/* ppc.h -- Header file for PowerPC opcode table Copyright (C) 1994-2016 Free Software Foundation, Inc. Written by Ian Lance Taylor, Cygnus Support This file is part of GDB, GAS, and the GNU binutils. GDB, GAS, and the GNU binutils are free software; you can redistribute them and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GDB, GAS, and the GNU binutils are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this file; see the file COPYING3. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef PPC_H #define PPC_H #include "bfd_stdint.h" #ifdef __cplusplus extern "C" { #endif typedef uint64_t ppc_cpu_t; /* The opcode table is an array of struct powerpc_opcode. */ struct powerpc_opcode { /* The opcode name. */ const char *name; /* The opcode itself. Those bits which will be filled in with operands are zeroes. */ unsigned long opcode; /* The opcode mask. This is used by the disassembler. This is a mask containing ones indicating those bits which must match the opcode field, and zeroes indicating those bits which need not match (and are presumably filled in by operands). */ unsigned long mask; /* One bit flags for the opcode. These are used to indicate which specific processors support the instructions. The defined values are listed below. */ ppc_cpu_t flags; /* One bit flags for the opcode. These are used to indicate which specific processors no longer support the instructions. The defined values are listed below. */ ppc_cpu_t deprecated; /* An array of operand codes. Each code is an index into the operand table. They appear in the order which the operands must appear in assembly code, and are terminated by a zero. */ unsigned char operands[8]; }; /* The table itself is sorted by major opcode number, and is otherwise in the order in which the disassembler should consider instructions. */ extern const struct powerpc_opcode powerpc_opcodes[]; extern const int powerpc_num_opcodes; extern const struct powerpc_opcode vle_opcodes[]; extern const int vle_num_opcodes; /* Values defined for the flags field of a struct powerpc_opcode. */ /* Opcode is defined for the PowerPC architecture. */ #define PPC_OPCODE_PPC 1 /* Opcode is defined for the POWER (RS/6000) architecture. */ #define PPC_OPCODE_POWER 2 /* Opcode is defined for the POWER2 (Rios 2) architecture. */ #define PPC_OPCODE_POWER2 4 /* Opcode is supported by the Motorola PowerPC 601 processor. The 601 is assumed to support all PowerPC (PPC_OPCODE_PPC) instructions, but it also supports many additional POWER instructions. */ #define PPC_OPCODE_601 8 /* Opcode is supported in both the Power and PowerPC architectures (ie, compiler's -mcpu=common or assembler's -mcom). More than just the intersection of PPC_OPCODE_PPC with the union of PPC_OPCODE_POWER and PPC_OPCODE_POWER2 because many instructions changed mnemonics between POWER and POWERPC. */ #define PPC_OPCODE_COMMON 0x10 /* Opcode is supported for any Power or PowerPC platform (this is for the assembler's -many option, and it eliminates duplicates). */ #define PPC_OPCODE_ANY 0x20 /* Opcode is only defined on 64 bit architectures. */ #define PPC_OPCODE_64 0x40 /* Opcode is supported as part of the 64-bit bridge. */ #define PPC_OPCODE_64_BRIDGE 0x80 /* Opcode is supported by Altivec Vector Unit */ #define PPC_OPCODE_ALTIVEC 0x100 /* Opcode is supported by PowerPC 403 processor. */ #define PPC_OPCODE_403 0x200 /* Opcode is supported by PowerPC BookE processor. */ #define PPC_OPCODE_BOOKE 0x400 /* Opcode is supported by PowerPC 440 processor. */ #define PPC_OPCODE_440 0x800 /* Opcode is only supported by Power4 architecture. */ #define PPC_OPCODE_POWER4 0x1000 /* Opcode is only supported by Power7 architecture. */ #define PPC_OPCODE_POWER7 0x2000 /* Opcode is only supported by e500x2 Core. */ #define PPC_OPCODE_SPE 0x4000 /* Opcode is supported by e500x2 Integer select APU. */ #define PPC_OPCODE_ISEL 0x8000 /* Opcode is an e500 SPE floating point instruction. */ #define PPC_OPCODE_EFS 0x10000 /* Opcode is supported by branch locking APU. */ #define PPC_OPCODE_BRLOCK 0x20000 /* Opcode is supported by performance monitor APU. */ #define PPC_OPCODE_PMR 0x40000 /* Opcode is supported by cache locking APU. */ #define PPC_OPCODE_CACHELCK 0x80000 /* Opcode is supported by machine check APU. */ #define PPC_OPCODE_RFMCI 0x100000 /* Opcode is only supported by Power5 architecture. */ #define PPC_OPCODE_POWER5 0x200000 /* Opcode is supported by PowerPC e300 family. */ #define PPC_OPCODE_E300 0x400000 /* Opcode is only supported by Power6 architecture. */ #define PPC_OPCODE_POWER6 0x800000 /* Opcode is only supported by PowerPC Cell family. */ #define PPC_OPCODE_CELL 0x1000000 /* Opcode is supported by CPUs with paired singles support. */ #define PPC_OPCODE_PPCPS 0x2000000 /* Opcode is supported by Power E500MC */ #define PPC_OPCODE_E500MC 0x4000000 /* Opcode is supported by PowerPC 405 processor. */ #define PPC_OPCODE_405 0x8000000 /* Opcode is supported by Vector-Scalar (VSX) Unit */ #define PPC_OPCODE_VSX 0x10000000 /* Opcode is supported by A2. */ #define PPC_OPCODE_A2 0x20000000 /* Opcode is supported by PowerPC 476 processor. */ #define PPC_OPCODE_476 0x40000000 /* Opcode is supported by AppliedMicro Titan core */ #define PPC_OPCODE_TITAN 0x80000000 /* Opcode which is supported by the e500 family */ #define PPC_OPCODE_E500 0x100000000ull /* Opcode is supported by Extended Altivec Vector Unit */ #define PPC_OPCODE_ALTIVEC2 0x200000000ull /* Opcode is supported by Power E6500 */ #define PPC_OPCODE_E6500 0x400000000ull /* Opcode is supported by Thread management APU */ #define PPC_OPCODE_TMR 0x800000000ull /* Opcode which is supported by the VLE extension. */ #define PPC_OPCODE_VLE 0x1000000000ull /* Opcode is only supported by Power8 architecture. */ #define PPC_OPCODE_POWER8 0x2000000000ull /* Opcode which is supported by the Hardware Transactional Memory extension. */ /* Currently, this is the same as the POWER8 mask. If another cpu comes out that isn't a superset of POWER8, we can define this to its own mask. */ #define PPC_OPCODE_HTM PPC_OPCODE_POWER8 /* Opcode is supported by ppc750cl. */ #define PPC_OPCODE_750 0x4000000000ull /* Opcode is supported by ppc7450. */ #define PPC_OPCODE_7450 0x8000000000ull /* Opcode is supported by ppc821/850/860. */ #define PPC_OPCODE_860 0x10000000000ull /* Opcode is only supported by Power9 architecture. */ #define PPC_OPCODE_POWER9 0x20000000000ull /* Opcode is supported by Vector-Scalar (VSX) Unit from ISA 2.08. */ #define PPC_OPCODE_VSX3 0x40000000000ull /* Opcode is supported by e200z4. */ #define PPC_OPCODE_E200Z4 0x80000000000ull /* A macro to extract the major opcode from an instruction. */ #define PPC_OP(i) (((i) >> 26) & 0x3f) /* A macro to determine if the instruction is a 2-byte VLE insn. */ #define PPC_OP_SE_VLE(m) ((m) <= 0xffff) /* A macro to extract the major opcode from a VLE instruction. */ #define VLE_OP(i,m) (((i) >> ((m) <= 0xffff ? 10 : 26)) & 0x3f) /* A macro to convert a VLE opcode to a VLE opcode segment. */ #define VLE_OP_TO_SEG(i) ((i) >> 1) /* The operands table is an array of struct powerpc_operand. */ struct powerpc_operand { /* A bitmask of bits in the operand. */ unsigned int bitm; /* The shift operation to be applied to the operand. No shift is made if this is zero. For positive values, the operand is shifted left by SHIFT. For negative values, the operand is shifted right by -SHIFT. Use PPC_OPSHIFT_INV to indicate that BITM and SHIFT cannot be used to determine where the operand goes in the insn. */ int shift; /* Insertion function. This is used by the assembler. To insert an operand value into an instruction, check this field. If it is NULL, execute if (o->shift >= 0) i |= (op & o->bitm) << o->shift; else i |= (op & o->bitm) >> -o->shift; (i is