lang_for_each_statement_worker (func, s->group_statement.children.head); break; case lang_data_statement_enum: case lang_reloc_statement_enum: case lang_object_symbols_statement_enum: case lang_output_statement_enum: case lang_target_statement_enum: case lang_input_section_enum: case lang_input_statement_enum: case lang_assignment_statement_enum: case lang_padding_statement_enum: case lang_address_statement_enum: case lang_fill_statement_enum: case lang_insert_statement_enum: break; default: FAIL (); break; } } } void lang_for_each_statement (void (*func) (lang_statement_union_type *)) { lang_for_each_statement_worker (func, statement_list.head); } /*----------------------------------------------------------------------*/ void lang_list_init (lang_statement_list_type *list) { list->head = NULL; list->tail = &list->head; } void push_stat_ptr (lang_statement_list_type *new_ptr) { if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0])) abort (); *stat_save_ptr++ = stat_ptr; stat_ptr = new_ptr; } void pop_stat_ptr (void) { if (stat_save_ptr <= stat_save) abort (); stat_ptr = *--stat_save_ptr; } /* Build a new statement node for the parse tree. */ static lang_statement_union_type * new_statement (enum statement_enum type, size_t size, lang_statement_list_type *list) { lang_statement_union_type *new_stmt; new_stmt = (lang_statement_union_type *) stat_alloc (size); new_stmt->header.type = type; new_stmt->header.next = NULL; lang_statement_append (list, new_stmt, &new_stmt->header.next); return new_stmt; } /* Build a new input file node for the language. There are several ways in which we treat an input file, eg, we only look at symbols, or prefix it with a -l etc. We can be supplied with requests for input files more than once; they may, for example be split over several lines like foo.o(.text) foo.o(.data) etc, so when asked for a file we check that we haven't got it already so we don't duplicate the bfd. */ static lang_input_statement_type * new_afile (const char *name, lang_input_file_enum_type file_type, const char *target, bfd_boolean add_to_list) { lang_input_statement_type *p; if (add_to_list) p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr); else { p = (lang_input_statement_type *) stat_alloc (sizeof (lang_input_statement_type)); p->header.type = lang_input_statement_enum; p->header.next = NULL; } lang_has_input_file = TRUE; p->target = target; p->sysrooted = FALSE; if (file_type == lang_input_file_is_l_enum && name[0] == ':' && name[1] != '\0') { file_type = lang_input_file_is_search_file_enum; name = name + 1; } switch (file_type) { case lang_input_file_is_symbols_only_enum: p->filename = name; p->is_archive = FALSE; p->real = TRUE; p->local_sym_name = name; p->just_syms_flag = TRUE; p->search_dirs_flag = FALSE; break; case lang_input_file_is_fake_enum: p->filename = name; p->is_archive = FALSE; p->real = FALSE; p->local_sym_name = name; p->just_syms_flag = FALSE; p->search_dirs_flag = FALSE; break; case lang_input_file_is_l_enum: p->is_archive = TRUE; p->filename = name; p->real = TRUE; p->local_sym_name = concat ("-l", name, (const char *) NULL); p->just_syms_flag = FALSE; p->search_dirs_flag = TRUE; break; case lang_input_file_is_marker_enum: p->filename = name; p->is_archive = FALSE; p->real = FALSE; p->local_sym_name = name; p->just_syms_flag = FALSE; p->search_dirs_flag = TRUE; break; case lang_input_file_is_search_file_enum: p->sysrooted = ldlang_sysrooted_script; p->filename = name; p->is_archive = FALSE; p->real = TRUE; p->local_sym_name = name; p->just_syms_flag = FALSE; p->search_dirs_flag = TRUE; break; case lang_input_file_is_file_enum: p->filename = name; p->is_archive = FALSE; p->real = TRUE; p->local_sym_name = name; p->just_syms_flag = FALSE; p->search_dirs_flag = FALSE; break; default: FAIL (); } p->the_bfd = NULL; p->next_real_file = NULL; p->next = NULL; p->dynamic = config.dynamic_link; p->add_needed = add_needed; p->as_needed = as_needed; p->whole_archive = whole_archive; p->loaded = FALSE; lang_statement_append (&input_file_chain, (lang_statement_union_type *) p, &p->next_real_file); return p; } lang_input_statement_type * lang_add_input_file (const char *name, lang_input_file_enum_type file_type, const char *target) { return new_afile (name, file_type, target, TRUE); } struct out_section_hash_entry { struct bfd_hash_entry root; lang_statement_union_type s; }; /* The hash table. */ static struct bfd_hash_table output_section_statement_table; /* Support routines for the hash table used by lang_output_section_find, initialize the table, fill in an entry and remove the table. */ static struct bfd_hash_entry * output_section_statement_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { lang_output_section_statement_type **nextp; struct out_section_hash_entry *ret; if (entry == NULL) { entry = (struct bfd_hash_entry *) bfd_hash_allocate (table, sizeof (*ret)); if (entry == NULL) return entry; } entry = bfd_hash_newfunc (entry, table, string); if (entry == NULL) return entry; ret = (struct out_section_hash_entry *) entry; memset (&ret->s, 0, sizeof (ret->s)); ret->s.header.type = lang_output_section_statement_enum; ret->s.output_section_statement.subsection_alignment = -1; ret->s.output_section_statement.section_alignment = -1; ret->s.output_section_statement.block_value = 1; lang_list_init (&ret->s.output_section_statement.children); lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next); /* For every output section statement added to the list, except the first one, lang_output_section_statement.tail points to the "next" field of the last element of the list. */ if (lang_output_section_statement.head != NULL) ret->s.output_section_statement.prev = ((lang_output_section_statement_type *) ((char *) lang_output_section_statement.tail - offsetof (lang_output_section_statement_type, next))); /* GCC's strict aliasing rules prevent us from just casting the address, so we store the pointer in a variable and cast that instead. */ nextp = &ret->s.output_section_statement.next; lang_statement_append (&lang_output_section_statement, &ret->s, (lang_statement_union_type **) nextp); return &ret->root; } static void output_section_statement_table_init (void) { if (!bfd_hash_table_init_n (&output_section_statement_table, output_section_statement_newfunc, sizeof (struct out_section_hash_entry), 61)) einfo (_("%P%F: can not create hash table: %E\n")); } static void output_section_statement_table_free (void) { bfd_hash_table_free (&output_section_statement_table); } /* Build enough state so that the parser can build its tree. */ void lang_init (void) { obstack_begin (&stat_obstack, 1000); stat_ptr = &statement_list; output_section_statement_table_init (); lang_list_init (stat_ptr); lang_list_init (&input_file_chain); lang_list_init (&lang_output_section_statement); lang_list_init (&file_chain); first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum, NULL); abs_output_section = lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE); abs_output_section->bfd_section = bfd_abs_section_ptr; /* The value "3" is ad-hoc, somewhat related to the expected number of DEFINED expressions in a linker script. For most default linker scripts, there are none. Why a hash table then? Well, it's somewhat simpler to re-use working machinery than using a linked list in terms of code-complexity here in ld, besides the initialization which just looks like other code here. */ if (!bfd_hash_table_init_n (&lang_definedness_table, lang_definedness_newfunc, sizeof (struct lang_definedness_hash_entry), 3)) einfo (_("%P%F: can not create hash table: %E\n")); } void lang_finish (void) { output_section_statement_table_free (); } /*---------------------------------------------------------------------- A region is an area of memory declared with the MEMORY { name:org=exp, len=exp ... } syntax. We maintain a list of all the regions here. If no regions are specified in the script, then the default is used which is created when looked up to be the entire data space. If create is true we are creating a region inside a MEMORY block. In this case it is probably an error to create a region that has already been created. If we are not inside a MEMORY block it is dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION) and so we issue a warning. Each region has at least one name. The first name is either DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add alias names to an existing region within a script with REGION_ALIAS (alias, region_name). Each name corresponds to at most one region. */ static lang_memory_region_type *lang_memory_region_list; static lang_memory_region_type **lang_memory_region_list_tail = &lang_memory_region_list; lang_memory_region_type * lang_memory_region_lookup (const char *const name, bfd_boolean create) { lang_memory_region_name *n; lang_memory_region_type *r; lang_memory_region_type *new_region; /* NAME is NULL for LMA memspecs if no region was specified. */ if (name == NULL) return NULL; for (r = lang_memory_region_list; r != NULL; r = r->next) for (n = &r->name_list; n != NULL; n = n->next) if (strcmp (n->name, name) == 0) { if (create) einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"), name); return r; } if (!create && strcmp (name, DEFAULT_MEMORY_REGION)) einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name); new_region = (lang_memory_region_type *) stat_alloc (sizeof (lang_memory_region_type)); new_region->name_list.name = xstrdup (name); new_region->name_list.next = NULL; new_region->next = NULL; new_region->origin = 0; new_region->length = ~(bfd_size_type) 0; new_region->current = 0; new_region->last_os = NULL; new_region->flags = 0; new_region->not_flags = 0; new_region->had_full_message = FALSE; *lang_memory_region_list_tail = new_region; lang_memory_region_list_tail = &new_region->next; return new_region; } void lang_memory_region_alias (const char * alias, const char * region_name) { lang_memory_region_name * n; lang_memory_region_type * r; lang_memory_region_type * region; /* The default region must be unique. This ensures that it is not necessary to iterate through the name list if someone wants the check if a region is the default memory region. */ if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0) einfo (_("%F%P:%S: error: alias for default memory region\n")); /* Look for the target region and check if the alias is not already in use. */ region = NULL; for (r = lang_memory_region_list; r != NULL; r = r->next) for (n = &r->name_list; n != NULL; n = n->next) { if (region == NULL && strcmp (n->name, region_name) == 0) region = r; if (strcmp (n->name, alias) == 0) einfo (_("%F%P:%S: error: redefinition of memory region " "alias `%s'\n"), alias); } /* Check if the target region exists. */ if (region == NULL) einfo (_("%F%P:%S: error: memory region `%s' " "for alias `%s' does not exist\n"), region_name, alias); /* Add alias to region name list. */ n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name)); n->name = xstrdup (alias); n->next = region->name_list.next; region->name_list.next = n; } static lang_memory_region_type * lang_memory_default (asection * section) { lang_memory_region_type *p; flagword sec_flags = section->flags; /* Override SEC_DATA to mean a writable section. */ if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC) sec_flags |= SEC_DATA; for (p = lang_memory_region_list; p != NULL; p = p->next) { if ((p->flags & sec_flags) != 0 && (p->not_flags & sec_flags) == 0) { return p; } } return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE); } /* Find or create an output_section_statement with the given NAME. If CONSTRAINT is non-zero match one with that constraint, otherwise match any non-negative constraint. If CREATE, always make a new output_section_statement for SPECIAL CONSTRAINT. */ lang_output_section_statement_type * lang_output_section_statement_lookup (const char *name, int constraint, bfd_boolean create) { struct out_section_hash_entry *entry; entry = ((struct out_section_hash_entry *) bfd_hash_lookup (&output_section_statement_table, name, create, FALSE)); if (entry == NULL) { if (create) einfo (_("%P%F: failed creating section `%s': %E\n"), name); return NULL; } if (entry->s.output_section_statement.name != NULL) { /* We have a section of this name, but it might not have the correct constraint. */ struct out_section_hash_entry *last_ent; name = entry->s.output_section_statement.name; if (create && constraint == SPECIAL) /* Not traversing to the end reverses the order of the second and subsequent SPECIAL sections in the hash table chain, but that shouldn't matter. */ last_ent = entry; else do { if (constraint == entry->s.output_section_statement.constraint || (constraint == 0 && entry->s.output_section_statement.constraint >= 0)) return &entry->s.output_section_statement; last_ent = entry; entry = (struct out_section_hash_entry *) entry->root.next; } while (entry != NULL && name == entry->s.output_section_statement.name); if (!create) return NULL; entry = ((struct out_section_hash_entry *) output_section_statement_newfunc (NULL, &output_section_statement_table, name)); if (entry == NULL) { einfo (_("%P%F: failed creating section `%s': %E\n"), name); return NULL; } entry->root = last_ent->root; last_ent->root.next = &entry->root; } entry->s.output_section_statement.name = name; entry->s.output_section_statement.constraint = constraint; return &entry->s.output_section_statement; } /* Find the next output_section_statement with the same name as OS. If CONSTRAINT is non-zero, find one with that constraint otherwise match any non-negative constraint. */ lang_output_section_statement_type * next_matching_output_section_statement (lang_output_section_statement_type *os, int constraint) { /* All output_section_statements are actually part of a struct out_section_hash_entry. */ struct out_section_hash_entry *entry = (struct out_section_hash_entry *) ((char *) os - offsetof (struct out_section_hash_entry, s.output_section_statement)); const char *name = os->name; ASSERT (name == entry->root.string); do { entry = (struct out_section_hash_entry *) entry->root.next; if (entry == NULL || name != entry->s.output_section_statement.name) return NULL; } while (constraint != entry->s.output_section_statement.constraint && (constraint != 0 || entry->s.output_section_statement.constraint < 0)); return &entry->s.output_section_statement; } /* A variant of lang_output_section_find used by place_orphan. Returns the output statement that should precede a new output statement for SEC. If an exact match is found on certain flags, sets *EXACT too. */ lang_output_section_statement_type * lang_output_section_find_by_flags (const asection *sec, lang_output_section_statement_type **exact, lang_match_sec_type_func match_type) { lang_output_section_statement_type *first, *look, *found; flagword flags; /* We know the first statement on this list is *ABS*. May as well skip it. */ first = &lang_output_section_statement.head->output_section_statement; first = first->next; /* First try for an exact match. */ found = NULL; for (look = first; look; look = look->next) { flags = look->flags; if (look->bfd_section != NULL) { flags = look->bfd_section->flags; if (match_type && !match_type (link_info.output_bfd, look->bfd_section, sec->owner, sec)) continue; } flags ^= sec->flags; if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL))) found = look; } if (found != NULL) { if (exact != NULL) *exact = found; return found; } if ((sec->flags & SEC_CODE) != 0 && (sec->flags & SEC_ALLOC) != 0) { /* Try for a rw code section. */ for (look = first; look; look = look->next) { flags = look->flags; if (look->bfd_section != NULL) { flags = look->bfd_section->flags; if (match_type && !match_type (link_info.output_bfd, look->bfd_section, sec->owner, sec)) continue; } flags ^= sec->flags; if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL))) found = look; } } else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0 && (sec->flags & SEC_ALLOC) != 0) { /* .rodata can go after .text, .sdata2 after .rodata. */ for (look = first; look; look = look->next) { flags = look->flags; if (look->bfd_section != NULL) { flags = look->bfd_section->flags; if (match_type && !match_type (link_info.output_bfd, look->bfd_section, sec->owner, sec)) continue; } flags ^= sec->flags; if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY)) && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL))) found = look; } } else if ((sec->flags & SEC_SMALL_DATA) != 0 && (sec->flags & SEC_ALLOC) != 0) { /* .sdata goes after .data, .sbss after .sdata. */ for (look = first; look; look = look->next) { flags = look->flags; if (look->bfd_section != NULL) { flags = look->bfd_section->flags; if (match_type && !match_type (link_info.output_bfd, look->bfd_section, sec->owner, sec)) continue; } flags ^= sec->flags; if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_THREAD_LOCAL)) || ((look->flags & SEC_SMALL_DATA) && !(sec->flags & SEC_HAS_CONTENTS))) found = look; } } else if ((sec->flags & SEC_HAS_CONTENTS) != 0 && (sec->flags & SEC_ALLOC) != 0) { /* .data goes after .rodata. */ for (look = first; look; look = look->next) { flags = look->flags; if (look->bfd_section != NULL) { flags = look->bfd_section->flags; if (match_type && !match_type (link_info.output_bfd, look->bfd_section, sec->owner, sec)) continue; } flags ^= sec->flags; if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_SMALL_DATA | SEC_THREAD_LOCAL))) found = look; } } else if ((sec->flags & SEC_ALLOC) != 0) { /* .bss goes after any other alloc section. */ for (look = first; look; look = look->next) { flags = look->flags; if (look->bfd_section != NULL) { flags = look->bfd_section->flags; if (match_type && !match_type (link_info.output_bfd, look->bfd_section, sec->owner, sec)) continue; } flags ^= sec->flags; if (!(flags & SEC_ALLOC)) found = look; } } else { /* non-alloc go last. */ for (look = first; look; look = look->next) { flags = look->flags; if (look->bfd_section != NULL) flags = look->bfd_section->flags; flags ^= sec->flags; if (!(flags & SEC_DEBUGGING)) found = look; } return found; } if (found || !match_type) return found; return lang_output_section_find_by_flags (sec, NULL, NULL); } /* Find the last output section before given output statement. Used by place_orphan. */ static asection * output_prev_sec_find (lang_output_section_statement_type *os) { lang_output_section_statement_type *lookup; for (lookup = os->prev; lookup != NULL; lookup = lookup->prev) { if (lookup->constraint < 0) continue; if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL) return lookup->bfd_section; } return NULL; } /* Look for a suitable place for a new output section statement. The idea is to skip over anything that might be inside a SECTIONS {} statement in a script, before we find another output section statement. Assignments to "dot" before an output section statement are assumed to belong to it, except in two cases; The first assignment to dot, and assignments before non-alloc sections. Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or similar assignments that set the initial address, or we might insert non-alloc note sections among assignments setting end of image symbols. */ static lang_statement_union_type ** insert_os_after (lang_output_section_statement_type *after) { lang_statement_union_type **where; lang_statement_union_type **assign = NULL; bfd_boolean ignore_first; ignore_first = after == &lang_output_section_statement.head->output_section_statement; for (where = &after->header.next; *where != NULL; where = &(*where)->header.next) { switch ((*where)->header.type) { case lang_assignment_statement_enum: if (assign == NULL) { lang_assignment_statement_type *ass; ass = &(*where)->assignment_statement; if (ass->exp->type.node_class != etree_assert && ass->exp->assign.dst[0] == '.' && ass->exp->assign.dst[1] == 0 && !ignore_first) assign = where; } ignore_first = FALSE; continue; case lang_wild_statement_enum: case lang_input_section_enum: case lang_object_symbols_statement_enum: case lang_fill_statement_enum: case lang_data_statement_enum: case lang_reloc_statement_enum: case lang_padding_statement_enum: case lang_constructors_statement_enum: assign = NULL; continue; case lang_output_section_statement_enum: if (assign != NULL) { asection *s = (*where)->output_section_statement.bfd_section; if (s == NULL || s->map_head.s == NULL || (s->flags & SEC_ALLOC) != 0) where = assign; } break; case lang_input_statement_enum: case lang_address_statement_enum: case lang_target_statement_enum: case lang_output_statement_enum: case lang_group_statement_enum: case lang_insert_statement_enum: continue; } break; } return where; } lang_output_section_statement_type * lang_insert_orphan (asection *s, const char *secname, int constraint, lang_output_section_statement_type *after, struct orphan_save *place, etree_type *address, lang_statement_list_type *add_child) { lang_statement_list_type add; const char *ps; lang_output_section_statement_type *os; lang_output_section_statement_type **os_tail; /* If we have found an appropriate place for the output section statements for this orphan, add them to our own private list, inserting them later into the global statement list. */ if (after != NULL) { lang_list_init (&add); push_stat_ptr (&add); } if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0) address = exp_intop (0); os_tail = ((lang_output_section_statement_type **) lang_output_section_statement.tail); os = lang_enter_output_section_statement (secname, address, normal_section, NULL, NULL, NULL, constraint); ps = NULL; if (config.build_constructors && *os_tail == os) { /* If the name of the section is representable in C, then create symbols to mark the start and the end of the section. */ for (ps = secname; *ps != '\0'; ps++) if (! ISALNUM ((unsigned char) *ps) && *ps != '_') break; if (*ps == '\0') { char *symname; etree_type *e_align; symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1); symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd); sprintf (symname + (symname[0] != 0), "__start_%s", secname); e_align = exp_unop (ALIGN_K, exp_intop ((bfd_vma) 1 << s->alignment_power)); lang_add_assignment (exp_assop ('=', ".", e_align)); lang_add_assignment (exp_provide (symname, exp_unop (ABSOLUTE, exp_nameop (NAME, ".")), FALSE)); } } if (add_child == NULL) add_child = &os->children; lang_add_section (add_child, s, os); lang_leave_output_section_statement (0, "*default*", NULL, NULL); if (ps != NULL && *ps == '\0') { char *symname; symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1); symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd); sprintf (symname + (symname[0] != 0), "__stop_%s", secname); lang_add_assignment (exp_provide (symname, exp_nameop (NAME, "."), FALSE)); } /* Restore the global list pointer. */ if (after != NULL) pop_stat_ptr (); if (after != NULL && os->bfd_section != NULL) { asection *snew, *as; snew = os->bfd_section; /* Shuffle the bfd section list to make the output file look neater. This is really only cosmetic. */ if (place->section == NULL && after != (&lang_output_section_statement.head ->output_section_statement)) { asection *bfd_section = after->bfd_section; /* If the output statement hasn't been used to place any input sections (and thus doesn't have an output bfd_section), look for the closest prior output statement having an output section. */ if (bfd_section == NULL) bfd_section = output_prev_sec_find (after); if (bfd_section != NULL && bfd_section != snew) place->section = &bfd_section->next; } if (place->section == NULL) place->section = &link_info.output_bfd->sections; as = *place->section; if (!as) { /* Put the section at the end of the list. */ /* Unlink the section. */ bfd_section_list_remove (link_info.output_bfd, snew); /* Now tack it back on in the right place. */ bfd_section_list_append (link_info.output_bfd, snew); } else if (as != snew && as->prev != snew) { /* Unlink the section. */ bfd_section_list_remove (link_info.output_bfd, snew); /* Now tack it back on in the right place. */ bfd_section_list_insert_before (link_info.output_bfd, as, snew); } /* Save the end of this list. Further ophans of this type will follow the one we've just added. */ place->section = &snew->next; /* The following is non-cosmetic. We try to put the output statements in some sort of reasonable order here, because they determine the final load addresses of the orphan sections. In addition, placing output statements in the wrong order may require extra segments. For instance, given a typical situation of all read-only sections placed in one segment and following that a segment containing all the read-write sections, we wouldn't want to place an orphan read/write section before or amongst the read-only ones. */ if (add.head != NULL) { lang_output_section_statement_type *newly_added_os; if (place->stmt == NULL) { lang_statement_union_type **where = insert_os_after (after); *add.tail = *where; *where = add.head; place->os_tail = &after->next; } else { /* Put it after the last orphan statement we added. */ *add.tail = *place->stmt; *place->stmt = add.head; } /* Fix the global list pointer if we happened to tack our new list at the tail. */ if (*stat_ptr->tail == add.head) stat_ptr->tail = add.tail; /* Save the end of this list. */ place->stmt = add.tail; /* Do the same for the list of output section statements. */ newly_added_os = *os_tail; *os_tail = NULL; newly_added_os->prev = (lang_output_section_statement_type *) ((char *) place->os_tail - offsetof (lang_output_section_statement_type, next)); newly_added_os->next = *place->os_tail; if (newly_added_os->next != NULL) newly_added_os->next->prev = newly_added_os; *place->os_tail = newly_added_os; place->os_tail = &newly_added_os->next; /* Fixing the global list pointer here is a little different. We added to the list in lang_enter_output_section_statement, trimmed off the new output_section_statment above when assigning *os_tail = NULL, but possibly added it back in the same place when assigning *place->os_tail. */ if (*os_tail == NULL) lang_output_section_statement.tail = (lang_statement_union_type **) os_tail; } } return os; } static void lang_map_flags (flagword flag) { if (flag & SEC_ALLOC) minfo ("a"); if (flag & SEC_CODE) minfo ("x"); if (flag & SEC_READONLY) minfo ("r"); if (flag & SEC_DATA) minfo ("w"); if (flag & SEC_LOAD) minfo ("l"); } void lang_map (void) { lang_memory_region_type *m; bfd_boolean dis_header_printed = FALSE; bfd *p; LANG_FOR_EACH_INPUT_STATEMENT (file) { asection *s; if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0 || file->just_syms_flag) continue; for (s = file->the_bfd->sections; s != NULL; s = s->next) if ((s->output_section == NULL || s->output_section->owner != link_info.output_bfd) && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0) { if (! dis_header_printed) { fprintf (config.map_file, _("\nDiscarded input sections\n\n")); dis_header_printed = TRUE; } print_input_section (s, TRUE); } } minfo (_("\nMemory Configuration\n\n")); fprintf (config.map_file, "%-16s %-18s %-18s %s\n", _("Name"), _("Origin"), _("Length"), _("Attributes")); for (m = lang_memory_region_list; m != NULL; m = m->next) { char buf[100]; int len; fprintf (config.map_file, "%-16s ", m->name_list.name); sprintf_vma (buf, m->origin); minfo ("0x%s ", buf); len = strlen (buf); while (len < 16) { print_space (); ++len; } minfo ("0x%V", m->length); if (m->flags || m->not_flags) { #ifndef BFD64 minfo (" "); #endif if (m->flags) { print_space (); lang_map_flags (m->flags); } if (m->not_flags) { minfo (" !"); lang_map_flags (m->not_flags); } } print_nl (); } fprintf (config.map_file, _("\nLinker script and memory map\n\n")); if (! link_info.reduce_memory_overheads) { obstack_begin (&map_obstack, 1000); for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next) bfd_map_over_sections (p, init_map_userdata, 0); bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0); } lang_statement_iteration ++; print_statements (); } static void init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *data ATTRIBUTE_UNUSED) { fat_section_userdata_type *new_data = ((fat_section_userdata_type *) (stat_alloc (sizeof (fat_section_userdata_type)))); ASSERT (get_userdata (sec) == NULL); get_userdata (sec) = new_data; new_data->map_symbol_def_tail = &new_data->map_symbol_def_head; new_data->map_symbol_def_count = 0; } static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *hash_entry, void *info ATTRIBUTE_UNUSED) { if (hash_entry->type == bfd_link_hash_defined || hash_entry->type == bfd_link_hash_defweak) { struct fat_user_section_struct *ud; struct map_symbol_def *def; ud = (struct fat_user_section_struct *) get_userdata (hash_entry->u.def.section); if (! ud) { /* ??? What do we have to do to initialize this beforehand? */ /* The first time we get here is bfd_abs_section... */ init_map_userdata (0, hash_entry->u.def.section, 0); ud = (struct fat_user_section_struct *) get_userdata (hash_entry->u.def.section); } else if (!ud->map_symbol_def_tail) ud->map_symbol_def_tail = &ud->map_symbol_def_head; def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def); def->entry = hash_entry; *(ud->map_symbol_def_tail) = def; ud->map_symbol_def_tail = &def->next; ud->map_symbol_def_count++; } return TRUE; } /* Initialize an output section. */ static void init_os (lang_output_section_statement_type *s, asection *isec, flagword flags) { if (s->bfd_section != NULL) return; if (strcmp (s->name, DISCARD_SECTION_NAME) == 0) einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME); if (s->constraint != SPECIAL) s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name); if (s->bfd_section == NULL) s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd, s->name, flags); if (s->bfd_section == NULL) { einfo (_("%P%F: output format %s cannot represent section called %s\n"), link_info.output_bfd->xvec->name, s->name); } s->bfd_section->output_section = s->bfd_section; s->bfd_section->output_offset = 0; if (!link_info.reduce_memory_overheads) { fat_section_userdata_type *new_userdata = (fat_section_userdata_type *) stat_alloc (sizeof (fat_section_userdata_type)); memset (new_userdata, 0, sizeof (fat_section_userdata_type)); get_userdata (s->bfd_section) = new_userdata; } /* If there is a base address, make sure that any sections it might mention are initialized. */ if (s->addr_tree != NULL) exp_init_os (s->addr_tree); if (s->load_base != NULL) exp_init_os (s->load_base); /* If supplied an alignment, set it. */ if (s->section_alignment != -1) s->bfd_section->alignment_power = s->section_alignment; if (isec) bfd_init_private_section_data (isec->owner, isec, link_info.output_bfd, s->bfd_section, &link_info); } /* Make sure that all output sections mentioned in an expression are initialized. */ static void exp_init_os (etree_type *exp) { switch (exp->type.node_class) { case etree_assign: case etree_provide: exp_init_os (exp->assign.src); break; case etree_binary: exp_init_os (exp->binary.lhs); exp_init_os (exp->binary.rhs); break; case etree_trinary: exp_init_os (exp->trinary.cond); exp_init_os (exp->trinary.lhs); exp_init_os (exp->trinary.rhs); break; case etree_assert: exp_init_os (exp->assert_s.child); break; case etree_unary: exp_init_os (exp->unary.child); break; case etree_name: switch (exp->type.node_code) { case ADDR: case LOADADDR: case SIZEOF: { lang_output_section_statement_type *os; os = lang_output_section_find (exp->name.name); if (os != NULL && os->bfd_section == NULL) init_os (os, NULL, 0); } } break; default: break; } } static void section_already_linked (bfd *abfd, asection *sec, void *data) { lang_input_statement_type *entry = (lang_input_statement_type *) data; /* If we are only reading symbols from this object, then we want to discard all sections. */ if (entry->just_syms_flag) { bfd_link_just_syms (abfd, sec, &link_info); return; } if (!(abfd->flags & DYNAMIC)) bfd_section_already_linked (abfd, sec, &link_info); } /* The wild routines. These expand statements like *(.text) and foo.o to a list of explicit actions, like foo.o(.text), bar.o(.text) and foo.o(.text, .data). */ /* Add SECTION to the output section OUTPUT. Do this by creating a lang_input_section statement which is placed at PTR. FILE is the input file which holds SECTION. */ void lang_add_section (lang_statement_list_type *ptr, asection *section, lang_output_section_statement_type *output) { flagword flags = section->flags; bfd_boolean discard; /* Discard sections marked with SEC_EXCLUDE. */ discard = (flags & SEC_EXCLUDE) != 0; /* Discard input sections which are assigned to a section named DISCARD_SECTION_NAME. */ if (strcmp (output->name, DISCARD_SECTION_NAME) == 0) discard = TRUE; /* Discard debugging sections if we are stripping debugging information. */ if ((link_info.strip == strip_debugger || link_info.strip == strip_all) && (flags & SEC_DEBUGGING) != 0) discard = TRUE; if (discard) { if (section->output_section == NULL) { /* This prevents future calls from assigning this section. */ section->output_section = bfd_abs_section_ptr; } return; } if (section->output_section == NULL) { bfd_boolean first; lang_input_section_type *new_section; flagword flags; flags = section->flags; /* We don't copy the SEC_NEVER_LOAD flag from an input section to an output section, because we want to be able to include a SEC_NEVER_LOAD section in the middle of an otherwise loaded section (I don't know why we want to do this, but we do). build_link_order in ldwrite.c handles this case by turning the embedded SEC_NEVER_LOAD section into a fill. */ flags &= ~ SEC_NEVER_LOAD; switch (output->sectype) { case normal_section: case overlay_section: break; case noalloc_section: flags &= ~SEC_ALLOC; break; case noload_section: flags &= ~SEC_LOAD; flags |= SEC_NEVER_LOAD; break; } if (output->bfd_section == NULL) init_os (output, section, flags); first = ! output->bfd_section->linker_has_input; output->bfd_section->linker_has_input = 1; if (!link_info.relocatable && !stripped_excluded_sections) { asection *s = output->bfd_section->map_tail.s; output->bfd_section->map_tail.s = section; section->map_head.s = NULL; section->map_tail.s = s; if (s != NULL) s->map_head.s = section; else output->bfd_section->map_head.s = section; } /* Add a section reference to the list. */ new_section = new_stat (lang_input_section, ptr); new_section->section = section; section->output_section = output->bfd_section; /* If final link, don't copy the SEC_LINK_ONCE flags, they've already been processed. One reason to do this is that on pe format targets, .text$foo sections go into .text and it's odd to see .text with SEC_LINK_ONCE set. */ if (! link_info.relocatable) flags &= ~ (SEC_LINK_ONCE | SEC_LINK_DUPLICATES); /* If this is not the first input section, and the SEC_READONLY flag is not currently set, then don't set it just because the input section has it set. */ if (! first && (output->bfd_section->flags & SEC_READONLY) == 0) flags &= ~ SEC_READONLY; /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */ if (! first && ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS)) != (flags & (SEC_MERGE | SEC_STRINGS)) || ((flags & SEC_MERGE) && output->bfd_section->entsize != section->entsize))) { output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS); flags &= ~ (SEC_MERGE | SEC_STRINGS); } output->bfd_section->flags |= flags; if (flags & SEC_MERGE) output->bfd_section->entsize = section->entsize; /* If SEC_READONLY is not set in the input section, then clear it from the output section. */ if ((section->flags & SEC_READONLY) == 0) output->bfd_section->flags &= ~SEC_READONLY; /* Copy over SEC_SMALL_DATA. */ if (section->flags & SEC_SMALL_DATA) output->bfd_section->flags |= SEC_SMALL_DATA; if (section->alignment_power > output->bfd_section->alignment_power) output->bfd_section->alignment_power = section->alignment_power; if (bfd_get_arch (section->owner) == bfd_arch_tic54x && (section->flags & SEC_TIC54X_BLOCK) != 0) { output->bfd_section->flags |= SEC_TIC54X_BLOCK; /* FIXME: This value should really be obtained from the bfd... */ output->block_value = 128; } } } /* Handle wildcard sorting. This returns the lang_input_section which should follow the one we are going to create for SECTION and FILE, based on the sorting requirements of WILD. It returns NULL if the new section should just go at the end of the current list. */ static lang_statement_union_type * wild_sort (lang_wild_statement_type *wild, struct wildcard_list *sec, lang_input_statement_type *file, asection *section) { const char *section_name; lang_statement_union_type *l; if (!wild->filenames_sorted && (sec == NULL || sec->spec.sorted == none)) return NULL; section_name = bfd_get_section_name (file->the_bfd, section); for (l = wild->children.head; l != NULL; l = l->header.next) { lang_input_section_type *ls; if (l->header.type != lang_input_section_enum) continue; ls = &l->input_section; /* Sorting by filename takes precedence over sorting by section name. */ if (wild->filenames_sorted) { const char *fn, *ln; bfd_boolean fa, la; int i; /* The PE support for the .idata section as generated by dlltool assumes that files will be sorted by the name of the archive and then the name of the file within the archive. */ if (file->the_bfd != NULL && bfd_my_archive (file->the_bfd) != NULL) { fn = bfd_get_filename (bfd_my_archive (file->the_bfd)); fa = TRUE; } else { fn = file->filename; fa = FALSE; } if (bfd_my_archive (ls->section->owner) != NULL) { ln = bfd_get_filename (bfd_my_archive (ls->section->owner)); la = TRUE; } else { ln = ls->section->owner->filename; la = FALSE; } i = strcmp (fn, ln); if (i > 0) continue; else if (i < 0) break; if (fa || la) { if (fa) fn = file->filename; if (la) ln = ls->section->owner->filename; i = strcmp (fn, ln); if (i > 0) continue; else if (i < 0) break; } } /* Here either the files are not sorted by name, or we are looking at the sections for this file. */ if (sec != NULL && sec->spec.sorted != none) if (compare_section (sec->spec.sorted, section, ls->section) < 0) break; } return l; } /* Expand a wild statement for a particular FILE. SECTION may be NULL, in which case it is a wild card. */ static void output_section_callback (lang_wild_statement_type *ptr, struct wildcard_list *sec, asection *section, lang_input_statement_type *file, void *output) { lang_statement_union_type *before; /* Exclude sections that match UNIQUE_SECTION_LIST. */ if (unique_section_p (section)) return; before = wild_sort (ptr, sec, file, section); /* Here BEFORE points to the lang_input_section which should follow the one we are about to add. If BEFORE is NULL, then the section should just go at the end of the current list. */ if (before == NULL) lang_add_section (&ptr->children, section, (lang_output_section_statement_type *) output); else { lang_statement_list_type list; lang_statement_union_type **pp; lang_list_init (&list); lang_add_section (&list, section, (lang_output_section_statement_type *) output); /* If we are discarding the section, LIST.HEAD will be NULL. */ if (list.head != NULL) { ASSERT (list.head->header.next == NULL); for (pp = &ptr->children.head; *pp != before; pp = &(*pp)->header.next) ASSERT (*pp != NULL); list.head->header.next = *pp; *pp = list.head; } } } /* Check if all sections in a wild statement for a particular FILE are readonly. */ static void check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED, struct wildcard_list *sec ATTRIBUTE_UNUSED, asection *section, lang_input_statement_type *file ATTRIBUTE_UNUSED, void *data) { /* Exclude sections that match UNIQUE_SECTION_LIST. */ if (unique_section_p (section)) return; if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0) ((lang_output_section_statement_type *) data)->all_input_readonly = FALSE; } /* This is passed a file name which must have been seen already and added to the statement tree. We will see if it has been opened already and had its symbols read. If not then we'll read it. */ static lang_input_statement_type * lookup_name (const char *name) { lang_input_statement_type *search; for (search = (lang_input_statement_type *) input_file_chain.head; search != NULL; search = (lang_input_statement_type *) search->next_real_file) { /* Use the local_sym_name as the name of the file that has already been loaded as filename might have been transformed via the search directory lookup mechanism. */ const char *filename = search->local_sym_name; if (filename != NULL && strcmp (filename, name) == 0) break; } if (search == NULL) search = new_afile (name, lang_input_file_is_search_file_enum, default_target, FALSE); /* If we have already added this file, or this file is not real don't add this file. */ if (search->loaded || !search->real) return search; if (! load_symbols (search, NULL)) return