// sparc.cc -- sparc target support for gold. // Copyright (C) 2008-2018 Free Software Foundation, Inc. // Written by David S. Miller <davem@davemloft.net>. // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include <cstdlib> #include <cstdio> #include <cstring> #include "elfcpp.h" #include "parameters.h" #include "reloc.h" #include "sparc.h" #include "object.h" #include "symtab.h" #include "layout.h" #include "output.h" #include "copy-relocs.h" #include "target.h" #include "target-reloc.h" #include "target-select.h" #include "tls.h" #include "errors.h" #include "gc.h" namespace { using namespace gold; template<int size, bool big_endian> class Output_data_plt_sparc; template<int size, bool big_endian> class Target_sparc : public Sized_target<size, big_endian> { public: typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section; Target_sparc() : Sized_target<size, big_endian>(&sparc_info), got_(NULL), plt_(NULL), rela_dyn_(NULL), rela_ifunc_(NULL), copy_relocs_(elfcpp::R_SPARC_COPY), got_mod_index_offset_(-1U), tls_get_addr_sym_(NULL), elf_machine_(sparc_info.machine_code), elf_flags_(0), elf_flags_set_(false), register_syms_() { } // Make a new symbol table entry. Sized_symbol<size>* make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t); // Process the relocations to determine unreferenced sections for // garbage collection. void gc_process_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Scan the relocations to look for symbol adjustments. void scan_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols); // Finalize the sections. void do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); // Return the value to use for a dynamic which requires special // treatment. uint64_t do_dynsym_value(const Symbol*) const; // Relocate a section. void relocate_section(const Relocate_info<size, big_endian>*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, const Reloc_symbol_changes*); // Scan the relocs during a relocatable link. void scan_relocatable_relocs(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs*); // Scan the relocs for --emit-relocs. void emit_relocs_scan(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_syms, Relocatable_relocs* rr); // Emit relocations for a section. void relocate_relocs(const Relocate_info<size, big_endian>*, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size); // Return whether SYM is defined by the ABI. bool do_is_defined_by_abi(const Symbol* sym) const { return strcmp(sym->name(), "___tls_get_addr") == 0; } // Return the PLT address to use for a global symbol. uint64_t do_plt_address_for_global(const Symbol* gsym) const { return this->plt_section()->address_for_global(gsym); } uint64_t do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const { return this->plt_section()->address_for_local(relobj, symndx); } // Return whether there is a GOT section. bool has_got_section() const { return this->got_ != NULL; } // Return the size of the GOT section. section_size_type got_size() const { gold_assert(this->got_ != NULL); return this->got_->data_size(); } // Return the number of entries in the GOT. unsigned int got_entry_count() const { if (this->got_ == NULL) return 0; return this->got_size() / (size / 8); } // Return the address of the GOT. uint64_t got_address() const { if (this->got_ == NULL) return 0; return this->got_->address(); } // Return the number of entries in the PLT. unsigned int plt_entry_count() const; // Return the offset of the first non-reserved PLT entry. unsigned int first_plt_entry_offset() const; // Return the size of each PLT entry. unsigned int plt_entry_size() const; protected: // Make an ELF object. Object* do_make_elf_object(const std::string&, Input_file*, off_t, const elfcpp::Ehdr<size, big_endian>& ehdr); void do_adjust_elf_header(unsigned char* view, int len); private: // The class which scans relocations. class Scan { public: Scan() : issued_non_pic_error_(false) { } static inline int get_reference_flags(unsigned int r_type); inline void local(Symbol_table* symtab, Layout* layout, Target_sparc* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, const elfcpp::Sym<size, big_endian>& lsym, bool is_discarded); inline void global(Symbol_table* symtab, Layout* layout, Target_sparc* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, Symbol* gsym); inline bool local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_sparc* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int , const elfcpp::Sym<size, big_endian>&) { return false; } inline bool global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_sparc* , Sized_relobj_file<size, big_endian>* , unsigned int , Output_section* , const elfcpp::Rela<size, big_endian>& , unsigned int , Symbol*) { return false; } private: static void unsupported_reloc_local(Sized_relobj_file<size, big_endian>*, unsigned int r_type); static void unsupported_reloc_global(Sized_relobj_file<size, big_endian>*, unsigned int r_type, Symbol*); static void generate_tls_call(Symbol_table* symtab, Layout* layout, Target_sparc* target); void check_non_pic(Relobj*, unsigned int r_type); bool reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*, unsigned int r_type); // Whether we have issued an error about a non-PIC compilation. bool issued_non_pic_error_; }; // The class which implements relocation. class Relocate { public: Relocate() : ignore_gd_add_(false), reloc_adjust_addr_(NULL) { } ~Relocate() { if (this->ignore_gd_add_) { // FIXME: This needs to specify the location somehow. gold_error(_("missing expected TLS relocation")); } } // Do a relocation. Return false if the caller should not issue // any warnings about this relocation. inline bool relocate(const Relocate_info<size, big_endian>*, unsigned int, Target_sparc*, Output_section*, size_t, const unsigned char*, const Sized_symbol<size>*, const Symbol_value<size>*, unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr, section_size_type); private: // Do a TLS relocation. inline void relocate_tls(const Relocate_info<size, big_endian>*, Target_sparc* target, size_t relnum, const elfcpp::Rela<size, big_endian>&, unsigned int r_type, const Sized_symbol<size>*, const Symbol_value<size>*, unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr, section_size_type); inline void relax_call(Target_sparc<size, big_endian>* target, unsigned char* view, const elfcpp::Rela<size, big_endian>& rela, section_size_type view_size); // Ignore the next relocation which should be R_SPARC_TLS_GD_ADD bool ignore_gd_add_; // If we hit a reloc at this view address, adjust it back by 4 bytes. unsigned char *reloc_adjust_addr_; }; // Get the GOT section, creating it if necessary. Output_data_got<size, big_endian>* got_section(Symbol_table*, Layout*); // Create the PLT section. void make_plt_section(Symbol_table* symtab, Layout* layout); // Create a PLT entry for a global symbol. void make_plt_entry(Symbol_table*, Layout*, Symbol*); // Create a PLT entry for a local STT_GNU_IFUNC symbol. void make_local_ifunc_plt_entry(Symbol_table*, Layout*, Sized_relobj_file<size, big_endian>* relobj, unsigned int local_sym_index); // Create a GOT entry for the TLS module index. unsigned int got_mod_index_entry(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object); // Return the gsym for "__tls_get_addr". Cache if not already // cached. Symbol* tls_get_addr_sym(Symbol_table* symtab) { if (!this->tls_get_addr_sym_) this->tls_get_addr_sym_ = symtab->lookup("__tls_get_addr", NULL); gold_assert(this->tls_get_addr_sym_); return this->tls_get_addr_sym_; } // Get the PLT section. Output_data_plt_sparc<size, big_endian>* plt_section() const { gold_assert(this->plt_ != NULL); return this->plt_; } // Get the dynamic reloc section, creating it if necessary. Reloc_section* rela_dyn_section(Layout*); // Get the section to use for IFUNC relocations. Reloc_section* rela_ifunc_section(Layout*); // Copy a relocation against a global symbol. void copy_reloc(Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int shndx, Output_section* output_section, Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc) { unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info()); this->copy_relocs_.copy_reloc(symtab, layout, symtab->get_sized_symbol<size>(sym), object, shndx, output_section, r_type, reloc.get_r_offset(), reloc.get_r_addend(), this->rela_dyn_section(layout)); } // Information about this specific target which we pass to the // general Target structure. static Target::Target_info sparc_info; // The types of GOT entries needed for this platform. // These values are exposed to the ABI in an incremental link. // Do not renumber existing values without changing the version // number of the .gnu_incremental_inputs section. enum Got_type { GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair }; struct Register_symbol { Register_symbol() : name(NULL), shndx(0), obj(NULL) { } const char* name; unsigned int shndx; Object* obj; }; // The GOT section. Output_data_got<size, big_endian>* got_; // The PLT section. Output_data_plt_sparc<size, big_endian>* plt_; // The dynamic reloc section. Reloc_section* rela_dyn_; // The section to use for IFUNC relocs. Reloc_section* rela_ifunc_; // Relocs saved to avoid a COPY reloc. Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_; // Offset of the GOT entry for the TLS module index; unsigned int got_mod_index_offset_; // Cached pointer to __tls_get_addr symbol Symbol* tls_get_addr_sym_; // Accumulated elf machine type elfcpp::Elf_Half elf_machine_; // Accumulated elf header flags elfcpp::Elf_Word elf_flags_; // Whether elf_flags_ has been set for the first time yet bool elf_flags_set_; // STT_SPARC_REGISTER symbols (%g2, %g3, %g6, %g7). Register_symbol register_syms_[4]; }; template<> Target::Target_info Target_sparc<32, true>::sparc_info = { 32, // size true, // is_big_endian elfcpp::EM_SPARC, // machine_code false, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/ld.so.1", // dynamic_linker 0x00010000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 8 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start", // entry_symbol_name 32, // hash_entry_size }; template<> Target::Target_info Target_sparc<64, true>::sparc_info = { 64, // size true, // is_big_endian elfcpp::EM_SPARCV9, // machine_code true, // has_make_symbol false, // has_resolve false, // has_code_fill true, // is_default_stack_executable false, // can_icf_inline_merge_sections '\0', // wrap_char "/usr/lib/sparcv9/ld.so.1", // dynamic_linker 0x100000, // default_text_segment_address 64 * 1024, // abi_pagesize (overridable by -z max-page-size) 8 * 1024, // common_pagesize (overridable by -z common-page-size) false, // isolate_execinstr 0, // rosegment_gap elfcpp::SHN_UNDEF, // small_common_shndx elfcpp::SHN_UNDEF, // large_common_shndx 0, // small_common_section_flags 0, // large_common_section_flags NULL, // attributes_section NULL, // attributes_vendor "_start", // entry_symbol_name 32, // hash_entry_size }; // We have to take care here, even when operating in little-endian // mode, sparc instructions are still big endian. template<int size, bool big_endian> class Sparc_relocate_functions { private: // Do a simple relocation with the addend in the relocation. template<int valsize> static inline void rela(unsigned char* view, unsigned int right_shift, typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask, typename elfcpp::Swap<size, big_endian>::Valtype value, typename elfcpp::Swap<size, big_endian>::Valtype addend) { typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv); Valtype reloc = ((value + addend) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc); } // Do a simple relocation using a symbol value with the addend in // the relocation. template<int valsize> static inline void rela(unsigned char* view, unsigned int right_shift, typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<valsize, big_endian>::Valtype addend) { typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv); Valtype reloc = (psymval->value(object, addend) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc); } // Do a simple relocation using a symbol value with the addend in // the relocation, unaligned. template<int valsize> static inline void rela_ua(unsigned char* view, unsigned int right_shift, elfcpp::Elf_Xword dst_mask, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend) { typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype Valtype; unsigned char* wv = view; Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv); Valtype reloc = (psymval->value(object, addend) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, val | reloc); } // Do a simple PC relative relocation with a Symbol_value with the // addend in the relocation. template<int valsize> static inline void pcrela(unsigned char* view, unsigned int right_shift, typename elfcpp::Elf_types<valsize>::Elf_Addr dst_mask, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv); Valtype reloc = ((psymval->value(object, addend) - address) >> right_shift); val &= ~dst_mask; reloc &= dst_mask; elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc); } template<int valsize> static inline void pcrela_unaligned(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Swap<size, big_endian>::Valtype addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype Valtype; unsigned char* wv = view; Valtype reloc = (psymval->value(object, addend) - address); elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv, reloc); } typedef Sparc_relocate_functions<size, big_endian> This; typedef Sparc_relocate_functions<size, true> This_insn; public: // R_SPARC_WDISP30: (Symbol + Addend - Address) >> 2 static inline void wdisp30(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 2, 0x3fffffff, object, psymval, addend, address); } // R_SPARC_WDISP22: (Symbol + Addend - Address) >> 2 static inline void wdisp22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 2, 0x003fffff, object, psymval, addend, address); } // R_SPARC_WDISP19: (Symbol + Addend - Address) >> 2 static inline void wdisp19(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 2, 0x0007ffff, object, psymval, addend, address); } // R_SPARC_WDISP16: (Symbol + Addend - Address) >> 2 static inline void wdisp16(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = ((psymval->value(object, addend) - address) >> 2); // The relocation value is split between the low 14 bits, // and bits 20-21. val &= ~((0x3 << 20) | 0x3fff); reloc = (((reloc & 0xc000) << (20 - 14)) | (reloc & 0x3ffff)); elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_WDISP10: (Symbol + Addend - Address) >> 2 static inline void wdisp10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = ((psymval->value(object, addend) - address) >> 2); // The relocation value is split between the low bits 5-12, // and high bits 19-20. val &= ~((0x3 << 19) | (0xff << 5)); reloc = (((reloc & 0x300) << (19 - 8)) | ((reloc & 0xff) << (5 - 0))); elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_PC22: (Symbol + Addend - Address) >> 10 static inline void pc22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 10, 0x003fffff, object, psymval, addend, address); } // R_SPARC_PC10: (Symbol + Addend - Address) & 0x3ff static inline void pc10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 0, 0x000003ff, object, psymval, addend, address); } // R_SPARC_HI22: (Symbol + Addend) >> 10 static inline void hi22(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 10, 0x003fffff, value, addend); } // R_SPARC_HI22: (Symbol + Addend) >> 10 static inline void hi22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 10, 0x003fffff, object, psymval, addend); } // R_SPARC_PCPLT22: (Symbol + Addend - Address) >> 10 static inline void pcplt22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 10, 0x003fffff, object, psymval, addend, address); } // R_SPARC_LO10: (Symbol + Addend) & 0x3ff static inline void lo10(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x000003ff, value, addend); } // R_SPARC_LO10: (Symbol + Addend) & 0x3ff static inline void lo10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend); } // R_SPARC_LO10: (Symbol + Addend) & 0x3ff static inline void lo10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 0, 0x000003ff, object, psymval, addend, address); } // R_SPARC_OLO10: ((Symbol + Addend) & 0x3ff) + Addend2 static inline void olo10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr addend2) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = psymval->value(object, addend); val &= ~0x1fff; reloc &= 0x3ff; reloc += addend2; reloc &= 0x1fff; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_22: (Symbol + Addend) static inline void rela32_22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x003fffff, object, psymval, addend); } // R_SPARC_13: (Symbol + Addend) static inline void rela32_13(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x00001fff, value, addend); } // R_SPARC_13: (Symbol + Addend) static inline void rela32_13(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x00001fff, object, psymval, addend); } // R_SPARC_UA16: (Symbol + Addend) static inline void ua16(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This::template rela_ua<16>(view, 0, 0xffff, object, psymval, addend); } // R_SPARC_UA32: (Symbol + Addend) static inline void ua32(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This::template rela_ua<32>(view, 0, 0xffffffff, object, psymval, addend); } // R_SPARC_UA64: (Symbol + Addend) static inline void ua64(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This::template rela_ua<64>(view, 0, ~(elfcpp::Elf_Xword) 0, object, psymval, addend); } // R_SPARC_DISP8: (Symbol + Addend - Address) static inline void disp8(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This::template pcrela_unaligned<8>(view, object, psymval, addend, address); } // R_SPARC_DISP16: (Symbol + Addend - Address) static inline void disp16(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This::template pcrela_unaligned<16>(view, object, psymval, addend, address); } // R_SPARC_DISP32: (Symbol + Addend - Address) static inline void disp32(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This::template pcrela_unaligned<32>(view, object, psymval, addend, address); } // R_SPARC_DISP64: (Symbol + Addend - Address) static inline void disp64(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, elfcpp::Elf_Xword addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This::template pcrela_unaligned<64>(view, object, psymval, addend, address); } // R_SPARC_H34: (Symbol + Addend) >> 12 static inline void h34(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 12, 0x003fffff, object, psymval, addend); } // R_SPARC_H44: (Symbol + Addend) >> 22 static inline void h44(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 22, 0x003fffff, object, psymval, addend); } // R_SPARC_M44: ((Symbol + Addend) >> 12) & 0x3ff static inline void m44(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 12, 0x000003ff, object, psymval, addend); } // R_SPARC_L44: (Symbol + Addend) & 0xfff static inline void l44(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x00000fff, object, psymval, addend); } // R_SPARC_HH22: (Symbol + Addend) >> 42 static inline void hh22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 42, 0x003fffff, object, psymval, addend); } // R_SPARC_PC_HH22: (Symbol + Addend - Address) >> 42 static inline void pc_hh22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 42, 0x003fffff, object, psymval, addend, address); } // R_SPARC_HM10: ((Symbol + Addend) >> 32) & 0x3ff static inline void hm10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 32, 0x000003ff, object, psymval, addend); } // R_SPARC_PC_HM10: ((Symbol + Addend - Address) >> 32) & 0x3ff static inline void pc_hm10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend, typename elfcpp::Elf_types<size>::Elf_Addr address) { This_insn::template pcrela<32>(view, 32, 0x000003ff, object, psymval, addend, address); } // R_SPARC_11: (Symbol + Addend) static inline void rela32_11(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x000007ff, object, psymval, addend); } // R_SPARC_10: (Symbol + Addend) static inline void rela32_10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x000003ff, object, psymval, addend); } // R_SPARC_7: (Symbol + Addend) static inline void rela32_7(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x0000007f, object, psymval, addend); } // R_SPARC_6: (Symbol + Addend) static inline void rela32_6(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x0000003f, object, psymval, addend); } // R_SPARC_5: (Symbol + Addend) static inline void rela32_5(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::template rela<32>(view, 0, 0x0000001f, object, psymval, addend); } // R_SPARC_TLS_LDO_HIX22: @dtpoff(Symbol + Addend) >> 10 static inline void ldo_hix22(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value, typename elfcpp::Elf_types<size>::Elf_Addr addend) { This_insn::hi22(view, value, addend); } // R_SPARC_TLS_LDO_LOX10: @dtpoff(Symbol + Addend) & 0x3ff static inline void ldo_lox10(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value, typename elfcpp::Elf_types<size>::Elf_Addr addend) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = (value + addend); val &= ~0x1fff; reloc &= 0x3ff; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_TLS_LE_HIX22: (@tpoff(Symbol + Addend) ^ 0xffffffffffffffff) >> 10 static inline void hix22(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value, typename elfcpp::Elf_types<size>::Elf_Addr addend) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = (value + addend); val &= ~0x3fffff; reloc ^= ~(Valtype)0; reloc >>= 10; reloc &= 0x3fffff; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_GOTDATA_OP_HIX22: @gdopoff(Symbol + Addend) >> 10 static inline void gdop_hix22(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); int32_t reloc = static_cast<int32_t>(value); val &= ~0x3fffff; if (reloc < 0) reloc ^= ~static_cast<int32_t>(0); reloc >>= 10; reloc &= 0x3fffff; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_HIX22: ((Symbol + Addend) ^ 0xffffffffffffffff) >> 10 static inline void hix22(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = psymval->value(object, addend); val &= ~0x3fffff; reloc ^= ~(Valtype)0; reloc >>= 10; reloc &= 0x3fffff; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_TLS_LE_LOX10: (@tpoff(Symbol + Addend) & 0x3ff) | 0x1c00 static inline void lox10(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value, typename elfcpp::Elf_types<size>::Elf_Addr addend) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = (value + addend); val &= ~0x1fff; reloc &= 0x3ff; reloc |= 0x1c00; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_GOTDATA_OP_LOX10: (@gdopoff(Symbol + Addend) & 0x3ff) | 0x1c00 static inline void gdop_lox10(unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr value) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); int32_t reloc = static_cast<int32_t>(value); if (reloc < 0) reloc = (reloc & 0x3ff) | 0x1c00; else reloc = (reloc & 0x3ff); val &= ~0x1fff; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } // R_SPARC_LOX10: ((Symbol + Addend) & 0x3ff) | 0x1c00 static inline void lox10(unsigned char* view, const Sized_relobj_file<size, big_endian>* object, const Symbol_value<size>* psymval, typename elfcpp::Elf_types<size>::Elf_Addr addend) { typedef typename elfcpp::Swap<32, true>::Valtype Valtype; Valtype* wv = reinterpret_cast<Valtype*>(view); Valtype val = elfcpp::Swap<32, true>::readval(wv); Valtype reloc = psymval->value(object, addend); val &= ~0x1fff; reloc &= 0x3ff; reloc |= 0x1c00; elfcpp::Swap<32, true>::writeval(wv, val | reloc); } }; // Get the GOT section, creating it if necessary. template<int size, bool big_endian> Output_data_got<size, big_endian>* Target_sparc<size, big_endian>::got_section(Symbol_table* symtab, Layout* layout) { if (this->got_ == NULL) { gold_assert(symtab != NULL && layout != NULL); this->got_ = new Output_data_got<size, big_endian>(); layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), this->got_, ORDER_RELRO, true); // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section. symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, Symbol_table::PREDEFINED, this->got_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } return this->got_; } // Get the dynamic reloc section, creating it if necessary. template<int size, bool big_endian> typename Target_sparc<size, big_endian>::Reloc_section* Target_sparc<size, big_endian>::rela_dyn_section(Layout* layout) { if (this->rela_dyn_ == NULL) { gold_assert(layout != NULL); this->rela_dyn_ = new Reloc_section(parameters->options().combreloc()); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_dyn_, ORDER_DYNAMIC_RELOCS, false); } return this->rela_dyn_; } // Get the section to use for IFUNC relocs, creating it if // necessary. These go in .rela.dyn, but only after all other dynamic // relocations. They need to follow the other dynamic relocations so // that they can refer to global variables initialized by those // relocs. template<int size, bool big_endian> typename Target_sparc<size, big_endian>::Reloc_section* Target_sparc<size, big_endian>::rela_ifunc_section(Layout* layout) { if (this->rela_ifunc_ == NULL) { // Make sure we have already created the dynamic reloc section. this->rela_dyn_section(layout); this->rela_ifunc_ = new Reloc_section(false); layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rela_ifunc_, ORDER_DYNAMIC_RELOCS, false); gold_assert(this->rela_dyn_->output_section() == this->rela_ifunc_->output_section()); } return this->rela_ifunc_; } // A class to handle the PLT data. template<int size, bool big_endian> class Output_data_plt_sparc : public Output_section_data { public: typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section; Output_data_plt_sparc(Layout*); // Add an entry to the PLT. void add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym); // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. unsigned int add_local_ifunc_entry(Symbol_table*, Layout*, Sized_relobj_file<size, big_endian>* relobj, unsigned int local_sym_index); // Return the .rela.plt section data. const Reloc_section* rel_plt() const { return this->rel_; } // Return where the IFUNC relocations should go. Reloc_section* rela_ifunc(Symbol_table*, Layout*); void emit_pending_ifunc_relocs(); // Return whether we created a section for IFUNC relocations. bool has_ifunc_section() const { return this->ifunc_rel_ != NULL; } // Return the number of PLT entries. unsigned int entry_count() const { return this->count_ + this->ifunc_count_; } // Return the offset of the first non-reserved PLT entry. static unsigned int first_plt_entry_offset() { return 4 * base_plt_entry_size; } // Return the size of a PLT entry. static unsigned int get_plt_entry_size() { return base_plt_entry_size; } // Return the PLT address to use for a global symbol. uint64_t address_for_global(const Symbol*); // Return the PLT address to use for a local symbol. uint64_t address_for_local(const Relobj*, unsigned int symndx); protected: void do_adjust_output_section(Output_section* os); // Write to a map file. void do_print_to_mapfile(Mapfile* mapfile) const { mapfile->print_output_data(this, _("** PLT")); } private: // The size of an entry in the PLT. static const int base_plt_entry_size = (size == 32 ? 