the instruction which we are filling in, o is a pointer to this structure, and op is the operand value). If this field is not NULL, then simply call it with the instruction and the operand value. It will return the new value of the instruction. If the ERRMSG argument is not NULL, then if the operand value is illegal, *ERRMSG will be set to a warning string (the operand will be inserted in any case). If the operand value is legal, *ERRMSG will be unchanged (most operands can accept any value). */ unsigned long (*insert) (unsigned long instruction, long op, ppc_cpu_t dialect, const char **errmsg); /* Extraction function. This is used by the disassembler. To extract this operand type from an instruction, check this field. If it is NULL, compute if (o->shift >= 0) op = (i >> o->shift) & o->bitm; else op = (i << -o->shift) & o->bitm; if ((o->flags & PPC_OPERAND_SIGNED) != 0) sign_extend (op); (i is the instruction, o is a pointer to this structure, and op is the result). If this field is not NULL, then simply call it with the instruction value. It will return the value of the operand. If the INVALID argument is not NULL, *INVALID will be set to non-zero if this operand type can not actually be extracted from this operand (i.e., the instruction does not match). If the operand is valid, *INVALID will not be changed. */ long (*extract) (unsigned long instruction, ppc_cpu_t dialect, int *invalid); /* One bit syntax flags. */ unsigned long flags; }; /* Elements in the table are retrieved by indexing with values from the operands field of the powerpc_opcodes table. */ extern const struct powerpc_operand powerpc_operands[]; extern const unsigned int num_powerpc_operands; /* Use with the shift field of a struct powerpc_operand to indicate that BITM and SHIFT cannot be used to determine where the operand goes in the insn. */ #define PPC_OPSHIFT_INV (-1U << 31) /* Values defined for the flags field of a struct powerpc_operand. */ /* This operand takes signed values. */ #define PPC_OPERAND_SIGNED (0x1) /* This operand takes signed values, but also accepts a full positive range of values when running in 32 bit mode. That is, if bits is 16, it takes any value from -0x8000 to 0xffff. In 64 bit mode, this flag is ignored. */ #define PPC_OPERAND_SIGNOPT (0x2) /* This operand does not actually exist in the assembler input. This is used to support extended mnemonics such as mr, for which two operands fields are identical. The assembler should call the insert function with any op value. The disassembler should call the extract function, ignore the return value, and check the value placed in the valid argument. */ #define PPC_OPERAND_FAKE (0x4) /* The next operand should be wrapped in parentheses rather than separated from this one by a comma. This is used for the load and store instructions which want their operands to look like reg,displacement(reg) */ #define PPC_OPERAND_PARENS (0x8) /* This operand may use the symbolic names for the CR fields, which are lt 0 gt 1 eq 2 so 3 un 3 cr0 0 cr1 1 cr2 2 cr3 3 cr4 4 cr5 5 cr6 6 cr7 7 These may be combined arithmetically, as in cr2*4+gt. These are only supported on the PowerPC, not the POWER. */ #define PPC_OPERAND_CR_BIT (0x10) /* This operand names a register. The disassembler uses this to print register names with a leading 'r'. */ #define PPC_OPERAND_GPR (0x20) /* Like PPC_OPERAND_GPR, but don't print a leading 'r' for r0. */ #define PPC_OPERAND_GPR_0 (0x40) /* This operand names a floating point register. The disassembler prints these with a leading 'f'. */ #define PPC_OPERAND_FPR (0x80) /* This operand is a relative branch displacement. The disassembler prints these symbolically if possible. */ #define PPC_OPERAND_RELATIVE (0x100) /* This operand is an absolute branch address. The disassembler prints these symbolically if possible. */ #define PPC_OPERAND_ABSOLUTE (0x200) /* This