NULL; return search; } /* Save LIST as a list of libraries whose symbols should not be exported. */ struct excluded_lib { char *name; struct excluded_lib *next; }; static struct excluded_lib *excluded_libs; void add_excluded_libs (const char *list) { const char *p = list, *end; while (*p != '\0') { struct excluded_lib *entry; end = strpbrk (p, ",:"); if (end == NULL) end = p + strlen (p); entry = (struct excluded_lib *) xmalloc (sizeof (*entry)); entry->next = excluded_libs; entry->name = (char *) xmalloc (end - p + 1); memcpy (entry->name, p, end - p); entry->name[end - p] = '\0'; excluded_libs = entry; if (*end == '\0') break; p = end + 1; } } static void check_excluded_libs (bfd *abfd) { struct excluded_lib *lib = excluded_libs; while (lib) { int len = strlen (lib->name); const char *filename = lbasename (abfd->filename); if (strcmp (lib->name, "ALL") == 0) { abfd->no_export = TRUE; return; } if (strncmp (lib->name, filename, len) == 0 && (filename[len] == '\0' || (filename[len] == '.' && filename[len + 1] == 'a' && filename[len + 2] == '\0'))) { abfd->no_export = TRUE; return; } lib = lib->next; } } /* Get the symbols for an input file. */ bfd_boolean load_symbols (lang_input_statement_type *entry, lang_statement_list_type *place) { char **matching; if (entry->loaded) return TRUE; ldfile_open_file (entry); if (! bfd_check_format (entry->the_bfd, bfd_archive) && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching)) { bfd_error_type err; bfd_boolean save_ldlang_sysrooted_script; bfd_boolean save_as_needed, save_add_needed; err = bfd_get_error (); /* See if the emulation has some special knowledge. */ if (ldemul_unrecognized_file (entry)) return TRUE; if (err == bfd_error_file_ambiguously_recognized) { char **p; einfo (_("%B: file not recognized: %E\n"), entry->the_bfd); einfo (_("%B: matching formats:"), entry->the_bfd); for (p = matching; *p != NULL; p++) einfo (" %s", *p); einfo ("%F\n"); } else if (err != bfd_error_file_not_recognized || place == NULL) einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd); bfd_close (entry->the_bfd); entry->the_bfd = NULL; /* Try to interpret the file as a linker script. */ ldfile_open_command_file (entry->filename); push_stat_ptr (place); save_ldlang_sysrooted_script = ldlang_sysrooted_script; ldlang_sysrooted_script = entry->sysrooted; save_as_needed = as_needed; as_needed = entry->as_needed; save_add_needed = add_needed; add_needed = entry->add_needed; ldfile_assumed_script = TRUE; parser_input = input_script; /* We want to use the same -Bdynamic/-Bstatic as the one for ENTRY. */ config.dynamic_link = entry->dynamic; yyparse (); ldfile_assumed_script = FALSE; ldlang_sysrooted_script = save_ldlang_sysrooted_script; as_needed = save_as_needed; add_needed = save_add_needed; pop_stat_ptr (); return TRUE; } if (ldemul_recognized_file (entry)) return TRUE; /* We don't call ldlang_add_file for an archive. Instead, the add_symbols entry point will call ldlang_add_file, via the add_archive_element callback, for each element of the archive which is used. */ switch (bfd_get_format (entry->the_bfd)) { default: break; case bfd_object: ldlang_add_file (entry); if (trace_files || trace_file_tries) info_msg ("%I\n", entry); break; case bfd_archive: check_excluded_libs (entry->the_bfd); if (entry->whole_archive) { bfd *member = NULL; bfd_boolean loaded = TRUE; for (;;) { member = bfd_openr_next_archived_file (entry->the_bfd, member); if (member == NULL) break; if (! bfd_check_format (member, bfd_object)) { einfo (_("%F%B: member %B in archive is not an object\n"), entry->the_bfd, member); loaded = FALSE; } if (! ((*link_info.callbacks->add_archive_element) (&link_info, member, "--whole-archive"))) abort (); if (! bfd_link_add_symbols (member, &link_info)) { einfo (_("%F%B: could not read symbols: %E\n"), member); loaded = FALSE; } } entry->loaded = loaded; return loaded; } break; } if (bfd_link_add_symbols (entry->the_bfd, &link_info)) entry->loaded = TRUE; else einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd); return entry->loaded; } /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both may be NULL, indicating that it is a wildcard. Separate lang_input_section statements are created for each part of the expansion; they are added after the wild statement S. OUTPUT is the output section. */ static void wild (lang_wild_statement_type *s, const char *target ATTRIBUTE_UNUSED, lang_output_section_statement_type *output) { struct wildcard_list *sec; if (s->handler_data[0] && s->handler_data[0]->spec.sorted == by_name && !s->filenames_sorted) { lang_section_bst_type *tree; walk_wild (s, output_section_callback_fast, output); tree = s->tree; if (tree) { output_section_callback_tree_to_list (s, tree, output); s->tree = NULL; } } else walk_wild (s, output_section_callback, output); if (default_common_section == NULL) for (sec = s->section_list; sec != NULL; sec = sec->next) if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0) { /* Remember the section that common is going to in case we later get something which doesn't know where to put it. */ default_common_section = output; break; } } /* Return TRUE iff target is the sought target. */ static int get_target (const bfd_target *target, void *data) { const char *sought = (const char *) data; return strcmp (target->name, sought) == 0; } /* Like strcpy() but convert to lower case as well. */ static void stricpy (char *dest, char *src) { char c; while ((c = *src++) != 0) *dest++ = TOLOWER (c); *dest = 0; } /* Remove the first occurrence of needle (if any) in haystack from haystack. */ static void strcut (char *haystack, char *needle) { haystack = strstr (haystack, needle); if (haystack) { char *src; for (src = haystack + strlen (needle); *src;) *haystack++ = *src++; *haystack = 0; } } /* Compare two target format name strings. Return a value indicating how "similar" they are. */ static int name_compare (char *first, char *second) { char *copy1; char *copy2; int result; copy1 = (char *) xmalloc (strlen (first) + 1); copy2 = (char *) xmalloc (strlen (second) + 1); /* Convert the names to lower case. */ stricpy (copy1, first); stricpy (copy2, second); /* Remove size and endian strings from the name. */ strcut (copy1, "big"); strcut (copy1, "little"); strcut (copy2, "big"); strcut (copy2, "little"); /* Return a value based on how many characters match, starting from the beginning. If both strings are the same then return 10 * their length. */ for (result = 0; copy1[result] == copy2[result]; result++) if (copy1[result] == 0) { result *= 10; break; } free (copy1); free (copy2); return result; } /* Set by closest_target_match() below. */ static const bfd_target *winner; /* Scan all the valid bfd targets looking for one that has the endianness requirement that was specified on the command line, and is the nearest match to the original output target. */ static int closest_target_match (const bfd_target *target, void *data) { const bfd_target *original = (const bfd_target *) data; if (command_line.endian == ENDIAN_BIG && target->byteorder != BFD_ENDIAN_BIG) return 0; if (command_line.endian == ENDIAN_LITTLE && target->byteorder != BFD_ENDIAN_LITTLE) return 0; /* Must be the same flavour. */ if (target->flavour != original->flavour) return 0; /* Ignore generic big and little endian elf vectors. */ if (strcmp (target->name, "elf32-big") == 0 || strcmp (target->name, "elf64-big") == 0 || strcmp (target->name, "elf32-little") == 0 || strcmp (target->name, "elf64-little") == 0) return 0; /* If we have not found a potential winner yet, then record this one. */ if (winner == NULL) { winner = target; return 0; } /* Oh dear, we now have two potential candidates for a successful match. Compare their names and choose the better one. */ if (name_compare (target->name, original->name) > name_compare (winner->name, original->name)) winner = target; /* Keep on searching until wqe have checked them all. */ return 0; } /* Return the BFD target format of the first input file. */ static char * get_first_input_target (void) { char *target = NULL; LANG_FOR_EACH_INPUT_STATEMENT (s) { if (s->header.type == lang_input_statement_enum && s->real) { ldfile_open_file (s); if (s->the_bfd != NULL && bfd_check_format (s->the_bfd, bfd_object)) { target = bfd_get_target (s->the_bfd); if (target != NULL) break; } } } return target; } const char * lang_get_output_target (void) { const char *target; /* Has the user told us which output format to use? */ if (output_target != NULL) return output_target; /* No - has the current target been set to something other than the default? */ if (current_target != default_target) return current_target; /* No - can we determine the format of the first input file? */ target = get_first_input_target (); if (target != NULL) return target; /* Failed - use the default output target. */ return default_target; } /* Open the output file. */ static void open_output (const char *name) { output_target = lang_get_output_target (); /* Has the user requested a particular endianness on the command line? */ if (command_line.endian != ENDIAN_UNSET) { const bfd_target *target; enum bfd_endian desired_endian; /* Get the chosen target. */ target = bfd_search_for_target (get_target, (void *) output_target); /* If the target is not supported, we cannot do anything. */ if (target != NULL) { if (command_line.endian == ENDIAN_BIG) desired_endian = BFD_ENDIAN_BIG; else desired_endian = BFD_ENDIAN_LITTLE; /* See if the target has the wrong endianness. This should not happen if the linker script has provided big and little endian alternatives, but some scrips don't do this. */ if (target->byteorder != desired_endian) { /* If it does, then see if the target provides an alternative with the correct endianness. */ if (target->alternative_target != NULL && (target->alternative_target->byteorder == desired_endian)) output_target = target->alternative_target->name; else { /* Try to find a target as similar as possible to the default target, but which has the desired endian characteristic. */ bfd_search_for_target (closest_target_match, (void *) target); /* Oh dear - we could not find any targets that satisfy our requirements. */ if (winner == NULL) einfo (_("%P: warning: could not find any targets" " that match endianness requirement\n")); else output_target = winner->name; } } } } link_info.output_bfd = bfd_openw (name, output_target); if (link_info.output_bfd == NULL) { if (bfd_get_error () == bfd_error_invalid_target) einfo (_("%P%F: target %s not found\n"), output_target); einfo (_("%P%F: cannot open output file %s: %E\n"), name); } delete_output_file_on_failure = TRUE; if (! bfd_set_format (link_info.output_bfd, bfd_object)) einfo (_("%P%F:%s: can not make object file: %E\n"), name); if (! bfd_set_arch_mach (link_info.output_bfd, ldfile_output_architecture, ldfile_output_machine)) einfo (_("%P%F:%s: can not set architecture: %E\n"), name); link_info.hash = bfd_link_hash_table_create (link_info.output_bfd); if (link_info.hash == NULL) einfo (_("%P%F: can not create hash table: %E\n")); bfd_set_gp_size (link_info.output_bfd, g_switch_value); } static void ldlang_open_output (lang_statement_union_type *statement) { switch (statement->header.type) { case lang_output_statement_enum: ASSERT (link_info.output_bfd == NULL); open_output (statement->output_statement.name); ldemul_set_output_arch (); if (config.magic_demand_paged && !link_info.relocatable) link_info.output_bfd->flags |= D_PAGED; else link_info.output_bfd->flags &= ~D_PAGED; if (config.text_read_only) link_info.output_bfd->flags |= WP_TEXT; else link_info.output_bfd->flags &= ~WP_TEXT; if (link_info.traditional_format) link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT; else link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT; break; case lang_target_statement_enum: current_target = statement->target_statement.target; break; default: break; } } /* Convert between addresses in bytes and sizes in octets. For currently supported targets, octets_per_byte is always a power of two, so we can use shifts. */ #define TO_ADDR(X) ((X) >> opb_shift) #define TO_SIZE(X) ((X) << opb_shift) /* Support the above. */ static unsigned int opb_shift = 0; static void init_opb (void) { unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture, ldfile_output_machine); opb_shift = 0; if (x > 1) while ((x & 1) == 0) { x >>= 1; ++opb_shift; } ASSERT (x == 1); } /* Open all the input files. */ static void open_input_bfds (lang_statement_union_type *s, bfd_boolean force) { for (; s != NULL; s = s->header.next) { switch (s->header.type) { case lang_constructors_statement_enum: open_input_bfds (constructor_list.head, force); break; case lang_output_section_statement_enum: open_input_bfds (s->output_section_statement.children.head, force); break; case lang_wild_statement_enum: /* Maybe we should load the file's symbols. */ if (s->wild_statement.filename && !wildcardp (s->wild_statement.filename) && !archive_path (s->wild_statement.filename)) lookup_name (s->wild_statement.filename); open_input_bfds (s->wild_statement.children.head, force); break; case lang_group_statement_enum: { struct bfd_link_hash_entry *undefs; /* We must continually search the entries in the group until no new symbols are added to the list of undefined symbols. */ do { undefs = link_info.hash->undefs_tail; open_input_bfds (s->group_statement.children.head, TRUE); } while (undefs != link_info.hash->undefs_tail); } break; case lang_target_statement_enum: current_target = s->target_statement.target; break; case lang_input_statement_enum: if (s->input_statement.real) { lang_statement_union_type **os_tail; lang_statement_list_type add; s->input_statement.target = current_target; /* If we are being called from within a group, and this is an archive which has already been searched, then force it to be researched unless the whole archive has been loaded already. */ if (force && !s->input_statement.whole_archive && s->input_statement.loaded && bfd_check_format (s->input_statement.the_bfd, bfd_archive)) s->input_statement.loaded = FALSE; os_tail = lang_output_section_statement.tail; lang_list_init (&add); if (! load_symbols (&s->input_statement, &add)) config.make_executable = FALSE; if (add.head != NULL) { /* If this was a script with output sections then tack any added statements on to the end of the list. This avoids having to reorder the output section statement list. Very likely the user forgot -T, and whatever we do here will not meet naive user expectations. */ if (os_tail != lang_output_section_statement.tail) { einfo (_("%P: warning: %s contains output sections;" " did you forget -T?\n"), s->input_statement.filename); *stat_ptr->tail = add.head; stat_ptr->tail = add.tail; } else { *add.tail = s->header.next; s->header.next = add.head; } } } break; default: break; } } } /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */ void lang_track_definedness (const char *name) { if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL) einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name); } /* New-function for the definedness hash table. */ static struct bfd_hash_entry * lang_definedness_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table ATTRIBUTE_UNUSED, const char *name ATTRIBUTE_UNUSED) { struct lang_definedness_hash_entry *ret = (struct lang_definedness_hash_entry *) entry; if (ret == NULL) ret = (struct lang_definedness_hash_entry *) bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry)); if (ret == NULL) einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name); ret->iteration = -1; return &ret->root; } /* Return the iteration when the definition of NAME was last updated. A value of -1 means that the symbol is not defined in the linker script or the command line, but may be defined in the linker symbol table. */ int lang_symbol_definition_iteration (const char *name) { struct lang_definedness_hash_entry *defentry = (struct lang_definedness_hash_entry *) bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE); /* We've already created this one on the presence of DEFINED in the script, so it can't be NULL unless something is borked elsewhere in the code. */ if (defentry == NULL) FAIL (); return defentry->iteration; } /* Update the definedness state of NAME. */ void lang_update_definedness (const char *name, struct bfd_link_hash_entry *h) { struct lang_definedness_hash_entry *defentry = (struct lang_definedness_hash_entry *) bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE); /* We don't keep track of symbols not tested with DEFINED. */ if (defentry == NULL) return; /* If the symbol was already defined, and not from an earlier statement iteration, don't update the definedness iteration, because that'd make the symbol seem defined in the linker script at this point, and it wasn't; it was defined in some object. If we do anyway, DEFINED would start to yield false before this point and the construct "sym = DEFINED (sym) ? sym : X;" would change sym to X despite being defined in an object. */ if (h->type != bfd_link_hash_undefined && h->type != bfd_link_hash_common && h->type != bfd_link_hash_new && defentry->iteration == -1) return; defentry->iteration = lang_statement_iteration; } /* Add the supplied name to the symbol table as an undefined reference. This is a two step process as the symbol table doesn't even exist at the time the ld command line is processed. First we put the name on a list, then, once the output file has been opened, transfer the name to the symbol table. */ typedef struct bfd_sym_chain ldlang_undef_chain_list_type; #define ldlang_undef_chain_list_head entry_symbol.next void ldlang_add_undef (const char *const name) { ldlang_undef_chain_list_type *new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (ldlang_undef_chain_list_type)); new_undef->next = ldlang_undef_chain_list_head; ldlang_undef_chain_list_head = new_undef; new_undef->name = xstrdup (name); if (link_info.output_bfd != NULL) insert_undefined (new_undef->name); } /* Insert NAME as undefined in the symbol table. */ static void insert_undefined (const char *name) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE); if (h == NULL) einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n")); if (h->type == bfd_link_hash_new) { h->type = bfd_link_hash_undefined; h->u.undef.abfd = NULL; bfd_link_add_undef (link_info.hash, h); } } /* Run through the list of undefineds created above and place them into the linker hash table as undefined symbols belonging to the script file. */ static void lang_place_undefineds (void) { ldlang_undef_chain_list_type *ptr; for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next) insert_undefined (ptr->name); } /* Check for all readonly or some readwrite sections. */ static void check_input_sections (lang_statement_union_type *s, lang_output_section_statement_type *output_section_statement) { for (; s != (lang_statement_union_type *) NULL; s = s->header.next) { switch (s->header.type) { case lang_wild_statement_enum: walk_wild (&s->wild_statement, check_section_callback, output_section_statement); if (! output_section_statement->all_input_readonly) return; break; case lang_constructors_statement_enum: check_input_sections (constructor_list.head, output_section_statement); if (! output_section_statement->all_input_readonly) return; break; case lang_group_statement_enum: check_input_sections (s->group_statement.children.head, output_section_statement); if (! output_section_statement->all_input_readonly) return; break; default: break; } } } /* Update wildcard statements if needed. */ static void update_wild_statements (lang_statement_union_type *s) { struct wildcard_list *sec; switch (sort_section) { default: FAIL (); case none: break; case by_name: case by_alignment: for (; s != NULL; s = s->header.next) { switch (s->header.type) { default: break; case lang_wild_statement_enum: sec = s->wild_statement.section_list; for (sec = s->wild_statement.section_list; sec != NULL; sec = sec->next) { switch (sec->spec.sorted) { case none: sec->spec.sorted = sort_section; break; case by_name: if (sort_section == by_alignment) sec->spec.sorted = by_name_alignment; break; case by_alignment: if (sort_section == by_name) sec->spec.sorted = by_alignment_name; break; default: break; } } break; case lang_constructors_statement_enum: update_wild_statements (constructor_list.head); break; case lang_output_section_statement_enum: update_wild_statements (s->output_section_statement.children.head); break; case lang_group_statement_enum: update_wild_statements (s->group_statement.children.head); break; } } break; } } /* Open input files and attach to output sections. */ static void map_input_to_output_sections (lang_statement_union_type *s, const char *target, lang_output_section_statement_type *os) { flagword flags; for (; s != NULL; s = s->header.next) { switch (s->header.type) { case lang_wild_statement_enum: wild (&s->wild_statement, target, os); break; case lang_constructors_statement_enum: map_input_to_output_sections (constructor_list.head, target, os); break; case lang_output_section_statement_enum: if (s->output_section_statement.constraint) { if (s->output_section_statement.constraint != ONLY_IF_RW && s->output_section_statement.constraint != ONLY_IF_RO) break; s->output_section_statement.all_input_readonly = TRUE; check_input_sections (s->output_section_statement.children.head, &s->output_section_statement); if ((s->output_section_statement.all_input_readonly && s->output_section_statement.constraint == ONLY_IF_RW) || (!s->output_section_statement.all_input_readonly && s->output_section_statement.constraint == ONLY_IF_RO)) { s->output_section_statement.constraint = -1; break; } } map_input_to_output_sections (s->output_section_statement.children.head, target, &s->output_section_statement); break; case lang_output_statement_enum: break; case lang_target_statement_enum: target = s->target_statement.target; break; case lang_group_statement_enum: map_input_to_output_sections (s->group_statement.children.head, target, os); break; case lang_data_statement_enum: /* Make sure that any sections mentioned in the expression are initialized. */ exp_init_os (s->data_statement.exp); flags = SEC_HAS_CONTENTS; /* The output section gets contents, and then we inspect for any flags set in the input script which override any ALLOC. */ if (!