// tilegx.cc -- tilegx target support for gold. // Copyright 2012, 2013 Free Software Foundation, Inc. // Written by Jiong Wang (jiwang@tilera.com) // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include <cstring> #include "elfcpp.h" #include "dwarf.h" #include "parameters.h" #include "reloc.h" #include "tilegx.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "gc.h" #include "icf.h" // the first got entry reserved const int32_t TILEGX_GOT_RESERVE_COUNT = 1; // the first two .got.plt entry reserved const int32_t TILEGX_GOTPLT_RESERVE_COUNT = 2; // 1. for both 64/32 bit mode, the instruction bundle is always 64bit. // 2. thus .plt section should always be aligned to 64 bit. const int32_t TILEGX_INST_BUNDLE_SIZE = 64; namespace { using namespace gold; // A class to handle the PLT data. // This is an abstract base class that handles most of the linker details // but does not know the actual contents of PLT entries. The derived // classes below fill in those details. template<int size, bool big_endian> class Output_data_plt_tilegx : public Output_section_data { public: typedef Output_data_reloc<elfcpp::SHT_RELA, true,size, big_endian> Reloc_section; Output_data_plt_tilegx(Layout* layout, uint64_t addralign, Output_data_got<size, big_endian>* got, Output_data_space* got_plt, Output_data_space* got_irelative) : Output_section_data(addralign), layout_(layout), irelative_rel_(NULL), got_(got), got_plt_(got_plt), got_irelative_(got_irelative), count_(0), irelative_count_(0), free_list_() { this->init(layout); } Output_data_plt_tilegx(Layout* layout, uint64_t plt_entry_size, Output_data_got<size, big_endian>* got, Output_data_space* got_plt, Output_data_space* got_irelative, unsigned int plt_count) : Output_section_data((plt_count + 1) * plt_entry_size, TILEGX_INST_BUNDLE_SIZE, false), layout_(layout), irelative_rel_(NULL), got_(got), got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count), irelative_count_(0), free_list_() { this->init(layout); // Initialize the free list and reserve the first entry. this->free_list_.init((plt_count + 1) * plt_entry_size, false); this->free_list_.remove(0, plt_entry_size); } // Initialize the PLT section. void init(Layout* layout); // Add an entry to the PLT. void add_entry(Symbol_table*, Layout*, Symbol* gsym); // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. unsigned int add_local_ifunc_entry(Symbol_table*, Layout*, Sized_relobj_file<size, big_endian>*, unsigned int); // Add the relocation for a PLT entry. void add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int); // Return the .rela.plt section data. Reloc_section* rela_plt() { return this->rel_; } // Return where the IRELATIVE relocations should go in the PLT // relocations. Reloc_section* rela_irelative(Symbol_table*, Layout*); // Return whether we created a section for IRELATIVE relocations. bool has_irelative_section() const { return this->irelative_rel_ != NULL; } // Return the number of PLT entries. unsigned int entry_count() const { return this->count_ + this->irelative_count_; } // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() { return this->get_plt_entry_size(); } // Return the size of a PLT entry. unsigned int get_plt_entry_size() const { return plt_entry_size; } // Reserve a slot in the PLT for an existing symbol in an incremental update. void reserve_slot(unsigned int plt_index) { this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(), (plt_index + 2) * this->get_plt_entry_size()); } // Return the PLT address to use for a global symbol. uint64_t address_for_global(const Symbol*); // Return the PLT address to use for a local symbol. uint64_t address_for_local(const Relobj*, unsigned int symndx); protected: // Fill in the first PLT entry. void fill_first_plt_entry(unsigned char*); // Fill in a normal PLT entry. Returns the offset into the entry that // should be the initial GOT slot value. void fill_plt_entry(unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr, unsigned int, typename elfcpp::Elf_types<size>::Elf_Addr, unsigned int, unsigned int); void do_adjust_output_section(Output_section* os); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** PLT")); } private: // Set the final size. void set_final_data_size(); // Write out the PLT data. void do_write(Output_file*); // A pointer to the Layout class, so that we can find the .dynamic // section when we write out the GOT PLT section. Layout* layout_; // The reloc section. Reloc_section* rel_; // The IRELATIVE relocs, if necessary. These must follow the // regular PLT relocations. Reloc_section* irelative_rel_; // The .got section. Output_data_got<size, big_endian>* got_; // The .got.plt section. Output_data_space* got_plt_; // The part of the .got.plt section used for IRELATIVE relocs. Output_data_space* got_irelative_; // The number of PLT entries. unsigned int count_; // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These // follow the regular PLT entries. unsigned int irelative_count_; // List of available regions within the section, for incremental // update links. Free_list free_list_; // The size of an entry in the PLT. static const int plt_entry_size = 40; // The first entry in the PLT. static const unsigned char first_plt_entry[plt_entry_size]; // Other entries in the PLT for an executable. static const unsigned char plt_entry[plt_entry_size]; }; // The tilegx target class. // See the ABI at // http://www.tilera.com/scm // TLS info comes from // http://people.redhat.com/drepper/tls.pdf template<int size, bool big_endian> class Target_tilegx : public Sized_target<size, big_endian> { public: // TileGX use RELA typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section; Target_tilegx(const Target::Target_info* info = &tilegx_info) : Sized_target<size, big_endian>(info), got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL), global_offset_table_(NULL), tilegx_dynamic_(NULL), rela_dyn_(NULL), rela_irelative_(NULL), copy_relocs_(elfcpp::R_TILEGX_COPY), dynbss_(NULL), got_mod_index_offset_(-1U), tls_get_addr_sym_defined_(false) { } // Scan the relocations to look for symbol adjustments. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; // Relocate a section. void relocate_section(const Relocate_info<size, big_endian>*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Relocate a section during a relocatable link. void relocate_relocs( const Relocate_info<size, big_endian>*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, const Relocatable_relocs*, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size); // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "__tls_get_addr") == 0; } // define tilegx specific symbols virtual void do_define_standard_symbols(Symbol_table*, Layout*); // Return the PLT section. uint64_t do_plt_address_for_global(const Symbol* gsym) const { return this->plt_section()->address_for_global(gsym); } uint64_t do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const { return this->plt_section()->address_for_local(relobj, symndx); } // This function should be defined in targets that can use relocation // types to determine (implemented in local_reloc_may_be_function_pointer // and global_reloc_may_be_function_pointer) // if a function's pointer is taken. ICF uses this in safe mode to only // fold those functions whose pointer is defintely not taken. For tilegx // pie binaries, safe ICF cannot be done by looking at relocation types. bool do_can_check_for_function_pointers() const { return true; } // Return the base for a DW_EH_PE_datarel encoding. uint64_t do_ehframe_datarel_base() const; // Return whether there is a GOT section. bool has_got_section() const { return this->got_ != NULL; } // Return the size of the GOT section. section_size_type got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } // Return the number of entries in the GOT. unsigned int got_entry_count() const { if (this->got_ == NULL) return 0; return this->got_size() / (size / 8); } // Return the number of entries in the PLT. unsigned int plt_entry_count() const; // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const; // Return the size of each PLT entry. unsigned int plt_entry_size() const; // Create the GOT section for an incremental update. Output_data_got_base* init_got_plt_for_update(Symbol_table* symtab, Layout* layout, unsigned int got_count, unsigned int plt_count); // Reserve a GOT entry for a local symbol, and regenerate any // necessary dynamic relocations. void reserve_local_got_entry(unsigned int got_index, Sized_relobj<size, big_endian>* obj, unsigned int r_sym, unsigned int got_type); // Reserve a GOT entry for a global symbol, and regenerate any // necessary dynamic relocations. void reserve_global_got_entry(unsigned int got_index, Symbol* gsym, unsigned int got_type); // Register an existing PLT entry for a global symbol. void register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index, Symbol* gsym); // Force a COPY relocation for a given symbol. void emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t); // Apply an incremental relocation. void apply_relocation(const Relocate_info<size, big_endian>* relinfo, typename elfcpp::Elf_types<size>::Elf_Addr r_offset, unsigned int r_type, typename elfcpp::Elf_types<size>::Elf_Swxword r_addend, const Symbol* gsym, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr address, section_size_type view_size); private: // The class which scans relocations. class Scan { public: Scan() : issued_non_pic_error_(false) { } static inline int get_reference_flags(unsigned int r_type); inline void local(Symbol_table* symtab, Layout* layout, Target_tilegx* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, const elfcpp::Sym<size, big_endian>& lsym, bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_tilegx* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout, Target_tilegx* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, const elfcpp::Sym<size, big_endian>& lsym); inline bool global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout, Target_tilegx* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, Symbol* gsym); private: static void unsupported_reloc_local(Sized_relobj_file<size, big_endian>*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file<size, big_endian>*, unsigned int r_type, Symbol*); void check_non_pic(Relobj*, unsigned int r_type); inline bool possible_function_pointer_reloc(unsigned int r_type); bool reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; // The class which implements relocation. class Relocate { public: Relocate() { } ~Relocate() { } // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info<size, big_endian>*, Target_tilegx*, Output_section*, size_t relnum, const elfcpp::Rela<size, big_endian>&, unsigned int r_type, const Sized_symbol<size>*, const Symbol_value<size>*, unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr, section_size_type); }; // A class which returns the size required for a relocation type, // used while scanning relocs during a relocatable link. class Relocatable_size_for_reloc { public: unsigned int get_size_for_reloc(unsigned int, Relobj*); }; // Adjust TLS relocation type based on the options and whether this // is a local symbol. static tls::Tls_optimization optimize_tls_reloc(bool is_final, int r_type); // Get the GOT section, creating it if necessary. Output_data_got<size, big_endian>* got_section(Symbol_table*, Layout*); // Get the GOT PLT section. Output_data_space* got_plt_section() const { gold_assert(this->got_plt_ != NULL); return this->got_plt_; } // Create the PLT section. void make_plt_section(Symbol_table* symtab, Layout* layout); // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); // Create a PLT entry for a local STT_GNU_IFUNC symbol. void make_local_ifunc_plt_entry(Symbol_table*, Layout*, Sized_relobj_file<size, big_endian>* relobj, unsigned int local_sym_index); // Create a GOT entry for the TLS module index. unsigned int got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object); // Get the PLT section. Output_data_plt_tilegx<size, big_endian>* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Get the section to use for IRELATIVE relocations. Reloc_section* rela_irelative_section(Layout*); // Add a potential copy relocation. