// script.cc -- handle linker scripts for gold. // Copyright 2006, 2007, 2008 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include #include #include #include #include #include "filenames.h" #include "elfcpp.h" #include "demangle.h" #include "dirsearch.h" #include "options.h" #include "fileread.h" #include "workqueue.h" #include "readsyms.h" #include "parameters.h" #include "layout.h" #include "symtab.h" #include "script.h" #include "script-c.h" namespace gold { // A token read from a script file. We don't implement keywords here; // all keywords are simply represented as a string. class Token { public: // Token classification. enum Classification { // Token is invalid. TOKEN_INVALID, // Token indicates end of input. TOKEN_EOF, // Token is a string of characters. TOKEN_STRING, // Token is a quoted string of characters. TOKEN_QUOTED_STRING, // Token is an operator. TOKEN_OPERATOR, // Token is a number (an integer). TOKEN_INTEGER }; // We need an empty constructor so that we can put this STL objects. Token() : classification_(TOKEN_INVALID), value_(NULL), value_length_(0), opcode_(0), lineno_(0), charpos_(0) { } // A general token with no value. Token(Classification classification, int lineno, int charpos) : classification_(classification), value_(NULL), value_length_(0), opcode_(0), lineno_(lineno), charpos_(charpos) { gold_assert(classification == TOKEN_INVALID || classification == TOKEN_EOF); } // A general token with a value. Token(Classification classification, const char* value, size_t length, int lineno, int charpos) : classification_(classification), value_(value), value_length_(length), opcode_(0), lineno_(lineno), charpos_(charpos) { gold_assert(classification != TOKEN_INVALID && classification != TOKEN_EOF); } // A token representing an operator. Token(int opcode, int lineno, int charpos) : classification_(TOKEN_OPERATOR), value_(NULL), value_length_(0), opcode_(opcode), lineno_(lineno), charpos_(charpos) { } // Return whether the token is invalid. bool is_invalid() const { return this->classification_ == TOKEN_INVALID; } // Return whether this is an EOF token. bool is_eof() const { return this->classification_ == TOKEN_EOF; } // Return the token classification. Classification classification() const { return this->classification_; } // Return the line number at which the token starts. int lineno() const { return this->lineno_; } // Return the character position at this the token starts. int charpos() const { return this->charpos_; } // Get the value of a token. const char* string_value(size_t* length) const { gold_assert(this->classification_ == TOKEN_STRING || this->classification_ == TOKEN_QUOTED_STRING); *length = this->value_length_; return this->value_; } int operator_value() const { gold_assert(this->classification_ == TOKEN_OPERATOR); return this->opcode_; } uint64_t integer_value() const { gold_assert(this->classification_ == TOKEN_INTEGER); // Null terminate. std::string s(this->value_, this->value_length_); return strtoull(s.c_str(), NULL, 0); } private: // The token classification. Classification classification_; // The token value, for TOKEN_STRING or TOKEN_QUOTED_STRING or // TOKEN_INTEGER. const char* value_; // The length of the token value. size_t value_length_; // The token value, for TOKEN_OPERATOR. int opcode_; // The line number where this token started (one based). int lineno_; // The character position within the line where this token started // (one based). int charpos_; }; // This class handles lexing a file into a sequence of tokens. class Lex { public: // We unfortunately have to support different lexing modes, because // when reading different parts of a linker script we need to parse // things differently. enum Mode { // Reading an ordinary linker script. LINKER_SCRIPT, // Reading an expression in a linker script. EXPRESSION, // Reading a version script. VERSION_SCRIPT }; Lex(const char* input_string, size_t input_length, int parsing_token) : input_string_(input_string), input_length_(input_length), current_(input_string), mode_(LINKER_SCRIPT), first_token_(parsing_token), token_(), lineno_(1), linestart_(input_string) { } // Read a file into a string. static void read_file(Input_file*, std::string*); // Return the next token. const Token* next_token(); // Return the current lexing mode. Lex::Mode mode() const { return this->mode_; } // Set the lexing mode. void set_mode(Mode mode) { this->mode_ = mode; } private: Lex(const Lex&); Lex& operator=(const Lex&); // Make a general token with no value at the current location. Token make_token(Token::Classification c, const char* start) const { return Token(c, this->lineno_, start - this->linestart_ + 1); } // Make a general token with a value at the current location. Token make_token(Token::Classification c, const char* v, size_t len, const char* start) const { return Token(c, v, len, this->lineno_, start - this->linestart_ + 1); } // Make an operator token at the current location. Token make_token(int opcode, const char* start) const { return Token(opcode, this->lineno_, start - this->linestart_ + 1); } // Make an invalid token at the current location. Token make_invalid_token(const char* start) { return this->make_token(Token::TOKEN_INVALID, start); } // Make an EOF token at the current location. Token make_eof_token(const char* start) { return this->make_token(Token::TOKEN_EOF, start); } // Return whether C can be the first character in a name. C2 is the // next character, since we sometimes need that. inline bool can_start_name(char c, char c2); // If C can appear in a name which has already started, return a // pointer to a character later in the token or just past // it. Otherwise, return NULL. inline const char* can_continue_name(const char* c); // Return whether C, C2, C3 can start a hex number. inline bool can_start_hex(char c, char c2, char c3); // If C can appear in a hex number which has already started, return // a pointer to a character later in the token or just past // it. Otherwise, return NULL. inline const char* can_continue_hex(const char* c); // Return whether C can start a non-hex number. static inline bool can_start_number(char c); // If C can appear in a decimal number which has already started, // return a pointer to a character later in the token or just past // it. Otherwise, return NULL. inline const char* can_continue_number(const char* c) { return Lex::can_start_number(*c) ? c + 1 : NULL; } // If C1 C2 C3 form a valid three character operator, return the // opcode. Otherwise return 0. static inline int three_char_operator(char c1, char c2, char c3); // If C1 C2 form a valid two character operator, return the opcode. // Otherwise return 0. static inline int two_char_operator(char c1, char c2); // If C1 is a valid one character operator, return the opcode. // Otherwise return 0. static inline int one_char_operator(char c1); // Read the next token. Token get_token(const char**); // Skip a C style /* */ comment. Return false if the comment did // not end. bool skip_c_comment(const char**); // Skip a line # comment. Return false if there was no newline. bool skip_line_comment(const char**); // Build a token CLASSIFICATION from all characters that match // CAN_CONTINUE_FN. The token starts at START. Start matching from // MATCH. Set *PP to the character following the token. inline Token gather_token(Token::Classification, const