// resolve.cc -- symbol resolution for gold #include "gold.h" #include "elfcpp.h" #include "target.h" #include "object.h" #include "symtab.h" namespace gold { // Symbol methods used in this file. // Override the fields in Symbol. template void Symbol::override_base(const elfcpp::Sym& sym, Object* object) { this->object_ = object; this->shnum_ = sym.get_st_shndx(); // FIXME: Handle SHN_XINDEX. this->type_ = sym.get_st_type(); this->binding_ = sym.get_st_bind(); this->visibility_ = sym.get_st_visibility(); this->other_ = sym.get_st_nonvis(); } // Override the fields in Sized_symbol. template template void Sized_symbol::override(const elfcpp::Sym& sym, Object* object) { this->override_base(sym, object); this->value_ = sym.get_st_value(); this->size_ = sym.get_st_size(); } // Resolve a symbol. This is called the second and subsequent times // we see a symbol. TO is the pre-existing symbol. SYM is the new // symbol, seen in OBJECT. template void Symbol_table::resolve(Sized_symbol* to, const elfcpp::Sym& sym, Object* object) { if (object->target()->has_resolve()) { Sized_target* sized_target; sized_target = object->sized_target SELECT_SIZE_ENDIAN_NAME ( SELECT_SIZE_ENDIAN_ONLY(size, big_endian)); sized_target->resolve(to, sym, object); return; } // Build a little code for each symbol. // Bit 0: 0 for global, 1 for weak. // Bit 1: 0 for regular object, 1 for shared object // Bits 2-3: 0 for normal, 1 for undefined, 2 for common // This gives us values from 0 to 11: enum { DEF = 0, WEAK_DEF = 1, DYN_DEF = 2, DYN_WEAK_DEF = 3, UNDEF = 4, WEAK_UNDEF = 5, DYN_UNDEF = 6, DYN_WEAK_UNDEF = 7, COMMON = 8, WEAK_COMMON = 9, DYN_COMMON = 10, DYN_WEAK_COMMON = 11 }; int tobits; switch (to->binding()) { case elfcpp::STB_GLOBAL: tobits = 0; break; case elfcpp::STB_WEAK: tobits = 1; break; case elfcpp::STB_LOCAL: // We should only see externally visible symbols in the symbol // table. abort(); default: // Any target which wants to handle STB_LOOS, etc., needs to // define a resolve method. abort(); } if (to->object() != NULL && to->object()->is_dynamic()) tobits |= (1 << 1); switch (to->shnum()) { case elfcpp::SHN_UNDEF: tobits |= (1 << 2); break; case elfcpp::SHN_COMMON: tobits |= (2 << 2); break; default: if (to->type() == elfcpp::STT_COMMON) tobits |= (2 << 2); break; } int frombits; switch (sym.get_st_bind()) { case elfcpp::STB_GLOBAL: frombits = 0; break; case elfcpp::STB_WEAK: frombits = 1; break; case elfcpp::STB_LOCAL: fprintf(stderr, _("%s: %s: invalid STB_LOCAL symbol %s in external symbols\n"), program_name, object->name().c_str(), to->name()); gold_exit(false); default: fprintf(stderr, _("%s: %s: unsupported symbol binding %d for symbol %s\n"), program_name, object->name().c_str(), static_cast(sym.get_st_bind()), to->name()); gold_exit(false); } if (object->is_dynamic()) { frombits |= (1 << 1); // Record that we've seen this symbol in a dynamic object. to->set_in_dyn(); } switch (sym.get_st_shndx()) { case elfcpp::SHN_UNDEF: frombits |= (1 << 2); break; case elfcpp::SHN_COMMON: frombits |= (2 << 2); break; default: if (sym.get_st_type() == elfcpp::STT_COMMON) frombits |= (2 << 2); break; } // FIXME: Warn if either but not both of TO and SYM are STT_TLS. // We use a giant switch table for symbol resolution. This code is // unwieldy, but: 1) it is efficient; 2) we definitely handle all // cases; 3) it is easy to change the handling of a particular case. // The alternative would be a series of conditionals, but it is easy // to get the ordering wrong. This could also be done as a table, // but that is no easier to understand than this large switch // statement. switch (tobits * 16 + frombits) { case DEF * 16 + DEF: // Two definitions of the same symbol. We can't give an error // here, because we have not yet discarded linkonce and comdat // sections. FIXME. return; case WEAK_DEF * 16 + DEF: // We've seen a weak definition, and now we see a strong // definition. In the original SVR4 linker, this was treated as // a multiple definition error. In