(os->flags & SEC_NEVER_LOAD)) flags |= SEC_ALLOC | SEC_LOAD; if (os->bfd_section == NULL) init_os (os, NULL, flags); else os->bfd_section->flags |= flags; break; case lang_input_section_enum: break; case lang_fill_statement_enum: case lang_object_symbols_statement_enum: case lang_reloc_statement_enum: case lang_padding_statement_enum: case lang_input_statement_enum: if (os != NULL && os->bfd_section == NULL) init_os (os, NULL, 0); break; case lang_assignment_statement_enum: if (os != NULL && os->bfd_section == NULL) init_os (os, NULL, 0); /* Make sure that any sections mentioned in the assignment are initialized. */ exp_init_os (s->assignment_statement.exp); break; case lang_address_statement_enum: /* Mark the specified section with the supplied address. If this section was actually a segment marker, then the directive is ignored if the linker script explicitly processed the segment marker. Originally, the linker treated segment directives (like -Ttext on the command-line) as section directives. We honor the section directive semantics for backwards compatibilty; linker scripts that do not specifically check for SEGMENT_START automatically get the old semantics. */ if (!s->address_statement.segment || !s->address_statement.segment->used) { lang_output_section_statement_type *aos = (lang_output_section_statement_lookup (s->address_statement.section_name, 0, TRUE)); if (aos->bfd_section == NULL) init_os (aos, NULL, 0); aos->addr_tree = s->address_statement.address; } break; case lang_insert_statement_enum: break; } } } /* An insert statement snips out all the linker statements from the start of the list and places them after the output section statement specified by the insert. This operation is complicated by the fact that we keep a doubly linked list of output section statements as well as the singly linked list of all statements. */ static void process_insert_statements (void) { lang_statement_union_type **s; lang_output_section_statement_type *first_os = NULL; lang_output_section_statement_type *last_os = NULL; lang_output_section_statement_type *os; /* "start of list" is actually the statement immediately after the special abs_section output statement, so that it isn't reordered. */ s = &lang_output_section_statement.head; while (*(s = &(*s)->header.next) != NULL) { if ((*s)->header.type == lang_output_section_statement_enum) { /* Keep pointers to the first and last output section statement in the sequence we may be about to move. */ os = &(*s)->output_section_statement; ASSERT (last_os == NULL || last_os->next == os); last_os = os; /* Set constraint negative so that lang_output_section_find won't match this output section statement. At this stage in linking constraint has values in the range [-1, ONLY_IN_RW]. */ last_os->constraint = -2 - last_os->constraint; if (first_os == NULL) first_os = last_os; } else if ((*s)->header.type == lang_insert_statement_enum) { lang_insert_statement_type *i = &(*s)->insert_statement; lang_output_section_statement_type *where; lang_statement_union_type **ptr; lang_statement_union_type *first; where = lang_output_section_find (i->where); if (where != NULL && i->is_before) { do where = where->prev; while (where != NULL && where->constraint < 0); } if (where == NULL) { einfo (_("%F%P: %s not found for insert\n"), i->where); return; } /* Deal with reordering the output section statement list. */ if (last_os != NULL) { asection *first_sec, *last_sec; struct lang_output_section_statement_struct **next; /* Snip out the output sections we are moving. */ first_os->prev->next = last_os->next; if (last_os->next == NULL) { next = &first_os->prev->next; lang_output_section_statement.tail = (lang_statement_union_type **) next; } else last_os->next->prev = first_os->prev; /* Add them in at the new position. */ last_os->next = where->next; if (where->next == NULL) { next = &last_os->next; lang_output_section_statement.tail = (lang_statement_union_type **) next; } else where->next->prev = last_os; first_os->prev = where; where->next = first_os; /* Move the bfd sections in the same way. */ first_sec = NULL; last_sec = NULL; for (os = first_os; os != NULL; os = os->next) { os->constraint = -2 - os->constraint; if (os->bfd_section != NULL && os->bfd_section->owner != NULL) { last_sec = os->bfd_section; if (first_sec == NULL) first_sec = last_sec; } if (os == last_os) break; } if (last_sec != NULL) { asection *sec = where->bfd_section; if (sec == NULL) sec = output_prev_sec_find (where); /* The place we want to insert must come after the sections we are moving. So if we find no section or if the section is the same as our last section, then no move is needed. */ if (sec != NULL && sec != last_sec) { /* Trim them off. */ if (first_sec->prev != NULL) first_sec->prev->next = last_sec->next; else link_info.output_bfd->sections = last_sec->next; if (last_sec->next != NULL) last_sec->next->prev = first_sec->prev; else link_info.output_bfd->section_last = first_sec->prev; /* Add back. */ last_sec->next = sec->next; if (sec->next != NULL) sec->next->prev = last_sec; else link_info.output_bfd->section_last = last_sec; first_sec->prev = sec; sec->next = first_sec; } } first_os = NULL; last_os = NULL; } ptr = insert_os_after (where); /* Snip everything after the abs_section output statement we know is at the start of the list, up to and including the insert statement we are currently processing. */ first = lang_output_section_statement.head->header.next; lang_output_section_statement.head->header.next = (*s)->header.next; /* Add them back where they belong. */ *s = *ptr; if (*s == NULL) statement_list.tail = s; *ptr = first; s = &lang_output_section_statement.head; } } /* Undo constraint twiddling. */ for (os = first_os; os != NULL; os = os->next) { os->constraint = -2 - os->constraint; if (os == last_os) break; } } /* An output section might have been removed after its statement was added. For example, ldemul_before_allocation can remove dynamic sections if they turn out to be not needed. Clean them up here. */ void strip_excluded_output_sections (void) { lang_output_section_statement_type *os; /* Run lang_size_sections (if not already done). */ if (expld.phase != lang_mark_phase_enum) { expld.phase = lang_mark_phase_enum; expld.dataseg.phase = exp_dataseg_none; one_lang_size_sections_pass (NULL, FALSE); lang_reset_memory_regions (); } for (os = &lang_output_section_statement.head->output_section_statement; os != NULL; os = os->next) { asection *output_section; bfd_boolean exclude; if (os->constraint < 0) continue; output_section = os->bfd_section; if (output_section == NULL) continue; exclude = (output_section->rawsize == 0 && (output_section->flags & SEC_KEEP) == 0 && !bfd_section_removed_from_list (link_info.output_bfd, output_section)); /* Some sections have not yet been sized, notably .gnu.version, .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED input sections, so don't drop output sections that have such input sections unless they are also marked SEC_EXCLUDE. */ if (exclude && output_section->map_head.s != NULL) { asection *s; for (s = output_section->map_head.s; s != NULL; s = s->map_head.s) if ((s->flags & SEC_LINKER_CREATED) != 0 && (s->flags & SEC_EXCLUDE) == 0) { exclude = FALSE; break; } } /* TODO: Don't just junk map_head.s, turn them into link_orders. */ output_section->map_head.link_order = NULL; output_section->map_tail.link_order = NULL; if (exclude) { /* We don't set bfd_section to NULL since bfd_section of the removed output section statement may still be used. */ if (!os->section_relative_symbol && !os->update_dot_tree) os->ignored = TRUE; output_section->flags |= SEC_EXCLUDE; bfd_section_list_remove (link_info.output_bfd, output_section); link_info.output_bfd->section_count--; } } /* Stop future calls to lang_add_section from messing with map_head and map_tail link_order fields. */ stripped_excluded_sections = TRUE; } static void print_output_section_statement (lang_output_section_statement_type *output_section_statement) { asection *section = output_section_statement->bfd_section; int len; if (output_section_statement != abs_output_section) { minfo ("\n%s", output_section_statement->name); if (section != NULL) { print_dot = section->vma; len = strlen (output_section_statement->name); if (len >= SECTION_NAME_MAP_LENGTH - 1) { print_nl (); len = 0; } while (len < SECTION_NAME_MAP_LENGTH) { print_space (); ++len; } minfo ("0x%V %W", section->vma, section->size); if (section->vma != section->lma) minfo (_(" load address 0x%V"), section->lma); if (output_section_statement->update_dot_tree != NULL) exp_fold_tree (output_section_statement->update_dot_tree, bfd_abs_section_ptr, &print_dot); } print_nl (); } print_statement_list (output_section_statement->children.head, output_section_statement); } /* Scan for the use of the destination in the right hand side of an expression. In such cases we will not compute the correct expression, since the value of DST that is used on the right hand side will be its final value, not its value just before this expression is evaluated. */ static bfd_boolean scan_for_self_assignment (const char * dst, etree_type * rhs) { if (rhs == NULL || dst == NULL) return FALSE; switch (rhs->type.node_class) { case etree_binary: return scan_for_self_assignment (dst, rhs->binary.lhs) || scan_for_self_assignment (dst, rhs->binary.rhs); case etree_trinary: return scan_for_self_assignment (dst, rhs->trinary.lhs) || scan_for_self_assignment (dst, rhs->trinary.rhs); case etree_assign: case etree_provided: case etree_provide: if (strcmp (dst, rhs->assign.dst) == 0) return TRUE; return scan_for_self_assignment (dst, rhs->assign.src); case etree_unary: return scan_for_self_assignment (dst, rhs->unary.child); case etree_value: if (rhs->value.str) return strcmp (dst, rhs->value.str) == 0; return FALSE; case etree_name: if (rhs->name.name) return strcmp (dst, rhs->name.name) == 0; return FALSE; default: break; } return FALSE; } static void print_assignment (lang_assignment_statement_type *assignment, lang_output_section_statement_type *output_section) { unsigned int i; bfd_boolean is_dot; bfd_boolean computation_is_valid = TRUE; etree_type *tree; for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++) print_space (); if (assignment->exp->type.node_class == etree_assert) { is_dot = FALSE; tree = assignment->exp->assert_s.child; computation_is_valid = TRUE; } else { const char *dst = assignment->exp->assign.dst; is_dot = (dst[0] == '.' && dst[1] == 0); tree = assignment->exp->assign.src; computation_is_valid = is_dot || (scan_for_self_assignment (dst, tree) == FALSE); } exp_fold_tree (tree, output_section->bfd_section, &print_dot); if (expld.result.valid_p) { bfd_vma value; if (computation_is_valid) { value = expld.result.value; if (expld.result.section) value += expld.result.section->vma; minfo ("0x%V", value); if (is_dot) print_dot = value; } else { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst, FALSE, FALSE, TRUE); if (h) { value = h->u.def.value; if (expld.result.section) value += expld.result.section->vma; minfo ("[0x%V]", value); } else minfo ("[unresolved]"); } } else { minfo ("*undef* "); #ifdef BFD64 minfo (" "); #endif } minfo (" "); exp_print_tree (assignment->exp); print_nl (); } static void print_input_statement (lang_input_statement_type *statm) { if (statm->filename != NULL && (statm->the_bfd == NULL || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0)) fprintf (config.map_file, "LOAD %s\n", statm->filename); } /* Print all symbols defined in a particular section. This is called via bfd_link_hash_traverse, or by print_all_symbols. */ static bfd_boolean print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr) { asection *sec = (asection *) ptr; if ((hash_entry->type == bfd_link_hash_defined || hash_entry->type == bfd_link_hash_defweak) && sec == hash_entry->u.def.section) { int i; for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++) print_space (); minfo ("0x%V ", (hash_entry->u.def.value + hash_entry->u.def.section->output_offset + hash_entry->u.def.section->output_section->vma)); minfo (" %T\n", hash_entry->root.string); } return TRUE; } static int hash_entry_addr_cmp (const void *a, const void *b) { const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a; const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b; if (l->u.def.value < r->u.def.value) return -1; else if (l->u.def.value > r->u.def.value) return 1; else return 0; } static void print_all_symbols (asection *sec) { struct fat_user_section_struct *ud = (struct fat_user_section_struct *) get_userdata (sec); struct map_symbol_def *def; struct bfd_link_hash_entry **entries; unsigned int i; if (!ud) return; *ud->map_symbol_def_tail = 0; /* Sort the symbols by address. */ entries = (struct bfd_link_hash_entry **) obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries)); for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++) entries[i] = def->entry; qsort (entries, ud->map_symbol_def_count, sizeof (*entries), hash_entry_addr_cmp); /* Print the symbols. */ for (i = 0; i < ud->map_symbol_def_count; i++) print_one_symbol (entries[i], sec); obstack_free (&map_obstack, entries); } /* Print information about an input section to the map file. */ static void print_input_section (asection *i, bfd_boolean is_discarded) { bfd_size_type size = i->size; int len; bfd_vma addr; init_opb (); print_space (); minfo ("%s", i->name); len = 1 + strlen (i->name); if (len >= SECTION_NAME_MAP_LENGTH - 1) { print_nl (); len = 0; } while (len < SECTION_NAME_MAP_LENGTH) { print_space (); ++len; } if (i->output_section != NULL && i->output_section->owner == link_info.output_bfd) addr = i->output_section->vma + i->output_offset; else { addr = print_dot; if (!is_discarded) size = 0; } minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner); if (size != i->rawsize && i->rawsize != 0) { len = SECTION_NAME_MAP_LENGTH + 3; #ifdef BFD64 len += 16; #else len += 8; #endif while (len > 0) { print_space (); --len; } minfo (_("%W (size before relaxing)\n"), i->rawsize); } if (i->output_section != NULL && i->output_section->owner == link_info.output_bfd) { if (link_info.reduce_memory_overheads) bfd_link_hash_traverse (link_info.hash, print_one_symbol, i); else print_all_symbols (i); /* Update print_dot, but make sure that we do not move it backwards - this could happen if we have overlays and a later overlay is shorter than an earier one. */ if (addr + TO_ADDR (size) > print_dot) print_dot = addr + TO_ADDR (size); } } static void print_fill_statement (lang_fill_statement_type *fill) { size_t size; unsigned char *p; fputs (" FILL mask 0x", config.map_file); for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--) fprintf (config.map_file, "%02x", *p); fputs ("\n", config.map_file); } static void print_data_statement (lang_data_statement_type *data) { int i; bfd_vma addr; bfd_size_type size; const char *name; init_opb (); for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++) print_space (); addr = data->output_offset; if (data->output_section != NULL) addr += data->output_section->vma; switch (data->type) { default: abort (); case BYTE: size = BYTE_SIZE; name = "BYTE"; break; case SHORT: size = SHORT_SIZE; name = "SHORT"; break; case LONG: size = LONG_SIZE; name = "LONG"; break; case QUAD: size = QUAD_SIZE; name = "QUAD"; break; case SQUAD: size = QUAD_SIZE; name = "SQUAD"; break; } minfo ("0x%V %W %s 0x%v", addr, size, name, data->value); if (data->exp->type.node_class != etree_value) { print_space (); exp_print_tree (data->exp); } print_nl (); print_dot = addr + TO_ADDR (size); } /* Print an address statement. These are generated by options like -Ttext. */ static void print_address_statement (lang_address_statement_type *address) { minfo (_("Address of section %s set to "), address->section_name); exp_print_tree (address->address); print_nl (); } /* Print a reloc statement. */ static void print_reloc_statement (lang_reloc_statement_type *reloc) { int i; bfd_vma addr; bfd_size_type size; init_opb (); for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++) print_space (); addr = reloc->output_offset; if (reloc->output_section != NULL) addr += reloc->output_section->vma; size = bfd_get_reloc_size (reloc->howto); minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name); if (reloc->name != NULL) minfo ("%s+", reloc->name); else minfo ("%s+", reloc->section->name); exp_print_tree (reloc->addend_exp); print_nl (); print_dot = addr + TO_ADDR (size); } static void print_padding_statement (lang_padding_statement_type *s) { int len; bfd_vma addr; init_opb (); minfo (" *fill*"); len = sizeof " *fill*" - 1; while (len < SECTION_NAME_MAP_LENGTH) { print_space (); ++len; } addr = s->output_offset; if (s->output_section != NULL) addr += s->output_section->vma; minfo ("0x%V %W ", addr, (bfd_vma) s->size); if (s->fill->size != 0) { size_t size; unsigned char *p; for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--) fprintf (config.map_file, "%02x", *p); } print_nl (); print_dot = addr + TO_ADDR (s->size); } static void print_wild_statement (lang_wild_statement_type *w, lang_output_section_statement_type *os) { struct wildcard_list *sec; print_space (); if (w->filenames_sorted) minfo ("SORT("); if (w->filename != NULL) minfo ("%s", w->filename); else minfo ("*"); if (w->filenames_sorted) minfo (")"); minfo ("("); for (sec = w->section_list; sec; sec = sec->next) { if (sec->spec.sorted) minfo ("SORT("); if (sec->spec.exclude_name_list != NULL) { name_list *tmp; minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name); for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next) minfo (" %s", tmp->name); minfo (") "); } if (sec->spec.name != NULL) minfo ("%s", sec->spec.name); else minfo ("*"); if (sec->spec.sorted) minfo (")"); if (sec->next) minfo (" "); } minfo (")"); print_nl (); print_statement_list (w->children.head, os); } /* Print a group statement. */ static void print_group (lang_group_statement_type *s, lang_output_section_statement_type *os) { fprintf (config.map_file, "START GROUP\n"); print_statement_list (s->children.head, os); fprintf (config.map_file, "END GROUP\n"); } /* Print the list of statements in S. This can be called for any statement type. */ static void print_statement_list (lang_statement_union_type *s, lang_output_section_statement_type *os) { while (s != NULL) { print_statement (s, os); s = s->header.next; } } /* Print the first statement in statement