char* (Lex::*can_continue_fn)(const char*), const char* start, const char* match, const char** pp); // Build a token from a quoted string. Token gather_quoted_string(const char** pp); // The string we are tokenizing. const char* input_string_; // The length of the string. size_t input_length_; // The current offset into the string. const char* current_; // The current lexing mode. Mode mode_; // The code to use for the first token. This is set to 0 after it // is used. int first_token_; // The current token. Token token_; // The current line number. int lineno_; // The start of the current line in the string. const char* linestart_; }; // Read the whole file into memory. We don't expect linker scripts to // be large, so we just use a std::string as a buffer. We ignore the // data we've already read, so that we read aligned buffers. void Lex::read_file(Input_file* input_file, std::string* contents) { off_t filesize = input_file->file().filesize(); contents->clear(); contents->reserve(filesize); off_t off = 0; unsigned char buf[BUFSIZ]; while (off < filesize) { off_t get = BUFSIZ; if (get > filesize - off) get = filesize - off; input_file->file().read(off, get, buf); contents->append(reinterpret_cast(&buf[0]), get); off += get; } } // Return whether C can be the start of a name, if the next character // is C2. A name can being with a letter, underscore, period, or // dollar sign. Because a name can be a file name, we also permit // forward slash, backslash, and tilde. Tilde is the tricky case // here; GNU ld also uses it as a bitwise not operator. It is only // recognized as the operator if it is not immediately followed by // some character which can appear in a symbol. That is, when we // don't know that we are looking at an expression, "~0" is a file // name, and "~ 0" is an expression using bitwise not. We are // compatible. inline bool Lex::can_start_name(char c, char c2) { switch (c) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'q': case 'p': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '_': case '.': case '$': return true; case '/': case '\\': return this->mode_ == LINKER_SCRIPT; case '~': return this->mode_ == LINKER_SCRIPT && can_continue_name(&c2); case '*': case '[': return (this->mode_ == VERSION_SCRIPT || (this->mode_ == LINKER_SCRIPT && can_continue_name(&c2))); default: return false; } } // Return whether C can continue a name which has already started. // Subsequent characters in a name are the same as the leading // characters, plus digits and "=+-:[],?*". So in general the linker // script language requires spaces around operators, unless we know // that we are parsing an expression. inline const char* Lex::can_continue_name(const char* c) { switch (*c) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'Q': case 'P': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'q': case 'p': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '_': case '.': case '$': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return c + 1; case '/': case '\\': case '~': case '=': case '+': case ',': case '?': if (this->mode_ == LINKER_SCRIPT) return c + 1; return NULL; case '[': case ']': case '*': case '-': if (this->mode_ == LINKER_SCRIPT || this->mode_ == VERSION_SCRIPT) return c + 1; return NULL; case '^': if (this->mode_ == VERSION_SCRIPT) return c + 1; return NULL; case ':': if (this->mode_ == LINKER_SCRIPT) return c + 1; else if (this->mode_ == VERSION_SCRIPT && (c[1] == ':')) { // A name can have '::' in it, as that's a c++ namespace // separator. But a single colon is not part of a name. return c + 2; } return NULL; default: return NULL; } } // For a number we accept 0x followed by hex digits, or any sequence // of digits. The old linker accepts leading '$' for hex, and // trailing HXBOD. Those are for MRI compatibility and we don't // accept them. The old linker also accepts trailing MK for mega or // kilo. FIXME: Those are mentioned in the documentation, and we // should accept them. // Return whether C1 C2 C3 can start a hex number. inline bool Lex::can_start_hex(char c1, char c2, char c3) { if (c1 == '0' && (c2 == 'x' || c2 == 'X')) return this->can_continue_hex(&c3); return false; } // Return whether C can appear in a hex number. inline const char* Lex::can_continue_hex(const char* c) { switch (*c) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': return c + 1; default: return NULL; } } // Return whether C can start a non-hex number. inline bool Lex::can_start_number(char c) { switch (c) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return true; default: return false; } } // If C1 C2 C3 form a valid three character operator, return the // opcode (defined in the yyscript.h file generated from yyscript.y). // Otherwise return 0. inline int Lex::three_char_operator(char c1, char c2, char c3) { switch (c1) { case '<': if (c2 == '<' && c3 == '=') return LSHIFTEQ; break; case '>': if (c2 == '>' && c3 == '=') return RSHIFTEQ; break; default: break; } return 0; } // If C1 C2 form a valid two character operator, return the opcode // (defined in the yyscript.h file generated from yyscript.y). // Otherwise return 0. inline int Lex::two_char_operator(char c1, char c2) { switch (c1) { case '=': if (c2 == '=') return EQ; break; case '!': if (c2 == '=') return NE; break; case '+': if (c2 == '=') return PLUSEQ; break; case '-': if (c2 == '=') return MINUSEQ; break; case '*': if (c2 == '=') return MULTEQ; break; case '/': if (c2 == '=') return DIVEQ; break; case '|': if (c2 == '=') return OREQ; if (c2 == '|') return OROR; break; case '&': if (c2 == '=') return ANDEQ; if (c2 == '&') return ANDAND; break; case '>': if (c2 == '=') return GE; if (c2 == '>') return RSHIFT; break; case '<': if (c2 == '=') return LE; if (c2 == '<') return LSHIFT; break; default: break; } return 0; } // If C1 is a valid operator, return the opcode. Otherwise return 0. inline int Lex::one_char_operator(char c1) { switch (c1) { case '+': case '-': case '*': case '/': case '%': case '!': case '&': case '|': case '^': case '~': case '<': case '>': case '=': case '?': case ',': case '(': case ')': case '{': case '}': case '[': case ']': case ':': case ';': return c1; default: return 0; } } // Skip a C style comment. *PP points to just after the "/*". Return // false if the comment did not end. bool Lex::skip_c_comment(const char** pp) { const char* p = *pp; while (p[0] != '*' || p[1] != '/') { if (*p == '\0') { *pp = p; return false; } if (*p == '\n') { ++this->lineno_; this->linestart_ = p + 1; } ++p; } *pp = p + 2; return true; } // Skip a line # comment. Return false if there was no newline. bool Lex::skip_line_comment(const char** pp) { const char* p = *pp; size_t skip = strcspn(p, "\n"); if (p[skip] == '\0') { *pp = p + skip; return false; } p += skip + 1; ++this->lineno_; this->linestart_ = p; *pp = p; return true; } // Build a token CLASSIFICATION from all characters that match // CAN_CONTINUE_FN. Update *PP. inline Token Lex::gather_token(Token::Classification classification, const char* (Lex::*can_continue_fn)(const char*), const char* start, const char* match, const char **pp) { const char* new_match = NULL; while ((new_match = (this->*can_continue_fn)(match))) match = new_match; *pp = match; return this->make_token(classification, start, match - start, start); } // Build a token from a quoted string. Token Lex::gather_quoted_string(const char** pp) { const