// symtab.cc -- the gold symbol table #include "gold.h" #include #include #include #include #include "object.h" #include "output.h" #include "target.h" #include "workqueue.h" #include "symtab.h" namespace gold { // Class Symbol. // Initialize fields in Symbol. This initializes everything except u_ // and source_. void Symbol::init_fields(const char* name, const char* version, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis) { this->name_ = name; this->version_ = version; this->got_offset_ = 0; this->type_ = type; this->binding_ = binding; this->visibility_ = visibility; this->nonvis_ = nonvis; this->is_target_special_ = false; this->is_def_ = false; this->is_forwarder_ = false; this->in_dyn_ = false; this->has_got_offset_ = false; this->has_warning_ = false; } // Initialize the fields in the base class Symbol for SYM in OBJECT. template void Symbol::init_base(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(), sym.get_st_visibility(), sym.get_st_nonvis()); this->u_.from_object.object = object; // FIXME: Handle SHN_XINDEX. this->u_.from_object.shnum = sym.get_st_shndx(); this->source_ = FROM_OBJECT; this->in_dyn_ = object->is_dynamic(); } // Initialize the fields in the base class Symbol for a symbol defined // in an Output_data. void Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end) { this->init_fields(name, NULL, type, binding, visibility, nonvis); this->u_.in_output_data.output_data = od; this->u_.in_output_data.offset_is_from_end = offset_is_from_end; this->source_ = IN_OUTPUT_DATA; } // Initialize the fields in the base class Symbol for a symbol defined // in an Output_segment. void Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Segment_offset_base offset_base) { this->init_fields(name, NULL, type, binding, visibility, nonvis); this->u_.in_output_segment.output_segment = os; this->u_.in_output_segment.offset_base = offset_base; this->source_ = IN_OUTPUT_SEGMENT; } // Initialize the fields in the base class Symbol for a symbol defined // as a constant. void Symbol::init_base(const char* name, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis) { this->init_fields(name, NULL, type, binding, visibility, nonvis); this->source_ = CONSTANT; } // Initialize the fields in Sized_symbol for SYM in OBJECT. template template void Sized_symbol::init(const char* name, const char* version, Object* object, const elfcpp::Sym& sym) { this->init_base(name, version, object, sym); this->value_ = sym.get_st_value(); this->symsize_ = sym.get_st_size(); } // Initialize the fields in Sized_symbol for a symbol defined in an // Output_data. template void Sized_symbol::init(const char* name, Output_data* od, Value_type value, Size_type symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end) { this->init_base(name, od, type, binding, visibility, nonvis, offset_is_from_end); this->value_ = value; this->symsize_ = symsize; } // Initialize the fields in Sized_symbol for a symbol defined in an // Output_segment. template void Sized_symbol::init(const char* name, Output_segment* os, Value_type value, Size_type symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Segment_offset_base offset_base) { this->init_base(name, os, type, binding, visibility, nonvis, offset_base); this->value_ = value; this->symsize_ = symsize; } // Initialize the fields in Sized_symbol for a symbol defined as a // constant. template void Sized_symbol::init(const char* name, Value_type value, Size_type symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis) { this->init_base(name, type, binding, visibility, nonvis); this->value_ = value; this->symsize_ = symsize; } // Class Symbol_table. Symbol_table::Symbol_table() : size_(0), saw_undefined_(0), offset_(0), table_(), namepool_(), forwarders_(), commons_(), warnings_() { } Symbol_table::~Symbol_table() { } // The hash function. The key is always canonicalized, so we use a // simple combination of the pointers. size_t Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const { return key.first ^ key.second; } // The symbol table key equality function. This is only called with // canonicalized name and version strings, so we can use pointer // comparison. bool Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1, const Symbol_table_key& k2) const { return k1.first == k2.first && k1.second == k2.second; } // Make TO a symbol which forwards to FROM. void Symbol_table::make_forwarder(Symbol* from, Symbol* to) { assert(!from->is_forwarder() && !to->is_forwarder()); this->forwarders_[from] = to; from->set_forwarder(); } // Resolve