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc) { this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol<size>(sym), object, shndx, output_section, reloc, this->rela_dyn_section(layout)); } // Information about this specific target which we pass to the // general Target structure. static const Target::Target_info tilegx_info; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair }; // This type is used as the argument to the target specific // relocation routines. The only target specific reloc is // R_X86_64_TLSDESC against a local symbol. struct Tlsdesc_info { Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object, unsigned int a_r_sym) : object(a_object), r_sym(a_r_sym) { } // The object in which the local symbol is defined. Sized_relobj_file<size, big_endian>* object; // The local symbol index in the object. unsigned int r_sym; }; // The GOT section. Output_data_got<size, big_endian>* got_; // The PLT section. Output_data_plt_tilegx<size, big_endian>* plt_; // The GOT PLT section. Output_data_space* got_plt_; // The GOT section for IRELATIVE relocations. Output_data_space* got_irelative_; // The _GLOBAL_OFFSET_TABLE_ symbol. Symbol* global_offset_table_; // The _TILEGX_DYNAMIC_ symbol. Symbol* tilegx_dynamic_; // The dynamic reloc section. Reloc_section* rela_dyn_; // The section to use for IRELATIVE relocs. Reloc_section* rela_irelative_; // Relocs saved to avoid a COPY reloc. Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_; // Space for variables copied with a COPY reloc. Output_data_space* dynbss_; // Offset of the GOT entry for the TLS module index. unsigned int got_mod_index_offset_; // True if the _tls_get_addr symbol has been defined. bool tls_get_addr_sym_defined_; }; template<> const Target::Target_info Target_tilegx<64, false>::tilegx_info = { 64, // size false, // is_big_endian elfcpp::EM_TILEGX, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // program interpreter 0x10000, // default_text_segment_address 0x10000, // abi_pagesize (overridable by -z max-page-size) 0x10000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> const Target::Target_info Target_tilegx<32, false>::tilegx_info = { 32, // size false, // is_big_endian elfcpp::EM_TILEGX, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib32/ld.so.1", // program interpreter 0x10000, // default_text_segment_address 0x10000, // abi_pagesize (overridable by -z max-page-size) 0x10000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> const Target::Target_info Target_tilegx<64, true>::tilegx_info = { 64, // size true, // is_big_endian elfcpp::EM_TILEGX, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib/ld.so.1", // program interpreter 0x10000, // default_text_segment_address 0x10000, // abi_pagesize (overridable by -z max-page-size) 0x10000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; template<> const Target::Target_info Target_tilegx<32, true>::tilegx_info = { 32, // size true, // is_big_endian elfcpp::EM_TILEGX, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/lib32/ld.so.1", // program interpreter 0x10000, // default_text_segment_address 0x10000, // abi_pagesize (overridable by -z max-page-size) 0x10000, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL // attributes_vendor }; // tilegx relocation handlers template<int size, bool big_endian> class Tilegx_relocate_functions { public: // overflow check will be supported later typedef enum { STATUS_OKAY, // No error during relocation. STATUS_OVERFLOW, // Relocation overflow. STATUS_BAD_RELOC // Relocation cannot be applied. } Status; struct Tilegx_howto { // right shift operand by this number of bits. unsigned char srshift; // the offset to apply relocation. unsigned char doffset; // set to 1 for pc-relative relocation. unsigned char is_pcrel; // size in bits, or 0 if this table entry should be ignored. unsigned char bsize; // whether we need to check overflow. unsigned char overflow; }; static const Tilegx_howto howto[elfcpp::R_TILEGX_NUM]; private: // Do a simple rela relocation template<int valsize> static inline void rela(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset, elfcpp::Elf_Xword bitmask) { typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv); Valtype reloc = 0; if (size == 32) reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift; else reloc = psymval->value(object, addend) >> srshift; elfcpp::Elf_Xword dst_mask = bitmask << doffset; val &= ~dst_mask; reloc &= bitmask; elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset)); } // Do a simple rela relocation template<int valsize> static inline void rela_ua(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset, elfcpp::Elf_Xword bitmask) { typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype Valtype; unsigned char* wv = view; Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv); Valtype reloc = 0; if (size == 32) reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift; else reloc = psymval->value(object, addend) >> srshift; elfcpp::Elf_Xword dst_mask = bitmask << doffset; val &= ~dst_mask; reloc &= bitmask; elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, val | (reloc<<doffset)); } template<int valsize> static inline void rela(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1, elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2, elfcpp::Elf_Xword bitmask2) { typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv); Valtype reloc = 0; if (size == 32) reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift; else reloc = psymval->value(object, addend) >> srshift; elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1) | (bitmask2 << doffset2); val &= ~dst_mask; reloc = ((reloc & bitmask1) << doffset1) | ((reloc & bitmask2) << doffset2); elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc); } // Do a simple PC relative relocation with a Symbol_value with the // addend in the relocation. template<int valsize> static inline void pcrela(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, typename elfcpp::Elf_types<size>::Elf_Addr address, elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset, elfcpp::Elf_Xword bitmask) { typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv); Valtype reloc = 0; if (size == 32) reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address) >> srshift; else reloc = (psymval->value(object, addend) - address) >> srshift; elfcpp::Elf_Xword dst_mask = bitmask << doffset; val &= ~dst_mask; reloc &= bitmask; elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset)); } template<int valsize> static inline void pcrela_ua(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, typename elfcpp::Elf_types<size>::Elf_Addr address, elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset, elfcpp::Elf_Xword bitmask) { typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype Valtype; unsigned char* wv = view; Valtype reloc = 0; if (size == 32) reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address) >> srshift; else reloc = (psymval->value(object, addend) - address) >> srshift; reloc &= bitmask; elfcpp::Swap<valsize, big_endian>::writeval(wv, reloc << doffset); } template<int valsize> static inline void pcrela(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, typename elfcpp::Elf_types<size>::Elf_Addr address, elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1, elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2, elfcpp::Elf_Xword bitmask2) { typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv); Valtype reloc = 0; if (size == 32) reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address) >> srshift; else reloc = (psymval->value(object, addend) - address) >> srshift; elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1) | (bitmask2 << doffset2); val &= ~dst_mask; reloc = ((reloc & bitmask1) << doffset1) | ((reloc & bitmask2) << doffset2); elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc); } typedef Tilegx_relocate_functions<size, big_endian> This; typedef Relocate_functions<size, big_endian> Base; public: static inline void abs64(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This::template rela_ua<64>(view, object, psymval, addend, 0, 0, 0xffffffffffffffffllu); } static inline void abs32(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This::template rela_ua<32>(view, object, psymval, addend, 0, 0, 0xffffffff); } static inline void abs16(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This::template rela_ua<16>(view, object, psymval, addend, 0, 0, 0xffff); } static inline void pc_abs64(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This::template pcrela_ua<64>(view, object, psymval, addend, address, 0, 0, 0xffffffffffffffffllu); } static inline void pc_abs32(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This::template pcrela_ua<32>(view, object, psymval, addend, address, 0, 0, 0xffffffff); } static inline void pc_abs16(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This::template pcrela_ua<16>(view, object, psymval, addend, address, 0, 0, 0xffff); } static inline void imm_x_general(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, Tilegx_howto &r_howto) { This::template rela<64>(view, object, psymval, addend, (elfcpp::Elf_Xword)(r_howto.srshift), (elfcpp::Elf_Xword)(r_howto.doffset), (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1)); } static inline void imm_x_pcrel_general(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address, Tilegx_howto &r_howto) { This::template pcrela<64>(view, object, psymval, addend, address, (elfcpp::Elf_Xword)(r_howto.srshift), (elfcpp::Elf_Xword)(r_howto.doffset), (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1)); } static inline void imm_x_two_part_general(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address, unsigned int r_type) { elfcpp::Elf_Xword doffset1 = 0llu; elfcpp::Elf_Xword doffset2 = 0llu; elfcpp::Elf_Xword dmask1 = 0llu; elfcpp::Elf_Xword dmask2 = 0llu; elfcpp::Elf_Xword rshift = 0llu; unsigned int pc_rel = 0; switch (r_type) { case elfcpp::R_TILEGX_BROFF_X1: doffset1 = 31llu; doffset2 = 37llu; dmask1 = 0x3fllu; dmask2 = 0x1ffc0llu; rshift = 3llu; pc_rel = 1; break; case elfcpp::R_TILEGX_DEST_IMM8_X1: doffset1 = 31llu; doffset2 = 43llu; dmask1 = 0x3fllu; dmask2 = 0xc0llu; rshift = 0llu; break; } if (pc_rel) This::template pcrela<64>(view, object, psymval, addend, address, rshift, doffset1, dmask1, doffset2, dmask2); else This::template rela<64>(view, object, psymval, addend, rshift, doffset1, dmask1, doffset2, dmask2); } static inline void tls_relax(unsigned char* view, unsigned int r_type, tls::Tls_optimization opt_t) { const uint64_t TILEGX_X_MOVE_R0_R0 = 0x283bf8005107f000llu; const uint64_t TILEGX_Y_MOVE_R0_R0 = 0xae05f800540bf000llu; const uint64_t TILEGX_X_LD = 0x286ae80000000000llu; const uint64_t TILEGX_X_LD4S = 0x286a980000000000llu; const uint64_t TILEGX_X1_FULL_MASK = 0x3fffffff80000000llu; const uint64_t TILEGX_X0_RRR_MASK = 0x000000007ffc0000llu; const uint64_t TILEGX_X1_RRR_MASK = 0x3ffe000000000000llu; const uint64_t TILEGX_Y0_RRR_MASK = 0x00000000780c0000llu; const uint64_t TILEGX_Y1_RRR_MASK = 0x3c06000000000000llu; const uint64_t TILEGX_X0_RRR_SRCB_MASK = 0x000000007ffff000llu; const uint64_t TILEGX_X1_RRR_SRCB_MASK = 0x3ffff80000000000llu; const uint64_t TILEGX_Y0_RRR_SRCB_MASK = 0x00000000780ff000llu; const uint64_t TILEGX_Y1_RRR_SRCB_MASK = 0x3c07f80000000000llu; const uint64_t TILEGX_X_ADD_R0_R0_TP = 0x2807a800500f5000llu; const uint64_t TILEGX_Y_ADD_R0_R0_TP = 0x9a13a8002c275000llu; const uint64_t TILEGX_X_ADDX_R0_R0_TP = 0x2805a800500b5000llu; const uint64_t TILEGX_Y_ADDX_R0_R0_TP = 0x9a01a8002c035000llu; const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_MASK = (TILEGX_X0_RRR_MASK | (0x3Fllu << 12)); const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_MASK = (TILEGX_X1_RRR_MASK | (0x3Fllu << 43)); const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_MASK = (TILEGX_Y0_RRR_MASK | (0x3Fllu << 12)); const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_MASK = (TILEGX_Y1_RRR_MASK | (0x3Fllu << 43)); const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK = (TILEGX_X0_RRR_SRCB_MASK | (0x3Fllu << 6)); const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK = (TILEGX_X1_RRR_SRCB_MASK | (0x3Fllu << 37)); const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK = (TILEGX_Y0_RRR_SRCB_MASK | (0x3Fllu << 6)); const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK = (TILEGX_Y1_RRR_SRCB_MASK | (0x3Fllu << 37)); typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<64, big_endian>::readval(wv); Valtype reloc = 0; switch (r_type) { case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: if (opt_t == tls::TLSOPT_NONE) { // GD/IE: 1. copy dest operand into the second source operand // 2. change the opcode to "add" reloc = (val & 0x3Fllu) << 12; // featch the dest reg reloc |= ((size == 32 ? TILEGX_X_ADDX_R0_R0_TP : TILEGX_X_ADD_R0_R0_TP) & TILEGX_X0_RRR_MASK); // change opcode val &= ~R_TILEGX_IMM8_X0_TLS_ADD_MASK; } else if (opt_t == tls::TLSOPT_TO_LE) { // LE: 1. copy dest operand into the first source operand // 2. change the opcode to "move" reloc = (val & 0x3Fllu) << 6; reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK); val &= ~R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK; } else gold_unreachable(); break; case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: if (opt_t == tls::TLSOPT_NONE) { reloc = (val & (0x3Fllu << 31)) << 12; reloc |= ((size == 32 ? TILEGX_X_ADDX_R0_R0_TP : TILEGX_X_ADD_R0_R0_TP) & TILEGX_X1_RRR_MASK); val &= ~R_TILEGX_IMM8_X1_TLS_ADD_MASK; } else if (opt_t == tls::TLSOPT_TO_LE) { reloc = (val & (0x3Fllu << 31)) << 6; reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK); val &= ~R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK; } else gold_unreachable(); break; case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: if (opt_t == tls::TLSOPT_NONE) { reloc = (val & 0x3Fllu) << 12; reloc |= ((size == 32 ? TILEGX_Y_ADDX_R0_R0_TP : TILEGX_Y_ADD_R0_R0_TP) & TILEGX_Y0_RRR_MASK); val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_MASK; } else if (opt_t == tls::TLSOPT_TO_LE) { reloc = (val & 0x3Fllu) << 6; reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK); val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK; } else gold_unreachable(); break; case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: if (opt_t == tls::TLSOPT_NONE) { reloc = (val & (0x3Fllu << 31)) << 12; reloc |= ((size == 32 ? TILEGX_Y_ADDX_R0_R0_TP : TILEGX_Y_ADD_R0_R0_TP) & TILEGX_Y1_RRR_MASK); val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_MASK; } else if (opt_t == tls::TLSOPT_TO_LE) { reloc = (val & (0x3Fllu << 31)) << 6; reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK); val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK; } else gold_unreachable(); break; case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: if (opt_t == tls::TLSOPT_NONE) { // GD see comments for optimize_tls_reloc reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK; val &= ~TILEGX_X0_RRR_SRCB_MASK; } else if (opt_t == tls::TLSOPT_TO_IE || opt_t == tls::TLSOPT_TO_LE) { // IE/LE reloc = (size == 32 ? TILEGX_X_ADDX_R0_R0_TP : TILEGX_X_ADD_R0_R0_TP) & TILEGX_X0_RRR_SRCB_MASK; val &= ~TILEGX_X0_RRR_SRCB_MASK; } break; case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: if (opt_t == tls::TLSOPT_NONE) { reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK; val &= ~TILEGX_X1_RRR_SRCB_MASK; } else if (opt_t == tls::TLSOPT_TO_IE || opt_t == tls::TLSOPT_TO_LE) { reloc = (size == 32 ? TILEGX_X_ADDX_R0_R0_TP : TILEGX_X_ADD_R0_R0_TP) & TILEGX_X1_RRR_SRCB_MASK; val &= ~TILEGX_X1_RRR_SRCB_MASK; } break; case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: if (opt_t == tls::TLSOPT_NONE) { reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK; val &= ~TILEGX_Y0_RRR_SRCB_MASK; } else if (opt_t == tls::TLSOPT_TO_IE || opt_t == tls::TLSOPT_TO_LE) { reloc = (size == 32 ? TILEGX_Y_ADDX_R0_R0_TP : TILEGX_Y_ADD_R0_R0_TP) & TILEGX_Y0_RRR_SRCB_MASK; val &= ~TILEGX_Y0_RRR_SRCB_MASK; } break; case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: if (opt_t == tls::TLSOPT_NONE) { reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK; val &= ~TILEGX_Y1_RRR_SRCB_MASK; } else if (opt_t == tls::TLSOPT_TO_IE || opt_t == tls::TLSOPT_TO_LE) { reloc = (size == 32 ? TILEGX_Y_ADDX_R0_R0_TP : TILEGX_Y_ADD_R0_R0_TP) & TILEGX_Y1_RRR_SRCB_MASK; val &= ~TILEGX_Y1_RRR_SRCB_MASK; } break; case elfcpp::R_TILEGX_TLS_IE_LOAD: if (opt_t == tls::TLSOPT_NONE) { // IE reloc = (size == 32 ? TILEGX_X_LD4S : TILEGX_X_LD) & TILEGX_X1_RRR_SRCB_MASK; val &= ~TILEGX_X1_RRR_SRCB_MASK; } else if (opt_t == tls::TLSOPT_TO_LE) { // LE reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK; val &= ~TILEGX_X1_RRR_SRCB_MASK; } else gold_unreachable(); break; case elfcpp::R_TILEGX_TLS_GD_CALL: if (opt_t == tls::TLSOPT_TO_IE) { // ld/ld4s r0, r0 reloc = (size == 32 ? TILEGX_X_LD4S : TILEGX_X_LD) & TILEGX_X1_FULL_MASK; val &= ~TILEGX_X1_FULL_MASK; } else if (opt_t == tls::TLSOPT_TO_LE) { // move r0, r0 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_FULL_MASK; val &= ~TILEGX_X1_FULL_MASK; } else // should be handled in ::relocate gold_unreachable(); break; default: gold_unreachable(); break; } elfcpp::Swap<64, big_endian>::writeval(wv, val | reloc); } }; template<> const Tilegx_relocate_functions<64, false>::Tilegx_howto Tilegx_relocate_functions<64, false>::howto[elfcpp::R_TILEGX_NUM] = { { 0, 0, 0, 0, 0}, // R_TILEGX_NONE { 0, 0, 0, 64, 0}, // R_TILEGX_64 { 0, 0, 0, 32, 0}, // R_TILEGX_32 { 0, 0, 0, 16, 0}, // R_TILEGX_16 { 0, 0, 0, 8, 0}, // R_TILEGX_8 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL { 0, 0, 0, 0, 0}, // R_TILEGX_HW0 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2 { 48, 0, 0, 0, 0}, // R_TILEGX_HW3 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST { 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST { 0, 0, 0, 0, 0}, // R_TILEGX_COPY { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1 { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2 { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2 { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3 { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY }; template<> const Tilegx_relocate_functions<32, false>::Tilegx_howto Tilegx_relocate_functions<32, false>::howto[elfcpp::R_TILEGX_NUM] = { { 0, 0, 0, 0, 0}, // R_TILEGX_NONE { 0, 0, 0, 64, 0}, // R_TILEGX_64 { 0, 0, 0, 32, 0}, // R_TILEGX_32 { 0, 0, 0, 16, 0}, // R_TILEGX_16 { 0, 0, 0, 8, 0}, // R_TILEGX_8 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL { 0, 0, 0, 0, 0}, // R_TILEGX_HW0 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2 { 31, 0, 0, 0, 0}, // R_TILEGX_HW3 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST { 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST { 0, 0, 0, 0, 0}, // R_TILEGX_COPY { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY }; template<> const Tilegx_relocate_functions<64, true>::Tilegx_howto Tilegx_relocate_functions<64, true>::howto[elfcpp::R_TILEGX_NUM] = { { 0, 0, 0, 0, 0}, // R_TILEGX_NONE { 0, 0, 0, 64, 0}, // R_TILEGX_64 { 0, 0, 0, 32, 0}, // R_TILEGX_32 { 0, 0, 0, 16, 0}, // R_TILEGX_16 { 0, 0, 0, 8, 0}, // R_TILEGX_8 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL { 0, 0, 0, 0, 0}, // R_TILEGX_HW0 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2 { 48, 0, 0, 0, 0}, // R_TILEGX_HW3 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST { 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST { 0, 0, 0, 0, 0}, // R_TILEGX_COPY { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1 { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2 { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2 { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3 { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY }; template<> const Tilegx_relocate_functions<32, true>::Tilegx_howto Tilegx_relocate_functions<32, true>::howto[elfcpp::R_TILEGX_NUM] = { { 0, 0, 0, 0, 0}, // R_TILEGX_NONE { 0, 0, 0, 64, 0}, // R_TILEGX_64 { 0, 0, 0, 32, 0}, // R_TILEGX_32 { 0, 0, 0, 16, 0}, // R_TILEGX_16 { 0, 0, 0, 8, 0}, // R_TILEGX_8 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL { 0, 0, 0, 0, 0}, // R_TILEGX_HW0 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2 { 31, 0, 0, 0, 0}, // R_TILEGX_HW3 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST { 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST { 0, 0, 0, 0, 0}, // R_TILEGX_COPY { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY }; // Get the GOT section, creating it if necessary. template<int size, bool big_endian> Output_data_got<size, big_endian>* Target_tilegx<size, big_endian>::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); // When using -z now, we can treat .got.plt as a relro section. // Without -z now, it is modified after program startup by lazy // PLT relocations. bool is_got_plt_relro = parameters->options().now(); Output_section_order got_order = (is_got_plt_relro ? ORDER_RELRO : ORDER_RELRO_LAST); Output_section_order got_plt_order = (is_got_plt_relro ? ORDER_RELRO : ORDER_NON_RELRO_FIRST); this->got_ = new Output_data_got<size, big_endian>(); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, got_order, true); // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. this->global_offset_table_ = symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); if (parameters->options().shared()) { // we need to keep the address of .dynamic section in the // first got entry for .so this->tilegx_dynamic_ = symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL, Symbol_table::PREDEFINED, layout->dynamic_section(), 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD); } else // for executable, just set the first entry to zero. this->got_->set_current_data_size(size / 8); this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, got_plt_order, is_got_plt_relro); // The first two entries are reserved. this->got_plt_->set_current_data_size (TILEGX_GOTPLT_RESERVE_COUNT * (size / 8)); if (!is_got_plt_relro) { // Those bytes can go into the relro segment. layout->increase_relro(size / 8); } // If there are any IRELATIVE relocations, they get GOT entries // in .got.plt after the jump slot entries. this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_irelative_, got_plt_order, is_got_plt_relro); } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template<int size, bool big_endian> typename Target_tilegx<size, big_endian>::Reloc_section* Target_tilegx<size, big_endian>::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, ORDER_DYNAMIC_RELOCS, false); } return this->rela_dyn_; } // Get the section to use for IRELATIVE relocs, creating it if // necessary. These go in .rela.dyn, but only after all other dynamic // relocations. They need to follow the other dynamic relocations so // that they can refer to global variables initialized by those // relocs. template<int size, bool big_endian> typename Target_tilegx<size, big_endian>::Reloc_section* Target_tilegx<size, big_endian>::rela_irelative_section(Layout* layout) { if (this->rela_irelative_ == NULL) { // Make sure we have already created the dynamic reloc section. this->rela_dyn_section(layout); this->rela_irelative_ = new Reloc_section(false); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_irelative_, ORDER_DYNAMIC_RELOCS, false); gold_assert(this->rela_dyn_->output_section() == this->rela_irelative_->output_section()); } return this->rela_irelative_; } // Initialize the PLT section. template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::init(Layout* layout) { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rel_, ORDER_DYNAMIC_PLT_RELOCS, false); } template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::do_adjust_output_section( Output_section* os) { os->set_entsize(this->get_plt_entry_size()); } // Add an entry to the PLT. template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { gold_assert(!gsym->has_plt_offset()); unsigned int plt_index; off_t plt_offset; section_offset_type got_offset; unsigned int* pcount; unsigned int reserved; Output_data_space* got; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { pcount = &this->irelative_count_; reserved = 0; got = this->got_irelative_; } else { pcount = &this->count_; reserved = TILEGX_GOTPLT_RESERVE_COUNT; got = this->got_plt_; } if (!this->is_data_size_valid()) { plt_index = *pcount; // TILEGX .plt section layout // // ---- // plt_header // ---- // plt stub // ---- // ... // ---- // // TILEGX .got.plt section layout // // ---- // reserv1 // ---- // reserv2 // ---- // entries for normal function // ---- // ... // ---- // entries for ifunc // ---- // ... // ---- if (got == this->got_irelative_) plt_offset = plt_index * this->get_plt_entry_size(); else plt_offset = (plt_index + 1) * this->get_plt_entry_size(); ++*pcount; got_offset = (plt_index + reserved) * (size / 8); gold_assert(got_offset == got->current_data_size()); // Every PLT entry needs a GOT entry which points back to the PLT // entry (this will