12 : 32); static const unsigned int plt_entries_per_block = 160; static const unsigned int plt_insn_chunk_size = 24; static const unsigned int plt_pointer_chunk_size = 8; static const unsigned int plt_block_size = (plt_entries_per_block * (plt_insn_chunk_size + plt_pointer_chunk_size)); section_offset_type plt_index_to_offset(unsigned int index) { section_offset_type offset; if (size == 32 || index < 32768) offset = index * base_plt_entry_size; else { unsigned int ext_index = index - 32768; offset = (32768 * base_plt_entry_size) + ((ext_index / plt_entries_per_block) * plt_block_size) + ((ext_index % plt_entries_per_block) * plt_insn_chunk_size); } return offset; } // Set the final size. void set_final_data_size() { unsigned int full_count = this->entry_count() + 4; unsigned int extra = (size == 32 ? 4 : 0); section_offset_type sz = plt_index_to_offset(full_count) + extra; return this->set_data_size(sz); } // Write out the PLT data. void do_write(Output_file*); struct Global_ifunc { Reloc_section* rel; Symbol* gsym; unsigned int plt_index; }; struct Local_ifunc { Reloc_section* rel; Sized_relobj_file<size, big_endian>* object; unsigned int local_sym_index; unsigned int plt_index; }; // The reloc section. Reloc_section* rel_; // The IFUNC relocations, if necessary. These must follow the // regular relocations. Reloc_section* ifunc_rel_; // The number of PLT entries. unsigned int count_; // The number of PLT entries for IFUNC symbols. unsigned int ifunc_count_; // Global STT_GNU_IFUNC symbols. std::vector<Global_ifunc> global_ifuncs_; // Local STT_GNU_IFUNC symbols. std::vector<Local_ifunc> local_ifuncs_; }; // Define the constants as required by C++ standard. template<int size, bool big_endian> const int Output_data_plt_sparc<size, big_endian>::base_plt_entry_size; template<int size, bool big_endian> const unsigned int Output_data_plt_sparc<size, big_endian>::plt_entries_per_block; template<int size, bool big_endian> const unsigned int Output_data_plt_sparc<size, big_endian>::plt_insn_chunk_size; template<int size, bool big_endian> const unsigned int Output_data_plt_sparc<size, big_endian>::plt_pointer_chunk_size; template<int size, bool big_endian> const unsigned int Output_data_plt_sparc<size, big_endian>::plt_block_size; // Create the PLT section. The ordinary .got section is an argument, // since we need to refer to the start. template<int size, bool big_endian> Output_data_plt_sparc<size, big_endian>::Output_data_plt_sparc(Layout* layout) : Output_section_data(size == 32 ? 4 : 8), ifunc_rel_(NULL), count_(0), ifunc_count_(0), global_ifuncs_(), local_ifuncs_() { this->rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->rel_, ORDER_DYNAMIC_PLT_RELOCS, false); } template<int size, bool big_endian> void Output_data_plt_sparc<size, big_endian>::do_adjust_output_section(Output_section* os) { os->set_entsize(0); } // Add an entry to the PLT. template<int size, bool big_endian> void Output_data_plt_sparc<size, big_endian>::add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { gold_assert(!gsym->has_plt_offset()); section_offset_type plt_offset; unsigned int index; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) { index = this->ifunc_count_; plt_offset = plt_index_to_offset(index); gsym->set_plt_offset(plt_offset); ++this->ifunc_count_; Reloc_section* rel = this->rela_ifunc(symtab, layout); struct Global_ifunc gi; gi.rel = rel; gi.gsym = gsym; gi.plt_index = index; this->global_ifuncs_.push_back(gi); } else { plt_offset = plt_index_to_offset(this->count_ + 4); gsym->set_plt_offset(plt_offset); ++this->count_; gsym->set_needs_dynsym_entry(); this->rel_->add_global(gsym, elfcpp::R_SPARC_JMP_SLOT, this, plt_offset, 0); } // Note that we don't need to save the symbol. The contents of the // PLT are independent of which symbols are used. The symbols only // appear in the relocations. } template<int size, bool big_endian> unsigned int Output_data_plt_sparc<size, big_endian>::add_local_ifunc_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* relobj, unsigned int local_sym_index) { unsigned int index = this->ifunc_count_; section_offset_type plt_offset; plt_offset = plt_index_to_offset(index); ++this->ifunc_count_; Reloc_section* rel = this->rela_ifunc(symtab, layout); struct Local_ifunc li; li.rel = rel; li.object = relobj; li.local_sym_index = local_sym_index; li.plt_index = index; this->local_ifuncs_.push_back(li); return plt_offset; } // Emit any pending IFUNC plt relocations. template<int size, bool big_endian> void Output_data_plt_sparc<size, big_endian>::emit_pending_ifunc_relocs() { // Emit any pending IFUNC relocs. for (typename std::vector<Global_ifunc>::const_iterator p = this->global_ifuncs_.begin(); p != this->global_ifuncs_.end(); ++p) { section_offset_type plt_offset; unsigned int index; index = this->count_ + p->plt_index + 4; plt_offset = this->plt_index_to_offset(index); p->rel->add_symbolless_global_addend(p->gsym, elfcpp::R_SPARC_JMP_IREL, this, plt_offset, 0); } for (typename std::vector<Local_ifunc>::const_iterator p = this->local_ifuncs_.begin(); p != this->local_ifuncs_.end(); ++p) { section_offset_type plt_offset; unsigned int index; index = this->count_ + p->plt_index + 4; plt_offset = this->plt_index_to_offset(index); p->rel->add_symbolless_local_addend(p->object, p->local_sym_index, elfcpp::R_SPARC_JMP_IREL, this, plt_offset, 0); } } // Return where the IFUNC relocations should go in the PLT. These // follow the non-IFUNC relocations. template<int size, bool big_endian> typename Output_data_plt_sparc<size, big_endian>::Reloc_section* Output_data_plt_sparc<size, big_endian>::rela_ifunc( Symbol_table* symtab, Layout* layout) { if (this->ifunc_rel_ == NULL) { this->ifunc_rel_ = new Reloc_section(false); layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA, elfcpp::SHF_ALLOC, this->ifunc_rel_, ORDER_DYNAMIC_PLT_RELOCS, false); gold_assert(this->ifunc_rel_->output_section() == this->rel_->output_section()); if (parameters->doing_static_link()) { // A statically linked executable will only have a .rel.plt // section to hold R_SPARC_IRELATIVE and R_SPARC_JMP_IREL // relocs for STT_GNU_IFUNC symbols. The library will use // these symbols to locate the IRELATIVE and JMP_IREL relocs // at program startup time. symtab->define_in_output_data("__rela_iplt_start", NULL, Symbol_table::PREDEFINED, this->ifunc_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, false, true); symtab->define_in_output_data("__rela_iplt_end", NULL, Symbol_table::PREDEFINED, this->ifunc_rel_, 0, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, true, true); } } return this->ifunc_rel_; } // Return the PLT address to use for a global symbol. template<int size, bool big_endian> uint64_t Output_data_plt_sparc<size, big_endian>::address_for_global(const Symbol* gsym) { uint64_t offset = 0; if (gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false)) offset = plt_index_to_offset(this->count_ + 4); return this->address() + offset + gsym->plt_offset(); } // Return the PLT address to use for a local symbol. These are always // IRELATIVE relocs. template<int size, bool big_endian> uint64_t Output_data_plt_sparc<size, big_endian>::address_for_local( const Relobj* object, unsigned int r_sym) { return (this->address() + plt_index_to_offset(this->count_ + 4) + object->local_plt_offset(r_sym)); } static const unsigned int sparc_nop = 0x01000000; static const unsigned int sparc_sethi_g1 = 0x03000000; static const unsigned int sparc_branch_always = 0x30800000; static const unsigned int sparc_branch_always_pt = 0x30680000; static const unsigned int sparc_mov = 0x80100000; static const unsigned int sparc_mov_g0_o0 = 0x90100000; static const unsigned int sparc_mov_o7_g5 = 0x8a10000f; static const unsigned int sparc_call_plus_8 = 0x40000002; static const unsigned int sparc_ldx_o7_imm_g1 = 0xc25be000; static const unsigned int sparc_jmpl_o7_g1_g1 = 0x83c3c001; static const unsigned int sparc_mov_g5_o7 = 0x9e100005; // Write out the PLT. template<int size, bool big_endian> void Output_data_plt_sparc<size, big_endian>::do_write(Output_file* of) { const off_t offset = this->offset(); const section_size_type oview_size = convert_to_section_size_type(this->data_size()); unsigned char* const oview = of->get_output_view(offset, oview_size); unsigned char* pov = oview; memset(pov, 0, base_plt_entry_size * 4); pov += this->first_plt_entry_offset(); unsigned int plt_offset = base_plt_entry_size * 4; const unsigned int count = this->entry_count(); if (size == 64) { unsigned int limit; limit = (count > 32768 ? 32768 : count); for (unsigned int i = 0; i < limit; ++i) { elfcpp::Swap<32, true>::writeval(pov + 0x00, sparc_sethi_g1 + plt_offset); elfcpp::Swap<32, true>::writeval(pov + 0x04, sparc_branch_always_pt + (((base_plt_entry_size - (plt_offset + 4)) >> 2) & 0x7ffff)); elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop); elfcpp::Swap<32, true>::writeval(pov + 0x0c, sparc_nop); elfcpp::Swap<32, true>::writeval(pov + 0x10, sparc_nop); elfcpp::Swap<32, true>::writeval(pov + 0x14, sparc_nop); elfcpp::Swap<32, true>::writeval(pov + 0x18, sparc_nop); elfcpp::Swap<32, true>::writeval(pov + 0x1c, sparc_nop); pov += base_plt_entry_size; plt_offset += base_plt_entry_size; } if (count > 32768) { unsigned int ext_cnt = count - 32768; unsigned int blks = ext_cnt / plt_entries_per_block; for (unsigned int i = 0; i < blks; ++i) { unsigned int data_off = (plt_entries_per_block * plt_insn_chunk_size) - 4; for (unsigned int j = 0; j < plt_entries_per_block; ++j) { elfcpp::Swap<32, true>::writeval(pov + 0x00, sparc_mov_o7_g5); elfcpp::Swap<32, true>::writeval(pov + 0x04, sparc_call_plus_8); elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop); elfcpp::Swap<32, true>::writeval(pov + 0x0c, sparc_ldx_o7_imm_g1 + (data_off & 0x1fff)); elfcpp::Swap<32, true>::writeval(pov + 0x10, sparc_jmpl_o7_g1_g1); elfcpp::Swap<32, true>::writeval(pov + 0x14, sparc_mov_g5_o7); elfcpp::Swap<64, big_endian>::writeval( pov + 0x4 + data_off, (elfcpp::Elf_Xword) (oview - (pov + 0x04))); pov += plt_insn_chunk_size; data_off -= 16; } } unsigned int sub_blk_cnt = ext_cnt % plt_entries_per_block; for (unsigned int i = 0; i < sub_blk_cnt; ++i) { unsigned int data_off = (sub_blk_cnt * plt_insn_chunk_size) - 4; for (unsigned int j = 0; j < plt_entries_per_block; ++j) { elfcpp::Swap<32, true>::writeval(pov + 0x00, sparc_mov_o7_g5); elfcpp::Swap<32, true>::writeval(pov + 0x04, sparc_call_plus_8); elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop); elfcpp::Swap<32, true>::writeval(pov + 0x0c, sparc_ldx_o7_imm_g1 + (data_off & 0x1fff)); elfcpp::Swap<32, true>::writeval(pov + 0x10, sparc_jmpl_o7_g1_g1); elfcpp::Swap<32, true>::writeval(pov + 0x14, sparc_mov_g5_o7); elfcpp::Swap<64, big_endian>::writeval( pov + 0x4 + data_off, (elfcpp::Elf_Xword) (oview - (pov + 0x04))); pov += plt_insn_chunk_size; data_off -= 16; } } } } else { for (unsigned int i = 0; i < count; ++i) { elfcpp::Swap<32, true>::writeval(pov + 0x00, sparc_sethi_g1 + plt_offset); elfcpp::Swap<32, true>::writeval(pov + 0x04, sparc_branch_always + (((- (plt_offset + 4)) >> 2) & 0x003fffff)); elfcpp::Swap<32, true>::writeval(pov + 0x08, sparc_nop); pov += base_plt_entry_size; plt_offset += base_plt_entry_size; } elfcpp::Swap<32, true>::writeval(pov, sparc_nop); pov += 4; } gold_assert(static_cast<section_size_type>(pov - oview) == oview_size); of->write_output_view(offset, oview_size, oview); } // Create the PLT section. template<int size, bool big_endian> void Target_sparc<size, big_endian>::make_plt_section(Symbol_table* symtab, Layout* layout) { // Create