// reloc.cc -- relocate input files for gold. // Copyright 2006, 2007 Free Software Foundation, Inc. // Written by Ian Lance Taylor . // This file is part of gold. // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, // MA 02110-1301, USA. #include "gold.h" #include "workqueue.h" #include "symtab.h" #include "output.h" #include "merge.h" #include "object.h" #include "reloc.h" namespace gold { // Read_relocs methods. // These tasks just read the relocation information from the file. // After reading it, the start another task to process the // information. These tasks requires access to the file. Task_token* Read_relocs::is_runnable() { return this->object_->is_locked() ? this->object_->token() : NULL; } // Lock the file. void Read_relocs::locks(Task_locker* tl) { tl->add(this, this->object_->token()); } // Read the relocations and then start a Scan_relocs_task. void Read_relocs::run(Workqueue* workqueue) { Read_relocs_data *rd = new Read_relocs_data; this->object_->read_relocs(rd); this->object_->release(); workqueue->queue_front(new Scan_relocs(this->options_, this->symtab_, this->layout_, this->object_, rd, this->symtab_lock_, this->blocker_)); } // Return a debugging name for the task. std::string Read_relocs::get_name() const { return "Read_relocs " + this->object_->name(); } // Scan_relocs methods. // These tasks scan the relocations read by Read_relocs and mark up // the symbol table to indicate which relocations are required. We // use a lock on the symbol table to keep them from interfering with // each other. Task_token* Scan_relocs::is_runnable() { if (!this->symtab_lock_->is_writable()) return this->symtab_lock_; if (this->object_->is_locked()) return this->object_->token(); return NULL; } // Return the locks we hold: one on the file, one on the symbol table // and one blocker. void Scan_relocs::locks(Task_locker* tl) { tl->add(this, this->object_->token()); tl->add(this, this->symtab_lock_); tl->add(this, this->blocker_); } // Scan the relocs. void Scan_relocs::run(Workqueue*) { this->object_->scan_relocs(this->options_, this->symtab_, this->layout_, this->rd_); this->object_->release(); delete this->rd_; this->rd_ = NULL; } // Return a debugging name for the task. std::string Scan_relocs::get_name() const { return "Scan_relocs " + this->object_->name(); } // Relocate_task methods. // We may have to wait for the output sections to be written. Task_token* Relocate_task::is_runnable() { if (this->object_->relocs_must_follow_section_writes() && this->output_sections_blocker_->is_blocked()) return this->output_sections_blocker_; if (this->object_->is_locked()) return this->object_->token(); return NULL; } // We want to lock the file while we run. We want to unblock // INPUT_SECTIONS_BLOCKER and FINAL_BLOCKER when we are done. // INPUT_SECTIONS_BLOCKER may be NULL. void Relocate_task::locks(Task_locker* tl) { if (this->input_sections_blocker_ != NULL) tl->add(this, this->input_sections_blocker_); tl->add(this, this->final_blocker_); tl->add(this, this->object_->token()); } // Run the task. void Relocate_task::run(Workqueue*) { this->object_->relocate(this->options_, this->symtab_, this->layout_, this->of_); this->object_->release(); } // Return a debugging name for the task. std::string Relocate_task::get_name() const { return "Relocate_task " + this->object_->name(); } // Read the relocs and local symbols from the object file and store // the information in RD. template void Sized_relobj::do_read_relocs(Read_relocs_data* rd) { rd->relocs.clear(); unsigned int shnum = this->shnum(); if (shnum == 0) return; rd->relocs.reserve(shnum / 2); std::vector& map_sections(this->map_to_output()); const unsigned char *pshdrs = this->get_view(this->elf_file_.shoff(), shnum * This::shdr_size, true); // Skip the first, dummy, section. const unsigned char *ps = pshdrs + This::shdr_size; for (unsigned int i = 1; i < shnum; ++i, ps += This::shdr_size) { typename This::Shdr shdr(ps); unsigned int sh_type = shdr.get_sh_type(); if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA) continue; unsigned int shndx = shdr.get_sh_info(); if (shndx >= shnum) { this->error(_("relocation section %u has bad info %u"), i, shndx); continue; } Output_section* os = map_sections[shndx].output_section; if (os == NULL) continue; // We are scanning relocations in order to fill out the GOT and // PLT sections. Relocations for sections which are not // allocated (typically debugging sections) should not add new // GOT and PLT entries. So we skip them. typename This::Shdr secshdr(pshdrs + shndx * This::shdr_size); if ((secshdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) continue; if (shdr.get_sh_link() != this->symtab_shndx_) { this->error(_("relocation section %u uses unexpected " "symbol table %u"), i, shdr.get_sh_link()); continue; } off_t sh_size = shdr.get_sh_size(); unsigned int reloc_size; if (sh_type == elfcpp::SHT_REL) reloc_size = elfcpp::Elf_sizes::rel_size; else reloc_size = elfcpp::Elf_sizes::rela_size; if (reloc_size != shdr.get_sh_entsize()) { this->error(_("unexpected entsize for reloc section %u: %lu != %u"), i, static_cast(shdr.get_sh_entsize()), reloc_size); continue; } size_t reloc_count = sh_size / reloc_size; if (static_cast(reloc_count * reloc_size) != sh_size) { this->error(_("reloc section %u size %lu uneven"), i, static_cast(sh_size)); continue; } rd->relocs.push_back(Section_relocs()); Section_relocs& sr(rd->relocs.back()); sr.reloc_shndx = i; sr.data_shndx = shndx; sr.contents = this->get_lasting_view(shdr.get_sh_offset(), sh_size, true); sr.sh_type = sh_type; sr.reloc_count = reloc_count; sr.output_section = os; sr.needs_special_offset_handling = map_sections[shndx].offset == -1; } // Read the local symbols. gold_assert(this->symtab_shndx_ != -1U); if (this->symtab_shndx_ == 0 || this->local_symbol_count_ == 0) rd->local_symbols = NULL; else { typename This::Shdr symtabshdr(pshdrs + this->symtab_shndx_ * This::shdr_size); gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); const int sym_size = This::sym_size; const unsigned int loccount = this->local_symbol_count_; gold_assert(loccount == symtabshdr.get_sh_info()); off_t locsize = loccount * sym_size; rd->local_symbols = this->get_lasting_view(symtabshdr.get_sh_offset(), locsize, true); } } // Scan the relocs and adjust the symbol table. This looks for // relocations which require GOT/PLT/COPY relocations. template void Sized_relobj::do_scan_relocs(const General_options& options, Symbol_table* symtab, Layout* layout, Read_relocs_data* rd) { Sized_target* target = this->sized_target(); const unsigned char* local_symbols; if (rd->local_symbols == NULL) local_symbols = NULL; else local_symbols = rd->local_symbols->data(); for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin(); p != rd->relocs.end(); ++p) { target->scan_relocs(options, symtab, layout, this, p->data_shndx, p->sh_type, p->contents->data(), p->reloc_count, p->output_section, p->needs_special_offset_handling, this->local_symbol_count_, local_symbols); delete p->contents; p->contents = NULL; } if (rd->local_symbols != NULL) { delete rd->local_symbols; rd->local_symbols = NULL; } } // Relocate the input sections and write out the local symbols. template void Sized_relobj::do_relocate(const General_options& options, const Symbol_table* symtab, const Layout* layout, Output_file* of) { unsigned int shnum = this->shnum(); // Read the section headers. const unsigned char* pshdrs = this->get_view(this->elf_file_.shoff(), shnum * This::shdr_size, true); Views views; views.resize(shnum); // Make two passes over the sections. The first one copies the // section data to the output file. The second one applies // relocations. this->write_sections(pshdrs, of, &views); // To speed up relocations, we set up hash tables for fast lookup of // input offsets to output addresses. this->initialize_input_to_output_maps(); // Apply relocations. this->relocate_sections(options, symtab, layout, pshdrs, &views); // After we've done the relocations, we release the hash tables, // since we no longer need them. this->free_input_to_output_maps(); // Write out the accumulated views. for (unsigned int i = 1; i < shnum; ++i) { if (views[i].view != NULL) { if (!views[i].is_postprocessing_view) { if (views[i].is_input_output_view) of->write_input_output_view(views[i].offset, views[i].view_size, views[i].view); else of->write_output_view(views[i].offset, views[i].view_size, views[i].view); } } } // Write out the local symbols. this->write_local_symbols(of, layout->sympool(), layout->dynpool()); } // Write section data to the output file. PSHDRS points to the // section headers. Record the views in *PVIEWS for use when // relocating. template void Sized_relobj::write_sections(const unsigned char* pshdrs, Output_file* of, Views* pviews) const { unsigned int shnum = this->shnum(); const std::vector& map_sections(this->map_to_output()); const unsigned char* p = pshdrs + This::shdr_size; for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size) { View_size* pvs = &(*pviews)[i]; pvs->view = NULL; const Output_section* os = map_sections[i].output_section; if (os == NULL) continue; off_t output_offset = map_sections[i].offset; typename This::Shdr shdr(p); if (shdr.get_sh_type() == elfcpp::SHT_NOBITS) continue; // In the normal case, this input section is simply mapped to // the output section at offset OUTPUT_OFFSET. // However, if OUTPUT_OFFSET == -1, then input data is handled // specially--e.g., a .eh_frame section. The relocation // routines need to check for each reloc where it should be // applied. For this case, we need an input/output view for the // entire contents of the section in the output file. We don't // want to copy the contents of the input section to the output // section; the output section contents were already written, // and we waited for them in Relocate_task::is_runnable because // relocs_must_follow_section_writes is set for the object. // Regardless of which of the above cases is true, we have to // check requires_postprocessing of the output section. If that // is false, then we work with views of the output file // directly. If it is true, then we work with a separate // buffer, and the output section is responsible for writing the // final data to the output file. off_t output_section_offset; off_t output_section_size; if (!os->requires_postprocessing()) { output_section_offset = os->offset(); output_section_size = os->data_size(); } else { output_section_offset = 0; output_section_size = os->postprocessing_buffer_size(); } off_t view_start; section_size_type view_size; if (output_offset != -1) { view_start = output_section_offset + output_offset; view_size = convert_to_section_size_type(shdr.get_sh_size()); } else { view_start = output_section_offset; view_size = convert_to_section_size_type(output_section_size); } if (view_size == 0) continue; gold_assert(output_offset == -1 || (output_offset >= 0 && output_offset + view_size <= output_section_size)); unsigned char* view; if (os->requires_postprocessing()) { unsigned char* buffer = os->postprocessing_buffer(); view = buffer + view_start; if (output_offset != -1) this->read(shdr.get_sh_offset(), view_size, view); } else { if (output_offset == -1) view = of->get_input_output_view(view_start, view_size); else { view = of->get_output_view(view_start, view_size); this->read(shdr.get_sh_offset(), view_size, view); } } pvs->view = view; pvs->address = os->address(); if (output_offset != -1) pvs->address += output_offset; pvs->offset = view_start; pvs->view_size = view_size; pvs->is_input_output_view = output_offset == -1; pvs->is_postprocessing_view = os->requires_postprocessing(); } } // Relocate section data. VIEWS points to the section data as views // in the output file. template void Sized_relobj::relocate_sections( const General_options& options, const Symbol_table* symtab, const Layout* layout, const unsigned char* pshdrs, Views* pviews) { unsigned int shnum = this->shnum(); Sized_target* target = this->sized_target(); const std::vector& map_sections(this->map_to_output()); Relocate_info relinfo; relinfo.options = &options; relinfo.symtab = symtab; relinfo.layout = layout; relinfo.object = this; const unsigned char* p = pshdrs + This::shdr_size; for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size) { typename