char* start = *pp; const char* p = start; ++p; size_t skip = strcspn(p, "\"\n"); if (p[skip] != '"') return this->make_invalid_token(start); *pp = p + skip + 1; return this->make_token(Token::TOKEN_QUOTED_STRING, p, skip, start); } // Return the next token at *PP. Update *PP. General guideline: we // require linker scripts to be simple ASCII. No unicode linker // scripts. In particular we can assume that any '\0' is the end of // the input. Token Lex::get_token(const char** pp) { const char* p = *pp; while (true) { if (*p == '\0') { *pp = p; return this->make_eof_token(p); } // Skip whitespace quickly. while (*p == ' ' || *p == '\t') ++p; if (*p == '\n') { ++p; ++this->lineno_; this->linestart_ = p; continue; } // Skip C style comments. if (p[0] == '/' && p[1] == '*') { int lineno = this->lineno_; int charpos = p - this->linestart_ + 1; *pp = p + 2; if (!this->skip_c_comment(pp)) return Token(Token::TOKEN_INVALID, lineno, charpos); p = *pp; continue; } // Skip line comments. if (*p == '#') { *pp = p + 1; if (!this->skip_line_comment(pp)) return this->make_eof_token(p); p = *pp; continue; } // Check for a name. if (this->can_start_name(p[0], p[1])) return this->gather_token(Token::TOKEN_STRING, &Lex::can_continue_name, p, p + 1, pp); // We accept any arbitrary name in double quotes, as long as it // does not cross a line boundary. if (*p == '"') { *pp = p; return this->gather_quoted_string(pp); } // Check for a number. if (this->can_start_hex(p[0], p[1], p[2])) return this->gather_token(Token::TOKEN_INTEGER, &Lex::can_continue_hex, p, p + 3, pp); if (Lex::can_start_number(p[0])) return this->gather_token(Token::TOKEN_INTEGER, &Lex::can_continue_number, p, p + 1, pp); // Check for operators. int opcode = Lex::three_char_operator(p[0], p[1], p[2]); if (opcode != 0) { *pp = p + 3; return this->make_token(opcode, p); } opcode = Lex::two_char_operator(p[0], p[1]); if (opcode != 0) { *pp = p + 2; return this->make_token(opcode, p); } opcode = Lex::one_char_operator(p[0]); if (opcode != 0) { *pp = p + 1; return this->make_token(opcode, p); } return this->make_token(Token::TOKEN_INVALID, p); } } // Return the next token. const Token* Lex::next_token() { // The first token is special. if (this->first_token_ != 0) { this->token_ = Token(this->first_token_, 0, 0); this->first_token_ = 0; return &this->token_; } this->token_ = this->get_token(&this->current_); // Don't let an early null byte fool us into thinking that we've // reached the end of the file. if (this->token_.is_eof() && (static_cast(this->current_ - this->input_string_) < this->input_length_)) this->token_ = this->make_invalid_token(this->current_); return &this->token_; } // A trivial task which waits for THIS_BLOCKER to be clear and then // clears NEXT_BLOCKER. THIS_BLOCKER may be NULL. class Script_unblock : public Task { public: Script_unblock(Task_token* this_blocker, Task_token* next_blocker) : this_blocker_(this_blocker), next_blocker_(next_blocker) { } ~Script_unblock() { if (this->this_blocker_ != NULL) delete this->this_blocker_; } Task_token* is_runnable() { if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked()) return this->this_blocker_; return NULL; } void locks(Task_locker* tl) { tl->add(this, this->next_blocker_); } void run(Workqueue*) { } std::string get_name() const { return "Script_unblock"; } private: Task_token* this_blocker_; Task_token* next_blocker_; }; // class Symbol_assignment. // Add the symbol to the symbol table. This makes sure the symbol is // there and defined. The actual value is stored later. We can't // determine the actual value at this point, because we can't // necessarily evaluate the expression until all ordinary symbols have // been finalized. void Symbol_assignment::add_to_table(Symbol_table* symtab) { elfcpp::STV vis = this->hidden_ ? elfcpp::STV_HIDDEN : elfcpp::STV_DEFAULT; this->sym_ = symtab->define_as_constant(this->name_.c_str(), NULL, // version 0, // value 0, // size elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, vis, 0, // nonvis this->provide_); } // Finalize a symbol value. void Symbol_assignment::finalize(Symbol_table* symtab, const Layout* layout) { this->finalize_maybe_dot(symtab, layout, false, false, 0); } // Finalize a symbol value which can refer to the dot symbol. void Symbol_assignment::finalize_with_dot(Symbol_table* symtab, const Layout* layout, bool dot_has_value, uint64_t dot_value) { this->finalize_maybe_dot(symtab, layout, true, dot_has_value, dot_value); } // Finalize a symbol value, internal version. void Symbol_assignment::finalize_maybe_dot(Symbol_table* symtab, const Layout* layout, bool is_dot_available, bool dot_has_value, uint64_t dot_value) { // If we were only supposed to provide this symbol, the sym_ field // will be NULL if the symbol was not referenced. if (this->sym_ == NULL) { gold_assert(this->provide_); return; } if (parameters->get_size() == 32) { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) this->sized_finalize<32>(symtab, layout, is_dot_available, dot_has_value, dot_value); #else gold_unreachable(); #endif } else if (parameters->get_size() == 64) { #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) this->sized_finalize<64>(symtab, layout, is_dot_available, dot_has_value, dot_value); #else gold_unreachable(); #endif } else gold_unreachable(); } template void Symbol_assignment::sized_finalize(Symbol_table* symtab, const Layout* layout, bool is_dot_available, bool dot_has_value, uint64_t dot_value) { bool dummy; uint64_t final_val = this->val_->eval_maybe_dot(symtab, layout, is_dot_available, dot_has_value, dot_value, &dummy); Sized_symbol* ssym = symtab->get_sized_symbol(this->sym_); ssym->set_value(final_val); } // Set the symbol value if the expression yields an absolute value. void Symbol_assignment::set_if_absolute(Symbol_table* symtab, const Layout* layout, bool is_dot_available, bool dot_has_value, uint64_t dot_value) { if (this->sym_ == NULL) return; bool is_absolute; uint64_t val = this->val_->eval_maybe_dot(symtab, layout, is_dot_available, dot_has_value, dot_value, &is_absolute); if (!is_absolute) return; if (parameters->get_size() == 32) { #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(this->sym_); ssym->set_value(val); #else gold_unreachable(); #endif } else if (parameters->get_size() == 64) { #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) Sized_symbol<64>* ssym = symtab->get_sized_symbol<64>(this->sym_); ssym->set_value(val); #else gold_unreachable(); #endif } else gold_unreachable(); } // Print for debugging. void Symbol_assignment::print(FILE* f) const { if (this->provide_ && this->hidden_) fprintf(f, "PROVIDE_HIDDEN("); else if (this->provide_) fprintf(f, "PROVIDE("); else if (this->hidden_) gold_unreachable(); fprintf(f, "%s = ", this->name_.c_str()); this->val_->print(f); if (this->provide_ || this->hidden_) fprintf(f, ")"); fprintf(f, "\n"); } // Class Script_assertion. // Check the assertion. void Script_assertion::check(const Symbol_table* symtab, const Layout* layout) { if (!this->check_->eval(symtab, layout)) gold_error("%s", this->message_.c_str()); } // Print for debugging. void Script_assertion::print(FILE* f) const { fprintf(f, "ASSERT("); this->check_->print(f); fprintf(f, ", \"%s\")\n", this->message_.c_str()); } // Class Script_options. Script_options::Script_options() : entry_(), symbol_assignments_(), version_script_info_(), script_sections_() { } // Add