/* hist.c - Histogram related operations. Copyright 2000 Free Software Foundation, Inc. This file is part of GNU Binutils. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "libiberty.h" #include "gprof.h" #include "corefile.h" #include "gmon_io.h" #include "gmon_out.h" #include "hist.h" #include "symtab.h" #include "sym_ids.h" #include "utils.h" #define UNITS_TO_CODE (offset_to_code / sizeof(UNIT)) static void scale_and_align_entries PARAMS ((void)); /* Declarations of automatically generated functions to output blurbs. */ extern void flat_blurb PARAMS ((FILE * fp)); bfd_vma s_lowpc; /* Lowest address in .text. */ bfd_vma s_highpc = 0; /* Highest address in .text. */ bfd_vma lowpc, highpc; /* Same, but expressed in UNITs. */ int hist_num_bins = 0; /* Number of histogram samples. */ int *hist_sample = 0; /* Histogram samples (shorts in the file!). */ double hist_scale; char hist_dimension[sizeof (((struct gmon_hist_hdr *) 0)->dimen) + 1] = "seconds"; char hist_dimension_abbrev = 's'; static double accum_time; /* Accumulated time so far for print_line(). */ static double total_time; /* Total time for all routines. */ /* Table of SI prefixes for powers of 10 (used to automatically scale some of the values in the flat profile). */ const struct { char prefix; double scale; } SItab[] = { { 'T', 1e-12 } , /* tera */ { 'G', 1e-09 } , /* giga */ { 'M', 1e-06 } , /* mega */ { 'K', 1e-03 } , /* kilo */ { ' ', 1e-00 } , { 'm', 1e+03 } , /* milli */ { 'u', 1e+06 } , /* micro */ { 'n', 1e+09 } , /* nano */ { 'p', 1e+12 } , /* pico */ { 'f', 1e+15 } , /* femto */ { 'a', 1e+18 } , /* ato */ }; /* Read the histogram from file IFP. FILENAME is the name of IFP and is provided for formatting error messages only. */ void DEFUN (hist_read_rec, (ifp, filename), FILE * ifp AND const char *filename) { struct gmon_hist_hdr hdr; bfd_vma n_lowpc, n_highpc; int i, ncnt, profrate; UNIT count; if (fread (&hdr, sizeof (hdr), 1, ifp) != 1) { fprintf (stderr, _("%s: %s: unexpected end of file\n"), whoami, filename); done (1); } n_lowpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.low_pc); n_highpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.high_pc); ncnt = bfd_get_32 (core_bfd, (bfd_byte *) hdr.hist_size); profrate = bfd_get_32 (core_bfd, (bfd_byte *) hdr.prof_rate); strncpy (hist_dimension, hdr.dimen, sizeof (hdr.dimen)); hist_dimension[sizeof (hdr.dimen)] = '\0'; hist_dimension_abbrev = hdr.dimen_abbrev; if (!s_highpc) { /* This is the first histogram record. */ s_lowpc = n_lowpc; s_highpc = n_highpc; lowpc = (bfd_vma) n_lowpc / sizeof (UNIT); highpc = (bfd_vma) n_highpc / sizeof (UNIT); hist_num_bins = ncnt; hz = profrate; } DBG (SAMPLEDEBUG, printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %d\n", (unsigned long) n_lowpc, (unsigned long) n_highpc, ncnt); printf ("[hist_read_rec] s_lowpc 0x%lx s_highpc 0x%lx nsamples %d\n", (unsigned long) s_lowpc, (unsigned long) s_highpc, hist_num_bins); printf ("[hist_read_rec] lowpc 0x%lx highpc 0x%lx\n", (unsigned long) lowpc, (unsigned long) highpc)); if (n_lowpc != s_lowpc || n_highpc != s_highpc || ncnt != hist_num_bins || hz != profrate) { fprintf (stderr, _("%s: `%s' is incompatible with first gmon file\n"), whoami, filename); done (1); } if (!hist_sample) { hist_sample = (int *) xmalloc (hist_num_bins * sizeof (hist_sample[0])); memset (hist_sample, 0, hist_num_bins * sizeof (hist_sample[0])); } for (i = 0; i < hist_num_bins; ++i) { if (fread (&count[0], sizeof (count), 1, ifp) != 1) { fprintf (stderr, _("%s: %s: unexpected EOF after reading %d of %d samples\n"), whoami, filename, i, hist_num_bins); done (1); } hist_sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]); } } /* Write execution histogram to file OFP. FILENAME is the name of OFP and is provided for formatting error-messages only. */ void DEFUN (hist_write_hist, (ofp, filename), FILE * ofp AND const char *filename) { struct gmon_hist_hdr hdr; unsigned char tag; UNIT count; int i; /* Write header. */ tag = GMON_TAG_TIME_HIST; put_vma (core_bfd, s_lowpc, (bfd_byte *) hdr.low_pc); put_vma (core_bfd, s_highpc, (bfd_byte *) hdr.high_pc); bfd_put_32 (core_bfd, hist_num_bins, (bfd_byte *) hdr.hist_size); bfd_put_32 (core_bfd, hz, (bfd_byte *) hdr.prof_rate); strncpy (hdr.dimen, hist_dimension, sizeof (hdr.dimen)); hdr.dimen_abbrev = hist_dimension_abbrev; if (fwrite (&tag, sizeof (tag), 1, ofp) != 1 || fwrite (&hdr, sizeof (hdr), 1, ofp) != 1) { perror (filename); done (1); } for (i = 0; i < hist_num_bins; ++i) { bfd_put_16 (core_bfd, hist_sample[i], (bfd_byte *) & count[0]); if (fwrite (&count[0], sizeof (count), 1, ofp) != 1) { perror (filename); done (1); } } } /* Calculate scaled entry point addresses (to save time in hist_assign_samples), and, on architectures that have procedure entry masks at the start of a function, possibly push the scaled entry points over the procedure entry mask, if it turns out that the entry point is in one bin and the code for a routine is in the next bin. */ static void scale_and_align_entries () { Sym *sym; bfd_vma bin_of_entry; bfd_vma bin_of_code; for (sym = symtab.base; sym < symtab.limit; sym++) { sym->hist.scaled_addr = sym->addr / sizeof (UNIT); bin_of_entry = (sym->hist.scaled_addr - lowpc) / hist_scale; bin_of_code = (sym->hist.scaled_addr + UNITS_TO_CODE - lowpc) / hist_scale; if (bin_of_entry < bin_of_code) { DBG (SAMPLEDEBUG, printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n", (unsigned long) sym->hist.scaled_addr, (unsigned long) (sym->hist.scaled_addr + UNITS_TO_CODE))); sym->hist.scaled_addr += UNITS_TO_CODE; } } } /* Assign samples to the symbol to which they belong. Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC) which may overlap one more symbol address ranges. If a symbol overlaps with the bin's address range by O percent, then O percent of the bin's count is credited to that symbol. There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be with respect to the symbol's address range [SYM_LOW_PC, SYM_HIGH_PC) as shown in the following diagram. OVERLAP computes the distance (in UNITs) between the arrows, the fraction of the sample that is to be credited to the symbol which starts at SYM_LOW_PC. sym_low_pc sym_high_pc | | v v +-----------------------------------------------+ | | | ->| |<- ->| |<- ->| |<- | | | | | | | +---------+ +---------+ +---------+ ^ ^ ^ ^ ^ ^ | | | | | | bin_low_pc bin_high_pc bin_low_pc bin_high_pc bin_low_pc bin_high_pc For the VAX we assert that samples will never fall in the first two bytes of any routine, since that is the entry mask, thus we call scale_and_align_entries() to adjust the entry points if the entry mask falls in one bin but the code for the routine doesn't start until the next bin. In conjunction with the alignment of routine addresses, this should allow us to have only one sample for every four bytes of text space and never have any overlap (the two end cases, above). */ void DEFUN_VOID (hist_assign_samples) { bfd_vma bin_low_pc, bin_high_pc; bfd_vma sym_low_pc, sym_high_pc; bfd_vma overlap, addr; int bin_count, i; unsigned int j; double time, credit; /* Read samples and assign to symbols. */ hist_scale = highpc - lowpc; hist_scale /= hist_num_bins; scale_and_align_entries (); /* Iterate over all sample bins. */ for (i = 0, j = 1; i < hist_num_bins; ++i) { bin_count = hist_sample[i]; if (! bin_count) continue; bin_low_pc = lowpc + (bfd_vma) (hist_scale * i); bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1)); time = bin_count; DBG (SAMPLEDEBUG, printf ( "[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%d\n", (unsigned long) (sizeof (UNIT) * bin_low_pc), (unsigned long) (sizeof (UNIT) * bin_high_pc), bin_count)); total_time += time; /* Credit all symbols that are covered by bin I. */ for (j = j - 1; j < symtab.len; ++j) { sym_low_pc = symtab.base[j].hist.scaled_addr; sym_high_pc = symtab.base[j + 1].hist.scaled_addr; /* If high end of bin is below entry address, go for next bin. */ if (bin_high_pc < sym_low_pc) break; /* If low end of bin is above high end of symbol, go for next symbol. */ if (bin_low_pc >= sym_high_pc) continue; overlap = MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc); if (overlap > 0) { DBG (SAMPLEDEBUG, printf ( "[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n", (unsigned long) symtab.base[j].addr, (unsigned long) (sizeof (UNIT) * sym_high_pc), symtab.base[j].name, overlap * time / hist_scale, (long) overlap)); addr = symtab.base[j].addr; credit = overlap * time / hist_scale; /* Credit symbol if it appears in INCL_FLAT or that table is empty and it does not appear it in EXCL_FLAT. */ if (sym_lookup (&syms[INCL_FLAT], addr) || (syms[INCL_FLAT].len == 0 && !sym_lookup (&syms[EXCL_FLAT], addr))) { symtab.base[j].hist.time += credit; } else { total_time -= credit; } } } } DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n", total_time)); } /* Print header for flag histogram profile. */ static void DEFUN (print_header, (prefix), const char prefix) { char unit[64]; sprintf (unit, _("%c%c/call"), prefix, hist_dimension_abbrev); if (bsd_style_output) { printf (_("\ngranularity: each sample hit covers %ld byte(s)"), (long) hist_scale * sizeof (UNIT)); if (total_time > 0.0) { printf (_(" for %.2f%% of %.2f %s\n\n"), 100.0 / total_time, total_time / hz, hist_dimension); } } else { printf (_("\nEach sample counts as %g %s.