/* Opcode table for the ARC. Copyright (C) 1994-2016 Free Software Foundation, Inc. Contributed by Claudiu Zissulescu (claziss@synopsys.com) This file is part of GAS, the GNU Assembler, GDB, the GNU debugger, and the GNU Binutils. GAS/GDB is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GAS/GDB is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS or GDB; see the file COPYING3. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef OPCODE_ARC_H #define OPCODE_ARC_H #ifndef MAX_INSN_ARGS #define MAX_INSN_ARGS 6 #endif #ifndef MAX_INSN_FLGS #define MAX_INSN_FLGS 3 #endif /* Instruction Class. */ typedef enum { ARITH, AUXREG, BRANCH, CONTROL, DSP, FLOAT, INVALID, JUMP, KERNEL, LOGICAL, MEMORY, } insn_class_t; /* Instruction Subclass. */ typedef enum { NONE, CVT, BTSCN, CD1, CD2, DIV, DP, MPY1E, MPY6E, MPY7E, MPY8E, MPY9E, SHFT1, SHFT2, SWAP, SP } insn_subclass_t; /* Flags class. */ typedef enum { FNONE, CND, /* Conditional flags. */ WBM, /* Write-back modes. */ FLG, /* F Flag. */ SBP, /* Static branch prediction. */ DLY, /* Delay slot. */ DIF, /* Bypass caches. */ SGX, /* Sign extend modes. */ SZM /* Data size modes. */ } flag_class_t; /* The opcode table is an array of struct arc_opcode. */ struct arc_opcode { /* The opcode name. */ const char *name; /* The opcode itself. Those bits which will be filled in with operands are zeroes. */ unsigned opcode; /* The opcode mask. This is used by the disassembler. This is a mask containing ones indicating those bits which must match the opcode field, and zeroes indicating those bits which need not match (and are presumably filled in by operands). */ unsigned mask; /* One bit flags for the opcode. These are primarily used to indicate specific processors and environments support the instructions. The defined values are listed below. */ unsigned cpu; /* The instruction class. This is used by gdb. */ insn_class_t class; /* The instruction subclass. */ insn_subclass_t subclass; /* An array of operand codes. Each code is an index into the operand table. They appear in the order which the operands must appear in assembly code, and are terminated by a zero. */ unsigned char operands[MAX_INSN_ARGS + 1]; /* An array of flag codes. Each code is an index into the flag table. They appear in the order which the flags must appear in assembly code, and are terminated by a zero. */ unsigned char flags[MAX_INSN_FLGS + 1]; }; /* The table itself is sorted by major opcode number, and is otherwise in the order in which the disassembler should consider instructions. */ extern const struct arc_opcode arc_opcodes[]; extern const unsigned arc_num_opcodes; /* CPU Availability. */ #define ARC_OPCODE_ARC600 0x0001 /* ARC 600 specific insns. */ #define ARC_OPCODE_ARC700 0x0002 /* ARC 700 specific insns. */ #define ARC_OPCODE_ARCv2EM 0x0004 /* ARCv2 EM specific insns. */ #define ARC_OPCODE_ARCv2HS 0x0008 /* ARCv2 HS specific insns. */ /* CPU extensions. */ #define ARC_EA 0x0001 #define ARC_CD 0x0001 /* Mutual exclusive with EA. */ #define ARC_LLOCK 0x0002 #define ARC_ATOMIC 0x0002 /* Mutual exclusive with LLOCK. */ #define ARC_MPY 0x0004 #define ARC_MULT 0x0004 /* Floating point support. */ #define ARC_DPFP 0x0010 #define ARC_SPFP 0x0020 #define ARC_FPU 0x0030 /* NORM & SWAP. */ #define ARC_SWAP 0x0100 #define ARC_NORM 0x0200 #define ARC_BSCAN 0x0200 /* A7 specific. */ #define ARC_UIX 0x1000 #define ARC_TSTAMP 0x1000 /* A6 specific. */ #define ARC_VBFDW 0x1000 #define ARC_BARREL 0x1000 #define ARC_DSPA 0x1000 /* EM specific. */ #define ARC_SHIFT 0x1000 /* V2 specific. */ #define ARC_INTR 0x1000 #define ARC_DIV 0x1000 /* V1 specific. */ #define ARC_XMAC 0x1000 #define ARC_CRC 0x1000 /* Base architecture -- all cpus. */ #define ARC_OPCODE_BASE \ (ARC_OPCODE_ARC600 | ARC_OPCODE_ARC700 \ | ARC_OPCODE_ARCv2EM | ARC_OPCODE_ARCv2HS) /* A macro to check for short instructions. */ #define ARC_SHORT(mask) \ (((mask) & 0xFFFF0000) ? 