the GOT sections first. this->got_section(symtab, layout); // Ensure that .rela.dyn always appears before .rela.plt This is // necessary due to how, on Sparc and some other targets, .rela.dyn // needs to include .rela.plt in it's range. this->rela_dyn_section(layout); this->plt_ = new Output_data_plt_sparc<size, big_endian>(layout); layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR | elfcpp::SHF_WRITE), this->plt_, ORDER_NON_RELRO_FIRST, false); // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section. symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL, Symbol_table::PREDEFINED, this->plt_, 0, 0, elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0, false, false); } // Create a PLT entry for a global symbol. template<int size, bool big_endian> void Target_sparc<size, big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym) { if (gsym->has_plt_offset()) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); this->plt_->add_entry(symtab, layout, gsym); } // Make a PLT entry for a local STT_GNU_IFUNC symbol. template<int size, bool big_endian> void Target_sparc<size, big_endian>::make_local_ifunc_plt_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* relobj, unsigned int local_sym_index) { if (relobj->local_has_plt_offset(local_sym_index)) return; if (this->plt_ == NULL) this->make_plt_section(symtab, layout); unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout, relobj, local_sym_index); relobj->set_local_plt_offset(local_sym_index, plt_offset); } // Return the number of entries in the PLT. template<int size, bool big_endian> unsigned int Target_sparc<size, big_endian>::plt_entry_count() const { if (this->plt_ == NULL) return 0; return this->plt_->entry_count(); } // Return the offset of the first non-reserved PLT entry. template<int size, bool big_endian> unsigned int Target_sparc<size, big_endian>::first_plt_entry_offset() const { return Output_data_plt_sparc<size, big_endian>::first_plt_entry_offset(); } // Return the size of each PLT entry. template<int size, bool big_endian> unsigned int Target_sparc<size, big_endian>::plt_entry_size() const { return Output_data_plt_sparc<size, big_endian>::get_plt_entry_size(); } // Create a GOT entry for the TLS module index. template<int size, bool big_endian> unsigned int Target_sparc<size, big_endian>::got_mod_index_entry( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object) { if (this->got_mod_index_offset_ == -1U) { gold_assert(symtab != NULL && layout != NULL && object != NULL); Reloc_section* rela_dyn = this->rela_dyn_section(layout); Output_data_got<size, big_endian>* got; unsigned int got_offset; got = this->got_section(symtab, layout); got_offset = got->add_constant(0); rela_dyn->add_local(object, 0, (size == 64 ? elfcpp::R_SPARC_TLS_DTPMOD64 : elfcpp::R_SPARC_TLS_DTPMOD32), got, got_offset, 0); got->add_constant(0); this->got_mod_index_offset_ = got_offset; } return this->got_mod_index_offset_; } // Optimize the TLS relocation type based on what we know about the // symbol. IS_FINAL is true if the final address of this symbol is // known at link time. static tls::Tls_optimization optimize_tls_reloc(bool is_final, int r_type) { // If we are generating a shared library, then we can't do anything // in the linker. if (parameters->options().shared()) return tls::TLSOPT_NONE; switch (r_type) { case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: // These are General-Dynamic which permits fully general TLS // access. Since we know that we are generating an executable, // we can convert this to Initial-Exec. If we also know that // this is a local symbol, we can further switch to Local-Exec. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_TO_IE; case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: // This is Local-Dynamic, which refers to a local symbol in the // dynamic TLS block. Since we know that we generating an // executable, we can switch to Local-Exec. return tls::TLSOPT_TO_LE; case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic case elfcpp::R_SPARC_TLS_LDO_LOX10: case elfcpp::R_SPARC_TLS_LDO_ADD: // Another type of Local-Dynamic relocation. return tls::TLSOPT_TO_LE; case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec case elfcpp::R_SPARC_TLS_IE_LO10: case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: case elfcpp::R_SPARC_TLS_IE_ADD: // These are Initial-Exec relocs which get the thread offset // from the GOT. If we know that we are linking against the // local symbol, we can switch to Local-Exec, which links the // thread offset into the instruction. if (is_final) return tls::TLSOPT_TO_LE; return tls::TLSOPT_NONE; case elfcpp::R_SPARC_TLS_LE_HIX22: // Local-exec case elfcpp::R_SPARC_TLS_LE_LOX10: // When we already have Local-Exec, there is nothing further we // can do. return tls::TLSOPT_NONE; default: gold_unreachable(); } } // Get the Reference_flags for a particular relocation. template<int size, bool big_endian> int Target_sparc<size, big_endian>::Scan::get_reference_flags(unsigned int r_type) { r_type &= 0xff; switch (r_type) { case elfcpp::R_SPARC_NONE: case elfcpp::R_SPARC_REGISTER: case elfcpp::R_SPARC_GNU_VTINHERIT: case elfcpp::R_SPARC_GNU_VTENTRY: // No symbol reference. return 0; case elfcpp::R_SPARC_UA64: case elfcpp::R_SPARC_64: case elfcpp::R_SPARC_HIX22: case elfcpp::R_SPARC_LOX10: case elfcpp::R_SPARC_H34: case elfcpp::R_SPARC_H44: case elfcpp::R_SPARC_M44: case elfcpp::R_SPARC_L44: case elfcpp::R_SPARC_HH22: case elfcpp::R_SPARC_HM10: case elfcpp::R_SPARC_LM22: case elfcpp::R_SPARC_HI22: case elfcpp::R_SPARC_LO10: case elfcpp::R_SPARC_OLO10: case elfcpp::R_SPARC_UA32: case elfcpp::R_SPARC_32: case elfcpp::R_SPARC_UA16: case elfcpp::R_SPARC_16: case elfcpp::R_SPARC_11: case elfcpp::R_SPARC_10: case elfcpp::R_SPARC_8: case elfcpp::R_SPARC_7: case elfcpp::R_SPARC_6: case elfcpp::R_SPARC_5: return Symbol::ABSOLUTE_REF; case elfcpp::R_SPARC_DISP8: case elfcpp::R_SPARC_DISP16: case elfcpp::R_SPARC_DISP32: case elfcpp::R_SPARC_DISP64: case elfcpp::R_SPARC_PC_HH22: case elfcpp::R_SPARC_PC_HM10: case elfcpp::R_SPARC_PC_LM22: case elfcpp::R_SPARC_PC10: case elfcpp::R_SPARC_PC22: case elfcpp::R_SPARC_WDISP30: case elfcpp::R_SPARC_WDISP22: case elfcpp::R_SPARC_WDISP19: case elfcpp::R_SPARC_WDISP16: case elfcpp::R_SPARC_WDISP10: return Symbol::RELATIVE_REF; case elfcpp::R_SPARC_PLT64: case elfcpp::R_SPARC_PLT32: case elfcpp::R_SPARC_HIPLT22: case elfcpp::R_SPARC_LOPLT10: case elfcpp::R_SPARC_PCPLT10: return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF; case elfcpp::R_SPARC_PCPLT32: case elfcpp::R_SPARC_PCPLT22: case elfcpp::R_SPARC_WPLT30: return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; case elfcpp::R_SPARC_GOTDATA_OP: case elfcpp::R_SPARC_GOTDATA_OP_HIX22: case elfcpp::R_SPARC_GOTDATA_OP_LOX10: case elfcpp::R_SPARC_GOT10: case elfcpp::R_SPARC_GOT13: case elfcpp::R_SPARC_GOT22: // Absolute in GOT. return Symbol::ABSOLUTE_REF; case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic case elfcpp::R_SPARC_TLS_LDO_LOX10: case elfcpp::R_SPARC_TLS_LDO_ADD: case elfcpp::R_SPARC_TLS_LE_HIX22: case elfcpp::R_SPARC_TLS_LE_LOX10: case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec case elfcpp::R_SPARC_TLS_IE_LO10: case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: case elfcpp::R_SPARC_TLS_IE_ADD: return Symbol::TLS_REF; case elfcpp::R_SPARC_COPY: case elfcpp::R_SPARC_GLOB_DAT: case elfcpp::R_SPARC_JMP_SLOT: case elfcpp::R_SPARC_JMP_IREL: case elfcpp::R_SPARC_RELATIVE: case elfcpp::R_SPARC_IRELATIVE: case elfcpp::R_SPARC_TLS_DTPMOD64: case elfcpp::R_SPARC_TLS_DTPMOD32: case elfcpp::R_SPARC_TLS_DTPOFF64: case elfcpp::R_SPARC_TLS_DTPOFF32: case elfcpp::R_SPARC_TLS_TPOFF64: case elfcpp::R_SPARC_TLS_TPOFF32: default: // Not expected. We will give an error later. return 0; } } // Generate a PLT entry slot for a call to __tls_get_addr template<int size, bool big_endian> void Target_sparc<size, big_endian>::Scan::generate_tls_call(Symbol_table* symtab, Layout* layout, Target_sparc<size, big_endian>* target) { Symbol* gsym = target->tls_get_addr_sym(symtab); target->make_plt_entry(symtab, layout, gsym); } // Report an unsupported relocation against a local symbol. template<int size, bool big_endian> void Target_sparc<size, big_endian>::Scan::unsupported_reloc_local( Sized_relobj_file<size, big_endian>* object, unsigned int r_type) { gold_error(_("%s: unsupported reloc %u against local symbol"), object->name().c_str(), r_type); } // We are about to emit a dynamic relocation of type R_TYPE. If the // dynamic linker does not support it, issue an error. template<int size, bool big_endian> void Target_sparc<size, big_endian>::Scan::check_non_pic(Relobj* object, unsigned int r_type) { gold_assert(r_type != elfcpp::R_SPARC_NONE); if (size == 64) { switch (r_type) { // These are the relocation types supported by glibc for sparc 64-bit. case elfcpp::R_SPARC_RELATIVE: case elfcpp::R_SPARC_IRELATIVE: case elfcpp::R_SPARC_COPY: case elfcpp::R_SPARC_32: case elfcpp::R_SPARC_64: case elfcpp::R_SPARC_GLOB_DAT: case elfcpp::R_SPARC_JMP_SLOT: case elfcpp::R_SPARC_JMP_IREL: case elfcpp::R_SPARC_TLS_DTPMOD64: case elfcpp::R_SPARC_TLS_DTPOFF64: case elfcpp::R_SPARC_TLS_TPOFF64: case elfcpp::R_SPARC_TLS_LE_HIX22: case elfcpp::R_SPARC_TLS_LE_LOX10: case elfcpp::R_SPARC_8: case elfcpp::R_SPARC_16: case elfcpp::R_SPARC_DISP8: case elfcpp::R_SPARC_DISP16: case elfcpp::R_SPARC_DISP32: case elfcpp::R_SPARC_WDISP30: case elfcpp::R_SPARC_LO10: case elfcpp::R_SPARC_HI22: case elfcpp::R_SPARC_OLO10: case elfcpp::R_SPARC_H34: case elfcpp::R_SPARC_H44: case elfcpp::R_SPARC_M44: case elfcpp::R_SPARC_L44: case elfcpp::R_SPARC_HH22: case elfcpp::R_SPARC_HM10: case elfcpp::R_SPARC_LM22: case elfcpp::R_SPARC_UA16: case elfcpp::R_SPARC_UA32: case elfcpp::R_SPARC_UA64: return; default: break; } } else { switch (r_type) { // These are the relocation types supported by glibc for sparc 32-bit. case elfcpp::R_SPARC_RELATIVE: case elfcpp::R_SPARC_IRELATIVE: case elfcpp::R_SPARC_COPY: case elfcpp::R_SPARC_GLOB_DAT: case elfcpp::R_SPARC_32: case elfcpp::R_SPARC_JMP_SLOT: case elfcpp::R_SPARC_JMP_IREL: case elfcpp::R_SPARC_TLS_DTPMOD32: case elfcpp::R_SPARC_TLS_DTPOFF32: case elfcpp::R_SPARC_TLS_TPOFF32: case elfcpp::R_SPARC_TLS_LE_HIX22: case elfcpp::R_SPARC_TLS_LE_LOX10: case elfcpp::R_SPARC_8: case elfcpp::R_SPARC_16: case elfcpp::R_SPARC_DISP8: case elfcpp::R_SPARC_DISP16: case elfcpp::R_SPARC_DISP32: case elfcpp::R_SPARC_LO10: case elfcpp::R_SPARC_WDISP30: case elfcpp::R_SPARC_HI22: case elfcpp::R_SPARC_UA16: case elfcpp::R_SPARC_UA32: return; default: break; } } // This prevents us from issuing more than one error per reloc // section. But we can still wind up issuing more than one // error per object file. if (this->issued_non_pic_error_) return; gold_assert(parameters->options().output_is_position_independent()); object->error(_("requires unsupported dynamic reloc; " "recompile with -fPIC")); this->issued_non_pic_error_ = true; return; } // Return whether we need to make a PLT entry for a relocation of the // given type against a STT_GNU_IFUNC symbol. template<int size, bool big_endian> bool Target_sparc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc( Sized_relobj_file<size, big_endian>* object, unsigned int r_type) { int flags = Scan::get_reference_flags(r_type); if (flags & Symbol::TLS_REF) gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"), object->name().c_str(), r_type); return flags != 0; } // Scan a relocation for a local symbol. template<int size, bool big_endian> inline void Target_sparc<size, big_endian>::Scan::local( Symbol_table* symtab, Layout* layout, Target_sparc<size, big_endian>* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, const elfcpp::Sym<size, big_endian>& lsym, bool is_discarded) { if (is_discarded) return; bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; unsigned int orig_r_type = r_type; r_type &= 0xff; if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) { unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); } switch (r_type) { case elfcpp::R_SPARC_NONE: case elfcpp::R_SPARC_REGISTER: case elfcpp::R_SPARC_GNU_VTINHERIT: case elfcpp::R_SPARC_GNU_VTENTRY: break; case elfcpp::R_SPARC_64: case elfcpp::R_SPARC_32: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for // this location. The relocation applied at link time will // apply the link-time value, so we flag the location with // an R_SPARC_RELATIVE relocation so the dynamic loader can // relocate it easily. if (parameters->options().output_is_position_independent() && ((size == 64 && r_type == elfcpp::R_SPARC_64) || (size == 32 && r_type == elfcpp::R_SPARC_32))) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_SPARC_RELATIVE, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), is_ifunc); break; } // Fall through. case elfcpp::R_SPARC_HIX22: case elfcpp::R_SPARC_LOX10: case elfcpp::R_SPARC_H34: case elfcpp::R_SPARC_H44: case elfcpp::R_SPARC_M44: case elfcpp::R_SPARC_L44: case elfcpp::R_SPARC_HH22: case elfcpp::R_SPARC_HM10: case elfcpp::R_SPARC_LM22: case elfcpp::R_SPARC_UA64: case elfcpp::R_SPARC_UA32: case elfcpp::R_SPARC_UA16: case elfcpp::R_SPARC_HI22: case elfcpp::R_SPARC_LO10: case elfcpp::R_SPARC_OLO10: case elfcpp::R_SPARC_16: case elfcpp::R_SPARC_11: case elfcpp::R_SPARC_10: case elfcpp::R_SPARC_8: case elfcpp::R_SPARC_7: case elfcpp::R_SPARC_6: case elfcpp::R_SPARC_5: // If building a shared library (or a position-independent // executable), we need to create a dynamic relocation for // this location. if (parameters->options().output_is_position_independent()) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); check_non_pic(object, r_type); if (lsym.get_st_type() != elfcpp::STT_SECTION) { rela_dyn->add_local(object, r_sym, orig_r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else { gold_assert(lsym.get_st_value() == 0); rela_dyn->add_symbolless_local_addend(object, r_sym, orig_r_type, output_section, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } break; case elfcpp::R_SPARC_WDISP30: case elfcpp::R_SPARC_WPLT30: case elfcpp::R_SPARC_WDISP22: case elfcpp::R_SPARC_WDISP19: case elfcpp::R_SPARC_WDISP16: case elfcpp::R_SPARC_WDISP10: case elfcpp::R_SPARC_DISP8: case elfcpp::R_SPARC_DISP16: case elfcpp::R_SPARC_DISP32: case elfcpp::R_SPARC_DISP64: case elfcpp::R_SPARC_PC10: case elfcpp::R_SPARC_PC22: break; case elfcpp::R_SPARC_GOTDATA_OP: case elfcpp::R_SPARC_GOTDATA_OP_HIX22: case elfcpp::R_SPARC_GOTDATA_OP_LOX10: // We will optimize this into a GOT relative relocation // and code transform the GOT load into an addition. break; case elfcpp::R_SPARC_GOT10: case elfcpp::R_SPARC_GOT13: case elfcpp::R_SPARC_GOT22: { // The symbol requires a GOT entry. Output_data_got<size, big_endian>* got; unsigned int r_sym; got = target->got_section(symtab, layout); r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); // If we are generating a shared object, we need to add a // dynamic relocation for this symbol's GOT entry. if (parameters->options().output_is_position_independent()) { if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off); rela_dyn->add_local_relative(object, r_sym, elfcpp::R_SPARC_RELATIVE, got, off, 0, is_ifunc); } } else got->add_local(object, r_sym, GOT_TYPE_STANDARD); } break; // These are initial TLS relocs, which are expected when // linking. case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: case elfcpp::R_SPARC_TLS_LDM_HI22 : // Local-dynamic case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic case elfcpp::R_SPARC_TLS_LDO_LOX10: case elfcpp::R_SPARC_TLS_LDO_ADD: case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec case elfcpp::R_SPARC_TLS_IE_LO10: case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: case elfcpp::R_SPARC_TLS_IE_ADD: case elfcpp::R_SPARC_TLS_LE_HIX22: // Local-exec case elfcpp::R_SPARC_TLS_LE_LOX10: { bool output_is_shared = parameters->options().shared(); const tls::Tls_optimization optimized_type = optimize_tls_reloc(!output_is_shared, r_type); switch (r_type) { case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a pair of GOT entries for the module index and // dtv-relative offset. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); unsigned int shndx = lsym.get_st_shndx(); bool is_ordinary; shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); if (!is_ordinary) object->error(_("local symbol %u has bad shndx %u"), r_sym, shndx); else got->add_local_pair_with_rel(object, r_sym, lsym.get_st_shndx(), GOT_TYPE_TLS_PAIR, target->rela_dyn_section(layout), (size == 64 ? elfcpp::R_SPARC_TLS_DTPMOD64 : elfcpp::R_SPARC_TLS_DTPMOD32)); if (r_type == elfcpp::R_SPARC_TLS_GD_CALL) generate_tls_call(symtab, layout, target); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_SPARC_TLS_LDM_HI22 : // Local-dynamic case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the module index. target->got_mod_index_entry(symtab, layout, object); if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL) generate_tls_call(symtab, layout, target); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic case elfcpp::R_SPARC_TLS_LDO_LOX10: case elfcpp::R_SPARC_TLS_LDO_ADD: break; case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec case elfcpp::R_SPARC_TLS_IE_LO10: case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: case elfcpp::R_SPARC_TLS_IE_ADD: layout->set_has_static_tls(); if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the tp-relative offset. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); unsigned int off = got->add_constant(0); object->set_local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET, off); rela_dyn->add_symbolless_local_addend(object, r_sym, (size == 64 ? elfcpp::R_SPARC_TLS_TPOFF64 : elfcpp::R_SPARC_TLS_TPOFF32), got, off, 0); } } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_local(object, r_type); break; case elfcpp::R_SPARC_TLS_LE_HIX22: // Local-exec case elfcpp::R_SPARC_TLS_LE_LOX10: layout->set_has_static_tls(); if (output_is_shared) { // We need to create a dynamic relocation. gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info()); Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_symbolless_local_addend(object, r_sym, r_type, output_section, data_shndx, reloc.get_r_offset(), 0); } break; } } break; // These are relocations which should only be seen by the // dynamic linker, and should never be seen here. case elfcpp::R_SPARC_COPY: case elfcpp::R_SPARC_GLOB_DAT: case elfcpp::R_SPARC_JMP_SLOT: case elfcpp::R_SPARC_JMP_IREL: case elfcpp::R_SPARC_RELATIVE: case elfcpp::R_SPARC_IRELATIVE: case elfcpp::R_SPARC_TLS_DTPMOD64: case elfcpp::R_SPARC_TLS_DTPMOD32: case elfcpp::R_SPARC_TLS_DTPOFF64: case elfcpp::R_SPARC_TLS_DTPOFF32: case elfcpp::R_SPARC_TLS_TPOFF64: case elfcpp::R_SPARC_TLS_TPOFF32: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: unsupported_reloc_local(object, r_type); break; } } // Report an unsupported relocation against a global symbol. template<int size, bool big_endian> void Target_sparc<size, big_endian>::Scan::unsupported_reloc_global( Sized_relobj_file<size, big_endian>* object, unsigned int r_type, Symbol* gsym) { gold_error(_("%s: unsupported reloc %u against global symbol %s"), object->name().c_str(), r_type, gsym->demangled_name().c_str()); } // Scan a relocation for a global symbol. template<int size, bool big_endian> inline void Target_sparc<size, big_endian>::Scan::global( Symbol_table* symtab, Layout* layout, Target_sparc<size, big_endian>* target, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, Output_section* output_section, const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type, Symbol* gsym) { unsigned int orig_r_type = r_type; bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC; // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got // section. We check here to avoid creating a dynamic reloc against // _GLOBAL_OFFSET_TABLE_. if (!target->has_got_section() && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) target->got_section(symtab, layout); r_type &= 0xff; // A STT_GNU_IFUNC symbol may require a PLT entry. if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) target->make_plt_entry(symtab, layout, gsym); switch (r_type) { case elfcpp::R_SPARC_NONE: case elfcpp::R_SPARC_REGISTER: case elfcpp::R_SPARC_GNU_VTINHERIT: case elfcpp::R_SPARC_GNU_VTENTRY: break; case elfcpp::R_SPARC_PLT64: case elfcpp::R_SPARC_PLT32: case elfcpp::R_SPARC_HIPLT22: case elfcpp::R_SPARC_LOPLT10: case elfcpp::R_SPARC_PCPLT32: case elfcpp::R_SPARC_PCPLT22: case elfcpp::R_SPARC_PCPLT10: case elfcpp::R_SPARC_WPLT30: // If the symbol is fully resolved, this is just a PC32 reloc. // Otherwise we need a PLT entry. if (gsym->final_value_is_known()) break; // If building a shared library, we can also skip the PLT entry // if the symbol is defined in the output file and is protected // or hidden. if (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible()) break; target->make_plt_entry(symtab, layout, gsym); break; case elfcpp::R_SPARC_DISP8: case elfcpp::R_SPARC_DISP16: case elfcpp::R_SPARC_DISP32: case elfcpp::R_SPARC_DISP64: case elfcpp::R_SPARC_PC_HH22: case elfcpp::R_SPARC_PC_HM10: case elfcpp::R_SPARC_PC_LM22: case elfcpp::R_SPARC_PC10: case elfcpp::R_SPARC_PC22: case elfcpp::R_SPARC_WDISP30: case elfcpp::R_SPARC_WDISP22: case elfcpp::R_SPARC_WDISP19: case elfcpp::R_SPARC_WDISP16: case elfcpp::R_SPARC_WDISP10: { if (gsym->needs_plt_entry()) target->make_plt_entry(symtab, layout, gsym); // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { if (parameters->options().output_is_executable() && gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); rela_dyn->add_global(gsym, orig_r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_SPARC_UA64: case elfcpp::R_SPARC_64: case elfcpp::R_SPARC_HIX22: case elfcpp::R_SPARC_LOX10: case elfcpp::R_SPARC_H34: case elfcpp::R_SPARC_H44: case elfcpp::R_SPARC_M44: case elfcpp::R_SPARC_L44: case elfcpp::R_SPARC_HH22: case elfcpp::R_SPARC_HM10: case elfcpp::R_SPARC_LM22: case elfcpp::R_SPARC_HI22: case elfcpp::R_SPARC_LO10: case elfcpp::R_SPARC_OLO10: case elfcpp::R_SPARC_UA32: case elfcpp::R_SPARC_32: case elfcpp::R_SPARC_UA16: case elfcpp::R_SPARC_16: case elfcpp::R_SPARC_11: case elfcpp::R_SPARC_10: case elfcpp::R_SPARC_8: case elfcpp::R_SPARC_7: case elfcpp::R_SPARC_6: case elfcpp::R_SPARC_5: { // Make a PLT entry if necessary. if (gsym->needs_plt_entry()) { target->make_plt_entry(symtab, layout, gsym); // Since this is not a PC-relative relocation, we may be // taking the address of a function. In that case we need to // set the entry in the dynamic symbol table to the address of // the PLT entry. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } // Make a dynamic relocation if necessary. if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) { unsigned int r_off = reloc.get_r_offset(); // The assembler can sometimes emit unaligned relocations // for dwarf2 cfi directives. switch (r_type) { case elfcpp::R_SPARC_16: if (r_off & 0x1) orig_r_type = r_type = elfcpp::R_SPARC_UA16; break; case elfcpp::R_SPARC_32: if (r_off & 0x3) orig_r_type = r_type = elfcpp::R_SPARC_UA32; break; case elfcpp::R_SPARC_64: if (r_off & 0x7) orig_r_type = r_type = elfcpp::R_SPARC_UA64; break; case elfcpp::R_SPARC_UA16: if (!(r_off & 0x1)) orig_r_type = r_type = elfcpp::R_SPARC_16; break; case elfcpp::R_SPARC_UA32: if (!(r_off & 0x3)) orig_r_type = r_type = elfcpp::R_SPARC_32; break; case elfcpp::R_SPARC_UA64: if (!(r_off & 0x7)) orig_r_type = r_type = elfcpp::R_SPARC_64; break; } if (!parameters->options().output_is_position_independent() && gsym->may_need_copy_reloc()) { target->copy_reloc(symtab, layout, object, data_shndx, output_section, gsym, reloc); } else if (((size == 64 && r_type == elfcpp::R_SPARC_64) || (size == 32 && r_type == elfcpp::R_SPARC_32)) && gsym->type() == elfcpp::STT_GNU_IFUNC && gsym->can_use_relative_reloc(false) && !gsym->is_from_dynobj() && !gsym->is_undefined() && !gsym->is_preemptible()) { // Use an IRELATIVE reloc for a locally defined // STT_GNU_IFUNC symbol. This makes a function // address in a PIE executable match the address in a // shared library that it links against. Reloc_section* rela_dyn = target->rela_ifunc_section(layout); unsigned int r_type = elfcpp::R_SPARC_IRELATIVE; rela_dyn->add_symbolless_global_addend(gsym, r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } else if (((size == 64 && r_type == elfcpp::R_SPARC_64) || (size == 32 && r_type == elfcpp::R_SPARC_32)) && gsym->can_use_relative_reloc(false)) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend(), is_ifunc); } else { Reloc_section* rela_dyn = target->rela_dyn_section(layout); check_non_pic(object, r_type); if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible()) rela_dyn->add_global(gsym, orig_r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); else rela_dyn->add_symbolless_global_addend(gsym, orig_r_type, output_section, object, data_shndx, reloc.get_r_offset(), reloc.get_r_addend()); } } } break; case elfcpp::R_SPARC_GOTDATA_OP: case elfcpp::R_SPARC_GOTDATA_OP_HIX22: case elfcpp::R_SPARC_GOTDATA_OP_LOX10: if (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible() && !is_ifunc) { // We will optimize this into a GOT relative relocation // and code transform the GOT load into an addition. break; } // Fall through. case elfcpp::R_SPARC_GOT10: case elfcpp::R_SPARC_GOT13: case elfcpp::R_SPARC_GOT22: { // The symbol requires a GOT entry. Output_data_got<size, big_endian>* got; got = target->got_section(symtab, layout); if (gsym->final_value_is_known()) { // For a STT_GNU_IFUNC symbol we want the PLT address. if (gsym->type() == elfcpp::STT_GNU_IFUNC) got->add_global_plt(gsym, GOT_TYPE_STANDARD); else got->add_global(gsym, GOT_TYPE_STANDARD); } else { // If this symbol is not fully resolved, we need to add a // GOT entry with a dynamic relocation. bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC; // Use a GLOB_DAT rather than a RELATIVE reloc if: // // 1) The symbol may be defined