a symbol to be defined. void Script_options::add_symbol_assignment(const char* name, size_t length, Expression* value, bool provide, bool hidden) { if (length != 1 || name[0] != '.') { if (this->script_sections_.in_sections_clause()) this->script_sections_.add_symbol_assignment(name, length, value, provide, hidden); else { Symbol_assignment* p = new Symbol_assignment(name, length, value, provide, hidden); this->symbol_assignments_.push_back(p); } } else { if (provide || hidden) gold_error(_("invalid use of PROVIDE for dot symbol")); if (!this->script_sections_.in_sections_clause()) gold_error(_("invalid assignment to dot outside of SECTIONS")); else this->script_sections_.add_dot_assignment(value); } } // Add an assertion. void Script_options::add_assertion(Expression* check, const char* message, size_t messagelen) { if (this->script_sections_.in_sections_clause()) this->script_sections_.add_assertion(check, message, messagelen); else { Script_assertion* p = new Script_assertion(check, message, messagelen); this->assertions_.push_back(p); } } // Add any symbols we are defining to the symbol table. void Script_options::add_symbols_to_table(Symbol_table* symtab) { for (Symbol_assignments::iterator p = this->symbol_assignments_.begin(); p != this->symbol_assignments_.end(); ++p) (*p)->add_to_table(symtab); this->script_sections_.add_symbols_to_table(symtab); } // Finalize symbol values. Also check assertions. void Script_options::finalize_symbols(Symbol_table* symtab, const Layout* layout) { for (Symbol_assignments::iterator p = this->symbol_assignments_.begin(); p != this->symbol_assignments_.end(); ++p) (*p)->finalize(symtab, layout); for (Assertions::iterator p = this->assertions_.begin(); p != this->assertions_.end(); ++p) (*p)->check(symtab, layout); this->script_sections_.finalize_symbols(symtab, layout); } // Set section addresses. We set all the symbols which have absolute // values. Then we let the SECTIONS clause do its thing. This // returns the segment which holds the file header and segment // headers, if any. Output_segment* Script_options::set_section_addresses(Symbol_table* symtab, Layout* layout) { for (Symbol_assignments::iterator p = this->symbol_assignments_.begin(); p != this->symbol_assignments_.end(); ++p) (*p)->set_if_absolute(symtab, layout, false, false, 0); return this->script_sections_.set_section_addresses(symtab, layout); } // This class holds data passed through the parser to the lexer and to // the parser support functions. This avoids global variables. We // can't use global variables because we need not be called by a // singleton thread. class Parser_closure { public: Parser_closure(const char* filename, const Position_dependent_options& posdep_options, bool in_group, bool is_in_sysroot, Command_line* command_line, Script_options* script_options, Lex* lex) : filename_(filename), posdep_options_(posdep_options), in_group_(in_group), is_in_sysroot_(is_in_sysroot), command_line_(command_line), script_options_(script_options), version_script_info_(script_options->version_script_info()), lex_(lex), lineno_(0), charpos_(0), lex_mode_stack_(), inputs_(NULL) { // We start out processing C symbols in the default lex mode. language_stack_.push_back(""); lex_mode_stack_.push_back(lex->mode()); } // Return the file name. const char* filename() const { return this->filename_; } // Return the position dependent options. The caller may modify // this. Position_dependent_options& position_dependent_options() { return this->posdep_options_; } // Return whether this script is being run in a group. bool in_group() const { return this->in_group_; } // Return whether this script was found using a directory in the // sysroot. bool is_in_sysroot() const { return this->is_in_sysroot_; } // Returns the Command_line structure passed in at constructor time. // This value may be NULL. The caller may modify this, which modifies // the passed-in Command_line object (not a copy). Command_line* command_line() { return this->command_line_; } // Return the options which may be set by a script. Script_options* script_options() { return this->script_options_; } // Return the object in which version script information should be stored. Version_script_info* version_script() { return this->version_script_info_; } // Return the next token, and advance. const Token* next_token() { const Token* token = this->lex_->next_token(); this->lineno_ = token->lineno(); this->charpos_ = token->charpos(); return token; } // Set a new lexer mode, pushing the current one. void push_lex_mode(Lex::Mode mode) { this->lex_mode_stack_.push_back(this->lex_->mode()); this->lex_->set_mode(mode); } // Pop the lexer mode. void pop_lex_mode() { gold_assert(!this->lex_mode_stack_.empty()); this->lex_->set_mode(this->lex_mode_stack_.back()); this->lex_mode_stack_.pop_back(); } // Return the current lexer mode. Lex::Mode lex_mode() const { return this->lex_mode_stack_.back(); } // Return the line number of the last token. int lineno() const { return this->lineno_; } // Return the character position in the line of the last token. int charpos() const { return this->charpos_; } // Return the list of input files, creating it if necessary. This // is a space leak--we never free the INPUTS_ pointer. Input_arguments* inputs() { if (this->inputs_ == NULL) this->inputs_ = new Input_arguments(); return this->inputs_; } // Return whether we saw any input files. bool saw_inputs() const { return this->inputs_ != NULL && !this->inputs_->empty(); } // Return the current language being processed in a version script // (eg, "C++"). The empty string represents unmangled C names. const std::string& get_current_language() const { return this->language_stack_.back(); } // Push a language onto the stack when entering an extern block. void push_language(const std::string& lang) { this->language_stack_.push_back(lang); } // Pop a language off of the stack when exiting an extern block. void pop_language() { gold_assert(!this->language_stack_.empty()); this->language_stack_.pop_back(); } private: // The name of the file we are reading. const char* filename_; // The position dependent options. Position_dependent_options posdep_options_; // Whether we are currently in a --start-group/--end-group. bool in_group_; // Whether the script was found in a sysrooted directory. bool is_in_sysroot_; // May be NULL if the user chooses not to pass one in. Command_line* command_line_; // Options which may be set from any linker script. Script_options* script_options_; // Information parsed from a version script. Version_script_info* version_script_info_; // The lexer. Lex* lex_; // The line number of the last token returned by next_token. int lineno_; // The column number of the last token returned by next_token. int charpos_; // A stack of lexer modes. std::vector lex_mode_stack_; // A stack of which extern/language block we're inside. Can be C++, // java, or empty for C. std::vector language_stack_; // New input files found to add to the link. Input_arguments* inputs_; }; // FILE was found as an argument on the command line. Try to read it // as a script. We've already read BYTES of data into P, but we // ignore that. Return true if the file was handled. bool read_input_script(Workqueue* workqueue, const General_options& options, Symbol_table* symtab, Layout* layout, Dirsearch* dirsearch, Input_objects* input_objects, Input_group* input_group, const