the forwards from FROM, returning the real symbol. Symbol* Symbol_table::resolve_forwards(Symbol* from) const { assert(from->is_forwarder()); Unordered_map::const_iterator p = this->forwarders_.find(from); assert(p != this->forwarders_.end()); return p->second; } // Look up a symbol by name. Symbol* Symbol_table::lookup(const char* name, const char* version) const { Stringpool::Key name_key; name = this->namepool_.find(name, &name_key); if (name == NULL) return NULL; Stringpool::Key version_key = 0; if (version != NULL) { version = this->namepool_.find(version, &version_key); if (version == NULL) return NULL; } Symbol_table_key key(name_key, version_key); Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key); if (p == this->table_.end()) return NULL; return p->second; } // Resolve a Symbol with another Symbol. This is only used in the // unusual case where there are references to both an unversioned // symbol and a symbol with a version, and we then discover that that // version is the default version. Because this is unusual, we do // this the slow way, by converting back to an ELF symbol. template void Symbol_table::resolve(Sized_symbol* to, const Sized_symbol* from ACCEPT_SIZE_ENDIAN) { unsigned char buf[elfcpp::Elf_sizes::sym_size]; elfcpp::Sym_write esym(buf); // We don't bother to set the st_name field. esym.put_st_value(from->value()); esym.put_st_size(from->symsize()); esym.put_st_info(from->binding(), from->type()); esym.put_st_other(from->visibility(), from->nonvis()); esym.put_st_shndx(from->shnum()); Symbol_table::resolve(to, esym.sym(), from->object()); } // Add one symbol from OBJECT to the symbol table. NAME is symbol // name and VERSION is the version; both are canonicalized. DEF is // whether this is the default version. // If DEF is true, then this is the definition of a default version of // a symbol. That means that any lookup of NAME/NULL and any lookup // of NAME/VERSION should always return the same symbol. This is // obvious for references, but in particular we want to do this for // definitions: overriding NAME/NULL should also override // NAME/VERSION. If we don't do that, it would be very hard to // override functions in a shared library which uses versioning. // We implement this by simply making both entries in the hash table // point to the same Symbol structure. That is easy enough if this is // the first time we see NAME/NULL or NAME/VERSION, but it is possible // that we have seen both already, in which case they will both have // independent entries in the symbol table. We can't simply change // the symbol table entry, because we have pointers to the entries // attached to the object files. So we mark the entry attached to the // object file as a forwarder, and record it in the forwarders_ map. // Note that entries in the hash table will never be marked as // forwarders. template Symbol* Symbol_table::add_from_object(Object* object, const char *name, Stringpool::Key name_key, const char *version, Stringpool::Key version_key, bool def, const elfcpp::Sym& sym) { Symbol* const snull = NULL; std::pair ins = this->table_.insert(std::make_pair(std::make_pair(name_key, version_key), snull)); std::pair insdef = std::make_pair(this->table_.end(), false); if (def) { const Stringpool::Key vnull_key = 0; insdef = this->table_.insert(std::make_pair(std::make_pair(name_key, vnull_key), snull)); } // ins.first: an iterator, which is a pointer to a pair. // ins.first->first: the key (a pair of name and version). // ins.first->second: the value (Symbol*). // ins.second: true if new entry was inserted, false if not. Sized_symbol* ret; bool was_undefined; bool was_common; if (!ins.second) { // We already have an entry for NAME/VERSION. ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second SELECT_SIZE(size)); assert(ret != NULL); was_undefined = ret->is_undefined(); was_common = ret->is_common(); Symbol_table::resolve(ret, sym, object); if (def) { if (insdef.second) { // This is the first time we have seen NAME/NULL. Make // NAME/NULL point to NAME/VERSION. insdef.first->second = ret; } else { // This is the unfortunate case where we already have // entries for both NAME/VERSION and NAME/NULL. const Sized_symbol* sym2; sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) ( insdef.first->second SELECT_SIZE(size)); Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) ( ret, sym2 SELECT_SIZE_ENDIAN(size, big_endian)); this->make_forwarder(insdef.first->second, ret); insdef.first->second = ret; } } } else { // This is the first time we have seen NAME/VERSION. assert(ins.first->second == NULL); was_undefined = false; was_common = false; if (def && !insdef.second) { // We already have an entry for NAME/NULL. Make // NAME/VERSION point to it. ret = this->get_sized_symbol SELECT_SIZE_NAME(size) ( insdef.first->second SELECT_SIZE(size)); Symbol_table::resolve(ret, sym, object); ins.first->second = ret; } else { Sized_target* target = object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) ( SELECT_SIZE_ENDIAN_ONLY(size, big_endian)); if (!target->has_make_symbol()) ret = new Sized_symbol(); else { ret = target->make_symbol(); if (ret == NULL) { // This means that we don't want a symbol table // entry after all. if (!def) this->table_.erase(ins.first); else { this->table_.erase(insdef.first); // Inserting insdef invalidated ins. this->table_.erase(std::make_pair(name_key, version_key)); } return NULL; } } ret->init(name, version, object, sym); ins.first->second = ret; if (def) { // This is the first time we have seen NAME/NULL. Point // it at the new entry for NAME/VERSION. assert(insdef.second); insdef.first->second = ret; } } } // Record every time we see a new undefined symbol, to speed up // archive groups. if (!was_undefined && ret->is_undefined()) ++this->saw_undefined_; // Keep track of common symbols, to speed up common symbol // allocation. if (!was_common && ret->is_common()) this->commons_.push_back(ret); return ret; } // Add all the symbols in a relocatable object to the hash table. template void Symbol_table::add_from_object( Relobj* object, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers) { // We take the size from the first object we see. if (this->get_size() == 0) this->set_size(size); if (size != this->get_size() || size != object->target()->get_size()) { fprintf(stderr, _("%s: %s: mixing 32-bit and 64-bit ELF objects\n"), program_name, object->name().c_str()); gold_exit(false); } const int sym_size = elfcpp::Elf_sizes::sym_size; const unsigned char* p = syms; for (size_t i = 0; i < count; ++i, p += sym_size) { elfcpp::Sym sym(p); elfcpp::Sym* psym = &sym; unsigned int st_name = psym->get_st_name(); if (st_name >= sym_name_size) { fprintf(stderr, _("%s: %s: bad global symbol name offset %u at %lu\n"), program_name, object->name().c_str(), st_name, static_cast(i)); gold_exit(false); } // A symbol defined in a section which we are not including must // be treated as an undefined symbol. unsigned char symbuf[sym_size]; elfcpp::Sym sym2(symbuf); unsigned int st_shndx = psym->get_st_shndx(); if (st_shndx != elfcpp::SHN_UNDEF && st_shndx < elfcpp::SHN_LORESERVE && !object->is_section_included(st_shndx)) { memcpy(symbuf, p, sym_size); elfcpp::Sym_write sw(symbuf); sw.put_st_shndx(elfcpp::SHN_UNDEF); psym = &sym2; } const char* name = sym_names + st_name; // In an object file, an '@' in the name separates the symbol // name from the version name. If there are two '@' characters, // this is the default version. const char* ver = strchr(name, '@'); Symbol* res; if (ver == NULL) { Stringpool::Key name_key; name = this->namepool_.add(name, &name_key); res = this->add_from_object(object, name, name_key, NULL, 0, false, *psym); } else { Stringpool::Key name_key; name = this->namepool_.add(name, ver - name, &name_key); bool def = false; ++ver; if (*ver == '@') { def = true; ++ver; } Stringpool::Key ver_key; ver = this->namepool_.add(ver, &ver_key); res = this->add_from_object(object, name, name_key, ver, ver_key, def, *psym); } *sympointers++ = res; } } // Create and return a specially defined symbol. If ONLY_IF_REF is // true, then only create the symbol if there is a reference to it. template Sized_symbol* Symbol_table::define_special_symbol(Target* target, const char* name, bool only_if_ref ACCEPT_SIZE_ENDIAN) { assert(this->size_ == size); Symbol* oldsym; Sized_symbol* sym; if (only_if_ref) { oldsym = this->lookup(name, NULL); if (oldsym == NULL || !oldsym->is_undefined()) return NULL; sym = NULL; // Canonicalize NAME. name = oldsym->name(); } else { // Canonicalize NAME. Stringpool::Key name_key; name = this->namepool_.add(name, &name_key); Symbol* const snull = NULL; const Stringpool::Key ver_key = 0; std::pair ins = this->table_.insert(std::make_pair(std::make_pair(name_key, ver_key), snull)); if (!ins.second) { // We already have a symbol table entry for NAME. oldsym = ins.first->second; assert(oldsym != NULL); sym = NULL; } else { // We haven't seen