list S. This can be called for any statement type. */ static void print_statement (lang_statement_union_type *s, lang_output_section_statement_type *os) { switch (s->header.type) { default: fprintf (config.map_file, _("Fail with %d\n"), s->header.type); FAIL (); break; case lang_constructors_statement_enum: if (constructor_list.head != NULL) { if (constructors_sorted) minfo (" SORT (CONSTRUCTORS)\n"); else minfo (" CONSTRUCTORS\n"); print_statement_list (constructor_list.head, os); } break; case lang_wild_statement_enum: print_wild_statement (&s->wild_statement, os); break; case lang_address_statement_enum: print_address_statement (&s->address_statement); break; case lang_object_symbols_statement_enum: minfo (" CREATE_OBJECT_SYMBOLS\n"); break; case lang_fill_statement_enum: print_fill_statement (&s->fill_statement); break; case lang_data_statement_enum: print_data_statement (&s->data_statement); break; case lang_reloc_statement_enum: print_reloc_statement (&s->reloc_statement); break; case lang_input_section_enum: print_input_section (s->input_section.section, FALSE); break; case lang_padding_statement_enum: print_padding_statement (&s->padding_statement); break; case lang_output_section_statement_enum: print_output_section_statement (&s->output_section_statement); break; case lang_assignment_statement_enum: print_assignment (&s->assignment_statement, os); break; case lang_target_statement_enum: fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target); break; case lang_output_statement_enum: minfo ("OUTPUT(%s", s->output_statement.name); if (output_target != NULL) minfo (" %s", output_target); minfo (")\n"); break; case lang_input_statement_enum: print_input_statement (&s->input_statement); break; case lang_group_statement_enum: print_group (&s->group_statement, os); break; case lang_insert_statement_enum: minfo ("INSERT %s %s\n", s->insert_statement.is_before ? "BEFORE" : "AFTER", s->insert_statement.where); break; } } static void print_statements (void) { print_statement_list (statement_list.head, abs_output_section); } /* Print the first N statements in statement list S to STDERR. If N == 0, nothing is printed. If N < 0, the entire list is printed. Intended to be called from GDB. */ void dprint_statement (lang_statement_union_type *s, int n) { FILE *map_save = config.map_file; config.map_file = stderr; if (n < 0) print_statement_list (s, abs_output_section); else { while (s && --n >= 0) { print_statement (s, abs_output_section); s = s->header.next; } } config.map_file = map_save; } static void insert_pad (lang_statement_union_type **ptr, fill_type *fill, unsigned int alignment_needed, asection *output_section, bfd_vma dot) { static fill_type zero_fill = { 1, { 0 } }; lang_statement_union_type *pad = NULL; if (ptr != &statement_list.head) pad = ((lang_statement_union_type *) ((char *) ptr - offsetof (lang_statement_union_type, header.next))); if (pad != NULL && pad->header.type == lang_padding_statement_enum && pad->padding_statement.output_section == output_section) { /* Use the existing pad statement. */ } else if ((pad = *ptr) != NULL && pad->header.type == lang_padding_statement_enum && pad->padding_statement.output_section == output_section) { /* Use the existing pad statement. */ } else { /* Make a new padding statement, linked into existing chain. */ pad = (lang_statement_union_type *) stat_alloc (sizeof (lang_padding_statement_type)); pad->header.next = *ptr; *ptr = pad; pad->header.type = lang_padding_statement_enum; pad->padding_statement.output_section = output_section; if (fill == NULL) fill = &zero_fill; pad->padding_statement.fill = fill; } pad->padding_statement.output_offset = dot - output_section->vma; pad->padding_statement.size = alignment_needed; output_section->size += alignment_needed; } /* Work out how much this section will move the dot point. */ static bfd_vma size_input_section (lang_statement_union_type **this_ptr, lang_output_section_statement_type *output_section_statement, fill_type *fill, bfd_vma dot) { lang_input_section_type *is = &((*this_ptr)->input_section); asection *i = is->section; if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag && (i->flags & SEC_EXCLUDE) == 0) { unsigned int alignment_needed; asection *o; /* Align this section first to the input sections requirement, then to the output section's requirement. If this alignment is greater than any seen before, then record it too. Perform the alignment by inserting a magic 'padding' statement. */ if (output_section_statement->subsection_alignment != -1) i->alignment_power = output_section_statement->subsection_alignment; o = output_section_statement->bfd_section; if (o->alignment_power < i->alignment_power) o->alignment_power = i->alignment_power; alignment_needed = align_power (dot, i->alignment_power) - dot; if (alignment_needed != 0) { insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot); dot += alignment_needed; } /* Remember where in the output section this input section goes. */ i->output_offset = dot - o->vma; /* Mark how big the output section must be to contain this now. */ dot += TO_ADDR (i->size); o->size = TO_SIZE (dot - o->vma); } else { i->output_offset = i->vma - output_section_statement->bfd_section->vma; } return dot; } static int sort_sections_by_lma (const void *arg1, const void *arg2) { const asection *sec1 = *(const asection **) arg1; const asection *sec2 = *(const asection **) arg2; if (bfd_section_lma (sec1->owner, sec1) < bfd_section_lma (sec2->owner, sec2)) return -1; else if (bfd_section_lma (sec1->owner, sec1) > bfd_section_lma (sec2->owner, sec2)) return 1; else if (sec1->id < sec2->id) return -1; else if (sec1->id > sec2->id) return 1; return 0; } #define IGNORE_SECTION(s) \ ((s->flags & SEC_NEVER_LOAD) != 0 \ || (s->flags & SEC_ALLOC) == 0 \ || ((s->flags & SEC_THREAD_LOCAL) != 0 \ && (s->flags & SEC_LOAD) == 0)) /* Check to see if any allocated sections overlap with other allocated sections. This can happen if a linker script specifies the output section addresses of the two sections. Also check whether any memory region has overflowed. */ static void lang_check_section_addresses (void) { asection *s, *os; asection **sections, **spp; unsigned int count; bfd_vma s_start; bfd_vma s_end; bfd_vma os_start; bfd_vma os_end; bfd_size_type amt; lang_memory_region_type *m; if (bfd_count_sections (link_info.output_bfd) <= 1) return; amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *); sections = (asection **) xmalloc (amt); /* Scan all sections in the output list. */ count = 0; for (s = link_info.output_bfd->sections; s != NULL; s = s->next) { /* Only consider loadable sections with real contents. */ if ((s->flags & SEC_NEVER_LOAD) || !(s->flags & SEC_LOAD) || !(s->flags & SEC_ALLOC) || s->size == 0) continue; sections[count] = s; count++; } if (count <= 1) return; qsort (sections, (size_t) count, sizeof (asection *), sort_sections_by_lma); spp = sections; s = *spp++; s_start = bfd_section_lma (link_info.output_bfd, s); s_end = s_start + TO_ADDR (s->size) - 1; for (count--; count; count--) { /* We must check the sections' LMA addresses not their VMA addresses because overlay sections can have overlapping VMAs but they must have distinct LMAs. */ os = s; os_start = s_start; os_end = s_end; s = *spp++; s_start = bfd_section_lma (link_info.output_bfd, s); s_end = s_start + TO_ADDR (s->size) - 1; /* Look for an overlap. */ if (s_end >= os_start && s_start <= os_end) einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"), s->name, s_start, s_end, os->name, os_start, os_end); } free (sections); /* If any memory region has overflowed, report by how much. We do not issue this diagnostic for regions that had sections explicitly placed outside their bounds; os_region_check's diagnostics are adequate for that case. FIXME: It is conceivable that m->current - (m->origin + m->length) might overflow a 32-bit integer. There is, alas, no way to print a bfd_vma quantity in decimal. */ for (m = lang_memory_region_list; m; m = m->next) if (m->had_full_message) einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"), m->name_list.name, (long)(m->current - (m->origin + m->length))); } /* Make sure the new address is within the region. We explicitly permit the current address to be at the exact end of the region when the address is non-zero, in case the region is at the end of addressable memory and the calculation wraps around. */ static void os_region_check (lang_output_section_statement_type *os, lang_memory_region_type *region, etree_type *tree, bfd_vma base) { if ((region->current < region->origin || (region->current - region->origin > region->length)) && ((region->current != region->origin + region->length) || base == 0)) { if (tree != NULL) { einfo (_("%X%P: address 0x%v of %B section `%s'" " is not within region `%s'\n"), region->current, os->bfd_section->owner, os->bfd_section->name, region->name_list.name); } else if (!region->had_full_message) { region->had_full_message = TRUE; einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"), os->bfd_section->owner, os->bfd_section->name, region->name_list.name); } } } /* Set the sizes for all the output sections. */ static bfd_vma lang_size_sections_1 (lang_statement_union_type *s, lang_output_section_statement_type *output_section_statement, lang_statement_union_type **prev, fill_type *fill, bfd_vma dot, bfd_boolean *relax, bfd_boolean check_regions) { /* Size up the sections from their constituent parts. */ for (; s != NULL; s = s->header.next) { switch (s->header.type) { case lang_output_section_statement_enum: { bfd_vma newdot, after; lang_output_section_statement_type *os; lang_memory_region_type *r; os = &s->output_section_statement; if (os->addr_tree == NULL && link_info.relocatable) os->addr_tree = exp_intop (0); if (os->addr_tree != NULL) { os->processed_vma = FALSE; exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot); if (expld.result.valid_p) dot = expld.result.value + expld.result.section->vma; else if (expld.phase != lang_mark_phase_enum) einfo (_("%F%S: non constant or forward reference" " address expression for section %s\n"), os->name); } if (os->bfd_section == NULL) /* This section was removed or never actually created. */ break; /* If this is a COFF shared library section, use the size and address from the input section. FIXME: This is COFF specific; it would be cleaner if there were some other way to do this, but nothing simple comes to mind. */ if (((bfd_get_flavour (link_info.output_bfd) == bfd_target_ecoff_flavour) || (bfd_get_flavour (link_info.output_bfd) == bfd_target_coff_flavour)) && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0) { asection *input; if (os->children.head == NULL || os->children.head->header.next != NULL || (os->children.head->header.type != lang_input_section_enum)) einfo (_("%P%X: Internal error on COFF shared library" " section %s\n"), os->name); input = os->children.head->input_section.section; bfd_set_section_vma (os->bfd_section->owner, os->bfd_section, bfd_section_vma (input->owner, input)); os->bfd_section->size = input->size; break; } newdot = dot; if (bfd_is_abs_section (os->bfd_section)) { /* No matter what happens, an abs section starts at zero. */ ASSERT (os->bfd_section->vma == 0); } else { int align; if (os->addr_tree == NULL) { /* No address specified for this section, get one from the region specification. */ if (os->region == NULL || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)) && os->region->name_list.name[0] == '*' && strcmp (os->region->name_list.name, DEFAULT_MEMORY_REGION) == 0)) { os->region = lang_memory_default (os->bfd_section); } /* If a loadable section is using the default memory region, and some non default memory regions were defined, issue an error message. */ if (!os->ignored && !IGNORE_SECTION (os->bfd_section) && ! link_info.relocatable && check_regions && strcmp (os->region->name_list.name, DEFAULT_MEMORY_REGION) == 0 && lang_memory_region_list != NULL && (strcmp (lang_memory_region_list->name_list.name, DEFAULT_MEMORY_REGION) != 0 || lang_memory_region_list->next != NULL) && expld.phase != lang_mark_phase_enum) { /* By default this is an error rather than just a warning because if we allocate the section to the default memory region we can end up creating an excessively large binary, or even seg faulting when attempting to perform a negative seek. See sources.redhat.com/ml/binutils/2003-04/msg00423.html for an example of this. This behaviour can be overridden by the using the --no-check-sections switch. */ if (command_line.check_section_addresses) einfo (_("%P%F: error: no memory region specified" " for loadable section `%s'\n"), bfd_get_section_name (link_info.output_bfd, os->bfd_section)); else einfo (_("%P: warning: no memory region specified" " for loadable section `%s'\n"), bfd_get_section_name (link_info.output_bfd, os->bfd_section)); } newdot = os->region->current; align = os->bfd_section->alignment_power; } else align = os->section_alignment; /* Align to what the section needs. */ if (align > 0) { bfd_vma savedot = newdot; newdot = align_power (newdot, align); if (newdot != savedot && (config.warn_section_align || os->addr_tree != NULL) && expld.phase != lang_mark_phase_enum) einfo (_("%P: warning: changing start of section" " %s by %lu bytes\n"), os->name, (unsigned long) (newdot - savedot)); } bfd_set_section_vma (0, os->bfd_section, newdot); os->bfd_section->output_offset = 0; } lang_size_sections_1 (os->children.head, os, &os->children.head, os->fill, newdot, relax, check_regions); os->processed_vma = TRUE; if (bfd_is_abs_section (os->bfd_section) || os->ignored) /* Except for some special linker created sections, no output section should change from zero size after strip_excluded_output_sections. A non-zero size on an ignored section indicates that some input section was not sized early enough. */ ASSERT (os->bfd_section->size == 0); else { dot = os->bfd_section->vma; /* Put the section within the requested block size, or align at the block boundary. */ after = ((dot + TO_ADDR (os->bfd_section->size) + os->block_value - 1) & - (bfd_vma) os->block_value); os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma); } /* Set section lma. */ r = os->region; if (r == NULL) r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE); if (os->load_base) { bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base"); os->bfd_section->lma = lma; } else if (os->lma_region != NULL) { bfd_vma lma = os->lma_region->current; if (os->section_alignment != -1) lma = align_power (lma, os->section_alignment); os->bfd_section->lma = lma; } else if (r->last_os != NULL && (os->bfd_section->flags & SEC_ALLOC) != 0) { bfd_vma lma; asection *last; last = r->last_os->output_section_statement.bfd_section; /* A backwards move of dot should be accompanied by an explicit assignment to the section LMA (ie. os->load_base set) because backwards moves can create overlapping LMAs. */ if (dot < last->vma && os->bfd_section->size != 0 && dot + os->bfd_section->size <= last->vma) { /* If dot moved backwards then leave lma equal to vma. This is the old default lma, which might just happen to work when the backwards move is sufficiently large. Nag if this changes anything, so people can fix their linker scripts. */ if (last->vma != last->lma) einfo (_("%P: warning: dot moved backwards before `%s'\n"), os->name); } else { /* If this is an overlay, set the current lma to that at the end of the previous section. */ if (os->sectype == overlay_section) lma = last->lma + last->size; /* Otherwise, keep the same lma to vma relationship as the previous section. */ else lma = dot + last->lma - last->vma; if (os->section_alignment != -1) lma = align_power (lma, os->section_alignment); os->bfd_section->lma = lma; } } os->processed_lma = TRUE; if (bfd_is_abs_section (os->bfd_section) || os->ignored) break; /* Keep track of normal sections using the default lma region. We use this to set the lma for following sections. Overlays or other linker script assignment to lma might mean that the default lma == vma is incorrect. To avoid warnings about dot moving backwards when using -Ttext, don't start tracking sections until we find one of non-zero size or with lma set differently to vma. */ if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0) && (os->bfd_section->flags & SEC_ALLOC) != 0 && (os->bfd_section->size != 0 || (r->last_os == NULL && os->bfd_section->vma != os->bfd_section->lma) || (r->last_os != NULL && dot >= (r->last_os->output_section_statement .bfd_section->vma))) && os->lma_region == NULL && !link_info.relocatable) r->last_os = s; /* .tbss sections effectively have zero size. */ if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0 || link_info.relocatable) dot += TO_ADDR (os->bfd_section->size); if (os->update_dot_tree != 0) exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot); /* Update dot in the region ? We only do this if the section is going to be allocated, since unallocated sections do not contribute to the region's overall size in memory. If the SEC_NEVER_LOAD bit is not set, it will affect the addresses of sections after it. We have to update dot. */ if (os->region != NULL && ((os->bfd_section->flags & SEC_NEVER_LOAD) == 0 || (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))) { os->region->current = dot; if (check_regions) /* Make sure the new address is within the region. */ os_region_check (os, os->region, os->addr_tree, os->bfd_section->vma); if (os->lma_region != NULL && os->lma_region != os->region && (os->bfd_section->flags & SEC_LOAD)) { os->lma_region->current = os->bfd_section->lma + TO_ADDR (os->bfd_section->size); if (check_regions) os_region_check (os, os->lma_region, NULL, os->bfd_section->lma); } } } break; case lang_constructors_statement_enum: dot = lang_size_sections_1 (constructor_list.head, output_section_statement, &s->wild_statement.children.head, fill, dot, relax, check_regions); break; case lang_data_statement_enum: { unsigned int size = 0; s->data_statement.output_offset = dot - output_section_statement->bfd_section->vma; s->data_statement.output_section = output_section_statement->bfd_section; /* We might refer to provided symbols in the expression, and need to mark them as needed. */ exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot); switch (s->data_statement.type) { default: abort (); case QUAD: case SQUAD: size = QUAD_SIZE; break; case LONG: size = LONG_SIZE; break; case SHORT: size = SHORT_SIZE; break; case BYTE: size = BYTE_SIZE; break; } if (size < TO_SIZE ((unsigned) 1)) size = TO_SIZE ((unsigned) 1); dot += TO_ADDR (size); output_section_statement->bfd_section->size += size; } break; case lang_reloc_statement_enum: { int size; s->reloc_statement.output_offset = dot - output_section_statement->bfd_section->vma; s->reloc_statement.output_section = output_section_statement->bfd_section; size = bfd_get_reloc_size (s->reloc_statement.howto); dot += TO_ADDR (size); output_section_statement->bfd_section->size += size; } break; case lang_wild_statement_enum: dot = lang_size_sections_1 (s->wild_statement.children.head, output_section_statement, &s->wild_statement.children.head, fill, dot, relax, check_regions); break; case lang_object_symbols_statement_enum: link_info.create_object_symbols_section = output_section_statement->bfd_section; break; case lang_output_statement_enum: case lang_target_statement_enum: break; case lang_input_section_enum: { asection *i; i = (*prev)->input_section.section; if (relax) { bfd_boolean again; if (! bfd_relax_section (i->owner, i, &link_info, &again)) einfo (_("%P%F: can't relax section: %E\n")); if (again) *relax = TRUE; } dot = size_input_section (prev, output_section_statement, output_section_statement->fill, dot); } break; case lang_input_statement_enum: break; case lang_fill_statement_enum: s->fill_statement.output_section = output_section_statement->bfd_section; fill = s->fill_statement.fill; break; case lang_assignment_statement_enum: { bfd_vma newdot = dot; etree_type *tree = s->assignment_statement.exp; expld.dataseg.relro = exp_dataseg_relro_none; exp_fold_tree (tree, output_section_statement->bfd_section, &newdot); if (expld.dataseg.relro == exp_dataseg_relro_start) { if (!expld.dataseg.relro_start_stat) expld.dataseg.relro_start_stat = s; else { ASSERT (expld.dataseg.relro_start_stat == s); } } else if (expld.dataseg.relro == exp_dataseg_relro_end) { if (!expld.dataseg.relro_end_stat) expld.dataseg.relro_end_stat = s; else { ASSERT (expld.dataseg.relro_end_stat == s); } } expld.dataseg.relro = exp_dataseg_relro_none; /* This symbol is relative to this section. */ if ((tree->type.node_class == etree_provided || tree->type.node_class == etree_assign) && (tree->assign.dst [0] != '.' || tree->assign.dst [1] != '\0')) output_section_statement->section_relative_symbol = 1; if (!output_section_statement->ignored) { if (output_section_statement == abs_output_section) { /* If we don't have an output section, then just adjust the default memory address. */ lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE)->current = newdot; } else if (newdot != dot) { /* Insert a pad after this statement. We can't put the pad before when relaxing, in case the assignment references dot. */ insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot), output_section_statement->bfd_section, dot); /* Don't neuter the pad below when relaxing. */ s = s->header.next; /* If dot is advanced, this implies that the section should have space allocated to it, unless the user has explicitly stated that the section should never be loaded. */ if (!