Input_argument* input_argument, Input_file* input_file, const unsigned char*, off_t, Task_token* this_blocker, Task_token* next_blocker) { std::string input_string; Lex::read_file(input_file, &input_string); Lex lex(input_string.c_str(), input_string.length(), PARSING_LINKER_SCRIPT); Parser_closure closure(input_file->filename().c_str(), input_argument->file().options(), input_group != NULL, input_file->is_in_sysroot(), NULL, layout->script_options(), &lex); if (yyparse(&closure) != 0) return false; // THIS_BLOCKER must be clear before we may add anything to the // symbol table. We are responsible for unblocking NEXT_BLOCKER // when we are done. We are responsible for deleting THIS_BLOCKER // when it is unblocked. if (!closure.saw_inputs()) { // The script did not add any files to read. Note that we are // not permitted to call NEXT_BLOCKER->unblock() here even if // THIS_BLOCKER is NULL, as we do not hold the workqueue lock. workqueue->queue(new Script_unblock(this_blocker, next_blocker)); return true; } for (Input_arguments::const_iterator p = closure.inputs()->begin(); p != closure.inputs()->end(); ++p) { Task_token* nb; if (p + 1 == closure.inputs()->end()) nb = next_blocker; else { nb = new Task_token(true); nb->add_blocker(); } workqueue->queue(new Read_symbols(options, input_objects, symtab, layout, dirsearch, &*p, input_group, this_blocker, nb)); this_blocker = nb; } return true; } // Helper function for read_version_script() and // read_commandline_script(). Processes the given file in the mode // indicated by first_token and lex_mode. static bool read_script_file(const char* filename, Command_line* cmdline, int first_token, Lex::Mode lex_mode) { // TODO: if filename is a relative filename, search for it manually // using "." + cmdline->options()->search_path() -- not dirsearch. Dirsearch dirsearch; // The file locking code wants to record a Task, but we haven't // started the workqueue yet. This is only for debugging purposes, // so we invent a fake value. const Task* task = reinterpret_cast(-1); // We don't want this file to be opened in binary mode. Position_dependent_options posdep = cmdline->position_dependent_options(); if (posdep.input_format() == General_options::OBJECT_FORMAT_BINARY) posdep.set_input_format("elf"); Input_file_argument input_argument(filename, false, "", false, posdep); Input_file input_file(&input_argument); if (!input_file.open(cmdline->options(), dirsearch, task)) return false; std::string input_string; Lex::read_file(&input_file, &input_string); Lex lex(input_string.c_str(), input_string.length(), first_token); lex.set_mode(lex_mode); Parser_closure closure(filename, cmdline->position_dependent_options(), false, input_file.is_in_sysroot(), cmdline, cmdline->script_options(), &lex); if (yyparse(&closure) != 0) { input_file.file().unlock(task); return false; } input_file.file().unlock(task); gold_assert(!closure.saw_inputs()); return true; } // FILENAME was found as an argument to --script (-T). // Read it as a script, and execute its contents immediately. bool read_commandline_script(const char* filename, Command_line* cmdline) { return read_script_file(filename, cmdline, PARSING_LINKER_SCRIPT, Lex::LINKER_SCRIPT); } // FILE was found as an argument to --version-script. Read it as a // version script, and store its contents in // cmdline->script_options()->version_script_info(). bool read_version_script(const char* filename, Command_line* cmdline) { return read_script_file(filename, cmdline, PARSING_VERSION_SCRIPT, Lex::VERSION_SCRIPT); } // Implement the --defsym option on the command line. Return true if // all is well. bool Script_options::define_symbol(const char* definition) { Lex lex(definition, strlen(definition), PARSING_DEFSYM); lex.set_mode(Lex::EXPRESSION); // Dummy value. Position_dependent_options posdep_options; Parser_closure closure("command line", posdep_options, false, false, NULL, this, &lex); if (yyparse(&closure) != 0) return false; gold_assert(!closure.saw_inputs()); return true; } // Print the script to F for debugging. void Script_options::print(FILE* f) const { fprintf(f, "%s: Dumping linker script\n", program_name); if (!this->entry_.empty()) fprintf(f, "ENTRY(%s)\n", this->entry_.c_str()); for (Symbol_assignments::const_iterator p = this->symbol_assignments_.begin(); p != this->symbol_assignments_.end(); ++p) (*p)->print(f); for (Assertions::const_iterator p = this->assertions_.begin(); p != this->assertions_.end(); ++p) (*p)->print(f); this->script_sections_.print(f); this->version_script_info_.print(f); } // Manage mapping from keywords to the codes expected by the bison // parser. We construct one global object for each lex mode with // keywords. class Keyword_to_parsecode { public: // The structure which maps keywords to parsecodes. struct Keyword_parsecode { // Keyword. const char* keyword; // Corresponding parsecode. int parsecode; }; Keyword_to_parsecode(const Keyword_parsecode* keywords, int keyword_count) : keyword_parsecodes_(keywords), keyword_count_(keyword_count) { } // Return the parsecode corresponding KEYWORD, or 0 if it is not a // keyword. int keyword_to_parsecode(const char* keyword, size_t len) const; private: const Keyword_parsecode* keyword_parsecodes_; const int keyword_count_; }; // Mapping from keyword string to keyword parsecode. This array must // be kept in sorted order. Parsecodes are looked up using bsearch. // This array must correspond to the list of parsecodes in yyscript.y. static const Keyword_to_parsecode::Keyword_parsecode script_keyword_parsecodes[] = { { "ABSOLUTE", ABSOLUTE }, { "ADDR", ADDR }, { "ALIGN", ALIGN_K }, { "ALIGNOF", ALIGNOF }, { "ASSERT", ASSERT_K }, { "AS_NEEDED", AS_NEEDED }, { "AT", AT }, { "BIND", BIND }, { "BLOCK", BLOCK }, { "BYTE", BYTE }, { "CONSTANT", CONSTANT }, { "CONSTRUCTORS", CONSTRUCTORS }, { "CREATE_OBJECT_SYMBOLS", CREATE_OBJECT_SYMBOLS }, { "DATA_SEGMENT_ALIGN", DATA_SEGMENT_ALIGN }, { "DATA_SEGMENT_END", DATA_SEGMENT_END }, { "DATA_SEGMENT_RELRO_END", DATA_SEGMENT_RELRO_END }, { "DEFINED", DEFINED }, { "ENTRY", ENTRY }, { "EXCLUDE_FILE", EXCLUDE_FILE }, { "EXTERN", EXTERN }, { "FILL", FILL }, { "FLOAT", FLOAT }, { "FORCE_COMMON_ALLOCATION", FORCE_COMMON_ALLOCATION }, { "GROUP", GROUP }, { "HLL", HLL }, { "INCLUDE", INCLUDE }, { "INHIBIT_COMMON_ALLOCATION", INHIBIT_COMMON_ALLOCATION }, { "INPUT", INPUT }, { "KEEP", KEEP }, { "LENGTH", LENGTH }, { "LOADADDR", LOADADDR }, { "LONG", LONG }, { "MAP", MAP }, { "MAX", MAX_K }, { "MEMORY", MEMORY }, { "MIN", MIN_K }, { "NEXT", NEXT }, { "NOCROSSREFS", NOCROSSREFS }, { "NOFLOAT", NOFLOAT }, { "ONLY_IF_RO", ONLY_IF_RO }, { "ONLY_IF_RW", ONLY_IF_RW }, { "OPTION", OPTION }, { "ORIGIN", ORIGIN }, { "OUTPUT", OUTPUT }, { "OUTPUT_ARCH", OUTPUT_ARCH }, { "OUTPUT_FORMAT", OUTPUT_FORMAT }, { "OVERLAY", OVERLAY }, { "PHDRS", PHDRS }, { "PROVIDE", PROVIDE }, { "PROVIDE_HIDDEN", PROVIDE_HIDDEN }, { "QUAD", QUAD }, { "SEARCH_DIR", SEARCH_DIR }, { "SECTIONS", SECTIONS }, { "SEGMENT_START", SEGMENT_START }, { "SHORT", SHORT }, { "SIZEOF", SIZEOF }, { "SIZEOF_HEADERS", SIZEOF_HEADERS }, { "SORT", SORT_BY_NAME }, { "SORT_BY_ALIGNMENT", SORT_BY_ALIGNMENT }, { "SORT_BY_NAME", SORT_BY_NAME }, { "SPECIAL", SPECIAL }, { "SQUAD", SQUAD }, { "STARTUP", STARTUP }, { "SUBALIGN", SUBALIGN }, { "SYSLIB", SYSLIB }, { "TARGET", TARGET_K }, { "TRUNCATE", TRUNCATE }, { "VERSION", VERSIONK }, { "global", GLOBAL }, { "l", LENGTH }, { "len", LENGTH }, { "local", LOCAL }, { "o", ORIGIN }, { "org", ORIGIN }, { "sizeof_headers", SIZEOF_HEADERS }, }; static const Keyword_to_parsecode script_keywords(&script_keyword_parsecodes[0], (sizeof(script_keyword_parsecodes) / sizeof(script_keyword_parsecodes[0]))); static const Keyword_to_parsecode::Keyword_parsecode version_script_keyword_parsecodes[] = { { "extern", EXTERN }, { "global", GLOBAL }, { "local", LOCAL }, }; static const Keyword_to_parsecode version_script_keywords(&version_script_keyword_parsecodes[0], (sizeof(version_script_keyword_parsecodes) / sizeof(version_script_keyword_parsecodes[0]))); // Comparison function passed to bsearch. extern "C" { struct Ktt_key { const char* str; size_t len; }; static int ktt_compare(const void* keyv, const void* kttv) { const Ktt_key* key = static_cast(keyv); const Keyword_to_parsecode::Keyword_parsecode* ktt = static_cast(kttv); int i = strncmp(key->str, ktt->keyword, key->len); if (i != 0) return i; if (ktt->keyword[key->len] != '\0') return -1; return 0; } } // End extern "C". int Keyword_to_parsecode::keyword_to_parsecode(const char* keyword, size_t len) const { Ktt_key key; key.str = keyword; key.len = len; void* kttv = bsearch(&key, this->keyword_parsecodes_, this->keyword_count_, sizeof(this->keyword_parsecodes_[0]), ktt_compare); if (kttv == NULL) return 0; Keyword_parsecode* ktt = static_cast(kttv); return ktt->parsecode; } // The following structs are used within the VersionInfo class as well // as in the bison helper functions. They store the information // parsed from the version script. // A single version expression. // For example, pattern="std::map*" and language="C++". // pattern and language should be from the stringpool struct Version_expression { Version_expression(const std::string& pattern, const std::string& language, bool exact_match) : pattern(pattern), language(language), exact_match(exact_match) {} std::string pattern; std::string language; // If false, we use glob() to match pattern. If true, we use strcmp(). bool exact_match; }; // A list of expressions. struct Version_expression_list { std::vector expressions; }; // A list of which versions upon which another version depends. // Strings should be from the Stringpool. struct Version_dependency_list { std::vector dependencies; }; // The total definition of a version. It includes the tag for the // version, its global and local expressions, and any dependencies. struct Version_tree { Version_tree() : tag(), global(NULL), local(NULL), dependencies(NULL) {} std::string tag; const struct Version_expression_list* global; const struct Version_expression_list* local; const struct Version_dependency_list* dependencies; }; Version_script_info::~Version_script_info() { this->clear(); } void Version_script_info::clear() { for (size_t k = 0; k < dependency_lists_.size(); ++k) delete dependency_lists_[k]; this->dependency_lists_.clear(); for (size_t k = 0; k < version_trees_.size(); ++k) delete version_trees_[k]; this->version_trees_.clear(); for (size_t k = 0; k < expression_lists_.size(); ++k) delete expression_lists_[k]; this->expression_lists_.clear(); } std::vector Version_script_info::get_versions() const { std::vector ret; for (size_t j = 0; j < version_trees_.size(); ++j) ret.push_back(version_trees_[j]->tag); return ret; } std::vector Version_script_info::get_dependencies(const char* version) const { std::vector ret; for (size_t j = 0; j < version_trees_.size(); ++j) if (version_trees_[j]->tag == version) { const struct Version_dependency_list* deps = version_trees_[j]->dependencies; if (deps != NULL) for (size_t k = 0; k < deps->dependencies.size(); ++k) ret.push_back(deps->dependencies[k]); return ret; } return ret; } const std::string& Version_script_info::get_symbol_version_helper(const char* symbol_name, bool check_global) const { for (size_t j = 0; j < version_trees_.size(); ++j) { // Is it a global symbol for this version? const Version_expression_list* explist = check_global ? version_trees_[j]->global : version_trees_[j]->local; if (explist != NULL) for (size_t k = 0; k < explist->expressions.size(); ++k) { const char* name_to_match = symbol_name; const struct Version_expression& exp = explist->expressions[k]; char* demangled_name = NULL; if (exp.language == "C++") { demangled_name = cplus_demangle(symbol_name, DMGL_ANSI | DMGL_PARAMS); // This isn't a C++ symbol. if (demangled_name == NULL) continue; name_to_match = demangled_name; } else if (exp.language == "Java") { demangled_name = cplus_demangle(symbol_name, (DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA)); // This isn't a Java symbol. if (demangled_name == NULL) continue; name_to_match = demangled_name; } bool matched; if (exp.exact_match) matched = strcmp(exp.pattern.c_str(), name_to_match) == 0; else matched = fnmatch(exp.pattern.c_str(), name_to_match, FNM_NOESCAPE) == 0; if (demangled_name != NULL) free(demangled_name); if (matched) return version_trees_[j]->tag; } } static const std::string empty = ""; return empty; } struct Version_dependency_list* Version_script_info::allocate_dependency_list() { dependency_lists_.push_back(new Version_dependency_list); return dependency_lists_.back(); } struct Version_expression_list* Version_script_info::allocate_expression_list() { expression_lists_.push_back(new Version_expression_list); return expression_lists_.back(); } struct Version_tree* Version_script_info::allocate_version_tree() { version_trees_.push_back(new Version_tree); return version_trees_.back(); } // Print for debugging. void Version_script_info::print(FILE* f) const { if (this->empty()) return; fprintf(f, "VERSION {"); for (size_t i = 0; i < this->version_trees_.size(); ++i) { const Version_tree* vt = this->version_trees_[i]; if (vt->tag.empty()) fprintf(f, " {\n"); else fprintf(f, " %s {\n", vt->tag.c_str()); if (vt->global != NULL) { fprintf(f, " global :\n"); this->print_expression_list(f, vt->global); } if (vt->local != NULL) { fprintf(f, " local :\n"); this->print_expression_list(f, vt->local); } fprintf(f, " }"); if (vt->dependencies != NULL) { const Version_dependency_list* deps = vt->dependencies; for (size_t j = 0; j < deps->dependencies.size(); ++j) { if (j < deps->dependencies.size() - 1) fprintf(f, "\n"); fprintf(f, " %s", deps->dependencies[j].c_str()); } } fprintf(f, ";\n"); } fprintf(f, "}\n"); } void Version_script_info::print_expression_list( FILE* f, const Version_expression_list* vel) const { std::string current_language; for (size_t i = 0; i < vel->expressions.size(); ++i) { const Version_expression& ve(vel->expressions[i]); if (ve.language != current_language) { if (!current_language.empty()) fprintf(f, " }\n"); fprintf(f, " extern \"%s\" {\n", ve.language.c_str()); current_language = ve.language; } fprintf(f, " "); if (!current_language.empty()) fprintf(f, " "); if (ve.exact_match) fprintf(f, "\""); fprintf(f, "%s", ve.pattern.c_str()); if (ve.exact_match) fprintf(f, "\""); fprintf(f, "\n"); } if (!current_language.empty()) fprintf(f, " }\n"); } } // End namespace gold. // The remaining functions are extern "C", so it's clearer to not put // them in namespace gold. using namespace gold; // This function is called by the bison parser to return the next // token. extern "C" int yylex(YYSTYPE* lvalp, void* closurev) { Parser_closure* closure = static_cast(closurev); const