be changed by the dynamic linker, normally // lazily when the function is called). got->set_current_data_size(got_offset + size / 8); } else { // FIXME: This is probably not correct for IRELATIVE relocs. // For incremental updates, find an available slot. plt_offset = this->free_list_.allocate(this->get_plt_entry_size(), this->get_plt_entry_size(), 0); if (plt_offset == -1) gold_fallback(_("out of patch space (PLT);" " relink with --incremental-full")); // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset // can be calculated from the PLT index, adjusting for the three // reserved entries at the beginning of the GOT. plt_index = plt_offset / this->get_plt_entry_size() - 1; got_offset = (plt_index + reserved) * (size / 8); } gsym->set_plt_offset(plt_offset); // Every PLT entry needs a reloc. this->add_relocation(symtab, layout, gsym, got_offset); // Note that we don't need to save the symbol. The contents of the // PLT are independent of which symbols are used. The symbols only // appear in the relocations. } // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return // the PLT offset. template<int size, bool big_endian> unsigned int Output_data_plt_tilegx<size, big_endian>::add_local_ifunc_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* relobj, unsigned int local_sym_index) { unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size(); ++this->irelative_count_; section_offset_type got_offset = this->got_irelative_->current_data_size(); // Every PLT entry needs a GOT entry which points back to the PLT // entry. this->got_irelative_->set_current_data_size(got_offset + size / 8); // Every PLT entry needs a reloc. Reloc_section* rela = this->rela_irelative(symtab, layout); rela->add_symbolless_local_addend(relobj, local_sym_index, elfcpp::R_TILEGX_IRELATIVE, this->got_irelative_, got_offset, 0); return plt_offset; } // Add the relocation for a PLT entry. template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::add_relocation(Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset) { if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { Reloc_section* rela = this->rela_irelative(symtab, layout); rela->add_symbolless_global_addend(gsym, elfcpp::R_TILEGX_IRELATIVE, this->got_irelative_, got_offset, 0); } else { gsym->set_needs_dynsym_entry(); this->rel_->add_global(gsym, elfcpp::R_TILEGX_JMP_SLOT, this->got_plt_, got_offset, 0); } } // Return where the IRELATIVE relocations should go in the PLT. These // follow the JUMP_SLOT and the TLSDESC relocations. template<int size, bool big_endian> typename Output_data_plt_tilegx<size, big_endian>::Reloc_section* Output_data_plt_tilegx<size, big_endian>::rela_irelative(Symbol_table* symtab, Layout* layout) { if (this->irelative_rel_ == NULL) { // case we see any later on. this->irelative_rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->irelative_rel_, ORDER_DYNAMIC_PLT_RELOCS, false); gold_assert(this->irelative_rel_->output_section() == this->rel_->output_section()); if (parameters->doing_static_link()) { // A statically linked executable will only have a .rela.plt // section to hold R_TILEGX_IRELATIVE relocs for // STT_GNU_IFUNC symbols. The library will use these // symbols to locate the IRELATIVE relocs at program startup // time. symtab->define_in_output_data("__rela_iplt_start", NULL, Symbol_table::PREDEFINED, this->irelative_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, false, true); symtab->define_in_output_data("__rela_iplt_end", NULL, Symbol_table::PREDEFINED, this->irelative_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, true); } } return this->irelative_rel_; } // Return the PLT address to use for a global symbol. template<int size, bool big_endian> uint64_t Output_data_plt_tilegx<size, big_endian>::address_for_global( const Symbol* gsym) { uint64_t offset = 0; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) offset = (this->count_ + 1) * this->get_plt_entry_size(); return this->address() + offset + gsym->plt_offset(); } // Return the PLT address to use for a local symbol. These are always // IRELATIVE relocs. template<int size, bool big_endian> uint64_t Output_data_plt_tilegx<size, big_endian>::address_for_local( const Relobj* object, unsigned int r_sym) { return (this->address() + (this->count_ + 1) * this->get_plt_entry_size() + object->local_plt_offset(r_sym)); } // Set the final size. template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::set_final_data_size() { unsigned int count = this->count_ + this->irelative_count_; this->set_data_size((count + 1) * this->get_plt_entry_size()); } // The first entry in the PLT for an executable. template<> const unsigned char Output_data_plt_tilegx<64, false>::first_plt_entry[plt_entry_size] = { 0x00, 0x30, 0x48, 0x51, 0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 } 0x00, 0x30, 0xbc, 0x35, 0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 } 0xff, 0xaf, 0x30, 0x40, 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 } // padding 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; template<> const unsigned char Output_data_plt_tilegx<32, false>::first_plt_entry[plt_entry_size] = { 0x00, 0x30, 0x48, 0x51, 0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 } 0x00, 0x30, 0xbc, 0x35, 0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 } 0xff, 0xaf, 0x30, 0x40, 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 } // padding 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; template<> const unsigned char Output_data_plt_tilegx<64, true>::first_plt_entry[plt_entry_size] = { 0x00, 0x30, 0x48, 0x51, 0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 } 0x00, 0x30, 0xbc, 0x35, 0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 } 0xff, 0xaf, 0x30, 0x40, 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 } // padding 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; template<> const unsigned char Output_data_plt_tilegx<32, true>::first_plt_entry[plt_entry_size] = { 0x00, 0x30, 0x48, 0x51, 0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 } 0x00, 0x30, 0xbc, 0x35, 0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 } 0xff, 0xaf, 0x30, 0x40, 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 } // padding 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::fill_first_plt_entry( unsigned char* pov) { memcpy(pov, first_plt_entry, plt_entry_size); } // Subsequent entries in the PLT for an executable. template<> const unsigned char Output_data_plt_tilegx<64, false>::plt_entry[plt_entry_size] = { 0xdc, 0x0f, 0x00, 0x10, 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 } 0xdb, 0x0f, 0x00, 0x10, 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 } 0x9c, 0xc6, 0x0d, 0xd0, 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 } 0x9b, 0xb6, 0xc5, 0xad, 0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 } 0xdd, 0x0f, 0x00, 0x70, 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 } }; template<> const unsigned char Output_data_plt_tilegx<32, false>::plt_entry[plt_entry_size] = { 0xdc, 0x0f, 0x00, 0x10, 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 } 0xdb, 0x0f, 0x00, 0x10, 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 } 0x9c, 0xc6, 0x0d, 0xd0, 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 } 0x9b, 0xb6, 0xc5, 0xad, 0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 } 0xdd, 0x0f, 0x00, 0x70, 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 } }; template<> const unsigned char Output_data_plt_tilegx<64, true>::plt_entry[plt_entry_size] = { 0xdc, 0x0f, 0x00, 0x10, 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 } 0xdb, 0x0f, 0x00, 0x10, 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 } 0x9c, 0xc6, 0x0d, 0xd0, 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 } 0x9b, 0xb6, 0xc5, 0xad, 0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 } 0xdd, 0x0f, 0x00, 0x70, 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 } }; template<> const unsigned char Output_data_plt_tilegx<32, true>::plt_entry[plt_entry_size] = { 0xdc, 0x0f, 0x00, 0x10, 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 } 0xdb, 0x0f, 0x00, 0x10, 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 } 0x9c, 0xc6, 0x0d, 0xd0, 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 } 0x9b, 0xb6, 0xc5, 0xad, 0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 } 0xdd, 0x0f, 0x00, 0x70, 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 } }; template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::fill_plt_entry( unsigned char* pov, typename elfcpp::Elf_types<size>::Elf_Addr gotplt_base, unsigned int got_offset, typename elfcpp::Elf_types<size>::Elf_Addr plt_base, unsigned int plt_offset, unsigned int plt_index) { const uint32_t TILEGX_IMM16_MASK = 0xFFFF; const uint32_t TILEGX_X0_IMM16_BITOFF = 12; const uint32_t TILEGX_X1_IMM16_BITOFF = 43; typedef typename elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::Valtype Valtype; memcpy(pov, plt_entry, plt_entry_size); // first bundle in plt stub - x0 Valtype* wv = reinterpret_cast<Valtype*>(pov); Valtype val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv); Valtype reloc = ((gotplt_base + got_offset) - (plt_base + plt_offset + 8)) >> 16; elfcpp::Elf_Xword dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF; val &= ~dst_mask; reloc &= TILEGX_IMM16_MASK; elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv, val | (reloc<<TILEGX_X0_IMM16_BITOFF)); // second bundle in plt stub - x1 wv = reinterpret_cast<Valtype*>(pov + 8); val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv); reloc = (gotplt_base + got_offset) - (plt_base + plt_offset + 8); dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF; val &= ~dst_mask; reloc &= TILEGX_IMM16_MASK; elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv, val | (reloc<<TILEGX_X1_IMM16_BITOFF)); // second bundle in plt stub - x0 wv = reinterpret_cast<Valtype*>(pov + 8); val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv); reloc = (gotplt_base - (plt_base + plt_offset + 8)) >> 16; dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF; val &= ~dst_mask; reloc &= TILEGX_IMM16_MASK; elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv, val | (reloc<<TILEGX_X0_IMM16_BITOFF)); // third bundle in plt stub - x1 wv = reinterpret_cast<Valtype*>(pov + 16); val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv); reloc = gotplt_base - (plt_base + plt_offset + 8); dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF; val &= ~dst_mask; reloc &= TILEGX_IMM16_MASK; elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv, val | (reloc<<TILEGX_X1_IMM16_BITOFF)); // fifth bundle in plt stub - carry plt_index x0 wv = reinterpret_cast<Valtype*>(pov + 32); val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv); dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF; val &= ~dst_mask; plt_index &= TILEGX_IMM16_MASK; elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv, val | (plt_index<<TILEGX_X0_IMM16_BITOFF)); } // Write out the PLT. This uses the hand-coded instructions above. template<int size, bool big_endian> void Output_data_plt_tilegx<size, big_endian>::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); const off_t got_file_offset = this->got_plt_->offset(); gold_assert(parameters->incremental_update() || (got_file_offset + this->got_plt_->data_size() == this->got_irelative_->offset())); const section_size_type got_size = convert_to_section_size_type(this->got_plt_->data_size() + this->got_irelative_->data_size()); unsigned char* const got_view = of->get_output_view(got_file_offset, got_size); unsigned char* pov = oview; // The base address of the .plt section. typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address(); typename elfcpp::Elf_types<size>::Elf_Addr got_address = this->got_plt_->address(); this->fill_first_plt_entry(pov); pov += this->get_plt_entry_size(); unsigned char* got_pov = got_view; // first entry of .got.plt are set to -1 // second entry of .got.plt are set to 0 memset(got_pov, 0xff, size / 8); got_pov += size / 8; memset(got_pov, 0x0, size / 8); got_pov += size / 8; unsigned int plt_offset = this->get_plt_entry_size(); const unsigned int count = this->count_ + this->irelative_count_; unsigned int got_offset = (size / 8) * TILEGX_GOTPLT_RESERVE_COUNT; for (unsigned int plt_index = 0; plt_index < count; ++plt_index, pov += this->get_plt_entry_size(), got_pov += size / 8, plt_offset += this->get_plt_entry_size(), got_offset += size / 8) { // Set and adjust the PLT entry itself. this->fill_plt_entry(pov, got_address, got_offset, plt_address, plt_offset, plt_index); // Initialize entry in .got.plt to plt start address elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address); } gold_assert(static_cast<section_size_type>(pov - oview) == oview_size); gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size); of->write_output_view(offset, oview_size, oview); of->write_output_view(got_file_offset, got_size, got_view); } // Create the PLT section. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::make_plt_section(Symbol_table* symtab, Layout* layout) { if (this->plt_ == NULL) { // Create the GOT sections first. this->got_section(symtab, layout); // Ensure that .rela.dyn always appears before .rela.plt, // becuase on TILE-Gx, .rela.dyn needs to include .rela.plt // in it's range. this->rela_dyn_section(layout); this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout, TILEGX_INST_BUNDLE_SIZE, this->got_, this->got_plt_, this->got_irelative_); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR), this->plt_, ORDER_NON_RELRO_FIRST, false); // Make the sh_info field of .rela.plt point to .plt. Output_section* rela_plt_os = this->plt_->rela_plt()->output_section(); rela_plt_os->set_info_section(this->plt_->output_section()); } } // Create a PLT entry for a global symbol. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { if (gsym->has_plt_offset()) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); this->plt_->add_entry(symtab, layout, gsym); } // Make a PLT entry for a local STT_GNU_IFUNC symbol. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::make_local_ifunc_plt_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* relobj, unsigned int local_sym_index) { if (relobj->local_has_plt_offset(local_sym_index)) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout, relobj, local_sym_index); relobj->set_local_plt_offset(local_sym_index, plt_offset); } // Return the number of entries in the PLT. template<int size, bool big_endian> unsigned int Target_tilegx<size, big_endian>::plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Return the offset of the first non-reserved PLT entry. template<int size, bool big_endian> unsigned int Target_tilegx<size, big_endian>::first_plt_entry_offset() const { return this->plt_->first_plt_entry_offset(); } // Return the size of each PLT entry. template<int size, bool big_endian> unsigned int Target_tilegx<size, big_endian>::plt_entry_size() const { return this->plt_->get_plt_entry_size(); } // Create the GOT and PLT sections for an incremental update. template<int size, bool big_endian> Output_data_got_base* Target_tilegx<size, big_endian>::init_got_plt_for_update(Symbol_table* symtab, Layout* layout, unsigned int got_count, unsigned int plt_count) { gold_assert(this->got_ == NULL); this->got_ = new Output_data_got<size, big_endian>((got_count + TILEGX_GOT_RESERVE_COUNT) * (size / 8)); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, ORDER_RELRO_LAST, true); // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT. this->global_offset_table_ = symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); if (parameters->options().shared()) { this->tilegx_dynamic_ = symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL, Symbol_table::PREDEFINED, layout->dynamic_section(), 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD); } else this->got_->set_current_data_size(size / 8); // Add the two reserved entries. this->got_plt_ = new Output_data_space((plt_count + TILEGX_GOTPLT_RESERVE_COUNT) * (size / 8), size / 8, "** GOT PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_plt_, ORDER_NON_RELRO_FIRST, false); // If there are any IRELATIVE relocations, they get GOT entries in // .got.plt after the jump slot. this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT"); layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE, this->got_irelative_, ORDER_NON_RELRO_FIRST, false); // Create the PLT section. this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout, this->plt_entry_size(), this->got_, this->got_plt_, this->got_irelative_, plt_count); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR, this->plt_, ORDER_PLT, false); // Make the sh_info field of .rela.plt point to .plt. Output_section* rela_plt_os = this->plt_->rela_plt()->output_section(); rela_plt_os->set_info_section(this->plt_->output_section()); // Create the rela_dyn section. this->rela_dyn_section(layout); return this->got_; } // Reserve a GOT entry for a local symbol, and regenerate any // necessary dynamic relocations. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::reserve_local_got_entry( unsigned int got_index, Sized_relobj<size, big_endian>* obj, unsigned int r_sym, unsigned int got_type) { unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT) * (size / 8); Reloc_section* rela_dyn = this->rela_dyn_section(NULL); this->got_->reserve_local(got_index, obj, r_sym, got_type); switch (got_type) { case GOT_TYPE_STANDARD: if (parameters->options().output_is_position_independent()) rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_TILEGX_RELATIVE, this->got_, got_offset, 0, false); break; case GOT_TYPE_TLS_OFFSET: rela_dyn->add_local(obj, r_sym, size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32 : elfcpp::R_TILEGX_TLS_DTPOFF64, this->got_, got_offset, 0); break; case GOT_TYPE_TLS_PAIR: this->got_->reserve_slot(got_index + 1); rela_dyn->add_local(obj, r_sym, size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32 : elfcpp::R_TILEGX_TLS_DTPMOD64, this->got_, got_offset, 0); break; case GOT_TYPE_TLS_DESC: gold_fatal(_("TLS_DESC not yet supported for incremental linking")); break; default: gold_unreachable(); } } // Reserve a GOT entry for a global symbol, and regenerate any // necessary dynamic relocations. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::reserve_global_got_entry( unsigned int got_index, Symbol* gsym, unsigned int got_type) { unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT) * (size / 8); Reloc_section* rela_dyn = this->rela_dyn_section(NULL); this->got_->reserve_global(got_index, gsym, got_type); switch (got_type) { case GOT_TYPE_STANDARD: if (!gsym->final_value_is_known()) { if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible() || gsym->type() == elfcpp::STT_GNU_IFUNC) rela_dyn->add_global(gsym, elfcpp::R_TILEGX_GLOB_DAT, this->got_, got_offset, 0); else rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE, this->got_, got_offset, 0, false); } break; case GOT_TYPE_TLS_OFFSET: rela_dyn->add_global_relative(gsym, size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32 : elfcpp::R_TILEGX_TLS_TPOFF64, this->got_, got_offset, 0, false); break; case GOT_TYPE_TLS_PAIR: this->got_->reserve_slot(got_index + 1); rela_dyn->add_global_relative(gsym, size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32 : elfcpp::R_TILEGX_TLS_DTPMOD64, this->got_, got_offset, 0, false); rela_dyn->add_global_relative(gsym, size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32 : elfcpp::R_TILEGX_TLS_DTPOFF64, this->got_, got_offset + size / 8, 0, false); break; case GOT_TYPE_TLS_DESC: gold_fatal(_("TLS_DESC not yet supported for TILEGX")); break; default: gold_unreachable(); } } // Register an existing PLT entry for a global symbol. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::register_global_plt_entry( Symbol_table* symtab, Layout* layout, unsigned int plt_index, Symbol* gsym) { gold_assert(this->plt_ != NULL); gold_assert(!gsym->has_plt_offset()); this->plt_->reserve_slot(plt_index); gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size()); unsigned int got_offset = (plt_index + 2) * (size / 8); this->plt_->add_relocation(symtab, layout, gsym, got_offset); } // Force a COPY relocation for a given symbol. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::emit_copy_reloc( Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset) { this->copy_relocs_.emit_copy_reloc(symtab, symtab->get_sized_symbol<size>(sym), os, offset, this->rela_dyn_section(NULL)); } // Create a GOT entry for the TLS module index. template<int size, bool big_endian> unsigned int Target_tilegx<size, big_endian>::got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object) { if (this->got_mod_index_offset_ == -1U) { gold_assert(symtab != NULL && layout != NULL && object != NULL); Reloc_section* rela_dyn = this->rela_dyn_section(layout); Output_data_got<size, big_endian>* got = this->got_section(symtab, layout); unsigned int got_offset = got->add_constant(0); rela_dyn->add_local(object, 0, size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32 : elfcpp::R_TILEGX_TLS_DTPMOD64, got, got_offset, 0); got->add_constant(0); this->got_mod_index_offset_ = got_offset; } return this->got_mod_index_offset_; } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. // // the transformation rules is described below: // // compiler GD reference // | // V // moveli tmp, hw1_last_tls_gd(x) X0/X1 // shl16insli r0, tmp, hw0_tls_gd(x) X0/X1 // addi r0, got, tls_add(x) Y0/Y1/X0/X1 // jal tls_gd_call(x) X1 // addi adr, r0, tls_gd_add(x) Y0/Y1/X0/X1 // // linker tranformation of GD insn sequence // | // V // ==> GD: // moveli tmp, hw1_last_tls_gd(x) X0/X1 // shl16insli r0, tmp, hw0_tls_gd(x) X0/X1 // add r0, got, r0 Y0/Y1/X0/X1 // jal plt(__tls_get_addr) X1 // move adr, r0 Y0/Y1/X0/X1 // ==> IE: // moveli tmp, hw1_last_tls_ie(x) X0/X1 // shl16insli r0, tmp, hw0_tls_ie(x) X0/X1 // add r0, got, r0 Y0/Y1/X0/X1 // ld r0, r0 X1 // add adr, r0, tp Y0/Y1/X0/X1 // ==> LE: // moveli tmp, hw1_last_tls_le(x) X0/X1 // shl16insli r0, tmp, hw0_tls_le(x) X0/X1 // move r0, r0 Y0/Y1/X0/X1 // move r0, r0 Y0/Y1/X0/X1 // add adr, r0, tp Y0/Y1/X0/X1 // // // compiler IE reference // | // V // moveli tmp, hw1_last_tls_ie(x) X0/X1 // shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1 // addi tmp, got, tls_add(x) Y0/Y1/X0/X1 // ld_tls tmp, tmp, tls_ie_load(x) X1 // add adr, tmp, tp Y0/Y1/X0/X1 // // linker transformation for IE insn sequence // | // V // ==> IE: // moveli tmp, hw1_last_tls_ie(x) X0/X1 // shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1 // add tmp, got, tmp Y0/Y1/X0/X1 // ld tmp, tmp X1 // add adr, tmp, tp Y0/Y1/X0/X1 // ==> LE: // moveli tmp, hw1_last_tls_le(x) X0/X1 // shl16insli tmp, tmp, hw0_tls_le(x) X0/X1 // move tmp, tmp Y0/Y1/X0/X1 // move tmp, tmp Y0/Y1/X0/X1 // // // compiler LE reference // | // V // moveli tmp, hw1_last_tls_le(x) X0/X1 // shl16insli tmp, tmp, hw0_tls_le(x) X0/X1 // add adr, tmp, tp Y0/Y1/X0/X1 template<int size, bool big_endian> tls::Tls_optimization Target_tilegx<size, big_endian>::optimize_tls_reloc(bool is_final, int r_type) { // If we are generating a shared library, then we can't do anything // in the linker. if (parameters->options().shared()) return tls::TLSOPT_NONE; switch (r_type) { // unique GD relocations case elfcpp::R_TILEGX_TLS_GD_CALL: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: // These are General-Dynamic which permits fully general TLS // access. Since we know that we are generating an executable, // we can convert this to Initial-Exec. If we also know that // this is a local symbol, we can further switch to Local-Exec. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_TO_IE; // unique IE relocations case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: // These are Initial-Exec relocs which get the thread offset // from the GOT. If we know that we are linking against the // local symbol, we can switch to Local-Exec, which links the // thread offset into the instruction. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_NONE; // could be created for both GD and IE // but they are expanded into the same // instruction in GD and IE. case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_NONE; // unique LE relocations case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: // When we already have Local-Exec, there is nothing further we // can do. return tls::TLSOPT_NONE; default: gold_unreachable(); } } // Get the Reference_flags for a particular relocation. template<int size, bool big_endian> int Target_tilegx<size, big_endian>::Scan::get_reference_flags(unsigned int r_type) { switch (r_type) { case elfcpp::R_TILEGX_NONE: case elfcpp::R_TILEGX_GNU_VTINHERIT: case elfcpp::R_TILEGX_GNU_VTENTRY: // No symbol reference. return 0; case elfcpp::R_TILEGX_64: case elfcpp::R_TILEGX_32: case elfcpp::R_TILEGX_16: case elfcpp::R_TILEGX_8: return Symbol::ABSOLUTE_REF; case elfcpp::R_TILEGX_BROFF_X1: case elfcpp::R_TILEGX_64_PCREL: case elfcpp::R_TILEGX_32_PCREL: case elfcpp::R_TILEGX_16_PCREL: case elfcpp::R_TILEGX_8_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL: return Symbol::RELATIVE_REF; case elfcpp::R_TILEGX_JUMPOFF_X1: case elfcpp::R_TILEGX_JUMPOFF_X1_PLT: case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL: return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; case elfcpp::R_TILEGX_IMM16_X0_HW0: case elfcpp::R_TILEGX_IMM16_X1_HW0: case elfcpp::R_TILEGX_IMM16_X0_HW1: case elfcpp::R_TILEGX_IMM16_X1_HW1: case elfcpp::R_TILEGX_IMM16_X0_HW2: case elfcpp::R_TILEGX_IMM16_X1_HW2: case elfcpp::R_TILEGX_IMM16_X0_HW3: case elfcpp::R_TILEGX_IMM16_X1_HW3: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST: return Symbol::ABSOLUTE_REF; case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT: // Absolute in GOT. return Symbol::ABSOLUTE_REF; case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_TLS_DTPOFF64: case elfcpp::R_TILEGX_TLS_DTPMOD32: case elfcpp::R_TILEGX_TLS_DTPOFF32: case elfcpp::R_TILEGX_TLS_TPOFF32: case elfcpp::R_TILEGX_TLS_GD_CALL: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: return Symbol::TLS_REF; case elfcpp::R_TILEGX_COPY: case elfcpp::R_TILEGX_GLOB_DAT: case elfcpp::R_TILEGX_JMP_SLOT: case elfcpp::R_TILEGX_RELATIVE: case elfcpp::R_TILEGX_TLS_TPOFF64: case elfcpp::R_TILEGX_TLS_DTPMOD64: default: // Not expected. We will give an error later. return 0; } } // Report an unsupported relocation against a local symbol. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::Scan::unsupported_reloc_local( Sized_relobj_file<size, big_endian>* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::Scan::check_non_pic(Relobj* object, unsigned int r_type) { switch (r_type) { // These are the relocation types supported by glibc for tilegx // which should always work. case elfcpp::R_TILEGX_RELATIVE: case elfcpp::R_TILEGX_GLOB_DAT: case elfcpp::R_TILEGX_JMP_SLOT: case elfcpp::R_TILEGX_TLS_DTPMOD64: case elfcpp::R_TILEGX_TLS_DTPOFF64: case elfcpp::R_TILEGX_TLS_TPOFF64: case elfcpp::R_TILEGX_8: case elfcpp::R_TILEGX_16: case elfcpp::R_TILEGX_32: case elfcpp::R_TILEGX_64: case elfcpp::R_TILEGX_COPY: case elfcpp::R_TILEGX_IMM16_X0_HW0: case elfcpp::R_TILEGX_IMM16_X1_HW0: case elfcpp::R_TILEGX_IMM16_X0_HW1: case elfcpp::R_TILEGX_IMM16_X1_HW1: case elfcpp::R_TILEGX_IMM16_X0_HW2: case elfcpp::R_TILEGX_IMM16_X1_HW2: case elfcpp::R_TILEGX_IMM16_X0_HW3: case elfcpp::R_TILEGX_IMM16_X1_HW3: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST: case elfcpp::R_TILEGX_BROFF_X1: case elfcpp::R_TILEGX_JUMPOFF_X1: case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL: return; default: // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc %u; " "recompile with -fPIC"), r_type); this->issued_non_pic_error_ = true; return; case elfcpp::R_TILEGX_NONE: gold_unreachable(); } } // Return whether we need to make a PLT entry for a relocation of the // given type against a STT_GNU_IFUNC symbol. template<int size, bool big_endian> bool Target_tilegx<size, big_endian>::Scan::reloc_needs_plt_for_ifunc( Sized_relobj_file<size, big_endian>* object, unsigned int r_type) { int flags = Scan::get_reference_flags(r_type); if (flags & Symbol::TLS_REF) gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"), object->name().c_str(), r_type); return flags != 0; } // Scan a relocation for a local symbol. template<int size, bool big_endian> inline void Target_tilegx<size, big_endian>::Scan::local(Symbol_table* symtab, Layout* layout, Target_tilegx<size, big_endian>* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, const elfcpp::Sym<size, big_endian>& lsym, bool is_discarded) { if (is_discarded) return; // A local STT_GNU_IFUNC symbol may require a PLT entry. bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) { unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); } switch (r_type) { case elfcpp::R_TILEGX_NONE: case elfcpp::R_TILEGX_GNU_VTINHERIT: case elfcpp::R_TILEGX_GNU_VTENTRY: break; // If building a shared library (or a position-independent // executable), because the runtime address needs plus // the module base address, so generate a R_TILEGX_RELATIVE. case elfcpp::R_TILEGX_32: case elfcpp::R_TILEGX_64: if (parameters->options().output_is_position_independent()) { unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_TILEGX_RELATIVE, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), is_ifunc); } break; // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for this // location. case elfcpp::R_TILEGX_8: case elfcpp::R_TILEGX_16: case elfcpp::R_TILEGX_IMM16_X0_HW0: case elfcpp::R_TILEGX_IMM16_X1_HW0: case elfcpp::R_TILEGX_IMM16_X0_HW1: case elfcpp::R_TILEGX_IMM16_X1_HW1: case elfcpp::R_TILEGX_IMM16_X0_HW2: case elfcpp::R_TILEGX_IMM16_X1_HW2: case elfcpp::R_TILEGX_IMM16_X0_HW3: case elfcpp::R_TILEGX_IMM16_X1_HW3: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST: if (parameters->options().output_is_position_independent()) { this->check_non_pic(object, r_type); Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); if (lsym.get_st_type() != elfcpp::STT_SECTION) rela_dyn->add_local(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); else { gold_assert(lsym.get_st_value() == 0); rela_dyn->add_symbolless_local_addend(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } break; // R_TILEGX_JUMPOFF_X1_PLT against local symbol // may happen for ifunc case. case elfcpp::R_TILEGX_JUMPOFF_X1_PLT: case elfcpp::R_TILEGX_JUMPOFF_X1: case elfcpp::R_TILEGX_64_PCREL: case elfcpp::R_TILEGX_32_PCREL: case elfcpp::R_TILEGX_16_PCREL: case elfcpp::R_TILEGX_8_PCREL: case elfcpp::R_TILEGX_BROFF_X1: case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL: break; case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT: { // The symbol requires a GOT entry. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); // For a STT_GNU_IFUNC symbol we want the PLT offset. That // lets function pointers compare correctly with shared // libraries. Otherwise we would need an IRELATIVE reloc. bool is_new; if (is_ifunc) is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD); else is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD); if (is_new) { // tilegx dynamic linker will not update local got entry, // so, if we are generating a shared object, we need to add a // dynamic relocation for this symbol's GOT entry to inform // dynamic linker plus the load base explictly. if (parameters->options().output_is_position_independent()) { unsigned int got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_local_relative(object, r_sym, r_type, got, got_offset, 0, is_ifunc); } } } break; case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_TLS_GD_CALL: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: { bool output_is_shared = parameters->options().shared(); const tls::Tls_optimization opt_t = Target_tilegx<size, big_endian>::optimize_tls_reloc( !output_is_shared, r_type); switch (r_type) { case elfcpp::R_TILEGX_TLS_GD_CALL: // FIXME: predefine __tls_get_addr // // R_TILEGX_TLS_GD_CALL implicitly reference __tls_get_addr, // while all other target, x86/arm/mips/powerpc/sparc // generate tls relocation against __tls_get_addr explictly, // so for TILEGX, we need the following hack. if (opt_t == tls::TLSOPT_NONE) { if (!target->tls_get_addr_sym_defined_) { Symbol* sym = NULL; options::parse_set(NULL, "__tls_get_addr", (gold::options::String_set*) ¶meters->options().undefined()); symtab->add_undefined_symbols_from_command_line(layout); target->tls_get_addr_sym_defined_ = true; sym = symtab->lookup("__tls_get_addr"); sym->set_in_reg(); } target->make_plt_entry(symtab, layout, symtab->lookup("__tls_get_addr")); } break; // only make effect when applying relocation case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: break; // GD: requires two GOT entry for module index and offset // IE: requires one GOT entry for tp-relative offset // LE: shouldn't happen for global symbol case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: { if (opt_t == tls::TLSOPT_NONE) { Output_data_got<size, big_endian> *got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); unsigned int shndx = lsym.get_st_shndx(); bool is_ordinary; shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); if (!is_ordinary) object->error(_("local symbol %u has bad shndx %u"), r_sym, shndx); else got->add_local_pair_with_rel(object, r_sym, shndx, GOT_TYPE_TLS_PAIR, target->rela_dyn_section(layout), size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32 : elfcpp::R_TILEGX_TLS_DTPMOD64); } else if (opt_t == tls::TLSOPT_TO_IE) { Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); unsigned int off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET,off); rela_dyn->add_symbolless_local_addend(object, r_sym, size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32 : elfcpp::R_TILEGX_TLS_TPOFF64, got, off, 0); } else if (opt_t != tls::TLSOPT_TO_LE) // only TO_LE is allowed for local symbol unsupported_reloc_local(object, r_type); } break; // IE case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: { layout->set_has_static_tls(); if (opt_t == tls::TLSOPT_NONE) { Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); unsigned int off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET, off); rela_dyn->add_symbolless_local_addend(object, r_sym, size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32 : elfcpp::R_TILEGX_TLS_TPOFF64, got, off, 0); } else if (opt_t != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); } break; // LE case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: layout->set_has_static_tls(); if (parameters->options().shared()) { // defer to dynamic linker gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_symbolless_local_addend(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), 0); } break; default: gold_unreachable(); } } break; case elfcpp::R_TILEGX_COPY: case elfcpp::R_TILEGX_GLOB_DAT: case elfcpp::R_TILEGX_JMP_SLOT: case elfcpp::R_TILEGX_RELATIVE: // These are outstanding tls relocs, which are unexpected when linking case elfcpp::R_TILEGX_TLS_TPOFF32: case elfcpp::R_TILEGX_TLS_TPOFF64: case elfcpp::R_TILEGX_TLS_DTPMOD32: case elfcpp::R_TILEGX_TLS_DTPMOD64: case elfcpp::R_TILEGX_TLS_DTPOFF32: case elfcpp::R_TILEGX_TLS_DTPOFF64: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); break; } } // Report an unsupported relocation against a global symbol. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::Scan::unsupported_reloc_global( Sized_relobj_file<size, big_endian>* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Returns true if this relocation type could be that of a function pointer. template<int size, bool big_endian> inline bool Target_tilegx<size, big_endian>::Scan::possible_function_pointer_reloc( unsigned int r_type) { switch (r_type) { case elfcpp::R_TILEGX_IMM16_X0_HW0: case elfcpp::R_TILEGX_IMM16_X1_HW0: case elfcpp::R_TILEGX_IMM16_X0_HW1: case elfcpp::R_TILEGX_IMM16_X1_HW1: case elfcpp::R_TILEGX_IMM16_X0_HW2: case elfcpp::R_TILEGX_IMM16_X1_HW2: case elfcpp::R_TILEGX_IMM16_X0_HW3: case elfcpp::R_TILEGX_IMM16_X1_HW3: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT: { return true; } } return false; } // For safe ICF, scan a relocation for a local symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template<int size, bool big_endian> inline bool Target_tilegx<size, big_endian>::Scan::local_reloc_may_be_function_pointer( Symbol_table* , Layout* , Target_tilegx<size, big_endian>* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int r_type, const elfcpp::Sym<size, big_endian>&) { return possible_function_pointer_reloc(r_type); } // For safe ICF, scan a relocation for a global symbol to check if it // corresponds to a function pointer being taken. In that case mark // the function whose pointer was taken as not foldable. template<int size, bool big_endian> inline bool Target_tilegx<size, big_endian>::Scan::global_reloc_may_be_function_pointer( Symbol_table*, Layout* , Target_tilegx<size, big_endian>* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int r_type, Symbol* gsym) { // GOT is not a function. if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) return false; // When building a shared library, do not fold symbols whose visibility // is hidden, internal or protected. return ((parameters->options().shared() && (gsym->visibility() == elfcpp::STV_INTERNAL || gsym->visibility() == elfcpp::STV_PROTECTED || gsym->visibility() == elfcpp::STV_HIDDEN)) || possible_function_pointer_reloc(r_type)); } // Scan a relocation for a global symbol. template<int size, bool big_endian> inline void Target_tilegx<size, big_endian>::Scan::global(Symbol_table* symtab, Layout* layout, Target_tilegx<size, big_endian>* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, Symbol* gsym) { // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got // section. We check here to avoid creating a dynamic reloc against // _GLOBAL_OFFSET_TABLE_. if (!target->has_got_section() && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) target->got_section(symtab, layout); // A STT_GNU_IFUNC symbol may require a PLT entry. if (gsym->type() == elfcpp::STT_GNU_IFUNC && this->reloc_needs_plt_for_ifunc(object, r_type)) target->make_plt_entry(symtab, layout, gsym); switch (r_type) { case elfcpp::R_TILEGX_NONE: case elfcpp::R_TILEGX_GNU_VTINHERIT: case elfcpp::R_TILEGX_GNU_VTENTRY: break; case elfcpp::R_TILEGX_DEST_IMM8_X1: case elfcpp::R_TILEGX_IMM16_X0_HW0: case elfcpp::R_TILEGX_IMM16_X1_HW0: case elfcpp::R_TILEGX_IMM16_X0_HW1: case elfcpp::R_TILEGX_IMM16_X1_HW1: case elfcpp::R_TILEGX_IMM16_X0_HW2: case elfcpp::R_TILEGX_IMM16_X1_HW2: case elfcpp::R_TILEGX_IMM16_X0_HW3: case elfcpp::R_TILEGX_IMM16_X1_HW3: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST: case elfcpp::R_TILEGX_64: case elfcpp::R_TILEGX_32: case elfcpp::R_TILEGX_16: case elfcpp::R_TILEGX_8: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) { target->make_plt_entry(symtab, layout, gsym); // Since this is not a PC-relative relocation, we may be // taking the address of a function. In that case we need to // set the entry in the dynamic symbol table to the address of // the PLT entry. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else if (((size == 64 && r_type == elfcpp::R_TILEGX_64) || (size == 32 && r_type == elfcpp::R_TILEGX_32)) && gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false) && !gsym->is_from_dynobj() && !gsym->is_undefined() && !gsym->is_preemptible()) { // Use an IRELATIVE reloc for a locally defined // STT_GNU_IFUNC symbol. This makes a function // address in a PIE executable match the address in a // shared library that it links against. Reloc_section* rela_dyn = target->rela_irelative_section(layout); unsigned int r_type = elfcpp::R_TILEGX_IRELATIVE; rela_dyn->add_symbolless_global_addend(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else if ((r_type == elfcpp::R_TILEGX_64 || r_type == elfcpp::R_TILEGX_32) && gsym->can_use_relative_reloc(false)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), false); } else { this->check_non_pic(object, r_type); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_TILEGX_BROFF_X1: case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL: case elfcpp::R_TILEGX_64_PCREL: case elfcpp::R_TILEGX_32_PCREL: case elfcpp::R_TILEGX_16_PCREL: case elfcpp::R_TILEGX_8_PCREL: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) target->make_plt_entry(symtab, layout, gsym); // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else { this->check_non_pic(object, r_type); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT: { // The symbol requires a GOT entry. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); if (gsym->final_value_is_known()) { // For a STT_GNU_IFUNC symbol we want the PLT address. if (gsym->type() == elfcpp::STT_GNU_IFUNC) got->add_global_plt(gsym, GOT_TYPE_STANDARD); else got->add_global(gsym, GOT_TYPE_STANDARD); } else { // If this symbol is not fully resolved, we need to add a // dynamic relocation for it. Reloc_section* rela_dyn = target->rela_dyn_section(layout); // Use a GLOB_DAT rather than a RELATIVE reloc if: // // 1) The symbol may be defined in some other module. // // 2) We are building a shared library and this is a // protected symbol; using GLOB_DAT means that the dynamic // linker can use the address of the PLT in the main // executable when appropriate so that function address // comparisons work. // // 3) This is a STT_GNU_IFUNC symbol in position dependent // code, again so that function address comparisons work. if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible() || (gsym->visibility() == elfcpp::STV_PROTECTED && parameters->options().shared()) || (gsym->type() == elfcpp::STT_GNU_IFUNC && parameters->options().output_is_position_independent())) got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn, elfcpp::R_TILEGX_GLOB_DAT); else { // For a STT_GNU_IFUNC symbol we want to write the PLT // offset into the GOT, so that function pointer // comparisons work correctly. bool is_new; if (gsym->type() != elfcpp::STT_GNU_IFUNC) is_new = got->add_global(gsym, GOT_TYPE_STANDARD); else { is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD); // Tell the dynamic linker to use the PLT address // when resolving relocations. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } if (is_new) { unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD); rela_dyn->add_global_relative(gsym, r_type, got, got_off, 0, false); } } } } break; // a minor difference here for R_TILEGX_JUMPOFF_X1 // between bfd linker and gold linker for gold, when // R_TILEGX_JUMPOFF_X1 against global symbol, we // turn it into JUMPOFF_X1_PLT, otherwise the distance // to the symbol function may overflow at runtime. case elfcpp::R_TILEGX_JUMPOFF_X1: case elfcpp::R_TILEGX_JUMPOFF_X1_PLT: case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL: // If the symbol is fully resolved, this is just a PC32 reloc. // Otherwise we need a PLT entry. if (gsym->final_value_is_known()) break; // If building a shared library, we can also skip the PLT entry // if the symbol is defined in the output file and is protected // or hidden. if (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible()) break; target->make_plt_entry(symtab, layout, gsym); break; case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_TLS_GD_CALL: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: { const bool is_final = gsym->final_value_is_known(); const tls::Tls_optimization opt_t = Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final, r_type); switch (r_type) { // only expand to plt against __tls_get_addr in GD model case elfcpp::R_TILEGX_TLS_GD_CALL: if (opt_t == tls::TLSOPT_NONE) { // FIXME: it's better '__tls_get_addr' referenced explictly if (!target->tls_get_addr_sym_defined_) { Symbol* sym = NULL; options::parse_set(NULL, "__tls_get_addr", (gold::options::String_set*) ¶meters->options().undefined()); symtab->add_undefined_symbols_from_command_line(layout); target->tls_get_addr_sym_defined_ = true; sym = symtab->lookup("__tls_get_addr"); sym->set_in_reg(); } target->make_plt_entry(symtab, layout, symtab->lookup("__tls_get_addr")); } break; // only make effect when applying relocation case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: break; // GD: requires two GOT entry for module index and offset // IE: requires one GOT entry for tp-relative offset // LE: shouldn't happen for global symbol case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: { if (opt_t == tls::TLSOPT_NONE) { Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR, target->rela_dyn_section(layout), size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32 : elfcpp::R_TILEGX_TLS_DTPMOD64, size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32 : elfcpp::R_TILEGX_TLS_DTPOFF64); } else if (opt_t == tls::TLSOPT_TO_IE) { // Create a GOT entry for the tp-relative offset. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32 : elfcpp::R_TILEGX_TLS_TPOFF64); } else if (opt_t != tls::TLSOPT_TO_LE) // exteranl symbol should not be optimized to TO_LE unsupported_reloc_global(object, r_type, gsym); } break; // IE case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: { layout->set_has_static_tls(); if (opt_t == tls::TLSOPT_NONE) { // Create a GOT entry for the tp-relative offset. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32 : elfcpp::R_TILEGX_TLS_TPOFF64); } else if (opt_t != tls::TLSOPT_TO_LE) unsupported_reloc_global(object, r_type, gsym); } break; // LE case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: layout->set_has_static_tls(); if (parameters->options().shared()) { // defer to dynamic linker Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_symbolless_global_addend(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), 0); } break; default: gold_unreachable(); } } break; // below are outstanding relocs // should not existed in static linking stage case elfcpp::R_TILEGX_COPY: case elfcpp::R_TILEGX_GLOB_DAT: case elfcpp::R_TILEGX_JMP_SLOT: case elfcpp::R_TILEGX_RELATIVE: case elfcpp::R_TILEGX_TLS_TPOFF32: case elfcpp::R_TILEGX_TLS_TPOFF64: case elfcpp::R_TILEGX_TLS_DTPMOD32: case elfcpp::R_TILEGX_TLS_DTPMOD64: case elfcpp::R_TILEGX_TLS_DTPOFF32: case elfcpp::R_TILEGX_TLS_DTPOFF64: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); break; } } template<int size, bool big_endian> void Target_tilegx<size, big_endian>::gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_tilegx<size, big_endian> Tilegx; typedef typename Target_tilegx<size, big_endian>::Scan Scan; if (sh_type == elfcpp::SHT_REL) { return; } gold::gc_process_relocs<size, big_endian, Tilegx, elfcpp::SHT_RELA, Scan, typename Target_tilegx<size, big_endian>::Relocatable_size_for_reloc>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Scan relocations for a section. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_tilegx<size, big_endian> Tilegx; typedef typename Target_tilegx<size, big_endian>::Scan Scan; if (sh_type == elfcpp::SHT_REL) { gold_error(_("%s: unsupported REL reloc section"), object->name().c_str()); return; } gold::scan_relocs<size, big_endian, Tilegx, elfcpp::SHT_RELA, Scan>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } template<int size, bool big_endian> void Target_tilegx<size, big_endian>::do_define_standard_symbols( Symbol_table* symtab, Layout* layout) { Output_section* feedback_section = layout->find_output_section(".feedback"); if (feedback_section != NULL) { symtab->define_in_output_data("__feedback_section_end", NULL, Symbol_table::PREDEFINED, feedback_section, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, // offset_is_from_end false); } } // Finalize the sections. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::do_finalize_sections( Layout* layout, const Input_objects*, Symbol_table* symtab) { const Reloc_section* rel_plt = (this->plt_ == NULL ? NULL : this->plt_->rela_plt()); layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt, this->rela_dyn_, true, true); // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit(this->rela_dyn_section(layout)); // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of // the .got section. Symbol* sym = this->global_offset_table_; if (sym != NULL) { uint64_t data_size = this->got_->current_data_size(); symtab->get_sized_symbol<size>(sym)->set_symsize(data_size); // If the .got section is more than 0x8000 bytes, we add // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16 // bit relocations have a greater chance of working. if (data_size >= 0x8000) symtab->get_sized_symbol<size>(sym)->set_value( symtab->get_sized_symbol<size>(sym)->value() + 0x8000); } if (parameters->doing_static_link() && (this->plt_ == NULL || !this->plt_->has_irelative_section())) { // If linking statically, make sure that the __rela_iplt symbols // were defined if necessary, even if we didn't create a PLT. static const Define_symbol_in_segment syms[] = { { "__rela_iplt_start", // name elfcpp::PT_LOAD, // segment_type elfcpp::PF_W, // segment_flags_set elfcpp::PF(0), // segment_flags_clear 0, // value 0, // size elfcpp::STT_NOTYPE, // type elfcpp::STB_GLOBAL, // binding elfcpp::STV_HIDDEN, // visibility 0, // nonvis Symbol::SEGMENT_START, // offset_from_base true // only_if_ref }, { "__rela_iplt_end", // name elfcpp::PT_LOAD, // segment_type elfcpp::PF_W, // segment_flags_set elfcpp::PF(0), // segment_flags_clear 0, // value 0, // size elfcpp::STT_NOTYPE, // type elfcpp::STB_GLOBAL, // binding elfcpp::STV_HIDDEN, // visibility 0, // nonvis Symbol::SEGMENT_START, // offset_from_base true // only_if_ref } }; symtab->define_symbols(layout, 2, syms, layout->script_options()->saw_sections_clause()); } } // Perform a relocation. template<int size, bool big_endian> inline bool Target_tilegx<size, big_endian>::Relocate::relocate( const Relocate_info<size, big_endian>* relinfo, Target_tilegx<size, big_endian>* target, Output_section*, size_t relnum, const elfcpp::Rela<size, big_endian>& rela, unsigned int r_type, const Sized_symbol<size>* gsym, const Symbol_value<size>* psymval, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr address, section_size_type) { if (view == NULL) return true; typedef Tilegx_relocate_functions<size, big_endian> TilegxReloc; typename TilegxReloc::Tilegx_howto r_howto; const Sized_relobj_file<size, big_endian>* object = relinfo->object; // Pick the value to use for symbols defined in the PLT. Symbol_value<size> symval; if (gsym != NULL && gsym->use_plt_offset(Scan::get_reference_flags(r_type))) { symval.set_output_value(target->plt_address_for_global(gsym)); psymval = &symval; } else if (gsym == NULL && psymval->is_ifunc_symbol()) { unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); if (object->local_has_plt_offset(r_sym)) { symval.set_output_value(target->plt_address_for_local(object, r_sym)); psymval = &symval; } } elfcpp::Elf_Xword addend = rela.get_r_addend(); // Get the GOT offset if needed. // For tilegx, the GOT pointer points to the start of the GOT section. bool have_got_offset = false; int got_offset = 0; int got_base = target->got_ != NULL ? target->got_->current_data_size() >= 0x8000 ? 