0 : 1) /* The operands table is an array of struct arc_operand. */ struct arc_operand { /* The number of bits in the operand. */ unsigned int bits; /* How far the operand is left shifted in the instruction. */ unsigned int shift; /* The default relocation type for this operand. */ signed int default_reloc; /* One bit syntax flags. */ unsigned int flags; /* Insertion function. This is used by the assembler. To insert an operand value into an instruction, check this field. If it is NULL, execute i |= (op & ((1 << o->bits) - 1)) << o->shift; (i is the instruction which we are filling in, o is a pointer to this structure, and op is the opcode value; this assumes twos complement arithmetic). If this field is not NULL, then simply call it with the instruction and the operand value. It will return the new value of the instruction. If the ERRMSG argument is not NULL, then if the operand value is illegal, *ERRMSG will be set to a warning string (the operand will be inserted in any case). If the operand value is legal, *ERRMSG will be unchanged (most operands can accept any value). */ unsigned (*insert) (unsigned instruction, int op, const char **errmsg); /* Extraction function. This is used by the disassembler. To extract this operand type from an instruction, check this field. If it is NULL, compute op = ((i) >> o->shift) & ((1 << o->bits) - 1); if ((o->flags & ARC_OPERAND_SIGNED) != 0 && (op & (1 << (o->bits - 1))) != 0) op -= 1 << o->bits; (i is the instruction, o is a pointer to this structure, and op is the result; this assumes twos complement arithmetic). If this field is not NULL, then simply call it with the instruction value. It will return the value of the operand. If the INVALID argument is not NULL, *INVALID will be set to TRUE if this operand type can not actually be extracted from this operand (i.e., the instruction does not match). If the operand is valid, *INVALID will not be changed. */ int (*extract) (unsigned instruction, bfd_boolean *invalid); }; /* Elements in the table are retrieved by indexing with values from the operands field of the arc_opcodes table. */ extern const struct arc_operand arc_operands[]; extern const unsigned arc_num_operands; extern const unsigned arc_Toperand; extern const unsigned arc_NToperand; /* Values defined for the flags field of a struct arc_operand. */ /* This operand does not actually exist in the assembler input. This is used to support extended mnemonics, for which two operands fields are identical. The assembler should call the insert function with any op value. The disassembler should call the extract function, ignore the return value, and check the value placed in the invalid argument. */ #define ARC_OPERAND_FAKE 0x0001 /* This operand names an integer register. */ #define ARC_OPERAND_IR 0x0002 /* This operand takes signed values. */ #define ARC_OPERAND_SIGNED 0x0004 /* This operand takes unsigned values. This exists primarily so that a flags value of 0 can be treated as end-of-arguments. */ #define ARC_OPERAND_UNSIGNED 0x0008 /* This operand takes long immediate values. */ #define ARC_OPERAND_LIMM 0x0010 /* This operand is identical like the previous one. */ #define ARC_OPERAND_DUPLICATE 0x0020 /* This operand is PC relative. Used for internal relocs. */ #define ARC_OPERAND_PCREL 0x0040 /* This operand is truncated. The truncation