(output_section_statement->flags & SEC_NEVER_LOAD)) output_section_statement->bfd_section->flags |= SEC_ALLOC; } dot = newdot; } } break; case lang_padding_statement_enum: /* If this is the first time lang_size_sections is called, we won't have any padding statements. If this is the second or later passes when relaxing, we should allow padding to shrink. If padding is needed on this pass, it will be added back in. */ s->padding_statement.size = 0; /* Make sure output_offset is valid. If relaxation shrinks the section and this pad isn't needed, it's possible to have output_offset larger than the final size of the section. bfd_set_section_contents will complain even for a pad size of zero. */ s->padding_statement.output_offset = dot - output_section_statement->bfd_section->vma; break; case lang_group_statement_enum: dot = lang_size_sections_1 (s->group_statement.children.head, output_section_statement, &s->group_statement.children.head, fill, dot, relax, check_regions); break; case lang_insert_statement_enum: break; /* We can only get here when relaxing is turned on. */ case lang_address_statement_enum: break; default: FAIL (); break; } prev = &s->header.next; } return dot; } /* Callback routine that is used in _bfd_elf_map_sections_to_segments. The BFD library has set NEW_SEGMENT to TRUE iff it thinks that CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different segments. We are allowed an opportunity to override this decision. */ bfd_boolean ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED, bfd * abfd ATTRIBUTE_UNUSED, asection * current_section, asection * previous_section, bfd_boolean new_segment) { lang_output_section_statement_type * cur; lang_output_section_statement_type * prev; /* The checks below are only necessary when the BFD library has decided that the two sections ought to be placed into the same segment. */ if (new_segment) return TRUE; /* Paranoia checks. */ if (current_section == NULL || previous_section == NULL) return new_segment; /* Find the memory regions associated with the two sections. We call lang_output_section_find() here rather than scanning the list of output sections looking for a matching section pointer because if we have a large number of sections then a hash lookup is faster. */ cur = lang_output_section_find (current_section->name); prev = lang_output_section_find (previous_section->name); /* More paranoia. */ if (cur == NULL || prev == NULL) return new_segment; /* If the regions are different then force the sections to live in different segments. See the email thread starting at the following URL for the reasons why this is necessary: http://sourceware.org/ml/binutils/2007-02/msg00216.html */ return cur->region != prev->region; } void one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions) { lang_statement_iteration++; lang_size_sections_1 (statement_list.head, abs_output_section, &statement_list.head, 0, 0, relax, check_regions); } void lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions) { expld.phase = lang_allocating_phase_enum; expld.dataseg.phase = exp_dataseg_none; one_lang_size_sections_pass (relax, check_regions); if (expld.dataseg.phase == exp_dataseg_end_seen && link_info.relro && expld.dataseg.relro_end) { /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try to put expld.dataseg.relro on a (common) page boundary. */ bfd_vma min_base, old_base, relro_end, maxpage; expld.dataseg.phase = exp_dataseg_relro_adjust; maxpage = expld.dataseg.maxpagesize; /* MIN_BASE is the absolute minimum address we are allowed to start the read-write segment (byte before will be mapped read-only). */ min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1); /* OLD_BASE is the address for a feasible minimum address which will still not cause a data overlap inside MAXPAGE causing file offset skip by MAXPAGE. */ old_base = expld.dataseg.base; expld.dataseg.base += (-expld.dataseg.relro_end & (expld.dataseg.pagesize - 1)); /* Compute the expected PT_GNU_RELRO segment end. */ relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1) & ~(expld.dataseg.pagesize - 1)); if (min_base + maxpage < expld.dataseg.base) { expld.dataseg.base -= maxpage; relro_end -= maxpage; } lang_reset_memory_regions (); one_lang_size_sections_pass (relax, check_regions); if (expld.dataseg.relro_end > relro_end) { /* The alignment of sections between DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END caused huge padding to be inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so that the section alignments will fit in. */ asection *sec; unsigned int max_alignment_power = 0; /* Find maximum alignment power of sections between DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */ for (sec = link_info.output_bfd->sections; sec; sec = sec->next) if (sec->vma >= expld.dataseg.base && sec->vma < expld.dataseg.relro_end && sec->alignment_power > max_alignment_power) max_alignment_power = sec->alignment_power; if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize) { if (expld.dataseg.base - (1 << max_alignment_power) < old_base) expld.dataseg.base += expld.dataseg.pagesize; expld.dataseg.base -= (1 << max_alignment_power); lang_reset_memory_regions (); one_lang_size_sections_pass (relax, check_regions); } } link_info.relro_start = expld.dataseg.base; link_info.relro_end = expld.dataseg.relro_end; } else if (expld.dataseg.phase == exp_dataseg_end_seen) { /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether a page could be saved in the data segment. */ bfd_vma first, last; first = -expld.dataseg.base & (expld.dataseg.pagesize - 1); last = expld.dataseg.end & (expld.dataseg.pagesize - 1); if (first && last && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1)) != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1))) && first + last <= expld.dataseg.pagesize) { expld.dataseg.phase = exp_dataseg_adjust; lang_reset_memory_regions (); one_lang_size_sections_pass (relax, check_regions); } } expld.phase = lang_final_phase_enum; } /* Worker function for lang_do_assignments. Recursiveness goes here. */ static bfd_vma lang_do_assignments_1 (lang_statement_union_type *s, lang_output_section_statement_type *current_os, fill_type *fill, bfd_vma dot) { for (; s != NULL; s = s->header.next) { switch (s->header.type) { case lang_constructors_statement_enum: dot = lang_do_assignments_1 (constructor_list.head, current_os, fill, dot); break; case lang_output_section_statement_enum: { lang_output_section_statement_type *os; os = &(s->output_section_statement); if (os->bfd_section != NULL && !os->ignored) { dot = os->bfd_section->vma; lang_do_assignments_1 (os->children.head, os, os->fill, dot); /* .tbss sections effectively have zero size. */ if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0 || link_info.relocatable) dot += TO_ADDR (os->bfd_section->size); if (os->update_dot_tree != NULL) exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot); } } break; case lang_wild_statement_enum: dot = lang_do_assignments_1 (s->wild_statement.children.head, current_os, fill, dot); break; case lang_object_symbols_statement_enum: case lang_output_statement_enum: case lang_target_statement_enum: break; case lang_data_statement_enum: exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot); if (expld.result.valid_p) s->data_statement.value = (expld.result.value + expld.result.section->vma); else einfo (_("%F%P: invalid data statement\n")); { unsigned int size; switch (s->data_statement.type) { default: abort (); case QUAD: case SQUAD: size = QUAD_SIZE; break; case LONG: size = LONG_SIZE; break; case SHORT: size = SHORT_SIZE; break; case BYTE: size = BYTE_SIZE; break; } if (size < TO_SIZE ((unsigned) 1)) size = TO_SIZE ((unsigned) 1); dot += TO_ADDR (size); } break; case lang_reloc_statement_enum: exp_fold_tree (s->reloc_statement.addend_exp, bfd_abs_section_ptr, &dot); if (expld.result.valid_p) s->reloc_statement.addend_value = expld.result.value; else einfo (_("%F%P: invalid reloc statement\n")); dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto)); break; case lang_input_section_enum: { asection *in = s->input_section.section; if ((in->flags & SEC_EXCLUDE) == 0) dot += TO_ADDR (in->size); } break; case lang_input_statement_enum: break; case lang_fill_statement_enum: fill = s->fill_statement.fill; break; case lang_assignment_statement_enum: exp_fold_tree (s->assignment_statement.exp, current_os->bfd_section, &dot); break; case lang_padding_statement_enum: dot += TO_ADDR (s->padding_statement.size); break; case lang_group_statement_enum: dot = lang_do_assignments_1 (s->group_statement.children.head, current_os, fill, dot); break; case lang_insert_statement_enum: break; case lang_address_statement_enum: break; default: FAIL (); break; } } return dot; } void lang_do_assignments (void) { lang_statement_iteration++; lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0); } /* Fix any .startof. or .sizeof. symbols. When the assemblers see the operator .startof. (section_name), it produces an undefined symbol .startof.section_name. Similarly, when it sees .sizeof. (section_name), it produces an undefined symbol .sizeof.section_name. For all the output sections, we look for such symbols, and set them to the correct value. */ static void lang_set_startof (void) { asection *s; if (link_info.relocatable) return; for (s = link_info.output_bfd->sections; s != NULL; s = s->next) { const char *secname; char *buf; struct bfd_link_hash_entry *h; secname = bfd_get_section_name (link_info.output_bfd, s); buf = (char *) xmalloc (10 + strlen (secname)); sprintf (buf, ".startof.%s", secname); h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE); if (h != NULL && h->type == bfd_link_hash_undefined) { h->type = bfd_link_hash_defined; h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s); h->u.def.section = bfd_abs_section_ptr; } sprintf (buf, ".sizeof.%s", secname); h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE); if (h != NULL && h->type == bfd_link_hash_undefined) { h->type = bfd_link_hash_defined; h->u.def.value = TO_ADDR (s->size); h->u.def.section = bfd_abs_section_ptr; } free (buf); } } static void lang_end (void) { struct bfd_link_hash_entry *h; bfd_boolean warn; if ((link_info.relocatable && !link_info.gc_sections) || (link_info.shared && !link_info.executable)) warn = entry_from_cmdline; else warn = TRUE; /* Force the user to specify a root when generating a relocatable with --gc-sections. */ if (link_info.gc_sections && link_info.relocatable && (entry_symbol.name == NULL && ldlang_undef_chain_list_head == NULL)) einfo (_("%P%F: gc-sections requires either an entry or " "an undefined symbol\n")); if (entry_symbol.name == NULL) { /* No entry has been specified. Look for the default entry, but don't warn if we don't find it. */ entry_symbol.name = entry_symbol_default; warn = FALSE; } h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name, FALSE, FALSE, TRUE); if (h != NULL && (h->type == bfd_link_hash_defined || h->type == bfd_link_hash_defweak) && h->u.def.section->output_section != NULL) { bfd_vma val; val = (h->u.def.value + bfd_get_section_vma (link_info.output_bfd, h->u.def.section->output_section) + h->u.def.section->output_offset); if (! bfd_set_start_address (link_info.output_bfd, val)) einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name); } else { bfd_vma val; const char *send; /* We couldn't find the entry symbol. Try parsing it as a number. */ val = bfd_scan_vma (entry_symbol.name, &send, 0); if (*send == '\0') { if (! bfd_set_start_address (link_info.output_bfd, val)) einfo (_("%P%F: can't set start address\n")); } else { asection *ts; /* Can't find the entry symbol, and it's not a number. Use the first address in the text section. */ ts = bfd_get_section_by_name (link_info.output_bfd, entry_section); if (ts != NULL) { if (warn) einfo (_("%P: warning: cannot find entry symbol %s;" " defaulting to %V\n"), entry_symbol.name, bfd_get_section_vma (link_info.output_bfd, ts)); if (!(bfd_set_start_address (link_info.output_bfd, bfd_get_section_vma (link_info.output_bfd, ts)))) einfo (_("%P%F: can't set start address\n")); } else { if (warn) einfo (_("%P: warning: cannot find entry symbol %s;" " not setting start address\n"), entry_symbol.name); } } } /* Don't bfd_hash_table_free (&lang_definedness_table); map file output may result in a call of lang_track_definedness. */ } /* This is a small function used when we want to ignore errors from BFD. */ static void ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...) { /* Don't do anything. */ } /* Check that the architecture of all the input files is compatible with the output file. Also call the backend to let it do any other checking that is needed. */ static void lang_check (void) { lang_statement_union_type *file; bfd *input_bfd; const bfd_arch_info_type *compatible; for (file = file_chain.head; file != NULL; file = file->input_statement.next) { input_bfd = file->input_statement.the_bfd; compatible = bfd_arch_get_compatible (input_bfd, link_info.output_bfd, command_line.accept_unknown_input_arch); /* In general it is not possible to perform a relocatable link between differing object formats when the input file has relocations, because the relocations in the input format may not have equivalent representations in the output format (and besides BFD does not translate relocs for other link purposes than a final link). */ if ((link_info.relocatable || link_info.emitrelocations) && (compatible == NULL || (bfd_get_flavour (input_bfd) != bfd_get_flavour (link_info.output_bfd))) && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0) { einfo (_("%P%F: Relocatable linking with relocations from" " format %s (%B) to format %s (%B) is not supported\n"), bfd_get_target (input_bfd), input_bfd, bfd_get_target (link_info.output_bfd), link_info.output_bfd); /* einfo with %F exits. */ } if (compatible == NULL) { if (command_line.warn_mismatch) einfo (_("%P%X: %s architecture of input file `%B'" " is incompatible with %s output\n"), bfd_printable_name (input_bfd), input_bfd, bfd_printable_name (link_info.output_bfd)); } else if (bfd_count_sections (input_bfd)) { /* If the input bfd has no contents, it shouldn't set the private data of the output bfd. */ bfd_error_handler_type pfn = NULL; /* If we aren't supposed to warn about mismatched input files, temporarily set the BFD error handler to a function which will do nothing. We still want to call bfd_merge_private_bfd_data, since it may set up information which is needed in the output file. */ if (! command_line.warn_mismatch) pfn = bfd_set_error_handler (ignore_bfd_errors); if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd)) { if (command_line.warn_mismatch) einfo (_("%P%X: failed to merge target specific data" " of file %B\n"), input_bfd); } if (! command_line.warn_mismatch) bfd_set_error_handler (pfn); } } } /* Look through all the global common symbols and attach them to the correct section. The -sort-common command line switch may be used to roughly sort the entries by alignment. */ static void lang_common (void) { if (command_line.inhibit_common_definition) return; if (link_info.relocatable && ! command_line.force_common_definition) return; if (! config.sort_common) bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL); else { unsigned int power; if (config.sort_common == sort_descending) { for (power = 4; power > 0; power--) bfd_link_hash_traverse (link_info.hash, lang_one_common, &power); power = 0; bfd_link_hash_traverse (link_info.hash, lang_one_common, &power); } else { for (power = 0; power <= 4; power++) bfd_link_hash_traverse (link_info.hash, lang_one_common, &power); power = UINT_MAX; bfd_link_hash_traverse (link_info.hash, lang_one_common, &power); } } } /* Place one common symbol in the correct section. */ static bfd_boolean lang_one_common (struct bfd_link_hash_entry *h, void *info) { unsigned int power_of_two; bfd_vma size; asection *section; if (h->type != bfd_link_hash_common) return TRUE; size = h->u.c.size; power_of_two = h->u.c.p->alignment_power; if (config.sort_common == sort_descending && power_of_two < *(unsigned int *) info) return TRUE; else if (config.sort_common == sort_ascending && power_of_two > *(unsigned int *) info) return TRUE; section = h->u.c.p->section; if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h)) einfo (_("%P%F: Could not define common symbol `%T': %E\n"), h->root.string); if (config.map_file != NULL) { static bfd_boolean header_printed; int len; char *name; char buf[50]; if (! header_printed) { minfo (_("\nAllocating common symbols\n")); minfo (_("Common symbol size file\n\n")); header_printed = TRUE; } name = bfd_demangle (link_info.output_bfd, h->root.string, DMGL_ANSI | DMGL_PARAMS); if (name == NULL) { minfo ("%s", h->root.string); len = strlen (h->root.string); } else { minfo ("%s", name); len = strlen (name); free (name); } if (len >= 19) { print_nl (); len = 0; } while (len < 20) { print_space (); ++len; } minfo ("0x"); if (size <= 0xffffffff) sprintf (buf, "%lx", (unsigned long) size); else sprintf_vma (buf, size); minfo ("%s", buf); len = strlen (buf); while (len < 16) { print_space (); ++len; } minfo ("%B\n", section->owner); } return TRUE; } /* Run through the input files and ensure that every input section has somewhere to go. If one is found without a destination then create an input request and place it into the statement tree. */ static void lang_place_orphans (void) { LANG_FOR_EACH_INPUT_STATEMENT (file) { asection *s; for (s = file->the_bfd->sections; s != NULL; s = s->next) { if (s->output_section == NULL) { /* This section of the file is not attached, root around for a sensible place for it to go. */ if (file->just_syms_flag) bfd_link_just_syms (file->the_bfd, s, &link_info); else if ((s->flags & SEC_EXCLUDE) != 0) s->output_section = bfd_abs_section_ptr; else if (strcmp (s->name, "COMMON") == 0) { /* This is a lonely common section which must have come from an archive. We attach to the section with the wildcard. */ if (! link_info.relocatable || command_line.force_common_definition) { if (default_common_section == NULL) default_common_section = lang_output_section_statement_lookup (".bss", 0, TRUE); lang_add_section (&default_common_section->children, s, default_common_section); } } else { const char *name = s->name; int constraint = 0; if (config.unique_orphan_sections || unique_section_p (s)) constraint = SPECIAL; if (!ldemul_place_orphan (s, name, constraint)) { lang_output_section_statement_type *os; os = lang_output_section_statement_lookup (name, constraint, TRUE); lang_add_section (&os->children, s, os); } } } } } } void lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert) { flagword *ptr_flags; ptr_flags = invert ? &ptr->not_flags : &ptr->flags; while (*flags) { switch (*flags) { case 'A': case 'a': *ptr_flags |= SEC_ALLOC; break; case 'R': case 'r': *ptr_flags |= SEC_READONLY; break; case 'W': case 'w': *ptr_flags |= SEC_DATA; break; case 'X': case 'x': *ptr_flags |= SEC_CODE; break; case 'L': case 'l': case 'I': case 'i': *ptr_flags |= SEC_LOAD; break; default: einfo (_("%P%F: invalid syntax in flags\n")); break; } flags++; } } /* Call a function on each input file. This function will be called on