Token* token = closure->next_token(); switch (token->classification()) { default: gold_unreachable(); case Token::TOKEN_INVALID: yyerror(closurev, "invalid character"); return 0; case Token::TOKEN_EOF: return 0; case Token::TOKEN_STRING: { // This is either a keyword or a STRING. size_t len; const char* str = token->string_value(&len); int parsecode = 0; switch (closure->lex_mode()) { case Lex::LINKER_SCRIPT: parsecode = script_keywords.keyword_to_parsecode(str, len); break; case Lex::VERSION_SCRIPT: parsecode = version_script_keywords.keyword_to_parsecode(str, len); break; default: break; } if (parsecode != 0) return parsecode; lvalp->string.value = str; lvalp->string.length = len; return STRING; } case Token::TOKEN_QUOTED_STRING: lvalp->string.value = token->string_value(&lvalp->string.length); return QUOTED_STRING; case Token::TOKEN_OPERATOR: return token->operator_value(); case Token::TOKEN_INTEGER: lvalp->integer = token->integer_value(); return INTEGER; } } // This function is called by the bison parser to report an error. extern "C" void yyerror(void* closurev, const char* message) { Parser_closure* closure = static_cast(closurev); gold_error(_("%s:%d:%d: %s"), closure->filename(), closure->lineno(), closure->charpos(), message); } // Called by the bison parser to add a file to the link. extern "C" void script_add_file(void* closurev, const char* name, size_t length) { Parser_closure* closure = static_cast(closurev); // If this is an absolute path, and we found the script in the // sysroot, then we want to prepend the sysroot to the file name. // For example, this is how we handle a cross link to the x86_64 // libc.so, which refers to /lib/libc.so.6. std::string name_string(name, length); const char* extra_search_path = "."; std::string script_directory; if (IS_ABSOLUTE_PATH(name_string.c_str())) { if (closure->is_in_sysroot()) { const std::string& sysroot(parameters->sysroot()); gold_assert(!sysroot.empty()); name_string = sysroot + name_string; } } else { // In addition to checking the normal library search path, we // also want to check in the script-directory. const char *slash = strrchr(closure->filename(), '/'); if (slash != NULL) { script_directory.assign(closure->filename(), slash - closure->filename() + 1); extra_search_path = script_directory.c_str(); } } Input_file_argument file(name_string.c_str(), false, extra_search_path, false, closure->position_dependent_options()); closure->inputs()->add_file(file); } // Called by the bison parser to start a group. If we are already in // a group, that means that this script was invoked within a // --start-group --end-group sequence on the command line, or that // this script was found in a GROUP of another script. In that case, // we simply continue the existing group, rather than starting a new // one. It is possible to construct a case in which this will do // something other than what would happen if we did a recursive group, // but it's hard to imagine why the different behaviour would be // useful for a real program. Avoiding recursive groups is simpler // and more efficient. extern "C" void script_start_group(void* closurev) { Parser_closure* closure = static_cast(closurev); if (!closure->in_group()) closure->inputs()->start_group(); } // Called by the bison parser at the end of a group. extern "C" void script_end_group(void* closurev) { Parser_closure* closure = static_cast(closurev); if (!closure->in_group()) closure->inputs()->end_group(); } // Called by the bison parser to start an AS_NEEDED list. extern "C" void script_start_as_needed(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->position_dependent_options().set_as_needed(); } // Called by the bison parser at the end of an AS_NEEDED list. extern "C" void script_end_as_needed(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->position_dependent_options().clear_as_needed(); } // Called by the bison parser to set the entry symbol. extern "C" void script_set_entry(void* closurev, const char* entry, size_t length) { Parser_closure* closure = static_cast(closurev); closure->script_options()->set_entry(entry, length); } // Called by the bison parser to define a symbol. extern "C" void script_set_symbol(void* closurev, const char* name, size_t length, Expression* value, int providei, int hiddeni) { Parser_closure* closure = static_cast(closurev); const bool provide = providei != 0; const bool hidden = hiddeni != 0; closure->script_options()->add_symbol_assignment(name, length, value, provide, hidden); } // Called by the bison parser to add an assertion. extern "C" void script_add_assertion(void* closurev, Expression* check, const char* message, size_t messagelen) { Parser_closure* closure = static_cast(closurev); closure->script_options()->add_assertion(check, message, messagelen); } // Called by the bison parser to parse an OPTION. extern "C" void script_parse_option(void* closurev, const char* option, size_t length) { Parser_closure* closure = static_cast(closurev); // We treat the option as a single command-line option, even if // it has internal whitespace. if (closure->command_line() == NULL) { // There are some options that we could handle here--e.g., // -lLIBRARY. Should we bother? gold_warning(_("%s:%d:%d: ignoring command OPTION; OPTION is only valid" " for scripts specified via -T/--script"), closure->filename(), closure->lineno(), closure->charpos()); } else { bool past_a_double_dash_option = false; char* mutable_option = strndup(option, length); gold_assert(mutable_option != NULL); closure->command_line()->process_one_option(1, &mutable_option, 0, &past_a_double_dash_option); free(mutable_option); } } // Called by the bison parser to handle SEARCH_DIR. This is handled // exactly like a -L option. extern "C" void script_add_search_dir(void* closurev, const char* option, size_t length) { Parser_closure* closure = static_cast(closurev); if (closure->command_line() == NULL) gold_warning(_("%s:%d:%d: ignoring SEARCH_DIR; SEARCH_DIR is only valid" " for scripts specified via -T/--script"), closure->filename(), closure->lineno(), closure->charpos()); else { std::string s = "-L" + std::string(option, length); script_parse_option(closurev, s.c_str(), s.size()); } } /* Called by the bison parser to push the lexer into expression mode. */ extern "C" void script_push_lex_into_expression_mode(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->push_lex_mode(Lex::EXPRESSION); } /* Called by the bison parser to push the lexer into version mode. */ extern "C" void script_push_lex_into_version_mode(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->push_lex_mode(Lex::VERSION_SCRIPT); } /* Called by the bison parser to pop the lexer mode. */ extern "C" void script_pop_lex_mode(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->pop_lex_mode(); } // Register an entire version node. For example: // // GLIBC_2.1 { // global: foo; // } GLIBC_2.0; // // - tag is "GLIBC_2.1" // - tree contains the information "global: foo" // - deps contains "GLIBC_2.0" extern "C" void script_register_vers_node(void*, const char* tag, int taglen, struct Version_tree *tree, struct Version_dependency_list *deps) { gold_assert(tree != NULL); gold_assert(tag != NULL); tree->dependencies = deps; tree->tag = std::string(tag, taglen); } // Add a dependencies to the list of existing dependencies, if any, // and return the expanded list. extern "C" struct Version_dependency_list * script_add_vers_depend(void* closurev, struct Version_dependency_list *all_deps, const char *depend_to_add, int deplen) { Parser_closure* closure = static_cast(closurev); if (all_deps == NULL) all_deps = closure->version_script()->allocate_dependency_list(); all_deps->dependencies.push_back(std::string(depend_to_add, deplen)); return all_deps; } // Add a pattern expression to an existing list of expressions, if any. // TODO: In the old linker, the last argument used to be a bool, but I // don't know what it meant. extern "C" struct Version_expression_list * script_new_vers_pattern(void* closurev, struct Version_expression_list *expressions, const char *pattern, int patlen, int exact_match) { Parser_closure* closure = static_cast(closurev); if (expressions == NULL) expressions = closure->version_script()->allocate_expression_list(); expressions->expressions.push_back( Version_expression(std::string(pattern, patlen), closure->get_current_language(), static_cast(exact_match))); return expressions; } // Attaches b to the end of a, and clears b. So a = a + b and b = {}. extern "C" struct Version_expression_list* script_merge_expressions(struct Version_expression_list *a, struct Version_expression_list *b) { a->expressions.insert(a->expressions.end(), b->expressions.begin(), b->expressions.end()); // We could delete b and remove it from expressions_lists_, but // that's a lot of work. This works just as well. b->expressions.clear(); return a; } // Combine the global and local expressions into a a Version_tree. extern "C" struct Version_tree * script_new_vers_node(void* closurev, struct Version_expression_list *global, struct Version_expression_list *local) { Parser_closure* closure = static_cast(closurev); Version_tree* tree = closure->version_script()->allocate_version_tree(); tree->global = global; tree->local = local; return tree; } // Handle a transition in language, such as at the // start or end of 'extern "C++"' extern "C" void version_script_push_lang(void* closurev, const char* lang, int langlen) { Parser_closure* closure = static_cast(closurev); closure->push_language(std::string(lang, langlen)); } extern "C" void version_script_pop_lang(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->pop_language(); } // Called by the bison parser to start a SECTIONS clause. extern "C" void script_start_sections(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->script_options()->script_sections()->start_sections(); } // Called by the bison parser to finish a SECTIONS clause. extern "C" void script_finish_sections(void* closurev) { Parser_closure* closure = static_cast(closurev); closure->script_options()->script_sections()->finish_sections(); } // Start processing entries for an output section. extern "C" void script_start_output_section(void* closurev, const char* name, size_t namelen, const struct Parser_output_section_header* header) { Parser_closure* closure = static_cast(closurev); closure->script_options()->script_sections()->start_output_section(name, namelen, header); } // Finish processing entries for an output section. extern "C" void script_finish_output_section(void* closurev, const struct Parser_output_section_trailer* trail) { Parser_closure* closure = static_cast(closurev); closure->script_options()->script_sections()->finish_output_section(trail); } // Add a data item (e.g., "WORD (0)") to the current output section. extern "C" void script_add_data(void* closurev, int data_token, Expression* val) { Parser_closure* closure = static_cast(closurev); int size; bool is_signed = true; switch (data_token) { case QUAD: size = 8; is_signed = false; break; case SQUAD: size = 8; break; case LONG: size = 4; break; case SHORT: size = 2; break; case BYTE: size = 1; break; default: gold_unreachable(); } closure->script_options()->script_sections()->add_data(size, is_signed, val); } // Add a clause setting the fill value to the current output section. extern "C" void script_add_fill(void* closurev, Expression* val) { Parser_closure* closure = static_cast(closurev); closure->script_options()->script_sections()->add_fill(val); } // Add a new input section specification to the current output // section. extern "C" void script_add_input_section(void* closurev, const struct Input_section_spec* spec, int keepi) { Parser_closure* closure = static_cast(closurev); bool keep = keepi != 0; closure->script_options()->script_sections()->add_input_section(spec, keep); } // Create a new list of string/sort pairs. extern "C" String_sort_list_ptr script_new_string_sort_list(const struct Wildcard_section* string_sort) { return new String_sort_list(1, *string_sort); } // Add an entry to a list of string/sort pairs. The way the parser // works permits us to simply modify the first parameter, rather than // copy the vector. extern "C" String_sort_list_ptr script_string_sort_list_add(String_sort_list_ptr pv, const struct Wildcard_section* string_sort) { if (pv == NULL) return script_new_string_sort_list(string_sort); else { pv->push_back(*string_sort); return pv; } } // Create a new list of strings. extern "C" String_list_ptr script_new_string_list(const char* str, size_t len) { return new String_list(1, std::string(str, len)); } // Add an element to a list of strings. The way the parser works // permits us to simply modify the first parameter, rather than copy // the vector. extern "C" String_list_ptr script_string_list_push_back(String_list_ptr pv, const char* str, size_t len) { if (pv == NULL) return script_new_string_list(str, len); else { pv->push_back(std::string(str, len)); return pv; } } // Concatenate two string lists. Either or both may be NULL. The way // the parser works permits us to modify the parameters, rather than // copy the vector. extern "C" String_list_ptr script_string_list_append(String_list_ptr pv1, String_list_ptr pv2) { if (pv1 == NULL) return pv2; if (pv2 == NULL) return pv1; pv1->insert(pv1->end(), pv2->begin(), pv2->end()); return pv1; } // Add a new program header. extern "C" void script_add_phdr(void* closurev, const char* name, size_t namelen, unsigned int type, const Phdr_info* info) { Parser_closure* closure = static_cast(closurev); bool includes_filehdr = info->includes_filehdr != 0; bool includes_phdrs = info->includes_phdrs != 0; bool is_flags_valid = info->is_flags_valid != 0; Script_sections* ss = closure->script_options()->script_sections(); ss->add_phdr(name, namelen, type, includes_filehdr, includes_phdrs, is_flags_valid, info->flags, info->load_address); } // Convert a program header string to a type. #define PHDR_TYPE(NAME) { #NAME, sizeof(#NAME) - 1, elfcpp::NAME } static struct { const char* name; size_t namelen; unsigned int val; } phdr_type_names[] = { PHDR_TYPE(PT_NULL), PHDR_TYPE(PT_LOAD), PHDR_TYPE(PT_DYNAMIC), PHDR_TYPE(PT_INTERP), PHDR_TYPE(PT_NOTE), PHDR_TYPE(PT_SHLIB), PHDR_TYPE(PT_PHDR), PHDR_TYPE(PT_TLS), PHDR_TYPE(PT_GNU_EH_FRAME), PHDR_TYPE(PT_GNU_STACK), PHDR_TYPE(PT_GNU_RELRO) }; extern "C" unsigned int script_phdr_string_to_type(void* closurev, const char* name, size_t namelen) { for (unsigned int i = 0; i < sizeof(phdr_type_names) / sizeof(phdr_type_names[0]); ++i) if (namelen == phdr_type_names[i].namelen && strncmp(name, phdr_type_names[i].name, namelen) == 0) return phdr_type_names[i].val; yyerror(closurev, _("unknown PHDR type (try integer)")); return elfcpp::PT_NULL; }