0x8000 : 0 : 0; unsigned int got_type = GOT_TYPE_STANDARD; bool always_apply_relocation = false; switch (r_type) { case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT: if (gsym != NULL) { gold_assert(gsym->has_got_offset(got_type)); got_offset = gsym->got_offset(got_type) - got_base; } else { unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, got_type)); got_offset = object->local_got_offset(r_sym, got_type) - got_base; } have_got_offset = true; break; default: break; } r_howto = TilegxReloc::howto[r_type]; switch (r_type) { case elfcpp::R_TILEGX_NONE: case elfcpp::R_TILEGX_GNU_VTINHERIT: case elfcpp::R_TILEGX_GNU_VTENTRY: break; case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT: gold_assert(have_got_offset); symval.set_output_value(got_offset); psymval = &symval; always_apply_relocation = true; addend = 0; // when under PIC mode, these relocations are deferred to rtld case elfcpp::R_TILEGX_IMM16_X0_HW0: case elfcpp::R_TILEGX_IMM16_X1_HW0: case elfcpp::R_TILEGX_IMM16_X0_HW1: case elfcpp::R_TILEGX_IMM16_X1_HW1: case elfcpp::R_TILEGX_IMM16_X0_HW2: case elfcpp::R_TILEGX_IMM16_X1_HW2: case elfcpp::R_TILEGX_IMM16_X0_HW3: case elfcpp::R_TILEGX_IMM16_X1_HW3: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST: if (always_apply_relocation || !parameters->options().output_is_position_independent()) TilegxReloc::imm_x_general(view, object, psymval, addend, r_howto); break; case elfcpp::R_TILEGX_JUMPOFF_X1: case elfcpp::R_TILEGX_JUMPOFF_X1_PLT: gold_assert(gsym == NULL || gsym->has_plt_offset() || gsym->final_value_is_known() || (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible())); TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend, address, r_howto); break; case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL: case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL: TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend, address, r_howto); break; case elfcpp::R_TILEGX_BROFF_X1: case elfcpp::R_TILEGX_DEST_IMM8_X1: TilegxReloc::imm_x_two_part_general(view, object, psymval, addend, address, r_type); break; // below are general relocation types, which can be // handled by target-independent handlers case elfcpp::R_TILEGX_64: TilegxReloc::abs64(view, object, psymval, addend); break; case elfcpp::R_TILEGX_64_PCREL: TilegxReloc::pc_abs64(view, object, psymval, addend, address); break; case elfcpp::R_TILEGX_32: TilegxReloc::abs32(view, object, psymval, addend); break; case elfcpp::R_TILEGX_32_PCREL: TilegxReloc::pc_abs32(view, object, psymval, addend, address); break; case elfcpp::R_TILEGX_16: TilegxReloc::abs16(view, object, psymval, addend); break; case elfcpp::R_TILEGX_16_PCREL: TilegxReloc::pc_abs16(view, object, psymval, addend, address); break; case elfcpp::R_TILEGX_8: Relocate_functions<size, big_endian>::rela8(view, object, psymval, addend); break; case elfcpp::R_TILEGX_8_PCREL: Relocate_functions<size, big_endian>::pcrela8(view, object, psymval, addend, address); break; case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_TLS_GD_CALL: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: { const bool is_final = (gsym == NULL ? !parameters->options().shared() : gsym->final_value_is_known()); tls::Tls_optimization opt_t = Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final, r_type); switch (r_type) { case elfcpp::R_TILEGX_TLS_GD_CALL: { if (opt_t == tls::TLSOPT_NONE) { Symbol *tls_sym = relinfo->symtab->lookup("__tls_get_addr"); symval.set_output_value( target->plt_address_for_global(tls_sym)); psymval = &symval; TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend, address, r_howto); } else if (opt_t == tls::TLSOPT_TO_IE || opt_t == tls::TLSOPT_TO_LE) TilegxReloc::tls_relax(view, r_type, opt_t); } break; // XX_TLS_GD is the same as normal X_GOT relocation // except allocating a got entry pair, case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD: if (opt_t == tls::TLSOPT_NONE) { got_type = GOT_TYPE_TLS_PAIR; have_got_offset = true; } else if (opt_t == tls::TLSOPT_TO_IE) { got_type = GOT_TYPE_TLS_OFFSET; have_got_offset = true; } goto do_update_value; // XX_TLS_IE is the same as normal X_GOT relocation // except allocating one additional runtime relocation case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE: if (opt_t == tls::TLSOPT_NONE) { got_type = GOT_TYPE_TLS_OFFSET; have_got_offset = true; } do_update_value: if (have_got_offset) { if (gsym != NULL) { gold_assert(gsym->has_got_offset(got_type)); got_offset = gsym->got_offset(got_type) - got_base; } else { unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, got_type)); got_offset = object->local_got_offset(r_sym, got_type) - got_base; } } if (opt_t == tls::TLSOPT_NONE || opt_t == tls::TLSOPT_TO_IE) { // for both GD/IE, these relocations // actually calculate got offset, so // there behavior are the same gold_assert(have_got_offset); symval.set_output_value(got_offset); psymval = &symval; addend = 0; TilegxReloc::imm_x_general(view, object, psymval, addend, r_howto); break; } // else if (opt_t == tls::TLSOPT_TO_LE) // both GD/IE are turned into LE, which // is absolute relocation. // // | go through // | // V // LE // // tp // | // V // t_var1 | t_var2 | t_var3 | ... // -------------------------------------------------- // // so offset to tp should be negative, we get offset // from the following formular for LE // // t_var1_off = t_var1_sym_value - tls_section_start // case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE: case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE: { Output_segment *tls_segment = relinfo->layout->tls_segment(); if (tls_segment == NULL) { gold_assert(parameters->errors()->error_count() > 0 || issue_undefined_symbol_error(gsym)); return false; } typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(relinfo->object, 0); symval.set_output_value(value); psymval = &symval; TilegxReloc::imm_x_general(view, object, psymval, addend, r_howto); } break; // tls relaxation case elfcpp::R_TILEGX_TLS_IE_LOAD: case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD: case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD: case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD: TilegxReloc::tls_relax(view, r_type, opt_t); break; default: gold_unreachable(); } } break; // below are outstanding relocs // should not existed in static linking stage case elfcpp::R_TILEGX_COPY: case elfcpp::R_TILEGX_GLOB_DAT: case elfcpp::R_TILEGX_JMP_SLOT: case elfcpp::R_TILEGX_RELATIVE: case elfcpp::R_TILEGX_TLS_TPOFF32: case elfcpp::R_TILEGX_TLS_TPOFF64: case elfcpp::R_TILEGX_TLS_DTPMOD32: case elfcpp::R_TILEGX_TLS_DTPMOD64: case elfcpp::R_TILEGX_TLS_DTPOFF32: case elfcpp::R_TILEGX_TLS_DTPOFF64: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unexpected reloc %u in object file"), r_type); break; default: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; } return true; } // Relocate section data. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::relocate_section( const Relocate_info<size, big_endian>* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr address, section_size_type view_size, const Reloc_symbol_changes* reloc_symbol_changes) { typedef Target_tilegx<size, big_endian> Tilegx; typedef typename Target_tilegx<size, big_endian>::Relocate Tilegx_relocate; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_section<size, big_endian, Tilegx, elfcpp::SHT_RELA, Tilegx_relocate, gold::Default_comdat_behavior>( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } // Apply an incremental relocation. Incremental relocations always refer // to global symbols. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::apply_relocation( const Relocate_info<size, big_endian>* relinfo, typename elfcpp::Elf_types<size>::Elf_Addr r_offset, unsigned int r_type, typename elfcpp::Elf_types<size>::Elf_Swxword r_addend, const Symbol* gsym, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr address, section_size_type view_size) { gold::apply_relocation<size, big_endian, Target_tilegx<size, big_endian>, typename Target_tilegx<size, big_endian>::Relocate>( relinfo, this, r_offset, r_type, r_addend, gsym, view, address, view_size); } // Return the size of a relocation while scanning during a relocatable // link. template<int size, bool big_endian> unsigned int Target_tilegx<size,big_endian>::Relocatable_size_for_reloc::get_size_for_reloc( unsigned int, Relobj*) { // We are always SHT_RELA, so we should never get here. gold_unreachable(); return 0; } // Scan the relocs during a relocatable link. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs* rr) { gold_assert(sh_type == elfcpp::SHT_RELA); typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA, Relocatable_size_for_reloc> Scan_relocatable_relocs; gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA, Scan_relocatable_relocs>( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } // Relocate a section during a relocatable link. template<int size, bool big_endian> void Target_tilegx<size, big_endian>::relocate_relocs( const Relocate_info<size, big_endian>* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, const Relocatable_relocs* rr, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size) { gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>( relinfo, prelocs, reloc_count, output_section, offset_in_output_section, rr, view, view_address, view_size, reloc_view, reloc_view_size); } // Return the value to use for a dynamic which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. template<int size, bool big_endian> uint64_t Target_tilegx<size, big_endian>::do_dynsym_value(const Symbol* gsym) const { gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); return this->plt_address_for_global(gsym); } // Return the value to use for the base of a DW_EH_PE_datarel offset // in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their // assembler can not write out the difference between two labels in // different sections, so instead of using a pc-relative value they // use an offset from the GOT. template<int size, bool big_endian> uint64_t Target_tilegx<size, big_endian>::do_ehframe_datarel_base() const { gold_assert(this->global_offset_table_ != NULL); Symbol* sym = this->global_offset_table_; Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym); return ssym->value(); } // The selector for tilegx object files. template<int size, bool big_endian> class Target_selector_tilegx : public Target_selector { public: Target_selector_tilegx() : Target_selector(elfcpp::EM_TILEGX, size, big_endian, (size == 64 ? (big_endian ? "elf64-tilegx-be" : "elf64-tilegx-le") : (big_endian ? "elf32-tilegx-be" : "elf32-tilegx-le")), (size == 64 ? (big_endian ? "elf64tilegx_be" : "elf64tilegx") : (big_endian ? "elf32tilegx_be" : "elf32tilegx"))) { } Target* do_instantiate_target() { return new Target_tilegx<size, big_endian>(); } }; Target_selector_tilegx<64, false> target_selector_tilegx64_le; Target_selector_tilegx<32, false> target_selector_tilegx32_le; Target_selector_tilegx<64, true> target_selector_tilegx64_be; Target_selector_tilegx<32, true> target_selector_tilegx32_be; } // End anonymous namespace.