in some other module. // // 2) We are building a shared library and this is a // protected symbol; using GLOB_DAT means that the dynamic // linker can use the address of the PLT in the main // executable when appropriate so that function address // comparisons work. // // 3) This is a STT_GNU_IFUNC symbol in position dependent // code, again so that function address comparisons work. Reloc_section* rela_dyn = target->rela_dyn_section(layout); if (gsym->is_from_dynobj() || gsym->is_undefined() || gsym->is_preemptible() || (gsym->visibility() == elfcpp::STV_PROTECTED && parameters->options().shared()) || (gsym->type() == elfcpp::STT_GNU_IFUNC && parameters->options().output_is_position_independent() && !gsym->is_forced_local())) { unsigned int r_type = elfcpp::R_SPARC_GLOB_DAT; // If this symbol is forced local, this relocation will // not work properly. That's because ld.so on sparc // (and 32-bit powerpc) expects st_value in the r_addend // of relocations for STB_LOCAL symbols. Curiously the // BFD linker does not promote global hidden symbols to be // STB_LOCAL in the dynamic symbol table like Gold does. gold_assert(!gsym->is_forced_local()); got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn, r_type); } else if (!gsym->has_got_offset(GOT_TYPE_STANDARD)) { unsigned int off = got->add_constant(0); gsym->set_got_offset(GOT_TYPE_STANDARD, off); if (is_ifunc) { // Tell the dynamic linker to use the PLT address // when resolving relocations. if (gsym->is_from_dynobj() && !parameters->options().shared()) gsym->set_needs_dynsym_value(); } rela_dyn->add_global_relative(gsym, elfcpp::R_SPARC_RELATIVE, got, off, 0, is_ifunc); } } } break; // These are initial tls relocs, which are expected when // linking. case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic case elfcpp::R_SPARC_TLS_LDO_LOX10: case elfcpp::R_SPARC_TLS_LDO_ADD: case elfcpp::R_SPARC_TLS_LE_HIX22: case elfcpp::R_SPARC_TLS_LE_LOX10: case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec case elfcpp::R_SPARC_TLS_IE_LO10: case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: case elfcpp::R_SPARC_TLS_IE_ADD: { const bool is_final = gsym->final_value_is_known(); const tls::Tls_optimization optimized_type = optimize_tls_reloc(is_final, r_type); switch (r_type) { case elfcpp::R_SPARC_TLS_GD_HI22: // Global-dynamic case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a pair of GOT entries for the module index and // dtv-relative offset. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR, target->rela_dyn_section(layout), (size == 64 ? elfcpp::R_SPARC_TLS_DTPMOD64 : elfcpp::R_SPARC_TLS_DTPMOD32), (size == 64 ? elfcpp::R_SPARC_TLS_DTPOFF64 : elfcpp::R_SPARC_TLS_DTPOFF32)); // Emit R_SPARC_WPLT30 against "__tls_get_addr" if (r_type == elfcpp::R_SPARC_TLS_GD_CALL) generate_tls_call(symtab, layout, target); } else if (optimized_type == tls::TLSOPT_TO_IE) { // Create a GOT entry for the tp-relative offset. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), (size == 64 ? elfcpp::R_SPARC_TLS_TPOFF64 : elfcpp::R_SPARC_TLS_TPOFF32)); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_global(object, r_type, gsym); break; case elfcpp::R_SPARC_TLS_LDM_HI22: // Local-dynamic case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the module index. target->got_mod_index_entry(symtab, layout, object); if (r_type == elfcpp::R_SPARC_TLS_LDM_CALL) generate_tls_call(symtab, layout, target); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_global(object, r_type, gsym); break; case elfcpp::R_SPARC_TLS_LDO_HIX22: // Alternate local-dynamic case elfcpp::R_SPARC_TLS_LDO_LOX10: case elfcpp::R_SPARC_TLS_LDO_ADD: break; case elfcpp::R_SPARC_TLS_LE_HIX22: case elfcpp::R_SPARC_TLS_LE_LOX10: layout->set_has_static_tls(); if (parameters->options().shared()) { Reloc_section* rela_dyn = target->rela_dyn_section(layout); rela_dyn->add_symbolless_global_addend(gsym, orig_r_type, output_section, object, data_shndx, reloc.get_r_offset(), 0); } break; case elfcpp::R_SPARC_TLS_IE_HI22: // Initial-exec case elfcpp::R_SPARC_TLS_IE_LO10: case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: case elfcpp::R_SPARC_TLS_IE_ADD: layout->set_has_static_tls(); if (optimized_type == tls::TLSOPT_NONE) { // Create a GOT entry for the tp-relative offset. Output_data_got<size, big_endian>* got = target->got_section(symtab, layout); got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, target->rela_dyn_section(layout), (size == 64 ? elfcpp::R_SPARC_TLS_TPOFF64 : elfcpp::R_SPARC_TLS_TPOFF32)); } else if (optimized_type != tls::TLSOPT_TO_LE) unsupported_reloc_global(object, r_type, gsym); break; } } break; // These are relocations which should only be seen by the // dynamic linker, and should never be seen here. case elfcpp::R_SPARC_COPY: case elfcpp::R_SPARC_GLOB_DAT: case elfcpp::R_SPARC_JMP_SLOT: case elfcpp::R_SPARC_JMP_IREL: case elfcpp::R_SPARC_RELATIVE: case elfcpp::R_SPARC_IRELATIVE: case elfcpp::R_SPARC_TLS_DTPMOD64: case elfcpp::R_SPARC_TLS_DTPMOD32: case elfcpp::R_SPARC_TLS_DTPOFF64: case elfcpp::R_SPARC_TLS_DTPOFF32: case elfcpp::R_SPARC_TLS_TPOFF64: case elfcpp::R_SPARC_TLS_TPOFF32: gold_error(_("%s: unexpected reloc %u in object file"), object->name().c_str(), r_type); break; default: unsupported_reloc_global(object, r_type, gsym); break; } } // Make a new symbol table entry. // STT_SPARC_REGISTER symbols require special handling, // so we intercept these symbols and keep track of them separately. // We will resolve register symbols here and output them at symbol // finalization time. template<int size, bool big_endian> Sized_symbol<size>* Target_sparc<size, big_endian>::make_symbol(const char* name, elfcpp::STT type, Object* object, unsigned int shndx, uint64_t value) { // REGISTER symbols are used only on SPARC-64. if (size == 64 && type == elfcpp::STT_SPARC_REGISTER) { // Ignore REGISTER symbols in dynamic objects. if (object->is_dynamic()) return NULL; // Only registers 2, 3, 6, and 7 can be declared global. int reg = value; switch (reg) { case 2: case 3: reg -= 2; break; case 6: case 7: reg -= 4; break; default: gold_error(_("%s: only registers %%g[2367] can be declared " "using STT_REGISTER"), object->name().c_str()); return NULL; } Register_symbol& rsym = this->register_syms_[reg]; if (rsym.name == NULL) { rsym.name = name; rsym.shndx = shndx; rsym.obj = object; } else { if (strcmp(rsym.name, name) != 0) { gold_error(_("%s: register %%g%d declared as '%s'; " "previously declared as '%s' in %s"), object->name().c_str(), static_cast<int>(value), *name ? name : "#scratch", *rsym.name ? rsym.name : "#scratch", rsym.obj->name().c_str()); return NULL; } } return NULL; } return new Sized_symbol<size>(); } // Process relocations for gc. template<int size, bool big_endian> void Target_sparc<size, big_endian>::gc_process_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_sparc<size, big_endian> Sparc; typedef typename Target_sparc<size, big_endian>::Scan Scan; typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian> Classify_reloc; gold::gc_process_relocs<size, big_endian, Sparc, Scan, Classify_reloc>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Scan relocations for a section. template<int size, bool big_endian> void Target_sparc<size, big_endian>::scan_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols) { typedef Target_sparc<size, big_endian> Sparc; typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian> Classify_reloc; if (sh_type == elfcpp::SHT_REL) { gold_error(_("%s: unsupported REL reloc section"), object->name().c_str()); return; } gold::scan_relocs<size, big_endian, Sparc, Scan, Classify_reloc>( symtab, layout, this, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols); } // Finalize the sections. template<int size, bool big_endian> void Target_sparc<size, big_endian>::do_finalize_sections( Layout* layout, const Input_objects*, Symbol_table* symtab) { if (this->plt_) this->plt_->emit_pending_ifunc_relocs(); // Fill in some more dynamic tags. const Reloc_section* rel_plt = (this->plt_ == NULL ? NULL : this->plt_->rel_plt()); layout->add_target_dynamic_tags(false, this->plt_, rel_plt, this->rela_dyn_, true, true); // Emit any relocs we saved in an attempt to avoid generating COPY // relocs. if (this->copy_relocs_.any_saved_relocs()) this->copy_relocs_.emit(this->rela_dyn_section(layout)); if (parameters->doing_static_link() && (this->plt_ == NULL || !this->plt_->has_ifunc_section())) { // If linking statically, make sure that the __rela_iplt symbols // were defined if necessary, even if we didn't create a PLT. static const Define_symbol_in_segment syms[] = { { "__rela_iplt_start", // name elfcpp::PT_LOAD, // segment_type elfcpp::PF_W, // segment_flags_set elfcpp::PF(0), // segment_flags_clear 0, // value 0, // size elfcpp::STT_NOTYPE, // type elfcpp::STB_GLOBAL, // binding elfcpp::STV_HIDDEN, // visibility 0, // nonvis Symbol::SEGMENT_START, // offset_from_base true // only_if_ref }, { "__rela_iplt_end", // name elfcpp::PT_LOAD, // segment_type elfcpp::PF_W, // segment_flags_set elfcpp::PF(0), // segment_flags_clear 0, // value 0, // size elfcpp::STT_NOTYPE, // type elfcpp::STB_GLOBAL, // binding elfcpp::STV_HIDDEN, // visibility 0, // nonvis Symbol::SEGMENT_START, // offset_from_base true // only_if_ref } }; symtab->define_symbols(layout, 2, syms, layout->script_options()->saw_sections_clause()); } for (int reg = 0; reg < 4; ++reg) { Register_symbol& rsym = this->register_syms_[reg]; if (rsym.name != NULL) { int value = reg < 3 ? reg + 2 : reg + 4; Sized_symbol<size>* sym = new Sized_symbol<size>(); if (rsym.shndx == elfcpp::SHN_UNDEF) sym->init_undefined(rsym.name, NULL, value, elfcpp::STT_SPARC_REGISTER, elfcpp::STB_GLOBAL, elfcpp::STV_DEFAULT, 0); else sym->init_constant(rsym.name, NULL, value, 0, elfcpp::STT_SPARC_REGISTER, elfcpp::STB_GLOBAL, elfcpp::STV_DEFAULT, 0, false); symtab->add_target_global_symbol(sym); layout->add_target_specific_dynamic_tag(elfcpp::DT_SPARC_REGISTER, value); } } } // Perform a relocation. template<int size, bool big_endian> inline bool Target_sparc<size, big_endian>::Relocate::relocate( const Relocate_info<size, big_endian>* relinfo, unsigned int, Target_sparc* target, Output_section*, size_t relnum, const unsigned char* preloc, const Sized_symbol<size>* gsym, const Symbol_value<size>* psymval, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr address, section_size_type view_size) { const elfcpp::Rela<size, big_endian> rela(preloc); unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info()); bool orig_is_ifunc = psymval->is_ifunc_symbol(); r_type &= 0xff; if (this->ignore_gd_add_) { if (r_type != elfcpp::R_SPARC_TLS_GD_ADD) gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("missing expected TLS relocation")); else { this->ignore_gd_add_ = false; return false; } } if (view == NULL) return true; if (this->reloc_adjust_addr_ == view) view -= 4; typedef Sparc_relocate_functions<size, big_endian> Reloc; const Sized_relobj_file<size, big_endian>* object = relinfo->object; // Pick the value to use for symbols defined in shared objects. Symbol_value<size> symval; if (gsym != NULL && gsym->use_plt_offset(Scan::get_reference_flags(r_type))) { elfcpp::Elf_Xword value; value = target->plt_address_for_global(gsym); symval.set_output_value(value); psymval = &symval; } else if (gsym == NULL && orig_is_ifunc) { unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); if (object->local_has_plt_offset(r_sym)) { symval.set_output_value(target->plt_address_for_local(object, r_sym)); psymval = &symval; } } const elfcpp::Elf_Xword addend = rela.get_r_addend(); // Get the GOT offset if needed. Unlike i386 and x86_64, our GOT // pointer points to the beginning, not the end, of the table. // So we just use the plain offset. unsigned int got_offset = 0; bool gdop_valid = false; switch (r_type) { case elfcpp::R_SPARC_GOTDATA_OP: case elfcpp::R_SPARC_GOTDATA_OP_HIX22: case elfcpp::R_SPARC_GOTDATA_OP_LOX10: // If this is local, we did not create a GOT entry because we // intend to transform this into a GOT relative relocation. if (gsym == NULL || (gsym->is_defined() && !gsym->is_from_dynobj() && !gsym->is_preemptible() && !orig_is_ifunc)) { got_offset = psymval->value(object, addend) - target->got_address(); gdop_valid = true; break; } // Fall through. case elfcpp::R_SPARC_GOT10: case elfcpp::R_SPARC_GOT13: case elfcpp::R_SPARC_GOT22: if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); got_offset = gsym->got_offset(GOT_TYPE_STANDARD); } else { unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD); } break; default: break; } switch (r_type) { case elfcpp::R_SPARC_NONE: case elfcpp::R_SPARC_REGISTER: case elfcpp::R_SPARC_GNU_VTINHERIT: case elfcpp::R_SPARC_GNU_VTENTRY: break; case elfcpp::R_SPARC_8: Relocate_functions<size, big_endian>::rela8(view, object, psymval, addend); break; case elfcpp::R_SPARC_16: if (rela.get_r_offset() & 0x1) { // The assembler can sometimes emit unaligned relocations // for dwarf2 cfi