is done accordingly to operand alignment attribute. */ #define ARC_OPERAND_TRUNCATE 0x0080 /* This operand is 16bit aligned. */ #define ARC_OPERAND_ALIGNED16 0x0100 /* This operand is 32bit aligned. */ #define ARC_OPERAND_ALIGNED32 0x0200 /* This operand can be ignored by matching process if it is not present. */ #define ARC_OPERAND_IGNORE 0x0400 /* Don't check the range when matching. */ #define ARC_OPERAND_NCHK 0x0800 /* Mark the braket possition. */ #define ARC_OPERAND_BRAKET 0x1000 /* Mask for selecting the type for typecheck purposes. */ #define ARC_OPERAND_TYPECHECK_MASK \ (ARC_OPERAND_IR | \ ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | \ ARC_OPERAND_UNSIGNED | ARC_OPERAND_BRAKET) /* The flags structure. */ struct arc_flag_operand { /* The flag name. */ const char *name; /* The flag code. */ unsigned code; /* The number of bits in the operand. */ unsigned int bits; /* How far the operand is left shifted in the instruction. */ unsigned int shift; /* Available for disassembler. */ unsigned char favail; }; /* The flag operands table. */ extern const struct arc_flag_operand arc_flag_operands[]; extern const unsigned arc_num_flag_operands; /* The flag's class structure. */ struct arc_flag_class { /* Flag class. */ flag_class_t class; /* List of valid flags (codes). */ unsigned flags[256]; }; extern const struct arc_flag_class arc_flag_classes[]; /* Structure for special cases. */ struct arc_flag_special { /* Name of special case instruction. */ const char *name; /* List of flags applicable for special case instruction. */ unsigned flags[32]; }; extern const struct arc_flag_special arc_flag_special_cases[]; extern const unsigned arc_num_flag_special; /* Relocation equivalence structure. */ struct arc_reloc_equiv_tab { const char * name; /* String to lookup. */ const char * mnemonic; /* Extra matching condition. */ unsigned flags[32]; /* Extra matching condition. */ signed int oldreloc; /* Old relocation. */ signed int newreloc; /* New relocation. */ }; extern const struct arc_reloc_equiv_tab arc_reloc_equiv[]; extern const unsigned arc_num_equiv_tab; /* Structure for operand operations for pseudo/alias instructions. */ struct arc_operand_operation { /* The index for operand from operand array. */ unsigned operand_idx; /* Defines if it needs the operand inserted by the assembler or whether this operand comes from the pseudo instruction's operands. */ unsigned char needs_insert; /* Count we have to add to the operand. Use negative number to subtract from the operand. Also use this number to add to 0 if the operand needs to be inserted (i.e. needs_insert == 1). */ int count; /* Index of the operand to swap with. To be done AFTER applying inc_count. */ unsigned swap_operand_idx; }; /* Structure for pseudo/alias instructions. */ struct arc_pseudo_insn { /* Mnemonic for pseudo/alias insn. */ const char *mnemonic_p; /* Mnemonic for real instruction. */ const char *mnemonic_r; /* Flag that will have to be added (if any). */ const char *flag_r; /* Amount of operands. */ unsigned operand_cnt; /* Array of operand operations. */ struct arc_operand_operation operand[6]; }; extern const struct arc_pseudo_insn arc_pseudo_insns[]; extern const unsigned arc_num_pseudo_insn; /* Structure for AUXILIARY registers. */ struct arc_aux_reg { /* Register address. */ int address; /* Register name. */ const char *name; /* Size of the string. */ size_t length; }; extern const struct arc_aux_reg arc_aux_regs[]; extern const unsigned arc_num_aux_regs; extern const struct arc_opcode arc_relax_opcodes[]; extern const unsigned arc_num_relax_opcodes; #endif /* OPCODE_ARC_H */