an archive, but not on the elements. */ void lang_for_each_input_file (void (*func) (lang_input_statement_type *)) { lang_input_statement_type *f; for (f = (lang_input_statement_type *) input_file_chain.head; f != NULL; f = (lang_input_statement_type *) f->next_real_file) func (f); } /* Call a function on each file. The function will be called on all the elements of an archive which are included in the link, but will not be called on the archive file itself. */ void lang_for_each_file (void (*func) (lang_input_statement_type *)) { LANG_FOR_EACH_INPUT_STATEMENT (f) { func (f); } } void ldlang_add_file (lang_input_statement_type *entry) { lang_statement_append (&file_chain, (lang_statement_union_type *) entry, &entry->next); /* The BFD linker needs to have a list of all input BFDs involved in a link. */ ASSERT (entry->the_bfd->link_next == NULL); ASSERT (entry->the_bfd != link_info.output_bfd); *link_info.input_bfds_tail = entry->the_bfd; link_info.input_bfds_tail = &entry->the_bfd->link_next; entry->the_bfd->usrdata = entry; bfd_set_gp_size (entry->the_bfd, g_switch_value); /* Look through the sections and check for any which should not be included in the link. We need to do this now, so that we can notice when the backend linker tries to report multiple definition errors for symbols which are in sections we aren't going to link. FIXME: It might be better to entirely ignore symbols which are defined in sections which are going to be discarded. This would require modifying the backend linker for each backend which might set the SEC_LINK_ONCE flag. If we do this, we should probably handle SEC_EXCLUDE in the same way. */ bfd_map_over_sections (entry->the_bfd, section_already_linked, entry); } void lang_add_output (const char *name, int from_script) { /* Make -o on command line override OUTPUT in script. */ if (!had_output_filename || !from_script) { output_filename = name; had_output_filename = TRUE; } } static lang_output_section_statement_type *current_section; static int topower (int x) { unsigned int i = 1; int l; if (x < 0) return -1; for (l = 0; l < 32; l++) { if (i >= (unsigned int) x) return l; i <<= 1; } return 0; } lang_output_section_statement_type * lang_enter_output_section_statement (const char *output_section_statement_name, etree_type *address_exp, enum section_type sectype, etree_type *align, etree_type *subalign, etree_type *ebase, int constraint) { lang_output_section_statement_type *os; os = lang_output_section_statement_lookup (output_section_statement_name, constraint, TRUE); current_section = os; if (os->addr_tree == NULL) { os->addr_tree = address_exp; } os->sectype = sectype; if (sectype != noload_section) os->flags = SEC_NO_FLAGS; else os->flags = SEC_NEVER_LOAD; os->block_value = 1; /* Make next things chain into subchain of this. */ push_stat_ptr (&os->children); os->subsection_alignment = topower (exp_get_value_int (subalign, -1, "subsection alignment")); os->section_alignment = topower (exp_get_value_int (align, -1, "section alignment")); os->load_base = ebase; return os; } void lang_final (void) { lang_output_statement_type *new_stmt; new_stmt = new_stat (lang_output_statement, stat_ptr); new_stmt->name = output_filename; } /* Reset the current counters in the regions. */ void lang_reset_memory_regions (void) { lang_memory_region_type *p = lang_memory_region_list; asection *o; lang_output_section_statement_type *os; for (p = lang_memory_region_list; p != NULL; p = p->next) { p->current = p->origin; p->last_os = NULL; } for (os = &lang_output_section_statement.head->output_section_statement; os != NULL; os = os->next) { os->processed_vma = FALSE; os->processed_lma = FALSE; } for (o = link_info.output_bfd->sections; o != NULL; o = o->next) { /* Save the last size for possible use by bfd_relax_section. */ o->rawsize = o->size; o->size = 0; } } /* Worker for lang_gc_sections_1. */ static void gc_section_callback (lang_wild_statement_type *ptr, struct wildcard_list *sec ATTRIBUTE_UNUSED, asection *section, lang_input_statement_type *file ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { /* If the wild pattern was marked KEEP, the member sections should be as well. */ if (ptr->keep_sections) section->flags |= SEC_KEEP; } /* Iterate over sections marking them against GC. */ static void lang_gc_sections_1 (lang_statement_union_type *s) { for (; s != NULL; s = s->header.next) { switch (s->header.type) { case lang_wild_statement_enum: walk_wild (&s->wild_statement, gc_section_callback, NULL); break; case lang_constructors_statement_enum: lang_gc_sections_1 (constructor_list.head); break; case lang_output_section_statement_enum: lang_gc_sections_1 (s->output_section_statement.children.head); break; case lang_group_statement_enum: lang_gc_sections_1 (s->group_statement.children.head); break; default: break; } } } static void lang_gc_sections (void) { /* Keep all sections so marked in the link script. */ lang_gc_sections_1 (statement_list.head); /* SEC_EXCLUDE is ignored when doing a relocatable link, except in the special case of debug info. (See bfd/stabs.c) Twiddle the flag here, to simplify later linker code. */ if (link_info.relocatable) { LANG_FOR_EACH_INPUT_STATEMENT (f) { asection *sec; for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next) if ((sec->flags & SEC_DEBUGGING) == 0) sec->flags &= ~SEC_EXCLUDE; } } if (link_info.gc_sections) bfd_gc_sections (link_info.output_bfd, &link_info); } /* Worker for lang_find_relro_sections_1. */ static void find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED, struct wildcard_list *sec ATTRIBUTE_UNUSED, asection *section, lang_input_statement_type *file ATTRIBUTE_UNUSED, void *data) { /* Discarded, excluded and ignored sections effectively have zero size. */ if (section->output_section != NULL && section->output_section->owner == link_info.output_bfd && (section->output_section->flags & SEC_EXCLUDE) == 0 && !IGNORE_SECTION (section) && section->size != 0) { bfd_boolean *has_relro_section = (bfd_boolean *) data; *has_relro_section = TRUE; } } /* Iterate over sections for relro sections. */ static void lang_find_relro_sections_1 (lang_statement_union_type *s, bfd_boolean *has_relro_section) { if (*has_relro_section) return; for (; s != NULL; s = s->header.next) { if (s == expld.dataseg.relro_end_stat) break; switch (s->header.type) { case lang_wild_statement_enum: walk_wild (&s->wild_statement, find_relro_section_callback, has_relro_section); break; case lang_constructors_statement_enum: lang_find_relro_sections_1 (constructor_list.head, has_relro_section); break; case lang_output_section_statement_enum: lang_find_relro_sections_1 (s->output_section_statement.children.head, has_relro_section); break; case lang_group_statement_enum: lang_find_relro_sections_1 (s->group_statement.children.head, has_relro_section); break; default: break; } } } static void lang_find_relro_sections (void) { bfd_boolean has_relro_section = FALSE; /* Check all sections in the link script. */ lang_find_relro_sections_1 (expld.dataseg.relro_start_stat, &has_relro_section); if (!has_relro_section) link_info.relro = FALSE; } /* Relax all sections until bfd_relax_section gives up. */ void lang_relax_sections (bfd_boolean need_layout) { if (command_line.relax) { /* We may need more than one relaxation pass. */ int i = link_info.relax_pass; /* The backend can use it to determine the current pass. */ link_info.relax_pass = 0; while (i--) { /* Keep relaxing until bfd_relax_section gives up. */ bfd_boolean relax_again; link_info.relax_trip = -1; do { link_info.relax_trip++; /* Note: pe-dll.c does something like this also. If you find you need to change this code, you probably need to change pe-dll.c also. DJ */ /* Do all the assignments with our current guesses as to section sizes. */ lang_do_assignments (); /* We must do this after lang_do_assignments, because it uses size. */ lang_reset_memory_regions (); /* Perform another relax pass - this time we know where the globals are, so can make a better guess. */ relax_again = FALSE; lang_size_sections (&relax_again, FALSE); } while (relax_again); link_info.relax_pass++; } need_layout = TRUE; } if (need_layout) { /* Final extra sizing to report errors. */ lang_do_assignments (); lang_reset_memory_regions (); lang_size_sections (NULL, TRUE); } } void lang_process (void) { /* Finalize dynamic list. */ if (link_info.dynamic_list) lang_finalize_version_expr_head (&link_info.dynamic_list->head); current_target = default_target; /* Open the output file. */ lang_for_each_statement (ldlang_open_output); init_opb (); ldemul_create_output_section_statements (); /* Add to the hash table all undefineds on the command line. */ lang_place_undefineds (); if (!bfd_section_already_linked_table_init ()) einfo (_("%P%F: Failed to create hash table\n")); /* Create a bfd for each input file. */ current_target = default_target; open_input_bfds (statement_list.head, FALSE); link_info.gc_sym_list = &entry_symbol; if (entry_symbol.name == NULL) link_info.gc_sym_list = ldlang_undef_chain_list_head; ldemul_after_open (); bfd_section_already_linked_table_free (); /* Make sure that we're not mixing architectures. We call this after all the input files have been opened, but before we do any other processing, so that any operations merge_private_bfd_data does on the output file will be known during the rest of the link. */ lang_check (); /* Handle .exports instead of a version script if we're told to do so. */ if (command_line.version_exports_section) lang_do_version_exports_section (); /* Build all sets based on the information gathered from the input files. */ ldctor_build_sets (); /* Remove unreferenced sections if asked to. */ lang_gc_sections (); /* Size up the common data. */ lang_common (); /* Update wild statements. */ update_wild_statements (statement_list.head); /* Run through the contours of the script and attach input sections to the correct output sections. */ map_input_to_output_sections (statement_list.head, NULL, NULL); process_insert_statements (); /* Find any sections not attached explicitly and handle them. */ lang_place_orphans (); if (! link_info.relocatable) { asection *found; /* Merge SEC_MERGE sections. This has to be done after GC of sections, so that GCed sections are not merged, but before assigning dynamic symbols, since removing whole input sections is hard then. */ bfd_merge_sections (link_info.output_bfd, &link_info); /* Look for a text section and set the readonly attribute in it. */ found = bfd_get_section_by_name (link_info.output_bfd, ".text"); if (found != NULL) { if (config.text_read_only) found->flags |= SEC_READONLY; else found->flags &= ~SEC_READONLY; } } /* Do anything special before sizing sections. This is where ELF and other back-ends size dynamic sections. */ ldemul_before_allocation (); /* We must record the program headers before we try to fix the section positions, since they will affect SIZEOF_HEADERS. */ lang_record_phdrs (); /* Check relro sections. */ if (link_info.relro && ! link_info.relocatable) lang_find_relro_sections (); /* Size up the sections. */ lang_size_sections (NULL, !command_line.relax); /* See if anything special should be done now we know how big everything is. This is where relaxation is done. */ ldemul_after_allocation (); /* Fix any .startof. or .sizeof. symbols. */ lang_set_startof (); /* Do all the assignments, now that we know the final resting places of all the symbols. */ lang_do_assignments (); ldemul_finish (); /* Make sure that the section addresses make sense. */ if (command_line.check_section_addresses) lang_check_section_addresses (); lang_end (); } /* EXPORTED TO YACC */ void lang_add_wild (struct wildcard_spec *filespec, struct wildcard_list *section_list, bfd_boolean keep_sections) { struct wildcard_list *curr, *next; lang_wild_statement_type *new_stmt; /* Reverse the list as the parser puts it back to front. */ for (curr = section_list, section_list = NULL; curr != NULL; section_list = curr, curr = next) { if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0) placed_commons = TRUE; next = curr->next; curr->next = section_list; } if (filespec != NULL && filespec->name != NULL) { if (strcmp (filespec->name, "*") == 0) filespec->name = NULL; else if (! wildcardp (filespec->name)) lang_has_input_file = TRUE; } new_stmt = new_stat (lang_wild_statement, stat_ptr); new_stmt->filename = NULL; new_stmt->filenames_sorted = FALSE; if (filespec != NULL) { new_stmt->filename = filespec->name; new_stmt->filenames_sorted = filespec->sorted == by_name; } new_stmt->section_list = section_list; new_stmt->keep_sections = keep_sections; lang_list_init (&new_stmt->children); analyze_walk_wild_section_handler (new_stmt); } void lang_section_start (const char *name, etree_type *address, const segment_type *segment) { lang_address_statement_type *ad; ad = new_stat (lang_address_statement, stat_ptr); ad->section_name = name; ad->address = address; ad->segment = segment; } /* Set the start symbol to NAME. CMDLINE is nonzero if this is called because of a -e argument on the command line, or zero if this is called by ENTRY in a linker script. Command line arguments take precedence. */ void lang_add_entry (const char *name, bfd_boolean cmdline) { if (entry_symbol.name == NULL || cmdline || ! entry_from_cmdline) { entry_symbol.name = name; entry_from_cmdline = cmdline; } } /* Set the default start symbol to NAME. .em files should use this, not lang_add_entry, to override the use of "start" if neither the linker script nor the command line specifies an entry point. NAME must be permanently allocated. */ void lang_default_entry (const char *name) { entry_symbol_default = name; } void lang_add_target (const char *name) { lang_target_statement_type *new_stmt; new_stmt = new_stat (lang_target_statement, stat_ptr); new_stmt->target = name; } void lang_add_map (const char *name) { while (*name) { switch (*name) { case 'F': map_option_f = TRUE; break; } name++; } } void lang_add_fill (fill_type *fill) { lang_fill_statement_type *new_stmt; new_stmt = new_stat (lang_fill_statement, stat_ptr); new_stmt->fill = fill; } void lang_add_data (int type, union etree_union *exp) { lang_data_statement_type *new_stmt; new_stmt = new_stat (lang_data_statement, stat_ptr); new_stmt->exp = exp; new_stmt->type = type; } /* Create a new reloc statement. RELOC is the BFD relocation type to generate. HOWTO is the corresponding howto structure (we could look this up, but the caller has already done so). SECTION is the section to generate a reloc against, or NAME is the name of the symbol to generate a reloc against. Exactly one of SECTION and NAME must be NULL. ADDEND is an expression for the addend. */ void lang_add_reloc (bfd_reloc_code_real_type reloc, reloc_howto_type *howto, asection *section, const char *name, union etree_union *addend) { lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr); p->reloc = reloc; p->howto = howto; p->section = section; p->name = name; p->addend_exp = addend; p->addend_value = 0; p->output_section = NULL; p->output_offset = 0; } lang_assignment_statement_type * lang_add_assignment (etree_type *exp) { lang_assignment_statement_type *new_stmt; new_stmt = new_stat (lang_assignment_statement, stat_ptr); new_stmt->exp = exp; return new_stmt; } void lang_add_attribute (enum statement_enum attribute) { new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr); } void lang_startup (const char *name) { if (startup_file != NULL) { einfo (_("%P%F: multiple STARTUP files\n")); } first_file->filename = name; first_file->local_sym_name = name; first_file->real = TRUE; startup_file = name; } void lang_float (bfd_boolean maybe) { lang_float_flag = maybe; } /* Work out the load- and run-time regions from a script statement, and store them in *LMA_REGION and *REGION respectively. MEMSPEC is the name of the run-time region, or the value of DEFAULT_MEMORY_REGION if the statement didn't specify one. LMA_MEMSPEC is the name of the load-time region, or null if the statement didn't specify one.HAVE_LMA_P is TRUE if the statement had an explicit load address. It is an error to specify both a load region and a load address. */ static void lang_get_regions (lang_memory_region_type **region, lang_memory_region_type **lma_region, const char *memspec, const char *lma_memspec, bfd_boolean have_lma, bfd_boolean have_vma) { *lma_region = lang_memory_region_lookup (lma_memspec, FALSE); /* If no runtime region or VMA has been specified, but the load region has been specified, then use the load region for the runtime region as well. */ if (lma_memspec != NULL && ! have_vma && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0) *region = *lma_region; else *region = lang_memory_region_lookup (memspec, FALSE); if (have_lma && lma_memspec != 0) einfo (_("%X%P:%S: section has both a load address and a load region\n")); } void lang_leave_output_section_statement (fill_type *fill, const char *memspec, lang_output_section_phdr_list *phdrs, const char *lma_memspec) { lang_get_regions (¤t_section->region, ¤t_section->lma_region, memspec, lma_memspec, current_section->load_base != NULL, current_section->addr_tree != NULL); /* If this section has no load region or base, but has the same region as the previous section, then propagate the previous section's load region. */ if (!current_section->lma_region && !current_section->load_base && current_section->region == current_section->prev->region) current_section->lma_region = current_section->prev->lma_region; current_section->fill = fill; current_section->phdrs = phdrs; pop_stat_ptr (); } /* Create an absolute symbol with the given name with the value of the address of first byte of the section named. If the symbol already exists, then do nothing. */ void lang_abs_symbol_at_beginning_of (const char *secname, const char *name) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE); if (h == NULL) einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n")); if (h->type == bfd_link_hash_new || h->type == bfd_link_hash_undefined) { asection *sec; h->type = bfd_link_hash_defined; sec = bfd_get_section_by_name (link_info.output_bfd, secname); if (sec == NULL) h->u.def.value = 0; else h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec); h->u.def.section = bfd_abs_section_ptr; } } /* Create an absolute symbol with the given name with the value of the address of the first byte after the end of the section named. If the symbol already exists, then do nothing. */ void lang_abs_symbol_at_end_of (const char *secname, const char *name) { struct bfd_link_hash_entry *h; h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE); if (h == NULL) einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n")); if (h->type == bfd_link_hash_new || h->type == bfd_link_hash_undefined) { asection *sec; h->type = bfd_link_hash_defined; sec = bfd_get_section_by_name (link_info.output_bfd, secname); if (sec == NULL) h->u.def.value = 0; else h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec) + TO_ADDR (sec->size)); h->u.def.section = bfd_abs_section_ptr; } } void lang_statement_append (lang_statement_list_type *list, lang_statement_union_type *element, lang_statement_union_type **field) { *(list->tail) = element; list->tail = field; } /* Set the output format type. -oformat overrides scripts. */ void lang_add_output_format (const char *format, const char *big, const char *little, int from_script) { if (output_target == NULL || !from_script) { if (command_line.endian == ENDIAN_BIG && big != NULL) format = big; else if (command_line.endian == ENDIAN_LITTLE && little != NULL) format = little; output_target = format; } } void lang_add_insert (const char *where, int is_before) { lang_insert_statement_type *new_stmt; new_stmt = new_stat (lang_insert_statement, stat_ptr); new_stmt->where = where; new_stmt->is_before = is_before; saved_script_handle = previous_script_handle; } /* Enter a group. This creates a new lang_group_statement, and sets stat_ptr to build new statements within the group. */ void lang_enter_group (void) { lang_group_statement_type *g; g = new_stat (lang_group_statement, stat_ptr); lang_list_init (&g->children); push_stat_ptr (&g->children); } /* Leave a group. This just resets stat_ptr to start writing to the regular list of statements again. Note that this will not work if groups can occur inside anything else which can adjust stat_ptr, but currently they can't. */ void lang_leave_group (void) { pop_stat_ptr (); } /* Add a new program header. This is called for each entry in a PHDRS command in a linker script. */ void lang_new_phdr (const char *name, etree_type *type, bfd_boolean filehdr, bfd_boolean phdrs, etree_type *at, etree_type *flags) { struct lang_phdr *n, **pp; bfd_boolean hdrs; n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr)); n->next = NULL; n->name = name; n->type = exp_get_value_int (type, 0, "program header type"); n->filehdr = filehdr; n->phdrs = phdrs; n->at = at; n->flags = flags; hdrs = n->type == 1 && (phdrs || filehdr); for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next) if (hdrs && (*pp)->type == 1 && !