operand is optional, and is zero if omitted. This is used for example, in the optional BF field in the comparison instructions. The assembler must count the number of operands remaining on the line, and the number of operands remaining for the opcode, and decide whether this operand is present or not. The disassembler should print this operand out only if it is not zero. */ #define PPC_OPERAND_OPTIONAL (0x400) /* This flag is only used with PPC_OPERAND_OPTIONAL. If this operand is omitted, then for the next operand use this operand value plus 1, ignoring the next operand field for the opcode. This wretched hack is needed because the Power rotate instructions can take either 4 or 5 operands. The disassembler should print this operand out regardless of the PPC_OPERAND_OPTIONAL field. */ #define PPC_OPERAND_NEXT (0x800) /* This operand should be regarded as a negative number for the purposes of overflow checking (i.e., the normal most negative number is disallowed and one more than the normal most positive number is allowed). This flag will only be set for a signed operand. */ #define PPC_OPERAND_NEGATIVE (0x1000) /* This operand names a vector unit register. The disassembler prints these with a leading 'v'. */ #define PPC_OPERAND_VR (0x2000) /* This operand is for the DS field in a DS form instruction. */ #define PPC_OPERAND_DS (0x4000) /* This operand is for the DQ field in a DQ form instruction. */ #define PPC_OPERAND_DQ (0x8000) /* Valid range of operand is 0..n rather than 0..n-1. */ #define PPC_OPERAND_PLUS1 (0x10000) /* Xilinx APU and FSL related operands */ #define PPC_OPERAND_FSL (0x20000) #define PPC_OPERAND_FCR (0x40000) #define PPC_OPERAND_UDI (0x80000) /* This operand names a vector-scalar unit register. The disassembler prints these with a leading 'vs'. */ #define PPC_OPERAND_VSR (0x100000) /* This is a CR FIELD that does not use symbolic names. */ #define PPC_OPERAND_CR_REG (0x200000) /* This flag is only used with PPC_OPERAND_OPTIONAL. If this operand is omitted, then the value it should use for the operand is stored in the SHIFT field of the immediatly following operand field. */ #define PPC_OPERAND_OPTIONAL_VALUE (0x400000) /* This flag is only used with PPC_OPERAND_OPTIONAL. The operand is only optional when generating 32-bit code. */ #define PPC_OPERAND_OPTIONAL32 (0x800000) /* The POWER and PowerPC assemblers use a few macros. We keep them with the operands table for simplicity. The macro table is an array of struct powerpc_macro. */ struct powerpc_macro { /* The macro name. */ const char *name; /* The number of operands the macro takes. */ unsigned int operands; /* One bit flags for the opcode. These are used to indicate which specific processors support the instructions. The values are the same as those for the struct powerpc_opcode flags field. */ ppc_cpu_t flags; /* A format string to turn the macro into a normal instruction. Each %N in the string is replaced with operand number N (zero based). */ const char *format; }; extern const struct powerpc_macro powerpc_macros[]; extern const int powerpc_num_macros; extern ppc_cpu_t ppc_parse_cpu (ppc_cpu_t, ppc_cpu_t *, const char *); static inline long ppc_optional_operand_value (const struct powerpc_operand *operand) { if ((operand->flags & PPC_OPERAND_OPTIONAL_VALUE) != 0) return (operand+1)->shift; return 0; } /* PowerPC VLE insns. */ /* Form I16L, uses 16A relocs. */ #define E_OR2I_INSN 0x7000C000 #define E_AND2I_DOT_INSN 0x7000C800 #define E_OR2IS_INSN 0x7000D000 #define E_LIS_INSN 0x7000E000 #define E_AND2IS_DOT_INSN 0x7000E800 /* Form I16A, uses 16D relocs. */ #define E_ADD2I_DOT_INSN 0x70008800 #define E_ADD2IS_INSN 0x70009000 #define E_CMP16I_INSN 0x70009800 #define E_MULL2I_INSN 0x7000A000 #define E_CMPL16I_INSN 0x7000A800 #define E_CMPH16I_INSN 0x7000B000 #define E_CMPHL16I_INSN 0x7000B800 #ifdef __cplusplus } #endif #endif /* PPC_H */