this symbol before. assert(ins.first->second == NULL); if (!target->has_make_symbol()) sym = new Sized_symbol(); else { assert(target->get_size() == size); assert(target->is_big_endian() ? big_endian : !big_endian); typedef Sized_target My_target; My_target* sized_target = static_cast(target); sym = sized_target->make_symbol(); if (sym == NULL) return NULL; } ins.first->second = sym; oldsym = NULL; } } if (oldsym != NULL) { assert(sym == NULL); sym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym SELECT_SIZE(size)); assert(sym->source() == Symbol::FROM_OBJECT); const int old_shnum = sym->shnum(); if (old_shnum != elfcpp::SHN_UNDEF && old_shnum != elfcpp::SHN_COMMON && !sym->object()->is_dynamic()) { fprintf(stderr, "%s: linker defined: multiple definition of %s\n", program_name, name); // FIXME: Report old location. Record that we have seen an // error. return NULL; } // Our new definition is going to override the old reference. } return sym; } // Define a symbol based on an Output_data. void Symbol_table::define_in_output_data(Target* target, const char* name, Output_data* od, uint64_t value, uint64_t symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end, bool only_if_ref) { assert(target->get_size() == this->size_); if (this->size_ == 32) this->do_define_in_output_data<32>(target, name, od, value, symsize, type, binding, visibility, nonvis, offset_is_from_end, only_if_ref); else if (this->size_ == 64) this->do_define_in_output_data<64>(target, name, od, value, symsize, type, binding, visibility, nonvis, offset_is_from_end, only_if_ref); else abort(); } // Define a symbol in an Output_data, sized version. template void Symbol_table::do_define_in_output_data( Target* target, const char* name, Output_data* od, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_WXword symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool offset_is_from_end, bool only_if_ref) { Sized_symbol* sym; if (target->is_big_endian()) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) ( target, name, only_if_ref SELECT_SIZE_ENDIAN(size, true)); else sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) ( target, name, only_if_ref SELECT_SIZE_ENDIAN(size, false)); if (sym == NULL) return; sym->init(name, od, value, symsize, type, binding, visibility, nonvis, offset_is_from_end); } // Define a symbol based on an Output_segment. void Symbol_table::define_in_output_segment(Target* target, const char* name, Output_segment* os, uint64_t value, uint64_t symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Symbol::Segment_offset_base offset_base, bool only_if_ref) { assert(target->get_size() == this->size_); if (this->size_ == 32) this->do_define_in_output_segment<32>(target, name, os, value, symsize, type, binding, visibility, nonvis, offset_base, only_if_ref); else if (this->size_ == 64) this->do_define_in_output_segment<64>(target, name, os, value, symsize, type, binding, visibility, nonvis, offset_base, only_if_ref); else abort(); } // Define a symbol in an Output_segment, sized version. template void Symbol_table::do_define_in_output_segment( Target* target, const char* name, Output_segment* os, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_WXword symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, Symbol::Segment_offset_base offset_base, bool only_if_ref) { Sized_symbol* sym; if (target->is_big_endian()) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) ( target, name, only_if_ref SELECT_SIZE_ENDIAN(size, true)); else sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) ( target, name, only_if_ref SELECT_SIZE_ENDIAN(size, false)); if (sym == NULL) return; sym->init(name, os, value, symsize, type, binding, visibility, nonvis, offset_base); } // Define a special symbol with a constant value. It is a multiple // definition error if this symbol is already defined. void Symbol_table::define_as_constant(Target* target, const char* name, uint64_t value, uint64_t symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool only_if_ref) { assert(target->get_size() == this->size_); if (this->size_ == 32) this->do_define_as_constant<32>(target, name, value, symsize, type, binding, visibility, nonvis, only_if_ref); else if (this->size_ == 64) this->do_define_as_constant<64>(target, name, value, symsize, type, binding, visibility, nonvis, only_if_ref); else abort(); } // Define a symbol as a constant, sized version. template void Symbol_table::do_define_as_constant( Target* target, const char* name, typename