the Solaris linker and the // GNU linker, a weak definition followed by a regular // definition causes the weak definition to be overridden. We // are currently compatible with the GNU linker. In the future // we should add a target specific option to change this. // FIXME. to->override(sym, object); return; case DYN_DEF * 16 + DEF: case DYN_WEAK_DEF * 16 + DEF: // We've seen a definition in a dynamic object, and now we see a // definition in a regular object. The definition in the // regular object overrides the definition in the dynamic // object. to->override(sym, object); return; case UNDEF * 16 + DEF: case WEAK_UNDEF * 16 + DEF: case DYN_UNDEF * 16 + DEF: case DYN_WEAK_UNDEF * 16 + DEF: // We've seen an undefined reference, and now we see a // definition. We use the definition. to->override(sym, object); return; case COMMON * 16 + DEF: case WEAK_COMMON * 16 + DEF: case DYN_COMMON * 16 + DEF: case DYN_WEAK_COMMON * 16 + DEF: // We've seen a common symbol and now we see a definition. The // definition overrides. FIXME: We should optionally issue a // warning. to->override(sym, object); return; case DEF * 16 + WEAK_DEF: case WEAK_DEF * 16 + WEAK_DEF: // We've seen a definition and now we see a weak definition. We // ignore the new weak definition. return; case DYN_DEF * 16 + WEAK_DEF: case DYN_WEAK_DEF * 16 + WEAK_DEF: // We've seen a dynamic definition and now we see a regular weak // definition. The regular weak definition overrides. to->override(sym, object); return; case UNDEF * 16 + WEAK_DEF: case WEAK_UNDEF * 16 + WEAK_DEF: case DYN_UNDEF * 16 + WEAK_DEF: case DYN_WEAK_UNDEF * 16 + WEAK_DEF: // A weak definition of a currently undefined symbol. to->override(sym, object); return; case COMMON * 16 + WEAK_DEF: case WEAK_COMMON * 16 + WEAK_DEF: // A weak definition does not override a common definition. return; case DYN_COMMON * 16 + WEAK_DEF: case DYN_WEAK_COMMON * 16 + WEAK_DEF: // A weak definition does override a definition in a dynamic // object. FIXME: We should optionally issue a warning. to->override(sym, object); return; case DEF * 16 + DYN_DEF: case WEAK_DEF * 16 + DYN_DEF: case DYN_DEF * 16 + DYN_DEF: case DYN_WEAK_DEF * 16 + DYN_DEF: // Ignore a dynamic definition if we already have a definition. return; case UNDEF * 16 + DYN_DEF: case WEAK_UNDEF * 16 + DYN_DEF: case DYN_UNDEF * 16 + DYN_DEF: case DYN_WEAK_UNDEF * 16 + DYN_DEF: // Use a dynamic definition if we have a reference. to->override(sym, object); return; case COMMON * 16 + DYN_DEF: case WEAK_COMMON * 16 + DYN_DEF: case DYN_COMMON * 16 + DYN_DEF: case DYN_WEAK_COMMON * 16 + DYN_DEF: // Ignore a dynamic definition if we already have a common // definition. return; case DEF * 16 + DYN_WEAK_DEF: case WEAK_DEF * 16 + DYN_WEAK_DEF: case DYN_DEF * 16 + DYN_WEAK_DEF: case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF: // Ignore a weak dynamic definition if we already have a // definition. return; case UNDEF * 16 + DYN_WEAK_DEF: case WEAK_UNDEF * 16 + DYN_WEAK_DEF: case DYN_UNDEF * 16 + DYN_WEAK_DEF: case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF: // Use a weak dynamic definition if we have a reference. to->override(sym, object); return; case COMMON * 16 + DYN_WEAK_DEF: case WEAK_COMMON * 16 + DYN_WEAK_DEF: case DYN_COMMON * 16 + DYN_WEAK_DEF: case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF: // Ignore a weak dynamic definition if we already have a common // definition. return; case DEF * 16 + UNDEF: case WEAK_DEF * 16 + UNDEF: case DYN_DEF * 16 + UNDEF: case DYN_WEAK_DEF * 16 + UNDEF: case UNDEF * 16 + UNDEF: case WEAK_UNDEF * 16 + UNDEF: case DYN_UNDEF * 16 + UNDEF: case DYN_WEAK_UNDEF * 16 + UNDEF: case COMMON * 16 + UNDEF: case WEAK_COMMON * 16 + UNDEF: case DYN_COMMON * 16 + UNDEF: case DYN_WEAK_COMMON * 16 + UNDEF: // A new undefined reference tells us nothing. return; case DEF * 16 + WEAK_UNDEF: case WEAK_DEF * 16 + WEAK_UNDEF: case DYN_DEF * 16 + WEAK_UNDEF: case DYN_WEAK_DEF * 16 + WEAK_UNDEF: case UNDEF * 16 + WEAK_UNDEF: case WEAK_UNDEF * 16 + WEAK_UNDEF: case DYN_UNDEF * 16 + WEAK_UNDEF: case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF: case COMMON * 16 + WEAK_UNDEF: case WEAK_COMMON * 16 + WEAK_UNDEF: case DYN_COMMON * 16 + WEAK_UNDEF: case DYN_WEAK_COMMON * 16 + WEAK_UNDEF: // A new weak undefined reference tells us nothing. return; case DEF * 16 + DYN_UNDEF: case WEAK_DEF * 16 + DYN_UNDEF: case DYN_DEF * 16 + DYN_UNDEF: case DYN_WEAK_DEF * 16 + DYN_UNDEF: case UNDEF * 16 + DYN_UNDEF: case WEAK_UNDEF * 16 + DYN_UNDEF: case DYN_UNDEF * 16 + DYN_UNDEF: case DYN_WEAK_UNDEF * 16 + DYN_UNDEF: case COMMON * 16 + DYN_UNDEF: case WEAK_COMMON * 16 + DYN_UNDEF: case DYN_COMMON * 16 + DYN_UNDEF: case DYN_WEAK_COMMON * 16 + DYN_UNDEF: // A new dynamic undefined reference tells us nothing. return; case DEF * 16 + DYN_WEAK_UNDEF: case WEAK_DEF * 16 + DYN_WEAK_UNDEF: case DYN_DEF * 16 + DYN_WEAK_UNDEF: case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF: case UNDEF * 16 + DYN_WEAK_UNDEF: case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF: case DYN_UNDEF * 16 + DYN_WEAK_UNDEF: case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF: case COMMON * 16 + DYN_WEAK_UNDEF: case WEAK_COMMON * 16 + DYN_WEAK_UNDEF: case DYN_COMMON * 16 + DYN_WEAK_UNDEF: case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF: // A new weak dynamic undefined reference tells us nothing. return; case DEF * 16 + COMMON: // A common symbol does not override a definition. return; case WEAK_DEF * 16 + COMMON: case DYN_DEF * 16 + COMMON: case DYN_WEAK_DEF * 16 + COMMON: // A common symbol does override a weak definition or a dynamic // definition. to->override(sym, object); return; case UNDEF * 16 + COMMON: case WEAK_UNDEF * 16 + COMMON: case DYN_UNDEF * 16 + COMMON: case DYN_WEAK_UNDEF * 16 + COMMON: // A common symbol is a definition for a reference. to->override(sym, object); return; case COMMON * 16 + COMMON: case WEAK_COMMON * 16 + COMMON: case DYN_COMMON * 16 + COMMON: case DYN_WEAK_COMMON * 16 + COMMON: case DEF * 16 + WEAK_COMMON: case WEAK_DEF * 16 + WEAK_COMMON: case DYN_DEF * 16 + WEAK_COMMON: case DYN_WEAK_DEF * 16 + WEAK_COMMON: case UNDEF * 16 + WEAK_COMMON: case WEAK_UNDEF * 16 + WEAK_COMMON: case DYN_UNDEF * 16 + WEAK_COMMON: case DYN_WEAK_UNDEF * 16 + WEAK_COMMON: case COMMON * 16 + WEAK_COMMON: case WEAK_COMMON * 16 + WEAK_COMMON: case DYN_COMMON * 16 + WEAK_COMMON: case DYN_WEAK_COMMON * 16 + WEAK_COMMON: case DEF * 16 + DYN_COMMON: case WEAK_DEF * 16 + DYN_COMMON: case DYN_DEF * 16 + DYN_COMMON: case DYN_WEAK_DEF * 16 + DYN_COMMON: case UNDEF * 16 + DYN_COMMON: case WEAK_UNDEF * 16 + DYN_COMMON: case DYN_UNDEF * 16 + DYN_COMMON: case DYN_WEAK_UNDEF * 16 + DYN_COMMON: case COMMON * 16 + DYN_COMMON: case WEAK_COMMON * 16 + DYN_COMMON: case DYN_COMMON * 16 + DYN_COMMON: case DYN_WEAK_COMMON * 16 + DYN_COMMON: case DEF * 16 + DYN_WEAK_COMMON: case WEAK_DEF * 16 + DYN_WEAK_COMMON: case DYN_DEF * 16 + DYN_WEAK_COMMON: case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON: case UNDEF * 16 + DYN_WEAK_COMMON: case WEAK_UNDEF * 16 + DYN_WEAK_COMMON: case DYN_UNDEF * 16 + DYN_WEAK_COMMON: case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON: case COMMON * 16 + DYN_WEAK_COMMON: case WEAK_COMMON * 16 + DYN_WEAK_COMMON: case DYN_COMMON * 16 + DYN_WEAK_COMMON: case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON: abort(); break; default: abort(); } } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones needed for implemented // targets. template void Symbol_table::resolve<32, true>( Sized_symbol<32>* to, const elfcpp::Sym<32, true>& sym, Object* object); template void Symbol_table::resolve<32, false>( Sized_symbol<32>* to, const elfcpp::Sym<32, false>& sym, Object* object); template void Symbol_table::resolve<64, true>( Sized_symbol<64>* to, const elfcpp::Sym<64, true>& sym, Object* object); template void Symbol_table::resolve<64, false>( Sized_symbol<64>* to, const elfcpp::Sym<64, false>& sym, Object* object); } // End namespace gold.