This::Shdr shdr(p); unsigned int sh_type = shdr.get_sh_type(); if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA) continue; unsigned int index = shdr.get_sh_info(); if (index >= this->shnum()) { this->error(_("relocation section %u has bad info %u"), i, index); continue; } Output_section* os = map_sections[index].output_section; if (os == NULL) { // This relocation section is against a section which we // discarded. continue; } off_t output_offset = map_sections[index].offset; gold_assert((*pviews)[index].view != NULL); if (shdr.get_sh_link() != this->symtab_shndx_) { gold_error(_("relocation section %u uses unexpected " "symbol table %u"), i, shdr.get_sh_link()); continue; } off_t sh_size = shdr.get_sh_size(); const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), sh_size, false); unsigned int reloc_size; if (sh_type == elfcpp::SHT_REL) reloc_size = elfcpp::Elf_sizes::rel_size; else reloc_size = elfcpp::Elf_sizes::rela_size; if (reloc_size != shdr.get_sh_entsize()) { gold_error(_("unexpected entsize for reloc section %u: %lu != %u"), i, static_cast(shdr.get_sh_entsize()), reloc_size); continue; } size_t reloc_count = sh_size / reloc_size; if (static_cast(reloc_count * reloc_size) != sh_size) { gold_error(_("reloc section %u size %lu uneven"), i, static_cast(sh_size)); continue; } gold_assert(output_offset != -1 || this->relocs_must_follow_section_writes()); relinfo.reloc_shndx = i; relinfo.data_shndx = index; target->relocate_section(&relinfo, sh_type, prelocs, reloc_count, os, output_offset == -1, (*pviews)[index].view, (*pviews)[index].address, (*pviews)[index].view_size); } } // Create merge hash tables for the local symbols. These are used to // speed up relocations. template void Sized_relobj::initialize_input_to_output_maps() { const unsigned int loccount = this->local_symbol_count_; for (unsigned int i = 1; i < loccount; ++i) { Symbol_value& lv(this->local_values_[i]); lv.initialize_input_to_output_map(this); } } // Free merge hash tables for the local symbols. template void Sized_relobj::free_input_to_output_maps() { const unsigned int loccount = this->local_symbol_count_; for (unsigned int i = 1; i < loccount; ++i) { Symbol_value& lv(this->local_values_[i]); lv.free_input_to_output_map(); } } // Class Merged_symbol_value. template void Merged_symbol_value::initialize_input_to_output_map( const Relobj* object, unsigned int input_shndx) { Object_merge_map* map = object->merge_map(); map->initialize_input_to_output_map(input_shndx, this->output_start_address_, &this->output_addresses_); } // Get the output value corresponding to an input offset if we // couldn't find it in the hash table. template typename elfcpp::Elf_types::Elf_Addr Merged_symbol_value::value_from_output_section( const Relobj* object, unsigned int input_shndx, typename elfcpp::Elf_types::Elf_Addr input_offset) const { section_offset_type output_offset; bool found = object->merge_map()->get_output_offset(NULL, input_shndx, input_offset, &output_offset); // If this assertion fails, it means that some relocation was // against a portion of an input merge section which we didn't map // to the output file and we didn't explicitly discard. We should // always map all portions of input merge sections. gold_assert(found); if (output_offset == -1) return 0; else return this->output_start_address_ + output_offset; } // Copy_relocs::Copy_reloc_entry methods. // Return whether we should emit this reloc. We should emit it if the // symbol is still defined in a dynamic object. If we should not emit // it, we clear it, to save ourselves the test next time. template bool Copy_relocs::Copy_reloc_entry::should_emit() { if (this->sym_ == NULL) return false; if (this->sym_->is_from_dynobj()) return true; this->sym_ = NULL; return false; } // Emit a reloc into a SHT_REL section. template void Copy_relocs::Copy_reloc_entry::emit( Output_data_reloc* reloc_data) { this->sym_->set_needs_dynsym_entry(); reloc_data->add_global(this->sym_, this->reloc_type_, this->output_section_, this->relobj_, this->shndx_, this->address_); } // Emit a reloc into a SHT_RELA section. template