elfcpp::Elf_types::Elf_Addr value, typename elfcpp::Elf_types::Elf_WXword symsize, elfcpp::STT type, elfcpp::STB binding, elfcpp::STV visibility, unsigned char nonvis, bool only_if_ref) { Sized_symbol* sym; if (target->is_big_endian()) sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) ( target, name, only_if_ref SELECT_SIZE_ENDIAN(size, true)); else sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) ( target, name, only_if_ref SELECT_SIZE_ENDIAN(size, false)); if (sym == NULL) return; sym->init(name, value, symsize, type, binding, visibility, nonvis); } // Define a set of symbols in output sections. void Symbol_table::define_symbols(const Layout* layout, Target* target, int count, const Define_symbol_in_section* p) { for (int i = 0; i < count; ++i, ++p) { Output_section* os = layout->find_output_section(p->output_section); if (os != NULL) this->define_in_output_data(target, p->name, os, p->value, p->size, p->type, p->binding, p->visibility, p->nonvis, p->offset_is_from_end, p->only_if_ref); else this->define_as_constant(target, p->name, 0, p->size, p->type, p->binding, p->visibility, p->nonvis, p->only_if_ref); } } // Define a set of symbols in output segments. void Symbol_table::define_symbols(const Layout* layout, Target* target, int count, const Define_symbol_in_segment* p) { for (int i = 0; i < count; ++i, ++p) { Output_segment* os = layout->find_output_segment(p->segment_type, p->segment_flags_set, p->segment_flags_clear); if (os != NULL) this->define_in_output_segment(target, p->name, os, p->value, p->size, p->type, p->binding, p->visibility, p->nonvis, p->offset_base, p->only_if_ref); else this->define_as_constant(target, p->name, 0, p->size, p->type, p->binding, p->visibility, p->nonvis, p->only_if_ref); } } // Set the final values for all the symbols. Record the file offset // OFF. Add their names to POOL. Return the new file offset. off_t Symbol_table::finalize(off_t off, Stringpool* pool) { off_t ret; if (this->size_ == 32) ret = this->sized_finalize<32>(off, pool); else if (this->size_ == 64) ret = this->sized_finalize<64>(off, pool); else abort(); // Now that we have the final symbol table, we can reliably note // which symbols should get warnings. this->warnings_.note_warnings(this); return ret; } // Set the final value for all the symbols. This is called after // Layout::finalize, so all the output sections have their final // address. template off_t Symbol_table::sized_finalize(off_t off, Stringpool* pool) { off = align_address(off, size >> 3); this->offset_ = off; const int sym_size = elfcpp::Elf_sizes::sym_size; Symbol_table_type::iterator p = this->table_.begin(); size_t count = 0; while (p != this->table_.end()) { Sized_symbol* sym = static_cast*>(p->second); // FIXME: Here we need to decide which symbols should go into // the output file. typename Sized_symbol::Value_type value; switch (sym->source()) { case Symbol::FROM_OBJECT: { unsigned int shnum = sym->shnum(); // FIXME: We need some target specific support here. if (shnum >= elfcpp::SHN_LORESERVE && shnum != elfcpp::SHN_ABS) { fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"), program_name, sym->name(), shnum); gold_exit(false); } Object* symobj = sym->object(); if (symobj->is_dynamic()) { value = 0; shnum = elfcpp::SHN_UNDEF; } else if (shnum == elfcpp::SHN_UNDEF) value = 0; else if (shnum == elfcpp::SHN_ABS) value = sym->value(); else { Relobj* relobj = static_cast(symobj); off_t secoff; Output_section* os = relobj->output_section(shnum, &secoff); if (os == NULL) { // We should be able to erase this symbol from the // symbol table, but at least with gcc 4.0.2 // std::unordered_map::erase doesn't appear to return // the new iterator. // p = this->table_.erase(p); ++p; continue; } value = sym->value() + os->address() + secoff; } } break; case Symbol::IN_OUTPUT_DATA: { Output_data* od = sym->output_data(); value = sym->value() + od->address(); if (sym->offset_is_from_end()) value += od->data_size(); } break; case Symbol::IN_OUTPUT_SEGMENT: { Output_segment* os = sym->output_segment(); value = sym->value() + os->vaddr(); switch (sym->offset_base()) { case Symbol::SEGMENT_START: break; case Symbol::SEGMENT_END: value += os->memsz(); break; case Symbol::SEGMENT_BSS: value += os->filesz(); break; default: abort(); } } break; case Symbol::CONSTANT: value = sym->value(); break; default: abort(); } sym->set_value(value); pool->add(sym->name(), NULL); ++count; off += sym_size; ++p; } this->output_count_ = count; return off; } // Write out the