\n"), 1.0 / hz, hist_dimension); } if (total_time <= 0.0) { printf (_(" no time accumulated\n\n")); /* This doesn't hurt since all the numerators will be zero. */ total_time = 1.0; } printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s %-8.8s\n", "% ", _("cumulative"), _("self "), "", _("self "), _("total "), ""); printf ("%5.5s %9.9s %8.8s %8.8s %8.8s %8.8s %-8.8s\n", _("time"), hist_dimension, hist_dimension, _("calls"), unit, unit, _("name")); } static void DEFUN (print_line, (sym, scale), Sym * sym AND double scale) { if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0) return; accum_time += sym->hist.time; if (bsd_style_output) printf ("%5.1f %10.2f %8.2f", total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0, accum_time / hz, sym->hist.time / hz); else printf ("%6.2f %9.2f %8.2f", total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0, accum_time / hz, sym->hist.time / hz); if (sym->ncalls != 0) printf (" %8lu %8.2f %8.2f ", sym->ncalls, scale * sym->hist.time / hz / sym->ncalls, scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls); else printf (" %8.8s %8.8s %8.8s ", "", "", ""); if (bsd_style_output) print_name (sym); else print_name_only (sym); printf ("\n"); } /* Compare LP and RP. The primary comparison key is execution time, the secondary is number of invocation, and the tertiary is the lexicographic order of the function names. */ static int DEFUN (cmp_time, (lp, rp), const PTR lp AND const PTR rp) { const Sym *left = *(const Sym **) lp; const Sym *right = *(const Sym **) rp; double time_diff; time_diff = right->hist.time - left->hist.time; if (time_diff > 0.0) return 1; if (time_diff < 0.0) return -1; if (right->ncalls > left->ncalls) return 1; if (right->ncalls < left->ncalls) return -1; return strcmp (left->name, right->name); } /* Print the flat histogram profile. */ void DEFUN_VOID (hist_print) { Sym **time_sorted_syms, *top_dog, *sym; unsigned int index; int log_scale; double top_time, time; bfd_vma addr; if (first_output) first_output = FALSE; else printf ("\f\n"); accum_time = 0.0; if (bsd_style_output) { if (print_descriptions) { printf (_("\n\n\nflat profile:\n")); flat_blurb (stdout); } } else { printf (_("Flat profile:\n")); } /* Sort the symbol table by time (call-count and name as secondary and tertiary keys). */ time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *)); for (index = 0; index < symtab.len; ++index) time_sorted_syms[index] = &symtab.base[index]; qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time); if (bsd_style_output) { log_scale = 5; /* Milli-seconds is BSD-default. */ } else { /* Search for symbol with highest per-call execution time and scale accordingly. */ log_scale = 0; top_dog = 0; top_time = 0.0; for (index = 0; index < symtab.len; ++index) { sym = time_sorted_syms[index]; if (sym->ncalls != 0) { time = (sym->hist.time + sym->cg.child_time) / sym->ncalls; if (time > top_time) { top_dog = sym; top_time = time; } } } if (top_dog && top_dog->ncalls != 0 && top_time > 0.0) { top_time /= hz; while (SItab[log_scale].scale * top_time < 1000.0 && ((size_t) log_scale < sizeof (SItab) / sizeof (SItab[0]) - 1)) { ++log_scale; } } } /* For now, the dimension is always seconds. In the future, we may also want to support other (pseudo-)dimensions (such as I-cache misses etc.). */ print_header (SItab[log_scale].prefix); for (index = 0; index < symtab.len; ++index) { addr = time_sorted_syms[index]->addr; /* Print symbol if its in INCL_FLAT table or that table is empty and the symbol is not in EXCL_FLAT. */ if (sym_lookup (&syms[INCL_FLAT], addr) || (syms[INCL_FLAT].len == 0 && !sym_lookup (&syms[EXCL_FLAT], addr))) print_line (time_sorted_syms[index], SItab[log_scale].scale); } free (time_sorted_syms); if (print_descriptions && !bsd_style_output) flat_blurb (stdout); }