void Copy_relocs::Copy_reloc_entry::emit( Output_data_reloc* reloc_data) { this->sym_->set_needs_dynsym_entry(); reloc_data->add_global(this->sym_, this->reloc_type_, this->output_section_, this->relobj_, this->shndx_, this->address_, this->addend_); } // Copy_relocs methods. // Return whether we need a COPY reloc for a relocation against GSYM. // The relocation is being applied to section SHNDX in OBJECT. template bool Copy_relocs::need_copy_reloc( const General_options*, Relobj* object, unsigned int shndx, Sized_symbol* sym) { // FIXME: Handle -z nocopyrelocs. if (sym->symsize() == 0) return false; // If this is a readonly section, then we need a COPY reloc. // Otherwise we can use a dynamic reloc. if ((object->section_flags(shndx) & elfcpp::SHF_WRITE) == 0) return true; return false; } // Save a Rel reloc. template void Copy_relocs::save( Symbol* sym, Relobj* relobj, unsigned int shndx, Output_section* output_section, const elfcpp::Rel& rel) { unsigned int reloc_type = elfcpp::elf_r_type(rel.get_r_info()); this->entries_.push_back(Copy_reloc_entry(sym, reloc_type, relobj, shndx, output_section, rel.get_r_offset(), 0)); } // Save a Rela reloc. template void Copy_relocs::save( Symbol* sym, Relobj* relobj, unsigned int shndx, Output_section* output_section, const elfcpp::Rela& rela) { unsigned int reloc_type = elfcpp::elf_r_type(rela.get_r_info()); this->entries_.push_back(Copy_reloc_entry(sym, reloc_type, relobj, shndx, output_section, rela.get_r_offset(), rela.get_r_addend())); } // Return whether there are any relocs to emit. We don't want to emit // a reloc if the symbol is no longer defined in a dynamic object. template bool Copy_relocs::any_to_emit() { for (typename Copy_reloc_entries::iterator p = this->entries_.begin(); p != this->entries_.end(); ++p) { if (p->should_emit()) return true; } return false; } // Emit relocs. template template void Copy_relocs::emit( Output_data_reloc* reloc_data) { for (typename Copy_reloc_entries::iterator p = this->entries_.begin(); p != this->entries_.end(); ++p) { if (p->should_emit()) p->emit(reloc_data); } } // Track_relocs methods. // Initialize the class to track the relocs. This gets the object, // the reloc section index, and the type of the relocs. This returns // false if something goes wrong. template bool Track_relocs::initialize( Object* object, unsigned int reloc_shndx, unsigned int reloc_type) { // If RELOC_SHNDX is -1U, it means there is more than one reloc // section for the .eh_frame section. We can't handle that case. if (reloc_shndx == -1U) return false; // If RELOC_SHNDX is 0, there is no reloc section. if (reloc_shndx == 0) return true; // Get the contents of the reloc section. this->prelocs_ = object->section_contents(reloc_shndx, &this->len_, false); if (reloc_type == elfcpp::SHT_REL) this->reloc_size_ = elfcpp::Elf_sizes::rel_size; else if (reloc_type == elfcpp::SHT_RELA) this->reloc_size_ = elfcpp::Elf_sizes::rela_size; else gold_unreachable(); if (this->len_ % this->reloc_size_ != 0) { object->error(_("reloc section size %zu is not a multiple of " "reloc size %d\n"), static_cast(this->len_), this->reloc_size_); return false; } return true; } // Return the offset of the next reloc, or -1 if there isn't one. template off_t Track_relocs::next_offset() const { if (this->pos_ >= this->len_) return -1; // Rel and Rela start out the same, so we can always use Rel to find // the r_offset value. elfcpp::Rel rel(this->prelocs_ + this->pos_); return rel.get_r_offset(); } // Return the index of the symbol referenced by the next reloc, or -1U // if there aren't any more relocs. template unsigned int Track_relocs::next_symndx() const { if (this->pos_ >= this->len_) return -1U; // Rel and Rela start out the same, so we can use Rel to find the // symbol index. elfcpp::Rel rel(this->prelocs_ + this->pos_); return elfcpp::elf_r_sym(rel.get_r_info()); } // Advance to the next reloc whose r_offset is greater than or equal // to OFFSET. Return the number of relocs we skip. template int Track_relocs::advance(off_t offset) { int ret = 0; while (this->pos_ < this->len_) { // Rel and