global symbols. void Symbol_table::write_globals(const Target* target, const Stringpool* sympool, Output_file* of) const { if (this->size_ == 32) { if (target->is_big_endian()) this->sized_write_globals<32, true>(target, sympool, of); else this->sized_write_globals<32, false>(target, sympool, of); } else if (this->size_ == 64) { if (target->is_big_endian()) this->sized_write_globals<64, true>(target, sympool, of); else this->sized_write_globals<64, false>(target, sympool, of); } else abort(); } // Write out the global symbols. template void Symbol_table::sized_write_globals(const Target*, const Stringpool* sympool, Output_file* of) const { const int sym_size = elfcpp::Elf_sizes::sym_size; unsigned char* psyms = of->get_output_view(this->offset_, this->output_count_ * sym_size); unsigned char* ps = psyms; for (Symbol_table_type::const_iterator p = this->table_.begin(); p != this->table_.end(); ++p) { Sized_symbol* sym = static_cast*>(p->second); unsigned int shndx; switch (sym->source()) { case Symbol::FROM_OBJECT: { unsigned int shnum = sym->shnum(); // FIXME: We need some target specific support here. if (shnum >= elfcpp::SHN_LORESERVE && shnum != elfcpp::SHN_ABS) { fprintf(stderr, _("%s: %s: unsupported symbol section 0x%x\n"), program_name, sym->name(), sym->shnum()); gold_exit(false); } Object* symobj = sym->object(); if (symobj->is_dynamic()) { // FIXME. shndx = elfcpp::SHN_UNDEF; } else if (shnum == elfcpp::SHN_UNDEF || shnum == elfcpp::SHN_ABS) shndx = shnum; else { Relobj* relobj = static_cast(symobj); off_t secoff; Output_section* os = relobj->output_section(shnum, &secoff); if (os == NULL) continue; shndx = os->out_shndx(); } } break; case Symbol::IN_OUTPUT_DATA: shndx = sym->output_data()->out_shndx(); break; case Symbol::IN_OUTPUT_SEGMENT: shndx = elfcpp::SHN_ABS; break; case Symbol::CONSTANT: shndx = elfcpp::SHN_ABS; break; default: abort(); } elfcpp::Sym_write osym(ps); osym.put_st_name(sympool->get_offset(sym->name())); osym.put_st_value(sym->value()); osym.put_st_size(sym->symsize()); osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type())); osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis())); osym.put_st_shndx(shndx); ps += sym_size; } of->write_output_view(this->offset_, this->output_count_ * sym_size, psyms); } // Warnings functions. // Add a new warning. void Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj, unsigned int shndx) { name = symtab->canonicalize_name(name); this->warnings_[name].set(obj, shndx); } // Look through the warnings and mark the symbols for which we should // warn. This is called during Layout::finalize when we know the // sources for all the symbols. void Warnings::note_warnings(Symbol_table* symtab) { for (Warning_table::iterator p = this->warnings_.begin(); p != this->warnings_.end(); ++p) { Symbol* sym = symtab->lookup(p->first, NULL); if (sym != NULL && sym->source() == Symbol::FROM_OBJECT && sym->object() == p->second.object) { sym->set_has_warning(); // Read the section contents to get the warning text. It // would be nicer if we only did this if we have to actually // issue a warning. Unfortunately, warnings are issued as // we relocate sections. That means that we can not lock // the object then, as we might try to issue the same // warning multiple times simultaneously. { Task_locker_obj tl(*p->second.object); const unsigned char* c; off_t len; c = p->second.object->section_contents(p->second.shndx, &len); p->second.set_text(reinterpret_cast(c), len); } } } } // Issue a warning. This is called when we see a relocation against a // symbol for which has a warning. void Warnings::issue_warning(Symbol* sym, const std::string& location) const { assert(sym->has_warning()); Warning_table::const_iterator p = this->warnings_.find(sym->name()); assert(p != this->warnings_.end()); fprintf(stderr, _("%s: %s: warning: %s\n"), program_name, location.c_str(), p->second.text.c_str()); } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones needed for implemented // targets. template void Symbol_table::add_from_object<32, true>( Relobj* object, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<32, false>( Relobj* object, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<64, true>( Relobj* object, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); template void Symbol_table::add_from_object<64, false>( Relobj* object, const unsigned char* syms, size_t count, const char* sym_names, size_t sym_name_size, Symbol** sympointers); } // End namespace gold.