((*pp)->filehdr || (*pp)->phdrs)) { einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n")); hdrs = FALSE; } *pp = n; } /* Record the program header information in the output BFD. FIXME: We should not be calling an ELF specific function here. */ static void lang_record_phdrs (void) { unsigned int alc; asection **secs; lang_output_section_phdr_list *last; struct lang_phdr *l; lang_output_section_statement_type *os; alc = 10; secs = (asection **) xmalloc (alc * sizeof (asection *)); last = NULL; for (l = lang_phdr_list; l != NULL; l = l->next) { unsigned int c; flagword flags; bfd_vma at; c = 0; for (os = &lang_output_section_statement.head->output_section_statement; os != NULL; os = os->next) { lang_output_section_phdr_list *pl; if (os->constraint < 0) continue; pl = os->phdrs; if (pl != NULL) last = pl; else { if (os->sectype == noload_section || os->bfd_section == NULL || (os->bfd_section->flags & SEC_ALLOC) == 0) continue; /* Don't add orphans to PT_INTERP header. */ if (l->type == 3) continue; if (last == NULL) { lang_output_section_statement_type * tmp_os; /* If we have not run across a section with a program header assigned to it yet, then scan forwards to find one. This prevents inconsistencies in the linker's behaviour when a script has specified just a single header and there are sections in that script which are not assigned to it, and which occur before the first use of that header. See here for more details: http://sourceware.org/ml/binutils/2007-02/msg00291.html */ for (tmp_os = os; tmp_os; tmp_os = tmp_os->next) if (tmp_os->phdrs) { last = tmp_os->phdrs; break; } if (last == NULL) einfo (_("%F%P: no sections assigned to phdrs\n")); } pl = last; } if (os->bfd_section == NULL) continue; for (; pl != NULL; pl = pl->next) { if (strcmp (pl->name, l->name) == 0) { if (c >= alc) { alc *= 2; secs = (asection **) xrealloc (secs, alc * sizeof (asection *)); } secs[c] = os->bfd_section; ++c; pl->used = TRUE; } } } if (l->flags == NULL) flags = 0; else flags = exp_get_vma (l->flags, 0, "phdr flags"); if (l->at == NULL) at = 0; else at = exp_get_vma (l->at, 0, "phdr load address"); if (! bfd_record_phdr (link_info.output_bfd, l->type, l->flags != NULL, flags, l->at != NULL, at, l->filehdr, l->phdrs, c, secs)) einfo (_("%F%P: bfd_record_phdr failed: %E\n")); } free (secs); /* Make sure all the phdr assignments succeeded. */ for (os = &lang_output_section_statement.head->output_section_statement; os != NULL; os = os->next) { lang_output_section_phdr_list *pl; if (os->constraint < 0 || os->bfd_section == NULL) continue; for (pl = os->phdrs; pl != NULL; pl = pl->next) if (! pl->used && strcmp (pl->name, "NONE") != 0) einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"), os->name, pl->name); } } /* Record a list of sections which may not be cross referenced. */ void lang_add_nocrossref (lang_nocrossref_type *l) { struct lang_nocrossrefs *n; n = (struct lang_nocrossrefs *) xmalloc (sizeof *n); n->next = nocrossref_list; n->list = l; nocrossref_list = n; /* Set notice_all so that we get informed about all symbols. */ link_info.notice_all = TRUE; } /* Overlay handling. We handle overlays with some static variables. */ /* The overlay virtual address. */ static etree_type *overlay_vma; /* And subsection alignment. */ static etree_type *overlay_subalign; /* An expression for the maximum section size seen so far. */ static etree_type *overlay_max; /* A list of all the sections in this overlay. */ struct overlay_list { struct overlay_list *next; lang_output_section_statement_type *os; }; static struct overlay_list *overlay_list; /* Start handling an overlay. */ void lang_enter_overlay (etree_type *vma_expr, etree_type *subalign) { /* The grammar should prevent nested overlays from occurring. */ ASSERT (overlay_vma == NULL && overlay_subalign == NULL && overlay_max == NULL); overlay_vma = vma_expr; overlay_subalign = subalign; } /* Start a section in an overlay. We handle this by calling lang_enter_output_section_statement with the correct VMA. lang_leave_overlay sets up the LMA and memory regions. */ void lang_enter_overlay_section (const char *name) { struct overlay_list *n; etree_type *size; lang_enter_output_section_statement (name, overlay_vma, overlay_section, 0, overlay_subalign, 0, 0); /* If this is the first section, then base the VMA of future sections on this one. This will work correctly even if `.' is used in the addresses. */ if (overlay_list == NULL) overlay_vma = exp_nameop (ADDR, name); /* Remember the section. */ n = (struct overlay_list *) xmalloc (sizeof *n); n->os = current_section; n->next = overlay_list; overlay_list = n; size = exp_nameop (SIZEOF, name); /* Arrange to work out the maximum section end address. */ if (overlay_max == NULL) overlay_max = size; else overlay_max = exp_binop (MAX_K, overlay_max, size); } /* Finish a section in an overlay. There isn't any special to do here. */ void lang_leave_overlay_section (fill_type *fill, lang_output_section_phdr_list *phdrs) { const char *name; char *clean, *s2; const char *s1; char *buf; name = current_section->name; /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory region and that no load-time region has been specified. It doesn't really matter what we say here, since lang_leave_overlay will override it. */ lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0); /* Define the magic symbols. */ clean = (char *) xmalloc (strlen (name) + 1); s2 = clean; for (s1 = name; *s1 != '\0'; s1++) if (ISALNUM (*s1) || *s1 == '_') *s2++ = *s1; *s2 = '\0'; buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_"); sprintf (buf, "__load_start_%s", clean); lang_add_assignment (exp_provide (buf, exp_nameop (LOADADDR, name), FALSE)); buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_"); sprintf (buf, "__load_stop_%s", clean); lang_add_assignment (exp_provide (buf, exp_binop ('+', exp_nameop (LOADADDR, name), exp_nameop (SIZEOF, name)), FALSE)); free (clean); } /* Finish an overlay. If there are any overlay wide settings, this looks through all the sections in the overlay and sets them. */ void lang_leave_overlay (etree_type *lma_expr, int nocrossrefs, fill_type *fill, const char *memspec, lang_output_section_phdr_list *phdrs, const char *lma_memspec) { lang_memory_region_type *region; lang_memory_region_type *lma_region; struct overlay_list *l; lang_nocrossref_type *nocrossref; lang_get_regions (®ion, &lma_region, memspec, lma_memspec, lma_expr != NULL, FALSE); nocrossref = NULL; /* After setting the size of the last section, set '.' to end of the overlay region. */ if (overlay_list != NULL) overlay_list->os->update_dot_tree = exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max)); l = overlay_list; while (l != NULL) { struct overlay_list *next; if (fill != NULL && l->os->fill == NULL) l->os->fill = fill; l->os->region = region; l->os->lma_region = lma_region; /* The first section has the load address specified in the OVERLAY statement. The rest are worked out from that. The base address is not needed (and should be null) if an LMA region was specified. */ if (l->next == 0) { l->os->load_base = lma_expr; l->os->sectype = normal_section; } if (phdrs != NULL && l->os->phdrs == NULL) l->os->phdrs = phdrs; if (nocrossrefs) { lang_nocrossref_type *nc; nc = (lang_nocrossref_type *) xmalloc (sizeof *nc); nc->name = l->os->name; nc->next = nocrossref; nocrossref = nc; } next = l->next; free (l); l = next; } if (nocrossref != NULL) lang_add_nocrossref (nocrossref); overlay_vma = NULL; overlay_list = NULL; overlay_max = NULL; } /* Version handling. This is only useful for ELF. */ /* This global variable holds the version tree that we build. */ struct bfd_elf_version_tree *lang_elf_version_info; /* If PREV is NULL, return first version pattern matching particular symbol. If PREV is non-NULL, return first version pattern matching particular symbol after PREV (previously returned by lang_vers_match). */ static struct bfd_elf_version_expr * lang_vers_match (struct bfd_elf_version_expr_head *head, struct bfd_elf_version_expr *prev, const char *sym) { const char *cxx_sym = sym; const char *java_sym = sym; struct bfd_elf_version_expr *expr = NULL; if (head->mask & BFD_ELF_VERSION_CXX_TYPE) { cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI); if (!cxx_sym) cxx_sym = sym; } if (head->mask & BFD_ELF_VERSION_JAVA_TYPE) { java_sym = cplus_demangle (sym, DMGL_JAVA); if (!java_sym) java_sym = sym; } if (head->htab && (prev == NULL || prev->literal)) { struct bfd_elf_version_expr e; switch (prev ? prev->mask : 0) { case 0: if (head->mask & BFD_ELF_VERSION_C_TYPE) { e.pattern = sym; expr = (struct bfd_elf_version_expr *) htab_find ((htab_t) head->htab, &e); while (expr && strcmp (expr->pattern, sym) == 0) if (expr->mask == BFD_ELF_VERSION_C_TYPE) goto out_ret; else expr = expr->next; } /* Fallthrough */ case BFD_ELF_VERSION_C_TYPE: if (head->mask & BFD_ELF_VERSION_CXX_TYPE) { e.pattern = cxx_sym; expr = (struct bfd_elf_version_expr *) htab_find ((htab_t) head->htab, &e); while (expr && strcmp (expr->pattern, cxx_sym) == 0) if (expr->mask == BFD_ELF_VERSION_CXX_TYPE) goto out_ret; else expr = expr->next; } /* Fallthrough */ case BFD_ELF_VERSION_CXX_TYPE: if (head->mask & BFD_ELF_VERSION_JAVA_TYPE) { e.pattern = java_sym; expr = (struct bfd_elf_version_expr *) htab_find ((htab_t) head->htab, &e); while (expr && strcmp (expr->pattern, java_sym) == 0) if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE) goto out_ret; else expr = expr->next; } /* Fallthrough */ default: break; } } /* Finally, try the wildcards. */ if (prev == NULL || prev->literal) expr = head->remaining; else expr = prev->next; for (; expr; expr = expr->next) { const char *s; if (!expr->pattern) continue; if (expr->pattern[0] == '*' && expr->pattern[1] == '\0') break; if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE) s = java_sym; else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE) s = cxx_sym; else s = sym; if (fnmatch (expr->pattern, s, 0) == 0) break; } out_ret: if (cxx_sym != sym) free ((char *) cxx_sym); if (java_sym != sym) free ((char *) java_sym); return expr; } /* Return NULL if the PATTERN argument is a glob pattern, otherwise, return a pointer to the symbol name with any backslash quotes removed. */ static const char * realsymbol (const char *pattern) { const char *p; bfd_boolean changed = FALSE, backslash = FALSE; char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1); for (p = pattern, s = symbol; *p != '\0'; ++p) { /* It is a glob pattern only if there is no preceding backslash. */ if (backslash) { /* Remove the preceding backslash. */ *(s - 1) = *p; backslash = FALSE; changed = TRUE; } else { if (*p == '?' || *p == '*' || *p == '[') { free (symbol); return NULL; } *s++ = *p; backslash = *p == '\\'; } } if (changed) { *s = '\0'; return symbol; } else { free (symbol); return pattern; } } /* This is called for each variable name or match expression. NEW_NAME is the name of the symbol to match, or, if LITERAL_P is FALSE, a glob pattern to be matched against symbol names. */ struct bfd_elf_version_expr * lang_new_vers_pattern (struct bfd_elf_version_expr *orig, const char *new_name, const char *lang, bfd_boolean literal_p) { struct bfd_elf_version_expr *ret; ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret); ret->next = orig; ret->symver = 0; ret->script = 0; ret->literal = TRUE; ret->pattern = literal_p ? new_name : realsymbol (new_name); if (ret->pattern == NULL) { ret->pattern = new_name; ret->literal = FALSE; } if (lang == NULL || strcasecmp (lang, "C") == 0) ret->mask = BFD_ELF_VERSION_C_TYPE; else if (strcasecmp (lang, "C++") == 0) ret->mask = BFD_ELF_VERSION_CXX_TYPE; else if (strcasecmp (lang, "Java") == 0) ret->mask = BFD_ELF_VERSION_JAVA_TYPE; else { einfo (_("%X%P: unknown language `%s' in version information\n"), lang); ret->mask = BFD_ELF_VERSION_C_TYPE; } return ldemul_new_vers_pattern (ret); } /* This is called for each set of variable names and match expressions. */ struct bfd_elf_version_tree * lang_new_vers_node (struct bfd_elf_version_expr *globals, struct bfd_elf_version_expr *locals) { struct bfd_elf_version_tree *ret; ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret); ret->globals.list = globals; ret->locals.list = locals; ret->match = lang_vers_match; ret->name_indx = (unsigned int) -1; return ret; } /* This static variable keeps track of version indices. */ static int version_index; static hashval_t version_expr_head_hash (const void *p) { const struct bfd_elf_version_expr *e = (const struct bfd_elf_version_expr *) p; return htab_hash_string (e->pattern); } static int version_expr_head_eq (const void *p1, const void *p2) { const struct bfd_elf_version_expr *e1 = (const struct bfd_elf_version_expr *) p1; const struct bfd_elf_version_expr *e2 = (const struct bfd_elf_version_expr *) p2; return strcmp (e1->pattern, e2->pattern) == 0; } static void lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head) { size_t count = 0; struct bfd_elf_version_expr *e, *next; struct bfd_elf_version_expr **list_loc, **remaining_loc; for (e = head->list; e; e = e->next) { if (e->literal) count++; head->mask |= e->mask; } if (count) { head->htab = htab_create (count * 2, version_expr_head_hash, version_expr_head_eq, NULL); list_loc = &head->list; remaining_loc = &head->remaining; for (e = head->list; e; e = next) { next = e->next; if (!e->literal) { *remaining_loc = e; remaining_loc = &e->next; } else { void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT); if (*loc) { struct bfd_elf_version_expr *e1, *last; e1 = (struct bfd_elf_version_expr *) *loc; last = NULL; do { if (e1->mask == e->mask) { last = NULL; break; } last = e1; e1 = e1->next; } while (e1 && strcmp (e1->pattern, e->pattern) == 0); if (last == NULL) { /* This is a duplicate. */ /* FIXME: Memory leak. Sometimes pattern is not xmalloced alone, but in larger chunk of memory. */ /* free (e->pattern); */ free (e); } else { e->next = last->next; last->next = e; } } else { *loc = e; *list_loc = e; list_loc = &e->next; } } } *remaining_loc = NULL; *list_loc = head->remaining; } else head->remaining = head->list; } /* This is called when we know the name and dependencies of the version. */ void lang_register_vers_node (const char *name, struct bfd_elf_version_tree *version, struct bfd_elf_version_deps *deps) { struct bfd_elf_version_tree *t, **pp; struct bfd_elf_version_expr *e1; if (name == NULL) name = ""; if ((name[0] == '\0' && lang_elf_version_info != NULL) || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0')) { einfo (_("%X%P: anonymous version tag cannot be combined" " with other version tags\n")); free (version); return; } /* Make sure this node has a unique name. */ for (t = lang_elf_version_info; t != NULL; t = t->next) if (strcmp (t->name, name) == 0) einfo (_("%X%P: duplicate version tag `%s'\n"), name); lang_finalize_version_expr_head (&version->globals); lang_finalize_version_expr_head (&version->locals); /* Check the global and local match names, and make sure there aren't any duplicates. */ for (e1 = version->globals.list; e1 != NULL; e1 = e1->next) { for (t = lang_elf_version_info; t != NULL; t = t->next) { struct bfd_elf_version_expr *e2; if (t->locals.htab && e1->literal) { e2 = (struct bfd_elf_version_expr *) htab_find ((htab_t) t->locals.htab, e1); while (e2 && strcmp (e1->pattern, e2->pattern) == 0) { if (e1->mask == e2->mask) einfo (_("%X%P: duplicate expression `%s'" " in version information\n"), e1->pattern); e2 = e2->next; } } else if (!e1->literal) for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next) if (strcmp (e1->pattern, e2->pattern) == 0 && e1->mask == e2->mask) einfo (_("%X%P: duplicate expression `%s'" " in version information\n"), e1->pattern); } } for (e1 = version->locals.list; e1 != NULL; e1 = e1->next) { for (t = lang_elf_version_info; t != NULL; t = t->next) { struct bfd_elf_version_expr *e2; if (t->globals.htab && e1->literal) { e2 = (struct bfd_elf_version_expr *) htab_find ((htab_t) t->globals.htab, e1); while (e2 && strcmp (e1->pattern, e2->pattern) == 0) { if (e1->mask == e2->mask) einfo (_("%X%P: duplicate expression `%s'" " in version information\n"), e1->pattern); e2 = e2->next; } } else if (!e1->literal) for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next) if (strcmp (e1->pattern, e2->pattern) == 0 && e1->mask == e2->mask) einfo (_("%X%P: duplicate expression `%s'" " in version information\n"), e1->pattern); } } version->deps = deps; version->name = name; if (name[0] != '\0') { ++version_index; version->vernum = version_index; } else version->vernum = 0; for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next) ; *pp = version; } /* This is called when we see a version dependency. */ struct bfd_elf_version_deps * lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name) { struct bfd_elf_version_deps *ret; struct bfd_elf_version_tree *t; ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret); ret->next = list; for (t = lang_elf_version_info; t != NULL; t = t->next) { if (strcmp (t->name, name) == 0) { ret->version_needed = t; return ret; } } einfo (_("%X%P: unable to find version dependency `%s'\n"), name); return ret; } static void lang_do_version_exports_section (void) { struct bfd_elf_version_expr *greg = NULL, *lreg; LANG_FOR_EACH_INPUT_STATEMENT (is) { asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports"); char *contents, *p; bfd_size_type len; if (sec == NULL) continue; len = sec->size; contents = (char *) xmalloc (len); if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len)) einfo (_("%X%P: unable to read .exports section contents\n"), sec); p = contents; while (p < contents + len) { greg = lang_new_vers_pattern (greg, p, NULL, FALSE); p = strchr (p, '\0') + 1; } /* Do not free the contents, as we used them creating the regex. */ /* Do not include this section in the link. */ sec->flags |= SEC_EXCLUDE | SEC_KEEP; } lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE); lang_register_vers_node (command_line.version_exports_section, lang_new_vers_node (greg, lreg), NULL); } void lang_add_unique (const char *name) { struct unique_sections *ent; for (ent = unique_section_list; ent; ent = ent->next) if (strcmp (ent->name, name) == 0) return; ent = (struct unique_sections *) xmalloc (sizeof *ent); ent->name = xstrdup (name); ent->next = unique_section_list; unique_section_list = ent; } /* Append the list of dynamic symbols to the existing one. */ void lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic) { if (link_info.dynamic_list) { struct bfd_elf_version_expr *tail; for (tail = dynamic; tail->next != NULL; tail = tail->next) ; tail->next = link_info.dynamic_list->head.list; link_info.dynamic_list->head.list = dynamic; } else { struct bfd_elf_dynamic_list *d; d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d); d->head.list = dynamic; d->match = lang_vers_match; link_info.dynamic_list = d; } } /* Append the list of C++ typeinfo dynamic symbols to the existing one. */ void lang_append_dynamic_list_cpp_typeinfo (void) { const char * symbols [] = { "typeinfo name for*", "typeinfo for*" }; struct bfd_elf_version_expr *dynamic = NULL; unsigned int i; for (i = 0; i < ARRAY_SIZE (symbols); i++) dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++", FALSE); lang_append_dynamic_list (dynamic); } /* Append the list of C++ operator new and delete dynamic symbols to the existing one. */ void lang_append_dynamic_list_cpp_new (void) { const char * symbols [] = { "operator new*", "operator delete*" }; struct bfd_elf_version_expr *dynamic = NULL; unsigned int i; for (i = 0; i < ARRAY_SIZE (symbols); i++) dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++", FALSE); lang_append_dynamic_list (dynamic); }