Rela start out the same, so we can always use Rel to // find the r_offset value. elfcpp::Rel rel(this->prelocs_ + this->pos_); if (static_cast(rel.get_r_offset()) >= offset) break; ++ret; this->pos_ += this->reloc_size_; } return ret; } // Instantiate the templates we need. We could use the configure // script to restrict this to only the ones for implemented targets. #ifdef HAVE_TARGET_32_LITTLE template void Sized_relobj<32, false>::do_read_relocs(Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_32_BIG template void Sized_relobj<32, true>::do_read_relocs(Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_64_LITTLE template void Sized_relobj<64, false>::do_read_relocs(Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_64_BIG template void Sized_relobj<64, true>::do_read_relocs(Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_32_LITTLE template void Sized_relobj<32, false>::do_scan_relocs(const General_options& options, Symbol_table* symtab, Layout* layout, Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_32_BIG template void Sized_relobj<32, true>::do_scan_relocs(const General_options& options, Symbol_table* symtab, Layout* layout, Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_64_LITTLE template void Sized_relobj<64, false>::do_scan_relocs(const General_options& options, Symbol_table* symtab, Layout* layout, Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_64_BIG template void Sized_relobj<64, true>::do_scan_relocs(const General_options& options, Symbol_table* symtab, Layout* layout, Read_relocs_data* rd); #endif #ifdef HAVE_TARGET_32_LITTLE template void Sized_relobj<32, false>::do_relocate(const General_options& options, const Symbol_table* symtab, const Layout* layout, Output_file* of); #endif #ifdef HAVE_TARGET_32_BIG template void Sized_relobj<32, true>::do_relocate(const General_options& options, const Symbol_table* symtab, const Layout* layout, Output_file* of); #endif #ifdef HAVE_TARGET_64_LITTLE template void Sized_relobj<64, false>::do_relocate(const General_options& options, const Symbol_table* symtab, const Layout* layout, Output_file* of); #endif #ifdef HAVE_TARGET_64_BIG template void Sized_relobj<64, true>::do_relocate(const General_options& options, const Symbol_table* symtab, const Layout* layout, Output_file* of); #endif #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) template class Merged_symbol_value<32>; #endif #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) template class Merged_symbol_value<64>; #endif #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) template class Symbol_value<32>; #endif #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) template class Symbol_value<64>; #endif #ifdef HAVE_TARGET_32_LITTLE template class Copy_relocs<32, false>; #endif #ifdef HAVE_TARGET_32_BIG template class Copy_relocs<32, true>; #endif #ifdef HAVE_TARGET_64_LITTLE template class Copy_relocs<64, false>; #endif #ifdef HAVE_TARGET_64_BIG template class Copy_relocs<64, true>; #endif #ifdef HAVE_TARGET_32_LITTLE template void Copy_relocs<32, false>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_32_BIG template void Copy_relocs<32, true>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_64_LITTLE template void Copy_relocs<64, false>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_64_BIG template void Copy_relocs<64, true>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_32_LITTLE template void Copy_relocs<32, false>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_32_BIG template void Copy_relocs<32, true>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_64_LITTLE template void Copy_relocs<64, false>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_64_BIG template void Copy_relocs<64, true>::emit( Output_data_reloc*); #endif #ifdef HAVE_TARGET_32_LITTLE template class Track_relocs<32, false>; #endif #ifdef HAVE_TARGET_32_BIG template class Track_relocs<32, true>; #endif #ifdef HAVE_TARGET_64_LITTLE template class Track_relocs<64, false>; #endif #ifdef HAVE_TARGET_64_BIG template class Track_relocs<64, true>; #endif } // End namespace gold.