directives. Reloc::ua16(view, object, psymval, addend); } else Relocate_functions<size, big_endian>::rela16(view, object, psymval, addend); break; case elfcpp::R_SPARC_32: if (!parameters->options().output_is_position_independent()) { if (rela.get_r_offset() & 0x3) { // The assembler can sometimes emit unaligned relocations // for dwarf2 cfi directives. Reloc::ua32(view, object, psymval, addend); } else Relocate_functions<size, big_endian>::rela32(view, object, psymval, addend); } break; case elfcpp::R_SPARC_DISP8: Reloc::disp8(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_DISP16: Reloc::disp16(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_DISP32: Reloc::disp32(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_DISP64: Reloc::disp64(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_WDISP30: case elfcpp::R_SPARC_WPLT30: Reloc::wdisp30(view, object, psymval, addend, address); if (target->may_relax()) relax_call(target, view, rela, view_size); break; case elfcpp::R_SPARC_WDISP22: Reloc::wdisp22(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_WDISP19: Reloc::wdisp19(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_WDISP16: Reloc::wdisp16(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_WDISP10: Reloc::wdisp10(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_HI22: Reloc::hi22(view, object, psymval, addend); break; case elfcpp::R_SPARC_22: Reloc::rela32_22(view, object, psymval, addend); break; case elfcpp::R_SPARC_13: Reloc::rela32_13(view, object, psymval, addend); break; case elfcpp::R_SPARC_LO10: Reloc::lo10(view, object, psymval, addend); break; case elfcpp::R_SPARC_GOTDATA_OP_LOX10: if (gdop_valid) { Reloc::gdop_lox10(view, got_offset); break; } // Fall through. case elfcpp::R_SPARC_GOT10: Reloc::lo10(view, got_offset, addend); break; case elfcpp::R_SPARC_GOTDATA_OP: if (gdop_valid) { typedef typename elfcpp::Swap<32, true>::Valtype Insntype; Insntype* wv = reinterpret_cast<Insntype*>(view); Insntype val; // {ld,ldx} [%rs1 + %rs2], %rd --> add %rs1, %rs2, %rd val = elfcpp::Swap<32, true>::readval(wv); val = 0x80000000 | (val & 0x3e07c01f); elfcpp::Swap<32, true>::writeval(wv, val); } break; case elfcpp::R_SPARC_GOT13: Reloc::rela32_13(view, got_offset, addend); break; case elfcpp::R_SPARC_GOTDATA_OP_HIX22: if (gdop_valid) { Reloc::gdop_hix22(view, got_offset); break; } // Fall through. case elfcpp::R_SPARC_GOT22: Reloc::hi22(view, got_offset, addend); break; case elfcpp::R_SPARC_PC10: Reloc::pc10(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_PC22: Reloc::pc22(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_TLS_DTPOFF32: case elfcpp::R_SPARC_UA32: Reloc::ua32(view, object, psymval, addend); break; case elfcpp::R_SPARC_PLT64: Relocate_functions<size, big_endian>::rela64(view, object, psymval, addend); break; case elfcpp::R_SPARC_PLT32: Relocate_functions<size, big_endian>::rela32(view, object, psymval, addend); break; case elfcpp::R_SPARC_HIPLT22: Reloc::hi22(view, object, psymval, addend); break; case elfcpp::R_SPARC_LOPLT10: Reloc::lo10(view, object, psymval, addend); break; case elfcpp::R_SPARC_PCPLT32: Reloc::disp32(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_PCPLT22: Reloc::pcplt22(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_PCPLT10: Reloc::lo10(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_64: if (!parameters->options().output_is_position_independent()) { if (rela.get_r_offset() & 0x7) { // The assembler can sometimes emit unaligned relocations // for dwarf2 cfi directives. Reloc::ua64(view, object, psymval, addend); } else Relocate_functions<size, big_endian>::rela64(view, object, psymval, addend); } break; case elfcpp::R_SPARC_OLO10: { unsigned int addend2 = rela.get_r_info() & 0xffffffff; addend2 = ((addend2 >> 8) ^ 0x800000) - 0x800000; Reloc::olo10(view, object, psymval, addend, addend2); } break; case elfcpp::R_SPARC_HH22: Reloc::hh22(view, object, psymval, addend); break; case elfcpp::R_SPARC_PC_HH22: Reloc::pc_hh22(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_HM10: Reloc::hm10(view, object, psymval, addend); break; case elfcpp::R_SPARC_PC_HM10: Reloc::pc_hm10(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_LM22: Reloc::hi22(view, object, psymval, addend); break; case elfcpp::R_SPARC_PC_LM22: Reloc::pcplt22(view, object, psymval, addend, address); break; case elfcpp::R_SPARC_11: Reloc::rela32_11(view, object, psymval, addend); break; case elfcpp::R_SPARC_10: Reloc::rela32_10(view, object, psymval, addend); break; case elfcpp::R_SPARC_7: Reloc::rela32_7(view, object, psymval, addend); break; case elfcpp::R_SPARC_6: Reloc::rela32_6(view, object, psymval, addend); break; case elfcpp::R_SPARC_5: Reloc::rela32_5(view, object, psymval, addend); break; case elfcpp::R_SPARC_HIX22: Reloc::hix22(view, object, psymval, addend); break; case elfcpp::R_SPARC_LOX10: Reloc::lox10(view, object, psymval, addend); break; case elfcpp::R_SPARC_H34: Reloc::h34(view, object, psymval, addend); break; case elfcpp::R_SPARC_H44: Reloc::h44(view, object, psymval, addend); break; case elfcpp::R_SPARC_M44: Reloc::m44(view, object, psymval, addend); break; case elfcpp::R_SPARC_L44: Reloc::l44(view, object, psymval, addend); break; case elfcpp::R_SPARC_TLS_DTPOFF64: case elfcpp::R_SPARC_UA64: Reloc::ua64(view, object, psymval, addend); break; case elfcpp::R_SPARC_UA16: Reloc::ua16(view, object, psymval, addend); break; case elfcpp::R_SPARC_TLS_GD_HI22: case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: case elfcpp::R_SPARC_TLS_LDM_HI22: case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: case elfcpp::R_SPARC_TLS_LDO_HIX22: case elfcpp::R_SPARC_TLS_LDO_LOX10: case elfcpp::R_SPARC_TLS_LDO_ADD: case elfcpp::R_SPARC_TLS_IE_HI22: case elfcpp::R_SPARC_TLS_IE_LO10: case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: case elfcpp::R_SPARC_TLS_IE_ADD: case elfcpp::R_SPARC_TLS_LE_HIX22: case elfcpp::R_SPARC_TLS_LE_LOX10: this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval, view, address, view_size); break; case elfcpp::R_SPARC_COPY: case elfcpp::R_SPARC_GLOB_DAT: case elfcpp::R_SPARC_JMP_SLOT: case elfcpp::R_SPARC_JMP_IREL: case elfcpp::R_SPARC_RELATIVE: case elfcpp::R_SPARC_IRELATIVE: // These are outstanding tls relocs, which are unexpected when // linking. case elfcpp::R_SPARC_TLS_DTPMOD64: case elfcpp::R_SPARC_TLS_DTPMOD32: case elfcpp::R_SPARC_TLS_TPOFF64: case elfcpp::R_SPARC_TLS_TPOFF32: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unexpected reloc %u in object file"), r_type); break; default: gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; } return true; } // Perform a TLS relocation. template<int size, bool big_endian> inline void Target_sparc<size, big_endian>::Relocate::relocate_tls( const Relocate_info<size, big_endian>* relinfo, Target_sparc<size, big_endian>* target, size_t relnum, const elfcpp::Rela<size, big_endian>& rela, unsigned int r_type, const Sized_symbol<size>* gsym, const Symbol_value<size>* psymval, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr address, section_size_type) { Output_segment* tls_segment = relinfo->layout->tls_segment(); typedef Sparc_relocate_functions<size, big_endian> Reloc; const Sized_relobj_file<size, big_endian>* object = relinfo->object; typedef typename elfcpp::Swap<32, true>::Valtype Insntype; const elfcpp::Elf_Xword addend = rela.get_r_addend(); typename elfcpp::Elf_types<size>::Elf_Addr value = psymval->value(object, 0); const bool is_final = (gsym == NULL ? !parameters->options().shared() : gsym->final_value_is_known()); const tls::Tls_optimization optimized_type = optimize_tls_reloc(is_final, r_type); switch (r_type) { case elfcpp::R_SPARC_TLS_GD_HI22: case elfcpp::R_SPARC_TLS_GD_LO10: case elfcpp::R_SPARC_TLS_GD_ADD: case elfcpp::R_SPARC_TLS_GD_CALL: if (optimized_type == tls::TLSOPT_TO_LE) { Insntype* wv = reinterpret_cast<Insntype*>(view); Insntype val; value -= tls_segment->memsz(); switch (r_type) { case elfcpp::R_SPARC_TLS_GD_HI22: // TLS_GD_HI22 --> TLS_LE_HIX22 Reloc::hix22(view, value, addend); break; case elfcpp::R_SPARC_TLS_GD_LO10: // TLS_GD_LO10 --> TLS_LE_LOX10 Reloc::lox10(view, value, addend); break; case elfcpp::R_SPARC_TLS_GD_ADD: // add %reg1, %reg2, %reg3 --> mov %g7, %reg2, %reg3 val = elfcpp::Swap<32, true>::readval(wv); val = (val & ~0x7c000) | 0x1c000; elfcpp::Swap<32, true>::writeval(wv, val); break; case elfcpp::R_SPARC_TLS_GD_CALL: // call __tls_get_addr --> nop elfcpp::Swap<32, true>::writeval(wv, sparc_nop); break; } break; } else { unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE ? GOT_TYPE_TLS_OFFSET : GOT_TYPE_TLS_PAIR); if (gsym != NULL) { gold_assert(gsym->has_got_offset(got_type)); value = gsym->got_offset(got_type); } else { unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, got_type)); value = object->local_got_offset(r_sym, got_type); } if (optimized_type == tls::TLSOPT_TO_IE) { Insntype* wv = reinterpret_cast<Insntype*>(view); Insntype val; switch (r_type) { case elfcpp::R_SPARC_TLS_GD_HI22: // TLS_GD_HI22 --> TLS_IE_HI22 Reloc::hi22(view, value, addend); break; case elfcpp::R_SPARC_TLS_GD_LO10: // TLS_GD_LO10 --> TLS_IE_LO10 Reloc::lo10(view, value, addend); break; case elfcpp::R_SPARC_TLS_GD_ADD: // add %reg1, %reg2, %reg3 --> ld [%reg1 + %reg2], %reg3 val = elfcpp::Swap<32, true>::readval(wv); if (size == 64) val |= 0xc0580000; else val |= 0xc0000000; elfcpp::Swap<32, true>::writeval(wv, val); break; case elfcpp::R_SPARC_TLS_GD_CALL: // The compiler can put the TLS_GD_ADD instruction // into the delay slot of the call. If so, we need // to transpose the two instructions so that the // new sequence works properly. // // The test we use is if the instruction in the // delay slot is an add with destination register // equal to %o0 val = elfcpp::Swap<32, true>::readval(wv + 1); if ((val & 0x81f80000) == 0x80000000 && ((val >> 25) & 0x1f) == 0x8) { if (size == 64) val |= 0xc0580000; else val |= 0xc0000000; elfcpp::Swap<32, true>::writeval(wv, val); wv += 1; this->ignore_gd_add_ = true; } else { // Even if the delay slot isn't the TLS_GD_ADD // instruction, we still have to handle the case // where it sets up %o0 in some other way. elfcpp::Swap<32, true>::writeval(wv, val); wv += 1; this->reloc_adjust_addr_ = view + 4; } // call __tls_get_addr --> add %g7, %o0, %o0 elfcpp::Swap<32, true>::writeval(wv, 0x9001c008); break; } break; } else if (optimized_type == tls::TLSOPT_NONE) { switch (r_type) { case elfcpp::R_SPARC_TLS_GD_HI22: Reloc::hi22(view, value, addend); break; case elfcpp::R_SPARC_TLS_GD_LO10: Reloc::lo10(view, value, addend); break; case elfcpp::R_SPARC_TLS_GD_ADD: break; case elfcpp::R_SPARC_TLS_GD_CALL: { Symbol_value<size> symval; elfcpp::Elf_Xword value; Symbol* tsym; tsym = target->tls_get_addr_sym_; gold_assert(tsym); value = (target->plt_section()->address() + tsym->plt_offset()); symval.set_output_value(value); Reloc::wdisp30(view, object, &symval, addend, address); } break; } break; } } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; case elfcpp::R_SPARC_TLS_LDM_HI22: case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: case elfcpp::R_SPARC_TLS_LDM_CALL: if (optimized_type == tls::TLSOPT_TO_LE) { Insntype* wv = reinterpret_cast<Insntype*>(view); switch (r_type) { case elfcpp::R_SPARC_TLS_LDM_HI22: case elfcpp::R_SPARC_TLS_LDM_LO10: case elfcpp::R_SPARC_TLS_LDM_ADD: elfcpp::Swap<32, true>::writeval(wv, sparc_nop); break; case elfcpp::R_SPARC_TLS_LDM_CALL: elfcpp::Swap<32, true>::writeval(wv, sparc_mov_g0_o0); break; } break; } else if (optimized_type == tls::TLSOPT_NONE) { // Relocate the field with the offset of the GOT entry for // the module index. unsigned int got_offset; got_offset = target->got_mod_index_entry(NULL, NULL, NULL); switch (r_type) { case elfcpp::R_SPARC_TLS_LDM_HI22: Reloc::hi22(view, got_offset, addend); break; case elfcpp::R_SPARC_TLS_LDM_LO10: Reloc::lo10(view, got_offset, addend); break; case elfcpp::R_SPARC_TLS_LDM_ADD: break; case elfcpp::R_SPARC_TLS_LDM_CALL: { Symbol_value<size> symval; elfcpp::Elf_Xword value; Symbol* tsym; tsym = target->tls_get_addr_sym_; gold_assert(tsym); value = (target->plt_section()->address() + tsym->plt_offset()); symval.set_output_value(value); Reloc::wdisp30(view, object, &symval, addend, address); } break; } break; } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; // These relocs can appear in debugging sections, in which case // we won't see the TLS_LDM relocs. The local_dynamic_type // field tells us this. case elfcpp::R_SPARC_TLS_LDO_HIX22: if (optimized_type == tls::TLSOPT_TO_LE) { value -= tls_segment->memsz(); Reloc::hix22(view, value, addend); } else Reloc::ldo_hix22(view, value, addend); break; case elfcpp::R_SPARC_TLS_LDO_LOX10: if (optimized_type == tls::TLSOPT_TO_LE) { value -= tls_segment->memsz(); Reloc::lox10(view, value, addend); } else Reloc::ldo_lox10(view, value, addend); break; case elfcpp::R_SPARC_TLS_LDO_ADD: if (optimized_type == tls::TLSOPT_TO_LE) { Insntype* wv = reinterpret_cast<Insntype*>(view); Insntype val; // add %reg1, %reg2, %reg3 --> add %g7, %reg2, %reg3 val = elfcpp::Swap<32, true>::readval(wv); val = (val & ~0x7c000) | 0x1c000; elfcpp::Swap<32, true>::writeval(wv, val); } break; // When optimizing IE --> LE, the only relocation that is handled // differently is R_SPARC_TLS_IE_LD, it is rewritten from // 'ld{,x} [rs1 + rs2], rd' into 'mov rs2, rd' or simply a NOP is // rs2 and rd are the same. case elfcpp::R_SPARC_TLS_IE_LD: case elfcpp::R_SPARC_TLS_IE_LDX: if (optimized_type == tls::TLSOPT_TO_LE) { Insntype* wv = reinterpret_cast<Insntype*>(view); Insntype val = elfcpp::Swap<32, true>::readval(wv); Insntype rs2 = val & 0x1f; Insntype rd = (val >> 25) & 0x1f; if (rs2 == rd) val = sparc_nop; else val = sparc_mov | (val & 0x3e00001f); elfcpp::Swap<32, true>::writeval(wv, val); } break; case elfcpp::R_SPARC_TLS_IE_HI22: case elfcpp::R_SPARC_TLS_IE_LO10: if (optimized_type == tls::TLSOPT_TO_LE) { value -= tls_segment->memsz(); switch (r_type) { case elfcpp::R_SPARC_TLS_IE_HI22: // IE_HI22 --> LE_HIX22 Reloc::hix22(view, value, addend); break; case elfcpp::R_SPARC_TLS_IE_LO10: // IE_LO10 --> LE_LOX10 Reloc::lox10(view, value, addend); break; } break; } else if (optimized_type == tls::TLSOPT_NONE) { // Relocate the field with the offset of the GOT entry for // the tp-relative offset of the symbol. if (gsym != NULL) { gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET)); value = gsym->got_offset(GOT_TYPE_TLS_OFFSET); } else { unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info()); gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)); value = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET); } switch (r_type) { case elfcpp::R_SPARC_TLS_IE_HI22: Reloc::hi22(view, value, addend); break; case elfcpp::R_SPARC_TLS_IE_LO10: Reloc::lo10(view, value, addend); break; } break; } gold_error_at_location(relinfo, relnum, rela.get_r_offset(), _("unsupported reloc %u"), r_type); break; case elfcpp::R_SPARC_TLS_IE_ADD: // This seems to be mainly so that we can find the addition // instruction if there is one. There doesn't seem to be any // actual relocation to apply. break; case elfcpp::R_SPARC_TLS_LE_HIX22: // If we're creating a shared library, a dynamic relocation will // have been created for this location, so do not apply it now. if (!parameters->options().shared()) { value -= tls_segment->memsz(); Reloc::hix22(view, value, addend); } break; case elfcpp::R_SPARC_TLS_LE_LOX10: // If we're creating a shared library, a dynamic relocation will // have been created for this location, so do not apply it now. if (!parameters->options().shared()) { value -= tls_segment->memsz(); Reloc::lox10(view, value, addend); } break; } } // Relax a call instruction. template<int size, bool big_endian> inline void Target_sparc<size, big_endian>::Relocate::relax_call( Target_sparc<size, big_endian>* target, unsigned char* view, const elfcpp::Rela<size, big_endian>& rela, section_size_type view_size) { typedef typename elfcpp::Swap<32, true>::Valtype Insntype; Insntype *wv = reinterpret_cast<Insntype*>(view); Insntype call_insn, delay_insn, set_insn; uint32_t op3, reg, off; // This code tries to relax call instructions that meet // certain criteria. // // The first criteria is that the call must be such that the return // address which the call writes into %o7 is unused. Two sequences // meet this criteria, and are used to implement tail calls. // // Leaf function tail call: // // or %o7, %g0, %ANY_REG // call FUNC // or %ANY_REG, %g0, %o7 // // Non-leaf function tail call: // // call FUNC // restore // // The second criteria is that the call destination is close. If // the displacement can fit in a signed 22-bit immediate field of a // pre-V9 branch, we can do it. If we are generating a 64-bit // object or a 32-bit object with ELF machine type EF_SPARC32PLUS, // and the displacement fits in a signed 19-bit immediate field, // then we can use a V9 branch. // Make sure the delay instruction can be safely accessed. if (rela.get_r_offset() + 8 > view_size) return; call_insn = elfcpp::Swap<32, true>::readval(wv); delay_insn = elfcpp::Swap<32, true>::readval(wv + 1); // Make sure it is really a call instruction. if (((call_insn >> 30) & 0x3) != 1) return; if (((delay_insn >> 30) & 0x3) != 2) return; // Accept only a restore or an integer arithmetic operation whose // sole side effect is to write the %o7 register (and perhaps set // the condition codes, which are considered clobbered across // function calls). // // For example, we don't want to match a tagged addition or // subtraction. We also don't want to match something like a // divide. // // Specifically we accept add{,cc}, and{,cc}, or{,cc}, // xor{,cc}, sub{,cc}, andn{,cc}, orn{,cc}, and xnor{,cc}. op3 = (delay_insn >> 19) & 0x3f; reg = (delay_insn >> 25) & 0x1f; if (op3 != 0x3d && ((op3 & 0x28) != 0 || reg != 15)) return; // For non-restore instructions, make sure %o7 isn't // an input. if (op3 != 0x3d) { // First check RS1 reg = (delay_insn >> 14) & 0x1f; if (reg == 15) return; // And if non-immediate, check RS2 if (((delay_insn >> 13) & 1) == 0) { reg = (delay_insn & 0x1f); if (reg == 15) return; } } // Now check the branch distance. We are called after the // call has been relocated, so we just have to peek at the // offset contained in the instruction. off = call_insn & 0x3fffffff; if ((off & 0x3fe00000) != 0 && (off & 0x3fe00000) != 0x3fe00000) return; if ((size == 64 || target->elf_machine_ == elfcpp::EM_SPARC32PLUS) && ((off & 0x3c0000) == 0 || (off & 0x3c0000) == 0x3c0000)) { // ba,pt %xcc, FUNC call_insn = 0x10680000 | (off & 0x07ffff); } else { // ba FUNC call_insn = 0x10800000 | (off & 0x3fffff); } elfcpp::Swap<32, true>::writeval(wv, call_insn); // See if we can NOP out the delay slot instruction. We peek // at the instruction before the call to make sure we're dealing // with exactly the: // // or %o7, %g0, %ANY_REG // call // or %ANY_REG, %g0, %o7 // // case. Otherwise this might be a tricky piece of hand written // assembler calculating %o7 in some non-trivial way, and therefore // we can't be sure that NOP'ing out the delay slot is safe. if (op3 == 0x02 && rela.get_r_offset() >= 4) { if ((delay_insn & ~(0x1f << 14)) != 0x9e100000) return; set_insn = elfcpp::Swap<32, true>::readval(wv - 1); if ((set_insn & ~(0x1f << 25)) != 0x8013c000) return; reg = (set_insn >> 25) & 0x1f; if (reg == 0 || reg == 15) return; if (reg != ((delay_insn >> 14) & 0x1f)) return; // All tests pass, nop it out. elfcpp::Swap<32, true>::writeval(wv + 1, sparc_nop); } } // Relocate section data. template<int size, bool big_endian> void Target_sparc<size, big_endian>::relocate_section( const Relocate_info<size, big_endian>* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr address, section_size_type view_size, const Reloc_symbol_changes* reloc_symbol_changes) { typedef Target_sparc<size, big_endian> Sparc; typedef typename Target_sparc<size, big_endian>::Relocate Sparc_relocate; typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian> Classify_reloc; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_section<size, big_endian, Sparc, Sparc_relocate, gold::Default_comdat_behavior, Classify_reloc>( relinfo, this, prelocs, reloc_count, output_section, needs_special_offset_handling, view, address, view_size, reloc_symbol_changes); } // Scan the relocs during a relocatable link. template<int size, bool big_endian> void Target_sparc<size, big_endian>::scan_relocatable_relocs( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_symbols, Relocatable_relocs* rr) { typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian> Classify_reloc; typedef gold::Default_scan_relocatable_relocs<Classify_reloc> Scan_relocatable_relocs; gold_assert(sh_type == elfcpp::SHT_RELA); gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_symbols, rr); } // Scan the relocs for --emit-relocs. template<int size, bool big_endian> void Target_sparc<size, big_endian>::emit_relocs_scan( Symbol_table* symtab, Layout* layout, Sized_relobj_file<size, big_endian>* object, unsigned int data_shndx, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, bool needs_special_offset_handling, size_t local_symbol_count, const unsigned char* plocal_syms, Relocatable_relocs* rr) { typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian> Classify_reloc; typedef gold::Default_emit_relocs_strategy<Classify_reloc> Emit_relocs_strategy; gold_assert(sh_type == elfcpp::SHT_RELA); gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>( symtab, layout, object, data_shndx, prelocs, reloc_count, output_section, needs_special_offset_handling, local_symbol_count, plocal_syms, rr); } // Emit relocations for a section. template<int size, bool big_endian> void Target_sparc<size, big_endian>::relocate_relocs( const Relocate_info<size, big_endian>* relinfo, unsigned int sh_type, const unsigned char* prelocs, size_t reloc_count, Output_section* output_section, typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section, unsigned char* view, typename elfcpp::Elf_types<size>::Elf_Addr view_address, section_size_type view_size, unsigned char* reloc_view, section_size_type reloc_view_size) { typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian> Classify_reloc; gold_assert(sh_type == elfcpp::SHT_RELA); gold::relocate_relocs<size, big_endian, Classify_reloc>( relinfo, prelocs, reloc_count, output_section, offset_in_output_section, view, view_address, view_size, reloc_view, reloc_view_size); } // Return the value to use for a dynamic which requires special // treatment. This is how we support equality comparisons of function // pointers across shared library boundaries, as described in the // processor specific ABI supplement. template<int size, bool big_endian> uint64_t Target_sparc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const { gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); return this->plt_section()->address() + gsym->plt_offset(); } // do_make_elf_object to override the same function in the base class. // We need to use a target-specific sub-class of // Sized_relobj_file<size, big_endian> to process SPARC specific bits // of the ELF headers. Hence we need to have our own ELF object creation. template<int size, bool big_endian> Object* Target_sparc<size, big_endian>::do_make_elf_object( const std::string& name, Input_file* input_file, off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr) { elfcpp::Elf_Half machine = ehdr.get_e_machine(); elfcpp::Elf_Word flags = ehdr.get_e_flags(); elfcpp::Elf_Word omm, mm; switch (machine) { case elfcpp::EM_SPARC32PLUS: this->elf_machine_ = elfcpp::EM_SPARC32PLUS; break; case elfcpp::EM_SPARC: case elfcpp::EM_SPARCV9: break; default: break; } if (!this->elf_flags_set_) { this->elf_flags_ = flags; this->elf_flags_set_ = true; } else { // Accumulate cpu feature bits. this->elf_flags_ |= (flags & (elfcpp::EF_SPARC_32PLUS | elfcpp::EF_SPARC_SUN_US1 | elfcpp::EF_SPARC_HAL_R1 | elfcpp::EF_SPARC_SUN_US3)); // Bump the memory model setting to the most restrictive // one we encounter. omm = (this->elf_flags_ & elfcpp::EF_SPARCV9_MM); mm = (flags & elfcpp::EF_SPARCV9_MM); if (omm != mm) { if (mm == elfcpp::EF_SPARCV9_TSO) { this->elf_flags_ &= ~elfcpp::EF_SPARCV9_MM; this->elf_flags_ |= elfcpp::EF_SPARCV9_TSO; } else if (mm == elfcpp::EF_SPARCV9_PSO && omm == elfcpp::EF_SPARCV9_RMO) { this->elf_flags_ &= ~elfcpp::EF_SPARCV9_MM; this->elf_flags_ |= elfcpp::EF_SPARCV9_PSO; } } } // Validate that the little-endian flag matches how we've // been instantiated. if (!(flags & elfcpp::EF_SPARC_LEDATA) != big_endian) { if (big_endian) gold_error(_("%s: little endian elf flag set on BE object"), name.c_str()); else gold_error(_("%s: little endian elf flag clear on LE object"), name.c_str()); } return Target::do_make_elf_object(name, input_file, offset, ehdr); } // Adjust ELF file header. template<int size, bool big_endian> void Target_sparc<size, big_endian>::do_adjust_elf_header( unsigned char* view, int len) { elfcpp::Ehdr_write<size, big_endian> oehdr(view); oehdr.put_e_machine(this->elf_machine_); oehdr.put_e_flags(this->elf_flags_); Sized_target<size, big_endian>::do_adjust_elf_header(view, len); } // The selector for sparc object files. template<int size, bool big_endian> class Target_selector_sparc : public Target_selector { public: Target_selector_sparc() : Target_selector(elfcpp::EM_NONE, size, big_endian, (size == 64 ? "elf64-sparc" : "elf32-sparc"), (size == 64 ? "elf64_sparc" : "elf32_sparc")) { } virtual Target* do_recognize(Input_file*, off_t, int machine, int, int) { switch (size) { case 64: if (machine != elfcpp::EM_SPARCV9) return NULL; break; case 32: if (machine != elfcpp::EM_SPARC && machine != elfcpp::EM_SPARC32PLUS) return NULL; break; default: return NULL; } return this->instantiate_target(); } virtual Target* do_instantiate_target() { return new Target_sparc<size, big_endian>(); } }; Target_selector_sparc<32, true> target_selector_sparc32; Target_selector_sparc<64, true> target_selector_sparc64; } // End anonymous namespace.